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ABSTRACT

In this paper, we present a measurement study of the energy con-
sumption characteristics of three widespread mobile networking
technologies: 3G, GSM, and WiFi. We find that 3G and GSM in-
cur a high tail energy overhead because of lingering in high power
states after completing a transfer. Based on these measurements, we
develop a model for the energy consumed by network activity for
each technology.

Using this model, we develop TailEnder, a protocol that reduces
energy consumption of common mobile applications. For appli-
cations that can tolerate a small delay such as e-mail, TailEnder
schedules transfers so as to minimize the cumulative energy con-
sumed while meeting user-specified deadlines. We show that the
TailEnder scheduling algorithm is within a factor 2× of the optimal
and show that any online algorithm can at best be within a factor
1.62× of the optimal. For applications like web search that can
benefit from prefetching, TailEnder aggressively prefetches several
times more data and improves user-specified response times while
consuming less energy. We evaluate the benefits of TailEnder for
three different case study applications—email, news feeds, and web
search—based on real user logs and show significant reduction in
energy consumption in each case. Experiments conducted on the
mobile phone show that TailEnder can download 60% more news
feed updates and download search results for more than 50% of web
queries, compared to using the default policy.
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1. INTRODUCTION
Mobile phones are ubiquitous today with an estimated cellular

subscription of over 4 billion worldwide [2]. Most phones today
support one or more of 3G, GSM, and WiFi for data transfer. For
example, the penetration of 3G is estimated at over 15% of cellular
subscriptions worldwide and is over 70% in some countries [1].

How do the energy consumption characteristics of network ac-
tivity over 3G, GSM, and WiFi on mobile phones compare with
each other? How can we reduce the energy consumed by common
applications using each of these three technologies? To investigate
these questions, we first conduct a detailed measurement study to
quantify the energy consumed by data transfers across 3G, GSM,
and WiFi. We find that the energy consumption is intimately re-
lated to the characteristics of the workload and not just the total
transfer size, e.g., a few hundred bytes transferred intermittently on
3G can consume more energy than transferring a megabyte in one
shot. Below is a summary of the key findings of our measurement
study, which remain consistent across three different cities, diurnal
variation, mobility patterns, and devices.

1. In 3G, a large fraction (nearly 60%) of the energy, referred
to as the tail energy, is wasted in high-power states after the
completion of a typical transfer. In comparison, the ramp

energy spent in switching to this high-power state before
the transfer is small. Tail and ramp energies are constants
that amortize over larger transfer sizes or frequent successive
transfers.

2. In GSM, although a similar trend exists, the time spent in the
high-power state after the transfer, or the tail time, is much
smaller compared to 3G (6 vs. 12 secs). Furthermore, the
lower data rate of GSM implies that more energy is spent in
the actual transfer of data.

3. In WiFi, the association overhead is comparable to the tail
energy of 3G, but the data transfer itself is significantly more
efficient than 3G for all transfer sizes.

Based on these findings, we develop a simple model of energy
consumption of network activity for each of the three technologies.
We utilize these models to identify opportunities for reducing the
energy consumption of network activity induced by common mobile
applications. To this end, we design TailEnder, an energy-efficient
protocol for scheduling data transfers. TailEnder considers two
classes of applications: 1) delay-tolerant applications such as email
and RSS feeds, and 2) applications such as web search and web
browsing that can benefit from aggressive prefetching.

For delay-tolerant applications on 3G and GSM, TailEnder sched-
ules outgoing transfers so as to minimize the overall time spent in







3.2 Measurement Methodology

3.2.1 3G and GSM

Our 3G and GSM measurements quantify the: 1) Ramp energy:
energy required to switch to the high-power state, 2) Transmission

energy, and 3) Tail energy: energy spent in high-power state after
the completion of the transfer.

