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ABSTRACT

Combining multiple rankers has potential for improving the
performance over using any of the single rankers. However,
querying multiple rankers for every search request can often
be too costly due to efficiency or commercial reasons. In this
work, we propose a more cost-effective approach that pre-
dicts the utility of any additional rankers, prior to querying
them. We develop a combined measure that allows us to
maximize the gains in retrieval effectiveness of ranker com-
bination subject to a given efficiency constraint. Given the
results of a baseline ranker, we predict two quantities that
indicate the utility of querying an additional ranker: (1)
Overlap — the fraction of its results already retrieved by the
baseline ranker and (2) Gain — the increase in effectiveness
over the baseline ranker. Our experimental results on both a
large web and TREC collections demonstrate the viability of
our approach to cost-effective ranker combination. We also
show that we can significantly improve the effectiveness and
efficiency of ranker combination by augmenting the explicit
relevance judgments with automatically generated overlap
data. Overall, using easy-to-compute features based on the
top retrieved results of a baseline ranker, we attain nearly
10% improvements over a class-prior based method.

1. INTRODUCTION
Applications that combine multiple rankers are ubiquitous

on the web today. These applications include meta-search
engines (Dogpile.com, Clusty.com, Metacrawler.com), search
engine comparisons (Bing-vs-Google.com) and specialized ap-
plications that use general-purpose search engines to aug-
ment their own results (Powerset.com, Facebook.com). How-
ever, querying all potentially available rankers for every in-
coming user request can be both computationally expensive
(if rankers have high latency) or expensive due to commer-
cial licensing restrictions [18]. In this paper we propose a
cost-effective model of ranker combination, which allows the
application to predict, given an incoming user query and a
base ranking, whether querying an additional ranker is likely
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Figure 1: Schematic diagram of a cost-effective
ranking combination.

to bring in new relevant information.
Figure 1 schematically describes the model of cost-effective

combination of rankers. For simplicity, we assume that a
system (e.g., a meta-search engine) has access to two sep-
arate black-box rankers: a base ranker B and a candidate
ranker C. First a user query q is received by the system.
The query is directly issued to ranker B and its results are
processed. Based on these results a decision is made condi-
tioned on the utility U(q) of querying ranker C being greater
than some threshold T . If this condition is satisfied, ranker
C is queried and its results are merged with the base ranker
results to produce a final ranking D. Otherwise, only the
results of the base ranker are returned as D.

We can measure the utility U(q) of querying the candi-
date ranker by calculating the inter-ranker overlap. In web
search, for instance, the inter-ranker overlap varies signifi-
cantly across different search queries, depending on query
length, intent and the type of results the query retrieves1.
In experiments we have conducted with 30,000 web search
queries, we have found that while the median inter-ranker
overlap2 is below 30%, for more than 20% of queries the
overlap is higher than 60%. Such high inter-ranker overlap
indicates that there will be little utility in querying an addi-
tional candidate ranker for these queries, and we could save
bandwidth and time by querying the base ranker alone.

Motivated by these findings, in this paper we develop a
statistical model for cost-effective ranker combination in a
meta-search setting. While most previous work on meta-
search and rank-fusion [21, 2, 13] assumes that all the can-
didate rankers are queried all the time, using our model, we
can account for a tradeoff between the cost and the utility

1For instance, a query that returns a result from Wikipedia on one
web search engine is likely to return the same result on another
web search engine.
2Using two web search engines, Bing and Yahoo!, as rankers.



of querying a candidate ranker, and only choose to query it
if its expected utility exceeds a defined threshold.

Our model is directly optimized for obtaining the best
(weighted) balance between the efficiency (number of times
a candidate ranker was not queried) and the effectiveness
(number of additional new/relevant documents retrieved by
the candidate ranker) of the system. To perform this opti-
mization we develop a set of easy-to-compute features that
rely solely on the query and the output of the base ranker,
with no assumptions about the inner workings of their re-
trieval algorithms or access to their indexes. This black-box
approach is motivated by common scenario in web search,
where rankers are stand-alone search engines that expose
their results through a limited-access API.

Thus far, we have focused on using the inter-ranker over-
lap as a measure for utility of querying a candidate ranker.
However, given relevance judgments, it is more accurate to
measure this utility by gauging the gain in relevant new
(rather than all new) documents that occurs as a result of
querying the candidate. Unfortunately, such relevance judg-
ments have to be done manually, and are expensive to ob-
tain, while overlap data is abundant, and can be generated
automatically.

