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ABSTRACT

Modeling query concepts through term dependencies has
been shown to have a significant positive effect on retrieval
performance, especially for tasks such as web search, where
relevance at high ranks is particularly critical. Most pre-
vious work, however, treats all concepts as equally impor-
tant, an assumption that often does not hold, especially for
longer, more complex queries. In this paper, we show that
one of the most effective existing term dependence models
can be naturally extended by assigning weights to concepts.
We demonstrate that the weighted dependence model can
be trained using existing learning-to-rank techniques, even
with a relatively small number of training queries. Our study
compares the effectiveness of both endogenous (collection-
based) and exogenous (based on external sources) features
for determining concept importance. To test the weighted
dependence model, we perform experiments on both pub-
licly available TREC corpora and a proprietary web cor-
pus. Our experimental results indicate that our model con-
sistently and significantly outperforms both the standard
bag-of-words model and the unweighted term dependence
model, and that combining endogenous and exogenous fea-
tures generally results in the best retrieval effectiveness.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Algorithms, Experimentation

Keywords

Weighted dependence model, query concept weighting

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’10, February 4–6, 2010, New York City, New York, USA.
Copyright 2010 ACM 978-1-60558-889-6/10/02 ...$10.00.

Search queries come in many different flavors, depend-
ing on the user’s information need and the particular search
task. Most modern search engines allow users to express
their information needs as free text queries. Although this
is a convenient interface for users, it places a heavy burden
on the search engine to properly interpret the user’s intent.
For example, for the query “american airlines reservations”,
the search engine should identify that the query is made up
of the concepts “american airlines” and “reservations” and
that the key focus of the query is “reservations”. This in-
formation, if properly identified and incorporated into the
underlying retrieval model, can be used to retrieve highly
relevant documents.

However, most traditional information retrieval models,
such as language modeling and BM25, utilize very simple
user query models. These models tend to treat query terms
as independent and of uniform importance. Simple heuris-
tics, such as inverse document frequency (idf), are integral
parts of these models and can be thought of as a simple query
term weighting model, but they are very rigid and are based
on a single data source. Furthermore, it is not clear if idf is
an appropriate measure of importance for phrases and other
generic concepts [26]. Recent research has shown that mod-
eling query term dependencies and using non-uniform query
term weighting (beyond idf) can significantly improve re-
trieval effectiveness, especially on very large collections and
for long, complex queries [3, 17, 20]. To our knowledge,
no work exists on simultaneously modeling query term de-
pendencies and weighting generic query term concepts (e.g.,
unigrams, bigrams, etc.) in a unified, trainable framework.
It is precisely this problem that we tackle in this paper.

Our proposed model extends the Markov Random Field
model (MRF) for information retrieval [20] by automatically
learning query concept weights. By making use of the MRF
model, we go beyond the query term independence assump-
tions made by traditional retrieval models. Furthermore,
our proposed extension is a generic framework for learning
the importance of query term concepts in a way that directly
optimizes an underlying retrieval metric. It is important to
note that this is quite different from query segmentation ap-
proaches [5, 11, 30]. Optimizing segmentation accuracy is
not guaranteed to optimize retrieval effectiveness. By im-
plementing concept weighting directly into the underlying
retrieval model we avoid the issue of metric divergence [24].
As we will show, this strategy yields strong retrieval effec-
tiveness gains.

As an illustration of such metric divergence, Table 1 shows
an actual example of unigram and bigram concept impor-



Concept Weight
civil 0.0619
war 0.1947

battle 0.0913
reenactments 0.3487

civil war 0.1959
war battle 0.2458

battle reenactments 0.0540

Table 1: Concept weights generated for query “civil
war battle reenactments”.

tances learned within our proposed model for the query
“civil war battle reenactments”. If, instead, the weighting
was done based on the output of a query segmenter, then
it is likely that the phrase “civil war” and perhaps “battle
reenactments” would be given large weights. However, our
proposed model assigns high weights to the unigram“reenac-
ments” and the bigram “war battle”, which happen to be the
most discriminative (between relevant and non-relevant doc-
uments) concepts, not the most likely concepts in terms of
query segmentation.