We conduct measurements for data transfers of different sizes
(1 to 1000 KB) with varying intervals (1 to 20 seconds) between
successive transfers. We measure energy consumption by running
NEP in the background while making data transfers. For each con-
figuration of (x, t), where x ∈ [1K, 1000K] and t ∈ [1, 20] seconds,
the data transfers proceed as follows: The phone initiates an x KB
upload/download by issuing a http-request to a remote server. After
the upload/download is completed, the phone waits for t seconds
and then issues the next http request. This process is repeated 20
times for each data size. Between data transfer experiments for dif-
ferent intervals, the phone remains idle for 60 seconds. The energy
spent during this period is subtracted from the measurements as
idle energy. We extract the energy measurements from the profiler
for analysis, and use the time-stamps recorded by NEP to mark the
beginning and end of data transfer as well as the beginning and end
of the Ramp time and the Tail time. The energy consumed by each
data transfer is computed as the area under the power-curve between
the end of Ramp time and the start of Tail time.

3.2.2 WiFi

Our WiFi measurements quantify the energy : 1) to scan and
associate to an access point and 2) to transfer data. We conduct two
sets of measurements. In the first set of measurements, for each
data transfer, we first scan for WiFi access points, associate with
an available AP and then make the transfer. In the second set of
measurements, we only make one scan and association for the entire
set of data transfers to isolate the transfer energies.

In addition, all three networks, 3G, GSM and WiFi, incur a main-
tenance energy, which is the energy used to keep the interface up.
We estimate the maintenance energy per second by measuring the
total energy consumed to keep the interface up for a time period.

3.2.3 Accounting for idle power

For all measurements, we configure the phone in the lowest power
mode and turn off the display and all unused network interfaces.
The energy profiler itself consumes a small amount of energy, which
we include in the idle power measurement. We measure idle energy
by letting the energy profiler run in the background with no other
application activity. The average idle power is less than 0.05 W and
running the energy profiler at a sampling frequency of 0.25 seconds
increases the power to 0.1 W.

3.3 3G Measurements
Figure 2(a) shows the average energy consumption for a typical

50KB download over 3G. We find that the Tail energy is more than
60% of the total energy. The Ramp energy is significantly small
compared to the tail energy, and is only 14% of the total energy. 3G
also incurs a maintenance energy to keep the interface on, and is
between 1-2 Joules/minute (not shown).

Figure 2(b) shows the average energy consumed for download
when the time between successive transfers is varied. We ignore the
idle energy consumed when waiting to download the next packet.
Consider the data points for downloading 100 KB data. The energy
increases from 5 Joules to 13 Joules as the time between successive
downloads increases from 1 second to 12 seconds. When the time
between successive downloads is greater than 12.5 seconds, the

energy consumed for 100 KB transfers plateaus at 15 Joules. When
the device waits less than the Tail time to send the next packet, each
data transfer does not incur the total Tail energy penalty, reducing
the average energy per transfer. This observation suggests that the
Tail energy can be amortized using multiple transfers, but only if the
transfers occur within Tail time of each other. This observation is
crucial to the design of TailEnder, a protocol that reduces the energy
consumed by network applications running on mobile phones.

3.3.1 Geographical and Temporal variations

We measure the energy consumption across different days and
in different geographical regions. The objectives of the experiment
are 1) to verify that mobile phones in different cell tower areas are
affected by the Tail time overhead, and 2) to measure the temporal
consistency of Tail time.

Figure 3(a) shows that the Tail energy remains consistent across
three days. On the other hand, Figure 3(b) shows that the Ramp

energy is about 2 and 4 Joules for the measurements conducted on
different days.

We conducted 3G energy measurements in three different cities,
Amherst, Northamption and Boston, in Massachusetts, USA using
two different devices. Figure 3(c) shows that the Tail energy is
consistent across different locations and two different Nokia devices
(D1 and D2). The figure also shows that the Tail energy and Ramp

energy do not vary across day (9:00 am to 5:00 pm) and night
(8:00 pm to 6:00 am). The measurement results provide additional
evidence that the Tail time or the inactivity timer is configured
statically by network operators and can be inferred empirically.
In Section 4, we use the value of the inactivity timer to design
TailEnder.