To overcome the problem of scarcity of relevance judg-
ments, we propose a transfer learning approach for ranker
combination. The transfer learning approach allows us to
learn a mapping between the inter-ranker overlap and the
relevance gain values. This mapping is then used to create
large amounts of surrogate training data, using which we
can construct a more effective (in terms of true relevance
gains) model of ranker combination.

Evaluation of our methods using both overlap data and
relevance judgments affirms the viability of our cost-effective
ranker combination model. Experiments on both Web and
TREC data show that our method always achieves a better
effectiveness-efficiency tradeoff than a prior-based combina-
tion baseline. We also empirically demonstrate the merits
of our transfer learning approach by augmenting TREC rel-
evance judgments with overlap data.

The remainder of the paper is organized as follows. Sec-
tion 2 covers the background and the related work. In Sec-
tion 3 we develop a model for cost-effective ranker combina-
tion. In Sections 4 and 5 we report the experimental setup
and the experimental results. We conclude the paper in
Section 6.

2. BACKGROUND AND RELATED WORK
Combining results from multiple search engines has been

studied in diverse application settings such as meta-search
[21], rank-fusion [2, 13] and distributed search [8]. A com-
plete survey of this work is beyond the scope of our paper.
Instead, we focus on approaches that are pertinent to cost-
effective combination of search results in a black box meta-
search scenario that is common on the web today. In partic-
ular, we present prior work that discusses the relationship
between overlap of search results and retrieval effectiveness,
and work that focuses on the effectiveness versus efficiency
trade-offs in combining results from multiple search engines.

2.1 Overlap versus Effectiveness
In the meta-search setting, multiple rankers can be used

to either fuse search results to produce a new ranking [21],
or to route the user to the most effective search engine [25].

Rank fusion approaches combine evidence from multiple
search engines in order to create a fused rank list [2, 17, 22,
12, 13]. There are two possible reasons for improvements
obtained by rank fusion approaches. First, if there is high
overlap of relevant documents in the search results compared
to non-relevant overlap, the combination of evidence will fa-
vor relevant documents more and improve the precision of
the fused results ranking [15]. Second, the search results can
contain different relevant documents that are combined to
improve the recall of the fused results. Bietzel et al [5, 6],
show that when the retrieval systems used are highly effec-
tive but have systemic differences3, the improvements due
to fusion are largely due to improvements in recall. In the
web meta-search scenario, where the rankers are both effec-
tive and diverse, rankers with low overlap in search results
are more likely to produce better fused results compared to
rankers with higher overlap [11].

Different search engines can provide higher quality results
for different queries. White et al [25] develop query and
result-set dependent techniques to solve the problem of au-
tomatically routing users to the search engine that provides
the best result for a given query. We consider this problem in
the practical meta-search setting which imposes further ef-
ficiency restrictions. In particular, we consider the scenario
where a meta-search engine has access to the search results
page alone and needs to minimize the number of queries is-
sued to rankers. In this setting, suggesting the search results
of an additional search engine is useful only if the additional
search results contain new relevant documents.

Thus, predicting inter-ranker overlap in search results is
useful for effective and efficient combination of these rankers
in both rank fusion and routing scenarios. In this work,
we target the prediction of both overlap and gain based
measures that are proportional to the number of new (rele-
vant) documents that can be obtained by using an additional
search engine.

2.2 Effectiveness versus Efficiency
Prior work on federated search has focused on the effec-

tiveness versus efficiency trade-offs involved in selecting a
small number of resources that maximize the number of
relevant documents returned. Selecting too few resources
might yield low recall, whereas selecting too many resources
can be inefficient. Si et al [23] utilize a centralized sam-
ple of documents created from past queries to estimate the
relevance of documents obtained from individual search en-
gines. The estimated relevance of the top-k documents from
each search engine is then used in an optimization frame-
work to determine the smallest set of search engines that
maximize the expected utility. Cetintas et al [9] propose an
extension which considers the cost of downloading search re-
sults. Using an optimization framework that addresses the
trade-off between effectiveness and efficiency their approach
determines the number of documents to download in order
to assess the utility of results merging. More recently, Ar-
guello et al [1] use several corpus dependent, query-category
based, and click-based features to select few sources (col-
lections) whose results can be combined with effectiveness
comparable to a full retrieval on all collections.