There are three primary contributions of our work. First,
we propose a straightforward, effective extension of the MRF
model that dynamically weights query concepts. We will
show that the model can be automatically trained using
standard learning to rank approaches. Second, we show that
effective weighting of query concepts can be derived using a
combination of endogenous (i.e., internal to the collection)
and exogenous (i.e., external to the collection) query con-
cept features. Finally, we conduct an extensive evaluation
on several publically available TREC test collections and
a real-world web search test collection from a commercial
search engine. Our experiments show that our proposed ap-
proach is consistently and signficantly better than the cur-
rent publicly disclosed state-of-the-art text matching model
for web search across all test collections.

The rest of this paper is laid out as follows. First, in
Section 2 we discuss previous work on term dependencies,
concept weighting and learning to rank techniques. Next,
Section 3 reviews the MRF model and describes our pro-
posed extension. Then, in Section 4, we present our exper-
imental results. Finally, Section 5 concludes the paper and
describes possible directions of future work.

2. RELATED WORK
Modeling atomic query concepts through term dependen-

cies, or proximities, proved to have a significant positive
impact on retrieval effectiveness on both TREC and web
corpora [2, 4, 9, 20, 23, 25, 31]. Most of this work, however,
was restricted to modeling term dependencies, rather than
weighting them. In other words, all concept matches in the
query had the same impact on the document score. While
this assumption is reasonable for short keyword queries, it
is much less reasonable for longer, more complex queries.

Recent work, focused on verbose queries, started to ex-
plore the direction of assigning varying document indepen-

dent weights to query concepts. Kumaran and Carvalho [14]
address this by automatically removing extraneous terms
that may have a negative effect on the overall retrieval per-
formance of a query. Bendersky and Croft [3] use a super-
vised discovery method for“key concepts” in verbose queries,

and use a ranking approach that integrates the weighted key
concepts with the original query. They find that weighted
key concepts approach outperforms the standard bag-of-
words model, however its performance is on par with the
sequential dependence model (described in Section 3.1) that
does not use any concept weighting [20]. Most recently,
Lease [17] extended his previous work on term weighting
[18] to show that incorporating learned term weights in a
sequential dependence model improves the retrieval perfor-
mance over the unweighted variant for verbose description
queries on a number of TREC collections.

An additional information retrieval method that is related
to our work is pseudo relevance feedback (PRF), which can
be viewed as both query expansion and query term weight-
ing technique [16]. Recently, researchers separately focused
on both modeling term dependencies [21] and term weight-
ing [7] within the PRF framework. While we do not focus on
PRF-based concept weights in this paper, our concept im-
portance framework is general enough to readily incorporate
such weights as additional features.

There are two major differences of our approach with the
afforementioned previous work. First, our proposed exten-
sion to the MRF model provides a principled retrieval frame-
work that, unlike previously proposed methods, naturally
combines both term and phrase weights. Second, the model
parameters are estimated by directly maximizing the under-
lying retrieval metric such as MAP or DCG. This differenti-
ates our work from previous methods for concept weighting
that employed indirect parameter estimation, maximizing
metrics not directly related to retrieval performance such as
classification accuracy [3, 7] or expected query model per-
formance [18, 17]. We show that the direct optimization
approach allows us to achieve consistent performance gains
over a range of query types, while previous work on con-
cept weighting was mainly concentrated on verbose [3, 17]
or expanded [7] queries.

Direct optimization of an underlying retrieval metric ties
our work to learning-to-rank approaches for information re-
trieval (LR4IR) (see Liu [19] for a recent survey). Our for-
mulation of metric optimization is similar to some previous
work, and thus allows us to build upon the existing direct
optimization methods [22]. The novelty of our method lies
in the fact that we are not limited to a linear combination
of pairwise query-document features, as is usually the case
in LR4IR [19]. Instead, we can also use individual concept

features to effectively learn a concept weighting model in a
similar, yet much more flexible, way than that proposed by
Gey [10]. As we will show, this approach allows us to im-
prove upon retrieval models that use only query-document
dependent features.