Figure 4(a) compares the average energy consumed by downloads
during the day versus night, averaged over 3 days of transfer data.
Although the ramp and tail energies are similar during night and
day (shown in Figure 3(c)), the energy consumed during the night
is up to 10% lower than during the day. This is likely due to lower
congestion during the night.

3.3.2 Uploads

Figure 4(b) shows the average tail, ramp and transfer energy for
upload experiments. As observed in the download experiments, the
Tail energy consumes more than 55% of the total energy. Figure 4(c)
shows that the transfer energy for uploads is higher than downloads
for larger data sizes. For example, the transfer energy for uploads
is nearly 30% more than that for downloads for 100 KB transfers.
One cause for this difference is that upload bandwidths are typically
smaller than the download bandwidth.

3.3.3 Mobility

Figure 5 compares energy consumption under mobility within
the town of Amherst, MA for 50K data transfers. Mobility in
outdoor settings affect transfer rates due to factors such as signal
strength and hand-offs between cell towers, resulting in varying
transfer times [19]. Despite the large variances in the transfer energy
compared to the stationary measurements, we observe that the Tail

energy accounts for nearly 50% of the total energy even in the
mobile scenario.

3.4 GSM Measurements
We conducted a set of measurements using the two Nokia phones

equipped with GSM. Figure 6(a) shows the average energy con-
sumption in GSM networks as a proportion of the Tail energy, Ramp

energy and transfer energy for a 50K download. Unlike in 3G, the
Tail energy only accounts for 30% of the transfer energy. However,









TailEnder uses two simple techniques to reduce energy consump-
tion for the two different classes of applications. For delay tolerant
applications, TailEnder schedules transmissions such that the total
time spent by the device in the high power state is minimized. For
applications that can benefit from prefetching, TailEnder determines
the number of documents to prefetch, so that the expected energy
savings is maximized.

4.1 Delay-tolerant applications
First, we present a simple example to illustrate how applications

can exploit delay tolerance to reduce energy utilization. Assume a
user sends two emails within a span of a few minutes. The default
policy is to send the emails as they arrive, and as a result the device
remains in the high power state for two inactivity timer periods.
However, if the user can tolerate a few minutes delay in sending the
emails, the two emails can be sent together, and the device remains
in the high power state for only one inactivity timer period. Our
measurement study shows that for low to moderate email size, the
second strategy halves the energy consumption.

4.1.1 Scheduling transmissions to minimize energy

The goal of TailEnder is to schedule transmission of requests
that arrive at the phone such that the total energy consumption is
minimized and all requests are transmitted within their specified
deadlines. We model the problem as follows. Consider n equal-sized
requests, where each request ri has an arrival time ai and a deadline
di by which it needs to begin transmission. When the request ri is
scheduled to be transmitted at time si, the radio transitions to the
high power state, transfers request ri instantaneously, and remains
in the high power states for T time units, equal to the Tail time. We
ignore the relatively small energy overhead to switch to the high-
power state. Note that when multiple requests are transmitted at
the same time, the device is in the high power state only for T time
units. Let φ denote the the total time spent in high-power states for
a given schedule of requests. The problem is to compute a schedule
s1, s2, · · · , sn that minimizes φ, while satisfying ai ≤ si ≤ di.

In practice, we need to solve an online version of the scheduling
problem, where arrivals are not known in advance. TailEnder uses
a simple online algorithm to schedule transmission of an incoming
request ri. The main idea is to transmit a request ri if either

• the request’s deadline is reached or

• the request arrives within a fraction x of the tail time T since
the previous deadline i.e., the request arrives within time x ·T
after the previous deadline.

Figure 10 presents the TailEnder algorithm for the scheduling prob-
lem. We prove two results to show the optimality of TailEnder.

THEOREM 1. The time spent in the high energy state by any

deterministic online algorithm is at best 1.62-competitive with the

offline optimal algorithm (that knows future arrivals).