In a web search setting, Baeza-Yates et al [4] investi-
gate the effectiveness versus efficiency issues in a two-tiered

3Systemic differences are not just differences in retrieval models
but also include different tokenization, stemming, stop words etc.



search model with a local server, and a remote server. Usu-
ally, every query is routed to a local server first, and is routed
to the secondary server only if the results from the local
server are deemed inadequate. To avoid the poor response
times due to sequential querying, they propose an approach
that is able to predict whether the local server’s results will
be sufficient prior to retrieval.

Our work differs from these federated search approaches
both in terms of the additional constraints imposed by the
black box metasearch scenario and the techniques employed.
First, in contrast to the standard federated search setting
[1, 4, 3, 9], each query to a ranker incurs a cost regardless of
the number of top-k search results obtained, and the meta-
search engine has no direct access to full document texts and
rankers indexes. In addition, instead of just relying solely
on inter-ranker overlap, as is done in some previous work [4],
we utilize a relevance gain metric when relevance judgments
are available. Finally, we propose to leverage the overlap
in order to automatically create surrogate training data in
cases when relevance judgments are scarce.

3. LEARNING TO COMBINE RANKERS
In this section, we formally define the ranker combination

problem, develop a measure for evaluating ranker combina-
tion solutions, and describe an approach for learning when
to combine rankers.

3.1 Problem Definition
In this paper we focus on the standard meta-search sce-

nario, where our (meta) search engine has access to rankers
that retrieve and rank documents from different (but po-
tentially overlapping) collections. In the traditional setting,
a meta-search engine always accesses all the rankers and
fuses the returned results [2, 21]. However, accessing all the
rankers all the time can be time-consuming. For instance,
one or more rankers may have high latencies thus, hurting
the overall response times. Accessing rankers can also be
expensive due to licensing restrictions. For example, some
search API’s already impose time-based or call-based quo-
tas [18]. Instead, we propose a more cost-effective approach
that always uses a single base ranker, and only accesses ad-
ditional ranker(s) when its expected utility is above a certain
threshold.

For simplicity, throughout this paper, we will assume that
our meta-search engine has access to two rankers: 1) a base
ranker, B and 2) a candidate ranker, C. The base ranker, B,
is always queried. The candidate ranker, C, is queried only
if some criteria is met. Note that while simple, this setting
can be easily extended. For instance, we can extend it to a
case of multiple rankers by treating C as a set of candidate
rankers.

We are interested in a black-box scenario, a very common
scenario for meta-search engines on the web, in which the
search engine has no access to the internal working of its
rankers such as their retrieval algorithms or their indexes.
Instead, the meta-search engine can only submit a query q to
a ranker r, and get in response a ranking Dr, containing K

retrieved results. Ranking Dr typically includes an ordered
list of links to retrieved documents (URLs in web search),
each accompanied by a brief snippet that provides a short
query-biased preview of the document content.

Hence, given a query q, our goal is to query the base
ranker, B, and make a binary decision I(q,DB) – based

solely on the query and the contents of the base ranking –
whether the candidate ranker, C, should be queried as well.

3.2 Measures
The decision of whether or not to query the candidate

ranker is based on how much additional utility its ranking
DC will provide, given the current ranking DB . A simple
way to define this utility, when no relevance judgments are
available for documents in DB and DC , is by observing the
overlap between the rankings. This overlap will be inversely
proportional to the number of documents in DC that are
not in DB . Formally, given a query q and the two rankings
DB , DC we define overlap, O(q), as a fraction of the results
in DB , which appear both in DB and in DC

O(q) =
|DB ∩ DC |

K
. (1)

O(q) measures how similar the two rankings are. How-
ever, it does not convey any information about the overlap
in relevant and non-relevant documents retrieved by the two
rankers. For instance, rankers B and C can return very dif-
ferent non-relevant results, but the same relevant results. In
this case, an actual utility from querying a candidate ranker
is low, since no new relevant information has been added.
However, the overlap measure in this case may indicate that
the difference between the two rankings is high, misleading
us to assume a high utility from querying the ranker C.