3. WEIGHTED DEPENDENCE MODEL
The Markov Random Field model for information retrieval

forms the basis of our concept importance weighting [20].
Our use of the MRF model is motivated by the fact that it
consistently demonstrates state-of-the-art retrieval effective-
ness for a wide variety of search tasks, especially web search.
This is illustrated by the fact that the top performing sub-
missions at the Text REtrieval Conference (TREC) web
search evaluations for the past five years (Terabyte Track
2004-2006 [8], Million Query Track 2007-2008 [1]) have made
use of the model. Thus, the model is one of the most effec-
tive publicly disclosed text matching models for web search.
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Figure 1: Example Markov random field model for
three query terms under the sequential dependence
assumption.

In this section we first provide a brief overview of the MRF
model and the current best practice for using it. Then, we
discuss our proposed extension of the model and how it can
be used to learn highly effective weights for various types of
query concepts.

3.1 Markov Random Field Model
Markov Random Fields are undirected graphical models

that define a joint probability distribution over a set of ran-
dom variables. A MRF is defined by a graph G, where
the nodes in the graph represent random variables and the
edges define the dependence semantics between the random
variables. In the context of information retrieval, we are
interested in modeling the joint distribution over a docu-
ment random variable D and query term random variables
q1, . . . , qN (denoted as Q). An example MRF is shown in
Figure 1. In this model, adjacent query terms are dependent
on each other since they share an edge, but non-adjacent
query terms (e.g., q1 and q3) are independent given D.

The joint distribution over the document and query terms
is generally defined as:

PG,Λ(Q,D) =
1

ZΛ

Y

c∈Cliques(G)

ψ(c;λc) (1)

where Cliques(G) is the set of cliques in G, each ψ(c;λc)
is a non-negative potential function defined over clique con-
figuration c that measures the ‘compatibility’ of the config-
uration, Λ is a set of parameters that are used within the
potential functions, and ZΛ normalizes the distribution.

Therefore, to instantiate the MRF model, one must define
a graph structure and a set of potential functions. Metzler
and Croft propose three different graph structures that make
different dependence assumptions about the query terms [20].
The full independence variant places no edges between query
terms, the sequential dependence variant places edges be-
tween adjacent query terms (see Figure 1), and the full

dependence variant places edges between all pairs of query
terms. We employ the sequential dependence variant in this
work, as it has been shown to provide a good balance be-
tween effectiveness and efficiency [20].

Under the sequential dependence assumption, there are
two types of cliques that we are interested in defining po-
tential functions over. First, there are cliques involving a
single term node and the document node. The potentials
for these cliques are defined as follows:

ψ(qi,D; Λ) = exp[λT fT (qi,D)]

It is common practice for MRF potential functions to have
this type of exponential form, since potentials, by definition,
must be non-negative. Here, fT (qi, D) is a feature function
defined over the query term qi and the document D, and
λT is a free parameter. The subscript T denotes that these
potentials are defined over terms.

The other cliques that we are interested in are those that
contain two (adjacent) query term nodes and the document
node. The potentials over these cliques are defined as:

ψ(qi, qi+1, D; Λ) = exp[λOfO(qi, qi+1,D) +

λUfU (qi, qi+1, D)]

where fO(qi, qi+1,D) and fU (qi, qi+1,D) are feature func-
tions and λO and λU are free parameters. These potentials
are made up of two distinct components. The first consid-
ers ordered (i.e., exact phrase) matches and is denoted by
the O subscript. The second, denoted by the U subscript,
considers unordered matches.

We use the feature functions defined in Table 2, which
have been successfully used by researchers in the past [3,
17, 20]. In the table, tf#1(qi,qi+1,D) is the number of times
that the exact phrase qi qi+1 matches in the document and
tf#uw8(qi,qi+1,D) is the number of times that both terms qi

and qi+1 occur (ordered or unordered) within a window
of 8 positions in the document. The collection frequencies
(cf) are defined analogously. Of course, different potential
functions are possible, however an exhaustive exploration of
these functions is beyond the scope of this paper.