THEOREM 2. The time spent in the high energy state by TailEn-

der is 2-competitive with the offline optimal algorithm.

We detail a proof sketch in the Appendix and provide a detailed
proof in a technical report [10]. To appreciate why the scheduling
problem is tricky, consider the following scenario. Suppose that a
request arrives after the radio has been in the high power state for x ·
T seconds. If the request arrives closer to the previous transmission,
i.e. x is close to zero, then transmitting immediately is better as it
amortizes the Tail time of the previous transmission. However, if
the request arrives much later, i.e., x ≫ 1, it is better to wait until

the request’s deadline to improve the chances of amortizing the Tail

time over future requests. As x increases, the scheduling decision
changes from immediate transmission to waiting until deadline. Our
goal is to determine an arrival time threshold t, such that for x < t

immediate transmission is better, and if x ≥ t, waiting until the
deadline is better.

Further, any online scheduling algorithm is suboptimal compared
to an offline algorithm with knowledge of future requests. Let ALG
be any online scheduler and ADV be the optimal offline scheduler.
ADV observes the actions taken by ALG and generates subsequent
requests iteratively. We show that irrespective of ALG’s schedule,
ADV can generate requests such that it forces the competitive ratio—
the cost of the online algorithm versus the optimal offline algorithm—
to be greater than 1. We define cost as the time the device remains
in the high power state when executing a given schedule.

Let the structure of ALG be as follows: ALG either schedules a
request when it arrives or defers the request to the earliest deadline.
We formally prove that if the structure of the online algorithm is
not similar to that of ALG, it can be converted to an algorithm
with ALG’s structure without increasing the cost. Without loss of
generality, assume that ADV and ALG begin their first transmission
at the same time. Let some request arrive at time xT after the first
transmission. Assume that the deadline for this request is d >> T .

• Case 1: Suppose the online algorithm schedules the request
immediately at xT . ADV defers the request to the earliest
deadline and generates new requests after the deadline. Until
the deadline, φ(ADV ) = T since ADV only schedules the
first transmission. However, φ(ALG) = (1 + x)T . The
competitive ratio until the deadline is 1+x

(1)
. In the Appendix,

we show that the ratio holds even when considering the total
cost of subsequent requests.

• Case 2: Suppose the online algorithm schedules all requests
that arrive before xT , but defers the request that arrives at
xT . Then ADV schedules xT upon arrival and stops gener-
ating further requests. Since ADV has no further requests
to schedule, φ(ADV ) = (1 + x)T . However ALG needs
to schedule the request that arrives at xT , and therefore
φ(ADV ) = (2 + x)T . The competitive ratio in this case is
(2+x)
1+x

.

We formally show that a lower bound on the competitive ratio

is the minimum of these two cases, i.e., min( 1+x

(1)
,

(2+x)
1+x

). The

value of x that achieves the lower bound is given by the solution
to the quadratic equation, x2 − x − 1 = 0 and x ≈ 0.62 and the
corresponding competitive ratio is 1.62.

We also formally prove that the TailEnder protocol where x is
set such that 0 ≤ x ≤ 1 is 2-competitive compared to the optimal
online algorithm. However, in our experiments, we set x = 0.62 2.

4.2 Applications that benefit from prefetching
Our previous work [9] shows that aggressive prefetching can

reduce response time for web search and browsing applications.
However, it is not straightforward to design a prefetching strategy
whose end goal is to reduce energy consumption. On one hand,
in the absence of any prefetching, the application needs to fetch
the user-requested documents sequentially, incurring a large energy
overhead. On the other, if the application aggressively prefetches
documents and the user does not request any of the prefetched
documents, then the application wastes a substantial amount of

2During the experimentation, we incorrectly believed that x = 0.62
will result in a competitive ratio less than 2



TailEnder scheduler (t, ri, di, ai):

1. Let d’ be the last deadline when a packet was transmitted.

2. If (t < di)

(a) if (d′ + x a.T < ai), transmit.

(b) else add the request to queue Q.