Accordingly, if we have relevance information about the
two rankings, we can utilize it to define the actual relevance
gain that can be obtained by querying the candidate ranker.
Assuming that RB and RC are the sets of relevant docu-
ments in rankings DB and DC , respectively, we define rele-
vance gain as:

G(q) =
min

“

|RC\RB |, K − |RB |
”

K
(2)

Note that G(q) represents the optimal bound (in terms of
prec@K) on the relevance gain from combining the rankings
DB and DC . Actual combination of DB and DC using
existing techniques such as CombMNZ [13], Borda-fuse [2]
or probFuse [17] may not achieve this bound, but – as some
previous work indicates [6] – their performance is likely to
correlate with it.

The metrics presented in Equations 1 and 2 suggest two
definitions of utility of querying an additional ranker.

Def. 1 : U(q) , 1 −O(q)

Def. 2 : U(q) , G(q)

We can use Def. 2 if relevance information is available and
Def. 1 otherwise.

In this paper, we aim to develop a ranker combination
model that optimizes the effectiveness of retrieval using the
search engine (as embodied by either definition of U(q)),
while maintaining a reasonable efficiency. Given a set of
queries Q, and an indicator function I(q,DB), which indi-
cates whether, given a query q and a base ranking, we ac-
tually query the candidate ranker C, we can formally define
the effectiveness of the system as

effect(I) =

P

q∈Q
I(q,DB) × U(q)

P

q∈Q
U(q)

. (3)



We can define the efficiency of the system as the proportion
of times we avoid querying the candidate search engine

effic(I) = 1 −

P

q∈Q
I(q,DB)

|Q|
. (4)

Since we are interested in obtaining the best possible trade-
off between the competing effectiveness and efficiency mea-
sures, we directly optimize our ranker combination model
for a measure that combines the two, using a weighted har-
monic mean

Eα(I) =
effect(I) × effic(I)

α × effect(I) + (1 − α) × effic(I)
, (5)

where α is a free parameter that determines the relative
weight of effectiveness and efficiency.

Note that there is an inherent trade-off in this formulation
of ranker combination. Setting I = 0 for all queries in Q,
results in effic = 1 and effect = 0, which is equivalent to al-
ways using a single base ranker. On the other hand, setting
I = 1 for all queries in Q, results in effic = 0 and effect = 1,
which is a standard setting in rank fusion and meta-search.
We seek to bridge these two edge cases by developing a pre-
diction model that aims to maximize Eα(I) and sets I = 1
only for queries in Q, for which the expected utility is above
a certain threshold T .

3.3 Ranker Combination
Our ranker combination model, is represented by an in-

dicator function I∗ : {q,DB} → {0, 1}. I∗ maps a given
query q and a result set DB to a binary decision of whether
to query the candidate ranker C.

Given a certain utility threshold T , above which the ranker
C will be queried, we can define an indicator function IT as

IT (q,DB) =

(

1 if P (U(q) > T ) ≥ p′

0 else,
(6)

where P (U(q) > T ) is the probability of U(q) being above
the threshold T , and p′ is a free variable. In the binary clas-
sification setting, p′ is usually set to 1

2
. In the case of ranker

combination, however, we are interested in maximizing the
performance measure Eα(IT ), instead of a classification mea-
sure such as precision or recall. Accordingly we set p′ so that
Eα(IT ) is optimized on the training set, and the learned in-
dicator function IT directly optimizes the performance of
the search engine in terms of Eα.

Clearly, system performance will vary for different choices
of T . Thus, in order to obtain the best possible performance
on the training data, we choose the indicator function I∗

such that

I∗(q,DB) = argmax
IT (q,DB)

Eα(IT ). (7)

Accordingly, to optimize the cost-effective ranker combina-
tion model, we estimate the probability P (U(q) > T ) in
Equation 6 such that the measure Eα

4 is optimized.

3.4 Features
To learn the probability P (U(q) > T ) (Eq. 6) we use a

standard logistic regression model

P (U(q) > T ) =
1

1 + eΛFq
,

4In the remainder of this paper, we will abbreviate Eα(I∗) as Eα.

Table 1: Features used for utility prediction. Features

marked by † are computed only for Web queries.
Source Feature Name Description Aggregates

q qLenTerms # terms in the query
qLenChars # characters in the query
qAggTermLen Term lengths in the query Max,Mean
qIsCap Does the query contain

capitalized terms?
qNStops # stopwords in the query
qIsQuestion Does the query start with

a wh-word?
qWikiNgram Fraction of query n-grams

appearing as wiki titles

DB uDepth URL depth in DB Max,Mean,Std
uLenChars # chars in URL’s Max,Mean,Std

uIsWiki † Wikipedia URL’s Max,Mean,Std
uuOvlp Inter-snippet overlap in Max,Mean,Std
uEntropy Entropy of snippets Max,Mean,Std
uqOvlp Query-snippet overlap Max,Mean,Std
uqCover Fraction of query terms

covered by the snippets
uqNgramCover Fraction of query n-grams

covered by the snippets
uqFullCover Does exact query match

appear in the snippets?

where Fq = fq1, . . . , fqn is a feature vector representing
query q and Λ = λ1, . . . , λn is an associated weight vec-
tor, which is optimized to reduce the classification error on
a training set.