After making the sequential dependence assumption and
substituting the potentials ψ(qi,D; Λ), ψ(qi, qi+1,D; Λ) into
Equation 1, documents can be ranked according to:

P (D|Q)
rank
= λT

X

q∈Q

fT (q,D) +

λO

X

qi,qi+1∈Q

fO(qi, qi+1,D) +

λU

X

qi,qi+1∈Q

fU (qi, qi+1,D) (2)

Conceptually, this is a weighted combination of a unigram
score, an exact bigram match score, and an unordered win-
dow bigram match score. Throughout the remainder of this
paper we will refer to the ranking method in Equation 2 as
the sequential dependence model. It has been shown that
the parameters λT = 0.8, λO = 0.1, λU = 0.1 are very ro-
bust and are optimal or near-optimal across a wide range of
retrieval tasks [20, 22].

3.2 Weighted Sequential Dependence Model
One of the primary limitations of the sequential depen-

dence model, as just defined, is the fact that all matches
of the same type (e.g., term, ordered window, or unordered
window) are treated as being equally important. This is
the result of the massive parameter tying that is done in
Equation 2. Instead, it would be desirable to weight, a pri-

ori, different terms (or bigrams) within the query differently
based on query-level evidence. For example, in a verbose
query, there will likely be a few concepts (terms or phrases)
within the query that will carry the most weight. While the
sequential dependence model would treat all of the concepts
as equally important, we would like to be able to weight the
concepts appropriately, with regard to each other.



Weighting Description

fT (qi,D) = log

"

tfqi,D+µ
cfqi
|C|

|D|+µ

#

Weight of unigram qi in document D.

fO(qi, qi+1,D) = log

"

tf
#1(qi,qi+1),D+µ

cf#1(qi,qi+1)

|C|

|D|+µ

#

Weight of exact phrase “qi qi+1” in document D.

fU (qi, qi+1,D) = log

"

tf
#uw8(qi,qi+1),D+µ

cf
#uw8(qi,qi+1)

|C|

|D|+µ

#

Weight of unordered window qi qi+1 (span = 8) in document D.

Table 2: Summary of language modeling-based unigram and concept weighting functions. Here, tfe,D is the
number of times concept e matches in document D, cfe,D is the number of times concept e matches in the
entire collection, |D| is the length of document D, and |C| is the total length of the collection. Finally, µ is a
weighting function hyperparameter that is set to 2500.

There are several ways to model this in the MRF model,
but perhaps the most straightforward is to allow the param-
eters λ to depend on the concept that they are being applied
to, rather than some global weight. This can be achieved by
defining the potentials within the model as follows:

ψ(qi,D; Λ) = exp[λ(qi)fT (qi,D)]

ψ(qi, qi+1,D; Λ) = exp[λ(qi, qi+1)fO(qi, qi+1,D) +

λ(qi, qi+1)fU (qi, qi+1,D)]

where λ(qi) is a parameter that depends on term qi and
λ(qi, qi+1) is a parameter that depends on the bigram qi, qi+1.
In this setting, each term and bigram has a separate weight
associated with it that is independent of the document. This
parameter should be some measure of the general impor-
tance of the concept with respect to the rest of the query.

Although this formulation of the model is more general,
it results in an infeasibly large number of parameters, since
each λ now depends on the identity of one (or two) query
terms. This was not a problem in the original formulation
of the sequential dependence model, because it was assumed
that all of the λ parameters, for a given match type, were
tied to the same value, resulting in just three parameters.
Our proposed solution is in the middle ground between these
two extremes. We assume that the parameters λ take on a
parameterized form. For simplicity, we assume the following
weighted linear form:

λ(qi) =

ku
X

j=1

w
u
j g

u
j (qi)

λ(qi, qi+1) =

kb
X

j=1

w
b
jg

b
j(qi, qi+1)

where gu(qi) and gb(qi, qi+1) are features defined over uni-
grams and bigrams, respectively. Similarly, wu and wb are
free parameters that must be estimated. If there are ku un-
igram features and kb bigram features, then we have a total
of ku+kb total parameters to estimate, compared to three in
the sequential dependence model. The features gu(qi) and
gb(qi, qi+1) are document independent and should be use-
ful for determining the relative importance of the concept
within the context of the query.