3. If (t == di)

(a) Transmit ri

(b) Transmit all requests in Q and set Q = null

(c) Set d′ = di

a0 ≤ x ≤ 1

Figure 10: The TailEnder scheduling algorithm that decides

whether to transmit a request ri at time instant t. The arrival

time for the request is ai and the deadline is di
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Figure 11: CDF of the fraction of times a user requests a web

document at a given rank, for Web search application. The

figure shows the CDF over more than 8 million queries collected

across several days.

energy in prefetching. Clearly, predicting user behavior is key to the
effectiveness of prefetching.

Our goal is to use user-behavior statistics to make prefetching de-
cisions in the context of Web search and browsing. The information
retrieval research community and search engine providers collect
large amounts of data to study user behavior on the web. We model
the prefetching problem as follows: Given user behavior statistics,

how many documents should be prefetched, in order to minimize the

expected energy consumption?.

4.2.1 Maximizing expected energy savings

Figure 11 shows the distribution of web documents that are re-
quested by the user when searching the web. The graph is generated
using Microsoft Search logs (obtained from Microsoft Live Labs).
The logs contain over 8 million user queries and were collected over
a month. Figure 11 shows that 40% of the time, a user requests for
the first document from the list of snippets presented by the search
engine. A user requests for a document ranked 11 or more, less than
0.00001% of the time.

We estimate the expected energy savings as a function of prefetched
documents size. Let k be the number of prefetched documents,
prefetched in the decreasing rank order and p(k) be the probability
that a user requests a document within rank k. Let E be the Tail

energy, R(k) be the energy required to receive k documents, and TE

be the total energy required to receive a document. TE includes the
energy to receive the list of snippets, request for a document from the
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Figure 12: Expected percentage energy savings as a function of

the number of documents prefetched.

snippet and then receive the document. For the sake of this analysis,
we assume that user think-time to request a document is greater than
the value of the inactivity timer. We do not make this assumption in
our evaluation or the prefetching algorithm. The expected fraction
of energy savings if the top k documents are prefetched is

E · p(k) − R(k)

TE
(1)

Figure 12 shows the expected energy savings for varying k as es-
timated by Equation 1. The value of p(k) is obtained from statistics
presented in Figure 11, and E, R(k) and TE are obtained from the
3G energy measurements (in Table 1). We set the size of a document
to be the average web document size seen in the search logs.

Figure 12 shows that prefetching 10 web documents maximizes
the energy saved. When more documents are prefetched, the cost
of prefetching is greater than the energy savings. When too few
documents are prefetched, the expected energy savings is low since
the user may not request a prefetched document. Therefore, TailEn-
der prefetches 10 web documents for each user query. In Section 5,
we show that this simple heuristic can save a substantial amount of
energy when applied to real Web search sessions.

5. EVALUATION
We evaluate TailEnder using a model-driven simulation and real

experiments on the phone. The goal of our evaluation is to quantify
the reduction in energy utilization when using TailEnder for different
applications, when compared to a Default protocol.

To show the general applicability of TailEnder, we evaluate its
performance for three applications: emails, news-feeds and Web
search. Email and news-feeds are applications that can tolerate a
moderate delays; Web search is an interactive application but can
benefit from prefetching. For all three applications, the impact of
TailEnder for energy minimization largely depends on the appli-
cation traffic and user behavior. For example, if a user receives
an email once every hour, or if news-feeds are updated once per
hour, TailEnder is unlikely to provide energy benefits. Therefore,
we collect real application traces to evaluate TailEnder.