Table 1 shows the features in Fq. We divide the features
into two groups based on their source - the query itself, and
the retrieved set DB . We can either use only the features
based on the query itself, and perform a utility prediction
without querying the base ranker, or allow for querying the
base ranker and use features from both sources.

There are two main motivations for each feature we are
computing: (a) it has to be correlated with the expected
utility of querying a candidate ranker C for query q, and (b)
it has to be highly efficient to compute. For some features
that are computed over the retrieved list DB , we compute
several aggregates. Each of these aggregates is used as a
separate feature in Fq.

In contrast to previous work we use neither the traditional
pre-retrieval query performance predictors such as IDF or
PMI [14, 4] nor post-retrieval performance predictors such
as Query Clarity [10] or Weighted Information Gain [26].
This is due to the fact that we restrict our attention to
the black-box setting assuming that we have no access to
rankers’ retrieval algorithms or indexes.

Instead, we use only the information we can glean from the
query itself, such as its length and its grammatical structure
(e.g., features qLenTerms,qLenChars,qIsCap,qIsQuestion),
which were shown to correlate with query performance [7],
the structure of URLs (features uDepth,uLenChars) and the
contents of the snippets in the retrieved list. To estimate
inter-ranker overlap, we use the intra-ranker overlap (over-
lap between the retrieved snippets - uuOvlp,uuEntropy) and
query-ranker overlap (uqNgramCover,uqFullCover) as ap-
proximations.

3.5 Transfer Learning
Thus far we have only considered combining rankers using

either one of the two definitions of utility presented in Sec-
tion 3.2. However, in practice, the number of judged relevant
documents for learning a ranker combination based on the
relevance gain G(q) is limited, while the data for learning a



ranker combination based on the overlap O(q) is abundant:
it is obtained automatically whenever both rankers B and
C are queried. Accordingly, we would like to leverage the
overlap data to improve the relevance gains.

However, low overlap between retrieved sets does not al-
ways directly correspond to high relevance gains from their
combination [16]. To illustrate this point, Figure 2 shows
the distribution of relevance gains against different levels of
overlap between two different retrieval system for 150 Gov2
TREC topics. As expected, when overlap is high the possi-
ble gains are usually low. However, when the overlap is low
there is a much higher variance in possible gains.

Therefore, directly using the overlap-based definition of
utility (Def. 1 ) as a surrogate for gain-based definition is not
practical. Instead, to estimate the possible gain, we attempt
to directly predict the possible gains, using the overlap and
the same set of features, F , as used for ranker combination.
We formally define the transfer learning as follows.

Let G denote the set of training queries that have both
relevance gains and overlap information and let O denote
the set of training queries that only have overlap informa-
tion but no relevance gains. Then, the transfer learning task
is to learn a mapping function M : {Fq,O(q)} → G(q) using
G as the training data. We create an augmented train-
ing set G′, by applying the mapping function to O i.e.,
G′ = G

S

q∈O
M(Fq,O(q)). Finally, we learn the ranker

combination models using this augmented training set5.
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Figure 2: Overlap versus Gains: Distribution of gain
values for different levels of overlap in Gov2 queries.

4. EXPERIMENTAL SETUP

4.1 Datasets and Rankers
We evaluate our approach using 3-fold cross validation on

three different datasets 1) Web, 2) Million and 3) Gov2.
Web is a set of 30,000 queries that we sample uniformly at
random from a large search log of a commercial web search
engine6. Million is a set of 10,000 title portions of topics cre-
ated for the TREC 2008 Million Query Track and Gov2 is
set of 150 title portions of topics created for the TREC Ter-
abyte track. Both Million and Gov2 queries were used over
5We note that the ranker combination model still trains over
the same set of features as before and does not use overlap as a
feature, since it is not available during testing.
6Available as a part of Microsoft 2006 RFP dataset.

the same document collection (a crawl of the .gov domain).
In keeping with the black-box scenario for meta-search, for
each query in all query collections we retrieve the top 10
search results and only extract the corresponding URL, and
the snippet information found on the results page.