When the parameters λ have this parametric form, the
final MRF ranking function can be shown to have the fol-

lowing form:

P (D|Q)
rank
=

ku
X

i=1

w
t
i

X

q∈Q

g
u
i (q)fT (q,D) +

kb
X

i=1

w
b
i

X

qj ,qj+1∈Q

g
b
i (qj , qj+1)fO(qj , qj+1, D) +

kb
X

i=1

w
b
i

X

qj ,qj+1∈Q

g
b
i (qj , qj+1)fU (qj , qj+1, D)(3)

which we call the weighted sequential dependence model. It
is important to note that this model can easily be extended
to handle other dependence assumptions, including the so-
called full dependence assumption [20] and other models
that focus on key dependencies in the queries [4].

3.3 Concept Importance Features
In this section, we describe the features used for deter-

mining the importance of a term or a bigram in a weighted
sequential dependence model. Recall that parameters λ(qi)
and λ(qi, qi+1), which determine the concept weights, are
represented as a weighted linear combination of features
gu(qi) and gb(qi, qi+1). These features are defined over con-
cepts (either terms or bigrams) and are independent of a
specific document. This fact allows us to combine the statis-
tics of the underlying document corpus with the statistics of
various external data sources to achieve a potentially more
accurate weighting. Accordingly, we divide the features used
for concept importance weighting into two main types, based
on the type of information they are using.

The first type, the endogenous, or collection-dependent,
features are akin to standard weights used in information
retrieval. They are based on collection frequency counts
and document frequency counts calculated over a particular
document corpus on which the retrieval is performed.

The second type, the exogenous, or collection-independent,
features are calculated over an array of external data sources.
The use of such sources was found to be beneficial for infor-
mation retrieval models in previous work [2, 3, 15, 18]. Some
of these data sources provide better coverage of terms, and
can be used for smoothing sparse concept frequencies cal-
culated over smaller document collections. Others provide
more focused sources of information for determining con-
cept importance. In this paper, we use three external data
sources: (i) a large collection of web n-grams, (ii) a sample of
a query log, and (iii) Wikipedia. Although there are numer-



Data Source Feature Description
Collection cfe Collection frequency for concept e

dfe Document frequency for concept e
G-Grams gf(e) n-gram count of concept e

MSN Query Log qe cnt(e) Count of exact matches of a concept e and a query in the log
qp cnt(e) Count of times concept e occurs within a query in the log

Wikipedia Titles we cnt(e) Does a concept e appear as a Wikipedia title?
wp cnt(e) Count of times concept e occurs within a Wikipedia title.

Table 3: Statistics used to estimate term importance for a concept e. Concept e is either a query term qi or
a sequential query term pair qiqi+1.

ous additional data sources that could be potentially used,
we intentionally limit our attention to these three sources as
they are available for research purposes, and can be easily
used to reproduce the reported results.

The first source, Google n-grams corpus1, contains the fre-
quency counts of English n-grams generated from approxi-
mately 1 trillion word tokens of text from publicly accessible
Web pages. We expect these counts to provide a more ac-
curate frequency estimator, especially for smaller corpora,
where some concept frequencies may be underestimated due
to the collection size.

In addition, we use a large sample of a query log con-
sisting of approximately 15 million queries2. We use this
data source to estimate how often a concept occurs in user
queries. Intuitively, we assume a positive correlation be-
tween an importance of a concept for retrieval and the fre-
quency with which it occurs in queries formulated by search
engine users.

Finally, our third external data source is a snapshot of
Wikipedia article titles3. Due to the large volume and the
high diversity of topics covered by Wikipedia (∼ 3 million ar-
ticles in English alone), we assume that important concepts
will often appear as (a part of) article titles in Wikipedia.