5.1 Application-level trace collection
For e-mail traces, we monitor the mailboxes of 3 graduate students

for 10 days and log the size and time-stamps of incoming and
outgoing mails. Table 3 tabulates the statistics of the resulting email
logs. For news feed traces, we polled 10 different Yahoo! RSS
news feeds3 once every 5 seconds for a span of 3 days. We log the
arrival time and size of each new story or an update to an existing
story Table 4 lists the news-feeds we crawled. The traces cover

3http://news.yahoo.com/rss
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5.2.4 Switching between 3G and WiFi

The decision to use either WiFi or 3G for data transfer involves,
among other factors, a trade-off between availability and potential
energy benefits. This is especially true when the user is mobile.
While the WiFi interface consumes less energy per byte of transfer
compared to 3G, the availability is less compared to 3G networks.
One possible solution to get the energy benefits of WiFi but maintain
availability, is to switch to the 3G interface when WiFi becomes
unavailable. We conduct an experiment to upper bound the poten-
tial energy savings of switching between WiFi and 3G. Let WiFi
be available only a fraction of the time. We assume that the WiFi
interface is switched on only when WiFi is available, to avoid unnec-
essary scanning. Related work [23] show that WiFi availability can
be predicted. We then estimate the energy savings in using the WiFi
interface when available, and using 3G for the rest of the transfer.

Figures 22, 23 and 24 give an upper bound of energy benefit
when switching between WiFi and 3G for news feed, email and
Web search applications respectively. Keeping the WiFi interface
on incurs a maintenance energy, as we observe in our measurement
study (see Table 1). Therefore, in our experiment, we switch the
WiFi interface off x seconds after a transfer if no data arrives. We es-
timate x as the ratio of the energy required for scanning/association
and the per-second maintenance energy.

The figures show that when WiFi is always available, the energy
consumption is 10 times lower compared to Default and more than
4 times lower compared to TailEnder for all three applications. Even
when WiFi is available only 50% of the time, sending data over
WiFi reduces energy consumption by 3 times compared to Default
for all three applications. The results indicate that combining WiFi

and 3G networks can provide significant energy benefits for mobile
nodes without affecting network availability.

5.3 Experiments on the mobile phone
Next, we conduct data transfer experiments on the phone using

the application-level traces. We convert an application trace into
a sequence of transfers S = {< s1, a1 >, < s2, a2 >, · · · , <

sn, an >}, such that data of size si is downloaded by the mobile
phone at time ai. Then, from a fully charged state, we repeatedly
run this sequence of transfers until the battery drains completely.

We run two sequences of transfer, one generated by TailEnder
and the other by Default. Given an application trace, TailEnder
schedules the transfers according to whether the application is delay
tolerant or can benefit from prefetching. Default schedules transfers
as they arrive. We conduct the experiments for two applications:
downloading Tech news feeds and Web search. For the news feed
application, the metric is the number of stories downloaded and for
Web search the metric is the number of queries for which all user
requested documents were delivered.

Table 5 shows the results of the news feeds experiment. TailEn-
der downloads 60% more news feed updates compared to Default,
and the total size of data downloaded by protocol increases from
127 MB to 240 MB providing a 56% improvement. Our model-
based evaluation showed that for the Tech news feed, TailEnder can
reduce energy by 52% compared to Default.

Table 6 shows results for the Web search experiment. By prefetch-
ing, TailEnder sends responses to 50% more queries for the same
amount of energy and the average number of transfers decreases by
45%. Prefetching is energy efficient, even though it sends ten times
more data for each transfer on an average.
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Figure 24: Web Search. Average energy

improvement when switching between

WiFi and 3G networks

 0

 20

 40

 60

 80

 100

%
 e

n
e
rg

y
 i
m

p
ro

v
e
m

e
n
t

Wireless technology

3
G

G
S
M

Figure 20: Web search: Average per query energy improve-

ment using TailEnder for Web search over 3G and GSM
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Figure 21: Web search: CDF of the energy improvement

using TailEnder

6. LIMITATIONS AND FUTURE WORK
TailEnder is naturally suited to be implemented in the operating

system, exposing a simple API to applications. Applications only
need to provide a delay-tolerance limit for each item sent. Today,
commodity phones such as the iPhone already request the user to
specify a delay-tolerance limit for certain applications in order to
improve battery life. Implementing TailEnder in the kernel and
refining the API to make it easily usable by users or application
developers is left for future work.