For the Web queries, we use Bing7 as the baseline ranker,
and Yahoo! search engine8 as the candidate ranker. For Mil-
lion and Gov2 queries, we use Indri [24], and use Query Like-
lihood (QL) [19] as a baseline ranker, and Okapi BM25 [20]
as a candidate ranker, and use the default snippet genera-
tion available in Indri. For each model, we train parameters
to optimize the performance on the Gov2 queries and apply
it to both Gov2 and Million queries. In all the experiments,
we report the results obtained using a 3-fold cross-validation,
and the statistical significance is reported using Fisher’s ran-
domization test with 10,000 permutations.

4.2 Tasks
We conduct three sets of experiments to validate our ap-

proach for predicting the utility of ranker combination: 1)
Overlap (O) based ranker combination, 2) Gain (G) based
ranker combination, and 3) Transfer Learning for gain based
ranker combination.

1) Overlap-Based Ranker Combination – The objec-
tive for this task is to select queries for which ranker C is
going to be queried, such that the selection maximizes Eα

(Equation 5) when utility is defined as the fraction of new,
but not necessarily relevant, results obtained through com-
bination i.e., Def. 1 of U(q). To demonstrate the benefits
of our prediction approach for this task, we conduct experi-
ments on all three datasets.

2) Gain-Based Ranker Combination – We conduct di-
rect gain based ranker combination experiments on the 150
Gov2 queries for which relevance judgments are available.
Our goal is to demonstrate the benefits of the prediction
approach for the task of selecting queries that maximize Eα

when utility is defined as the fraction or new relevant docu-
ments obtained through combination i.e., Def. 2 of U(q).

3) Transfer Learning – To illustrate the impact of aug-
menting gain-based ranker combination with easy to gener-
ate overlap-based data, we conduct a transfer learning ex-
periment. The goal of transfer is to learn a mapping (M)
from overlap to gain on the original Gov2 training folds (G).
Using this mapping, described in Section 3.5, we map the
overlap values, O(q), for Million queries (O) to predicted
gain values, M(q), and use them to generate additional
training instances (G′) for each training fold. The test folds
remain unaltered.

4.3 Baseline: PriorRC

Our model of ranker combination is based on a binary
decision of whether the utility of querying a candidate ranker
is greater than a threshold T . Accordingly, we use a class-
prior based method, PriorRC, as a competitive baseline.
For a given threshold T , PriorRC uses the training data to
determine the fraction of positive instances

fp =
|{q ∈ Q : U(q) > T}|

|Q|
.

7
http://www.bing.com

8
http://search.yahoo.com



To assign labels to test set, T, PriorRC samples labels
from a binomial distribution Bin(|T|, fp). We report aver-
age evaluation measures obtained over 10 different random
assignment of labels to the test fold.

5. EVALUATION

5.1 Overlap-Based Ranker Combination
Table 2(a) compares results for Eα=0.5, i.e., the best com-

bined measure achieved when effectiveness and efficiency
are equally weighted. LearnRC achieves higher combined
measure values (shown in Eα=0.5 column) compared to Pri-
orRC, on all three collections. The Effect values show the
amount of additional gains that can be obtained through
ranker combination, and Effic values show the savings in
terms of avoided candidate searches. Relative to PriorRC,
LearnRC achieves nearly 5%, 6%, and 4% improvements
on the Web, Million and Gov2 queries respectively. For all
three collections, prediction provides substantial savings in
accesses to the candidate ranker, while yielding compara-
ble or more gains than PriorRC. For example, on Million,
LearnRC queries the candidate ranker 8% less times than
PriorRC while still yielding increase of 3% in effective-
ness. Overall, LearnRC achieves better performance on the
larger datasets Web and Million, compared to the smaller
Gov2 dataset, and the improvements for both of them are
statistically significant,