Table 3 details the statistics used for determining concept
weights. As described above, these statistics are based ei-
ther on the collection or on one of the external data sources.
These statistics are used to compute term and bigram fea-
tures (gu(qi) and gb(qi, qi+1), respectively) in the weighted
sequential dependence model (see Equation 3).

For computing the term features, we calculate the statis-
tics presented in the Table 3 for all query terms qi. This
provides us with 7 features gu(qi) for determining term im-
portance weights.

To compute the bigram features, we calculate the statis-
tics presented in the Table 3 for all sequential query term
pairs qi, qi+1. For computing collection statistics, we use
both the “exact phrase” matches and “unordered window”
matches, as described in Table 2. In addition, as bigram

features, we compute a ratio
s(qiqi+1)

s(qi)s(qi+1)
for every statistic s

in the Table 3. Overall, the combination of the above statis-
tics, provides us with 18 features gb(qi, qi+1) for determining
bigram importance weights.

3.4 Parameter Estimation
In this section, we detail our method for estimating the

parameters in the weighted dependence model in Equation 3.

1Available from Linguistic Data Consortium catalog.
2Available as a part of Microsoft 2006 RFP dataset.
3Available at: http://download.wikimedia.org/enwiki/

There are various ways to estimate the parameters w in the
weighted dependence model, including maximum likelihood
estimation, maximum a posteriori estimation, and discrim-
inative estimation approaches. In this work, we choose to
directly optimize the parameters for the retrieval metric of
interest, such as mean average precision or discounted cu-
mulative gain.

The primary reason for performing a direct optimization,
is our interest in using the weighted dependence model for
ranking. Therefore, ranking metrics are the appropriate
metrics to optimize for. Another reason is that there is a
large and growing body of literature on the learning to rank
methods for information retrieval that are being developed
for effectively optimizing ranking functions with respect to
retrieval metrics [19].

In this work, we employ a very simple, yet highly effec-
tive, learning to rank approach that directly optimizes the
underlying retrieval metric. It is easy to see that our ranking
function is linear with respect to w’s. Therefore, we make
use of the coordinate-level ascent algorithm that was origi-
nally proposed in [22], which is easy to implement, efficient
for a small number of parameters (as is the case here), and
has good empirically verified generalization properties.

The coordinate-level ascent algorithm iteratively optimizes
a multivariate objective function by performing a series of
one-dimensional line searches. It repeatedly cycles through
each parameter wi in Equation 3, holding all other param-
eters fixed while optimizing wi. This process is performed
iteratively over all parameters until the gain in the target
metric is below a certain threshold.

Although we use this algorithm primarily for its simplicity,
any number of other learning to rank approaches that esti-
mate the parameters for linear models can be used. Other
possible algorithms include ranking SVMs [13] and SVMMAP

[33].
Framing the parameter estimation problem in this man-

ner has several benefits. First, it allows us to make use of
any training data that is available, in the form of editorial
judgments or click logs, to learn a highly effecive model.
Second, the model can be seamlessly integrated into any
existing linear learning to rank model. Most other textual
features, such as BM25, are highly non-linear with respect
to their parameters (i.e., b and k1). When integrating such
a feature into a linear learning to rank model, the b and
k1 parameters would likely have to be estimated in a spe-
cial manner, because of the non-linearity. However, if the
features have a linear form, as is the case in Equation 3, it
is straightforward to estimate all the parameters using the
existing optimization framework.



4. EVALUATION
In this section we present the experimental results of our

work. We start by detailing the experimental setup in Sec-
tion 4.1. Next, in Section 4.2, we perform a comprehensive
evaluation of our method using several publicly available
corpora used at the Text REtrieval Conference (TREC), in-
cluding newswire and web collections. Finally, to illustrate
the benefits of the proposed techniques for web search, in
Section 4.3 we test the performance of our method using a
proprietary web corpus and a large sample of user queries.