Our results are based on email, rss feeds and web search traces
collected from real desktop or laptop users. For a more realistic
evaluation of TailEnder’s energy savings however, we need the ap-
plication usage patterns of users on mobile devices. Usage patterns
on mobile devices provide two benefits. First, it helps quantify the
energy benefits in the presence of cross-application optimization.

Default TailEnder

Stories 1411 3900
Total transfer size 127 MB 291 MB

Table 5: News feeds experiment. TailEnder downloads more

than twice as many news feeds compared to Default on the mo-

bile phone

Default TailEnder

Queries 672 1011
Documents 864 10110
Transfers 1462 1011

Average transfer sizes per query 9.3K 147.5K

Table 6: Web search experiment. TailEnder downloads 50%

more queries compared to Default on the mobile phone

For example, if a user multi-tasks between sending an email and
searching the web, then the transmissions for the two activities can
be scheduled together to reduce energy consumption. Second, the
usage patterns provide us the fraction of time each application is
used by a mobile user. This will help quantify the average per day
energy savings for a given usage pattern. As part of future work, we
seek to collect traces of mobile usage patterns that can inform cross-
application opportunities and better quantify the energy benefits of
TailEnder for mobile users.

7. CONCLUSIONS
Energy on mobile phones is a precious resource. As phones

equipped with multiple wireless technologies such as 3G, GSM,
and WiFi become commonplace, it is important to understand their
relative energy consumption characteristics. To this end, we con-
ducted a detailed measurement study and found a significant tail
energy overhead in 3G and GSM. We developed a measurement-
driven model of energy consumption of network activity for each
technology.

Informed by the model, we develop TailEnder, a protocol that
minimizes energy usage while meeting delay-tolerance deadlines
specified by users. For applications that can benefit from prefetch-
ing, TailEnder aggressively prefetches data, including potentially
useless data, and yet reduces the overall energy consumed. We
evaluate TailEnder for three case study applications—email, news
feeds, and web search—based on real user logs and find significant
savings in energy in each case. Experiments conducted on the mo-
bile phone shows that TailEnder can download 60% more news feed



updates and download search results for more than 50% of web
queries, compared to using the default policy. Our model-driven
simulation shows that TailEnder can reduce energy by 35% for email
applications, 52% for news feeds and 40% for web search.
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APPENDIX

We provide detailed proofs of the optimality results in a technical
report [10]. Section 4 contains intuitions for the lower bound proof.
Here, we add a sketch of the proof for the upper bound result
(Theorem 2) using the following definitions and lemmas.

DEFINITION. Let ARR denote the schedule that schedules the
first request at the earliest deadline D1 and schedules every request
arriving after D1 immediately upon arrival.

DEFINITION. Let TEA denote the algorithm that starts at the
earliest deadline, schedules every request that arrives within ρ af-
ter the most recent deadline immediately upon arrival, and defers
subsequent requests to the next earliest deadline. TailEnder is an
example of such an algorithm.

DEFINITION: A schedule is defined as an x-class schedule if each
request r is either scheduled upon arrival or is scheduled at the first
deadline d that occurs after its arrival. Further, if r is scheduled at d,
then all requests that arrive after r but before d are also scheduled
at d.

LEMMA 1. Any schedule that is not an x-class schedule can be

converted to an x-class schedule of equal or lower cost. In particular,

an optimal schedule can be converted to an x-class schedule.

LEMMA 2. Cost of TEA is at most twice that of OPT, where

OPT is an optimal x-class schedule.

PROOF. Without loss of generality, we assume below that the
tail time is 1. We prove the lemma using induction on the number of
requests in the request sequence. It is easy to see that the lemma is
true for all sequences of at most three requests. Consider an arbitrary
request sequence, R, consisting of more than three requests.

Let OPT be an optimal x-class schedule for this sequence. Let
a denote the last request until which the schedules of both TEA

and OPT are identical to ARR, i.e., they schedule every request at
its arrival time. Let b be the first request where the TEA and OPT
differ. Let D1 denote the last deadline before a at which a request
was scheduled (by both TEA and OPT). As illustrated in Figures 25
and 27, there are two cases 1) TEA schedules more requests than
OPT or 2) OPT schedules more requests than TEA.