Next, we inspect the classification accuracies obtained by
the ranker combination. Table 2(b) shows the classification
accuracy measures at the thresholds where the best Eα=0.5

is obtained. The classification accuracies are modest, es-
pecially for the Million, and Gov2 queries. There are two
main factors that contribute to the observed classification
accuracy levels. Classification accuracies are usually higher
when larger amounts of training data are available. In our
case, Web has more than 30,000 queries, whereas Gov2 has
only 150 queries in all, which in part can explain the dif-
ferent levels of prediction accuracies. Fortunately, overlap
based training data does not require any manual judgments
and therefore can be automatically generated to further im-
prove accuracy for all the collections. In addition, classifica-
tion accuracy is affected by the ratio of positive to negative
instances, fp. In our case, fp depends on the threshold
selected for the task. For the Web queries, at the chosen
threshold the positive class ratio is more than 50%, whereas
for the Million and Gov2 queries, the ratio is much lower.
This shows that classification accuracy is dependent on the
collection of queries, and the distribution of overlap amongst
the queries. We note, however, that classification preci-
sion/recall trade-off does not directly correspond to ranker
combination effectiveness/efficiency trade-off measured by
Eα. That is why, for instance, F1 attained by PriorRC for
Gov2 is higher than F1 attained by LearnRC while its Eα

is lower.
Finally, to understand the utility of the query-based fea-

tures (shown in Table 1), we conduct ranker combination
using this subset of features alone. The results are shown
in Table 3. Using query-based features that do not require
initial access to the base ranker still provides small improve-
ments (2%) over PriorRC. It is however, not as effective as
using the full set of features. This suggests that result set
based features are vital for this task. However, in scenarios
where base ranker has a slow response time, and parallel

Table 3: Performance of different feature groups:
1) None - PriorRC with no features. 2) Query -
LearnRC with only query-based features, and 3) All
- LearnRC with both query-based and results-based
features

Method Features Eα=0.5 Effect. Effic.
PriorRC – 0.4973 0.5382 0.4622

LearnRC
Query 0.5082 0.5478 0.4739

All 0.5206 0.5244 0.5168

access to both rankers is available, predicting the utility of
querying a candidate ranker by computing query-based fea-
tures alone can be still useful.

5.2 Gain-Based Ranker Combination
Table 4 shows the performance of direct gain prediction.

LearnRC achieves nearly 50% of the possible gains, de-
spite querying fewer than 42%. Compared to PriorRC,
LearnRC reduces the gain by 2%, while yielding more than
15% relative improvements in efficiency.

Table 4: Results of gain-based ranker combination
for 150 Gov2 queries.

Method Eα=0.5 Effect. Effic.
PriorRC 0.5032 0.5152 0.5020
LearnRC 0.5331 0.4952 0.5772

F1 Prec. Rec.
PriorRC 0.5143 0.5134 0.5174
LearnRC 0.5085 0.5455 0.4762

In addition to the overall improved ranker combination,
our Eα-based approach for gain prediction has two beneficial
properties compared to a standard classification approach.
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Figure 3: Comparison of LearnRC’s performance
with fixed decision threshold (LearnRC-p′=0.5), and
variable decision thresholds (LearnRC).

First, as shown in Equation 6, LearnRC learns differ-
ent conditions for querying a candidate ranker for differ-
ent thresholds T . As a result, LearnRC achieves stable
overall performance when varying T , as shown in Figure 3.



Table 2: Results of overlap-based ranker combination. Statistically significant differences in Eα between
LearnRC and PriorRC are denoted with †.

(a) Results for Eα (b) Classification Results
Collection Method Eα=0.5 Effect. Effic.

Web
PriorRC 0.4973 0.5382 0.4622
LearnRC 0.5206† (+4.7%) 0.5244 0.5168

Million
PriorRC 0.4999 0.5048 0.4952
LearnRC 0.5283† (+5.7%) 0.5201 0.5368

Gov2
PriorRC 0.4933 0.4806 0.5141
LearnRC 0.5150 (+4.4%) 0.5272 0.5034

Coll. Method F1 Rec. Prec. fp

Web
PriorRC 0.5392 0.5392 0.5392 54%
LearnRC 0.6400 0.6400 0.6400 53%

Million
PriorRC 0.5048 0.5046 0.5051 50%
LearnRC 0.5635 0.6806 0.4800 34%

Gov2
PriorRC 0.4802 0.4770 0.4852 50%
LearnRC 0.4504 0.6757 0.3378 25%

LearnRC is more robust to changes in classification perfor-
mance with respect to T , when compared to a fixed binary
classifier. This is due to the fact that LearnRC dynamically
adapts to reduce p′ as T increases, while the classification-
based approach is static and always sets p′ = 0.5.