4.1 Experimental setup
All initial indexing and retrieval are implemented using an

open-source search engine Indri4 [29]. The structured query
language implemented in Indri natively supports term prox-
imities and custom term weighting schemes, which provides
a flexible and convenient platform for evaluating the perfor-
mance of our method.

During indexing, the documents are stemmed using Porter
stemmer. Queries are stopped using a short list of 35 stop-
words. For TREC description queries (see Section 4.2) an
additional set of 17 stopwords is used, designed to remove
some of the frequent stop patterns (e.g., “find information”)
and to improve the performance of the initial retrieval step.

The retrieval experiments are set-up as follows. For all
TREC collections, we obtain an initial list of top-1000 results
retrieved by an unweighted sequential dependence model.
This initial ranking provides a very competitive baseline, as
the sequential dependence model was consistently shown to
outperform the standard bag-of-word models [17, 20]. We
append all the non-retrieved relevant documents to the top-
1000 list, and use the resulting document set for training
and evaluating all the compared retrieval models, which is
a standard practice in evaluating learning to rank methods.

For the proprietary web corpus, we only index web pages
that have relevance judgments for our query samples. Train-
ing and evaluation of the retrieval models is done using this
set of judged web pages, which is a common evaluation prac-
tice for this type of test collection. There are, on average,
27 judgments per query.

We compare the performance of our weighted sequential
dependence model (WSD) to two baseline retrieval models.
The first is the query-likelihood model [27] (QL), a stan-
dard bag-of-words retrieval model implemented by the Indri
search engine. The second is the unweighted sequential de-
pendence model (SD) as described in Section 3.1. All the ini-
tial retrieval parameters are set to default Indri values, which
reflect the best-practice settings. All the training/evaluation
on both TREC an web corpora is done using five fold cross-
validation. The statistical significance of the differences in
the performance is determined using a two-sided Wilcoxon
sign test, with α < 0.05.

We measure the performance using standard retrieval met-
rics for TREC and web corpora. For TREC, which uses
binary relevance judgments, we use precision at top 10 doc-
uments retrieved (prec@10), a preference-based measure (b-
pref) and a mean average precision at top 1000 documents
retrieved (MAP). See, for instance, Buckley and Voorhees
[6], for a detailed description of these measures. When esti-
mating the parameters for the WSD model, we directly opti-
mize MAP, which is known to be a stable measure [6].

4http://www.lemurproject.org/indri/

Name # Docs TREC Topic Numbers
ROBUST04 528,155 301-450, 601-700
W10g 1,692,096 451-550
GOV2 25,205,179 701-850

Table 4: Summary of TREC collections and topics
used in Section 4.2.

For the web corpus, which uses graded relevance judg-
ments, we use the discounted cumulative gain measure (DCG)
[12] at ranks 1, 5, and at the total depth of the ranked list.
Relevance is judged as either Perfect, Excellent, Good, Fair,
or Bad. The corresponding DCG gains for these grades are
10, 7, 3, 0.5, and 0, respectively.

In the direct optimization of the weighted dependence
model, we use the normalized DCG (nDCG) at total depth
of the ranked list as the target metric. During the devel-
opment phase, we found that the results attained by opti-
mizing this metric were more stable over all ranks than the
results attained by optimizing for DCG at a particular rank.
This can be attributed to the fact that nDCG incorporates
information about the entire ranked list, whereas DCG@1
and DCG@5 only consider the top ranked documents. A
similar finding was also reported previously by Yilmaz and
Robertson [32].

4.2 Evaluation on TREC corpora
In this section, we describe the retrieval results obtained

by our model on three standard TREC collections. A sum-
mary of the corpora used for these experiments is shown in
Table 4. We note that collections vary both by type (RO-
BUST04 is a newswire collection, while W10g and GOV2
are web collections), number of documents and number of
available topics, thus providing a diverse experimental setup
for assessing the robustness of the proposed weighted depen-
dence model.