D1 a b c d T1 T2

OPT schedules until a 

and defers b

TEA schedules until c 

and defers d

Figure 25: Illustration for Case 1.

Case 1. OPT defers b but TEA schedules until c and defers
d. Let T1 be the earliest deadline after b, and let T2 be the earliest
deadline after d. Clearly, T2 ≥ T1 as shown in Figure 25. We
complete the induction using a new request sequence.

Construct a new request sequence R′ that is identical to R. If any
request in the interval (D1, T1) has a deadline < T2, change it to
T2. Note that TEAś schedule for R′ is identical to its schedule for
R, and the cost of OPT′, an optimal schedule for R′, is less than or
equal to the cost of OPT, an optimal schedule for R.

OPT′ has to start at D1. Being an x-class schedule, OPT′ must
defer at some request y after D1 or remain identical to ARR until
T2. Note, if OPT′ remains identical to ARR until T2, TEA must have
deferred at b which implies that we can use arguments from Case 2.
Suppose OPT′ schedules until x but defers some request y such that
D1 ≤ y < T2. Then, there are two cases to consider as illustrated
in Figure 26.

D1 a b c

OPT' schedules until x 

and defers y

yx d T1 T2

TEA schedules until c 

and defers d

Case 1a

OPT' schedules until x 

and defers y

TEA schedules until c 

and defers d

d T1 T2D1 ca b yx

Case 1b

Figure 26: Illustration for Case 1a and 1b.

Case 1a. y ≤ d. TEA and OPT′ have identical costs until D1. In
the interval (D1, T2), cost of TEA is at most 2 for scheduling until
c while, the cost of OPT is at least 1 for scheduling until x. The
remaining cost for TEA equals the cost for the sequence starting
at d. For OPT′, the remaining cost equals the cost of sequence
starting at y. The earliest deadline for both sequences is T2. We
can replace sequence starting at y with the sequence starting with d

without increasing the cost of OPT′(by construction of R′). On the
remaining sequence which is shorter than R the inductive hypothesis
holds thereby, completing the induction argument.

Case 1b. If y > d then OPT′ schedules more requests than TEA

between D1 and T1 and therefore, Case 2 applies.

D1 a b c d T1 T2

TEA schedules until a 

and defers b

OPT schedules until c 

and defers d

Figure 27: Illustration for Case 2.

Case 2. TEA defers b, but OPT schedules b. Suppose TEA

defers b to the earliest deadline T1 after b’s arrival time. Suppose
OPT is further identical to ARR until some request c and defers the
next request d to the earliest deadline T2 after d. Clearly, T2 ≥ T1

as shown in Figure 27. Suppose e is the next request after d with a
deadline of T3 (not shown in Figure). TEAś cost is the sum of cost
until a, and the cost of sequence starting at b. TEA’s cost starting
at b is sum of TEAś cost in the interval (b, e) and its cost for the
sequence starting at e.



OPT ś cost is greater for the sequence starting at e than for the
sequence starting at d. Therefore, OPT ś cost is greater than the sum
of cost until d, and cost of sequence starting at e. First, OPT ś cost
until d, is at least as big as TEAś cost until a. Second, TEAś cost in
the interval (b, e) is bounded by (1 + ρ). Finally, starting from e,
we can bound the cost of TEA using the inductive hypothesis since
both OPT and TEA have the same request sequence which is smaller
than R. Thus, it can be verified TEA is bounded by twice the cost of
OPT over R.

Theorem 2 follows from Lemma 1 and Lemma 2. The upper
bound proof above shows that any TEA-style algorithm for any
0 ≤ ρ ≤ 1 is 2-competitive. In fact, there is a simple example that
shows that any TEA-style algorithm that defers ρ after the previous
deadline for any 0 ≤ ρ ≤ 1 can be a factor 2 worse than optimal.
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