Second, as illustrated in Figure 4, LearnRC adjusts its
learning for different settings of α that controls the effective-
ness/efficiency tradeoff in Eα (Equation 5). When α → 0,
LearnRC increases the number of queries that access the
candidate ranker, leading to improved effectiveness, while if
α → 1, LearnRC decreases the number of queries resulting
in improved efficiency. This shows that LearnRC can be
tuned for different effectiveness and efficiency trade-offs by
appropriately setting α.
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Figure 4: LearnRC performance for varying α.

An inspection of the classification measures shown in Ta-
ble 4 reveals that LearnRC’s classification accuracy is lower
than PriorRC’s classification accuracy. Despite the lower
accuracy LearnRC achieves higher Eα performance, as it is
targeted to optimize this measure. This suggests that im-
proving classification accuracy, e.g. by adding more training
data over the 150 available Gov2 queries, could further im-
prove the performance of rank combination.

5.3 Transfer Learning
As noted earlier, the small amount of training data avail-

able on Gov2 can limits the performance of ranker combina-
tion. To improve combination and classification accuracies,
we conduct transfer learning experiments with automati-
cally generated training data. Table 5 compares the perfor-
mance of PriorRC, gain-based ranker combination, and the
best transfer learning performance obtained when using the
augmented training data obtained from Million queries (see
Section 4.2 for more details on the transfer learning setup).
Using 700 additional surrogate instances, we achieve clear

improvements over both PriorRC and LearnRC. Trans-
fer learning improves Eα by nearly 10% over PriorRC and
by more than 4% over LearnRC. Note that using transfer
learning we are able to attain statistical significant improve-
ments over the PriorRC baselines, despite a small amount
of gain-based training data. The classification accuracies in
the same table show that transfer also improves the classifi-
cation accuracy of our approach by supplying a large amount
of reliable surrogate data for training.

Table 5: Results of transfer learning based ranker
combination. Statistically significant differences in
Eα with PriorRC are denoted †.

Method Eα=0.5 % imp Effect. Effic.
PriorRC 0.5032 0.5152 0.5020
LearnRC 0.5331 (+5.9%) 0.4952 0.5772

Transfer700 0.5516† (+9.6%) 0.5365 0.5772

F1 % imp Prec. Rec.
PriorRC 0.5143 0.5134 0.5174
LearnRC 0.5085 (-1.1%) 0.5455 0.4762

Transfer700 0.5254 (+2.1%) 0.5636 0.4921

Furthermore, the improvements obtained through trans-
fer learning are consistent. Figure 5 shows that except for
small amounts of transfer instances (less than 300), adding
overlap instances improves over the using the Gov2 training
data alone. Also, as more transfer instances are added Eα

peaks around 700 instances, beyond which the improvements
drop. The surrogate gains in the transferred instances can
be viewed as noisy labels. We hypothesize that as the pro-
portion of the noisy transfer instances increase, the relative
influence of the original Gov2 instances decreases, thereby
causing the observed dip in performance. Nonetheless, our
results show that this simple transfer approach can be used
to provide improvements for the task of gain-based ranker
combination.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we discuss a problem of ranker combination

in a black-box setting, where the meta-search engine has
no access to the internal information about its rankers. To
measure the performance of ranker combination, we propose
a measure Eα that balances the trade-off between the effec-
tiveness and the efficiency aspects. We develop a statistical
model for cost-effective ranker combination that directly op-
timizes the proposed measure.
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Figure 5: Transfer based improvements: Effect of
adding increasing amounts of transfer instances on E.

The horizontal line corresponds to the performance
of LearnRC with no transfer instances from Million.

Empirical results on three query collections demonstrate
the utility of our approach. Compared to the class-prior
based method, our approach provides notable improvements
using both overlap-based and gain-based utility measures.
The improvements are significant for collections with large
amounts of training data. We also develop a transfer learn-
ing method that automatically generates surrogate relevance
gain instances using overlap data. We show that this trans-
fer learning approach attains a 10% improvement over the
baseline method even when the amount of available rele-
vance data is extremely limited.

In this work, we operated within the constraints imposed
by the black box scenario, with no access to large external
collections or search history. In this scenario, we must query
the base ranker in order to obtain the reliable features for
learning the ranker combination. A natural extension to
this work would be to partly relax the black-box constraints
and to allow the meta-search engine to use external data
when available, in order to avoid always querying the base
ranker.
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