In our evaluation we use both the title and the descrip-

tion portions of TREC topics as queries. Title queries are
generally short, and can be viewed as a keyword queries on
the topic. Description queries are generally more verbose
and syntactically richer natural language expressions of the
topic. For instance queries pet therapy and How are pets or

animals used in therapy for humans and what are the ben-

efits? are examples of title and description queries on the
same topic, respectively.

4.2.1 Retrieval results

Table 5 shows the summary of the retrieval results for
the three TREC collections on both title and description

queries. It is evident that both sequential dependence mod-
els (SD and WSD) significantly outperform the query likeli-
hood model QL in almost all the cases on all the metrics.
This verifies the positive impact of term dependencies on
the retrieval performance.

From the two sequential dependence models, weighted se-
quential dependence model (WSD) significantly outperforms
the unweighted one (SD) on all collections in terms of MAP
(which is used as our metric for direct optimization). The
gains in MAP range between 1.6% and 24.1%, and are sta-
tistically significant for all collections and both query types.

It is interesting to note that even on prec@10 and b-pref
metrics, which are not directly optimized, WSD is more effec-
tive than SD in all but two comparisons (prec@10 for GOV2).



title ROBUST04 W10g GOV2
prec@10 b-pref MAP prec@10 b-pref MAP prec@10 b-pref MAP

QL 42.25 25.45 24.93 25.60 18.62 19.04 53.42 35.30 30.19
SD 44.10∗ 27.10∗ 26.61∗ 28.90∗ 19.76∗ 20.63∗ 57.85∗ 37.71∗ 32.47∗

(+6.7/—) (+8.3/—) (+7.5/—)

WSD 44.62∗ 27.49∗
† 27.21∗

† 28.90∗ 21.32∗
† 22.20∗

† 57.79∗ 38.10∗ 33.38∗
†

(+9.2/+2.3) (+16.6/+7.6) (+10.6/+2.8)

desc ROBUST04 W10g GOV2
prec@10 b-pref MAP prec@10 b-pref MAP prec@10 b-pref MAP

QL 42.69 25.37 25.07 32.70 20.47 19.71 51.68 35.70 26.06
SD 41.77 25.90 25.58 36.10∗ 20.73 20.32 53.56 36.22 26.94∗

(+2.0/—) (+3.1/—) (+3.4/—)

WSD 42.69 27.02∗
† 27.18∗

† 37.10∗ 24.33∗
† 25.23∗

† 51.81 36.64∗
† 27.38∗

†

(+8.4/+6.3) (+28.0/+24.1) (+5.1/+1.6)

∗ Statistically significant difference with QL

† Statistically significance difference with SD

Table 5: Comparison of retrieval results for title (top table) and description (bottom table) TREC queries
with query likelihood (QL), sequential dependence model (SD) and weighted sequential dependence model
(WSD). Numbers in parentheses indicate % improvement in MAP over QL/SD (if available).

Gains are as high as 2.8% for prec@10 and 17.4% for bpref.
We expect that even higher gains for both prec@10 and b-
pref can be attained by WSD by directly training the model
for these measures of interest rather than MAP.

4.2.2 Feature analysis

In this section we perform a detailed feature analysis,
in order to identify the key elements in the success of the
weighted sequential model, as compared to its unweighted
counterpart.

Unigrams and Bigrams.
Table 6 compares the impact on the retrieval effectiveness

of the importance weights assigned by WSD to either unigrams
or bigrams in the sequential dependence model. Recall that
the weighted sequential dependence model WSD is derived
from its unweighted counterpart by replacing the constants
λT , λO ,, and λU in Equation 2 with concept dependent pa-
rameters λ(qi) and λ(qi, qi+1), as shown in Equation 3.

The WSD-UNI model, shown in Table 6, is obtained by
replacing λT with the term dependent λ(qi), while fixing the
values of λO and λU to those of the unweighted sequential
dependence model. Alternatively, WSD-BI model is obtained
by replacing λO and λU with the term dependent λ(qi, qi+1),
while fixing the value of λT .

Table 6 compares the performance of both WSD-UNI and
WSD-BI models to the performance of the fully weighted se-
quential dependence model (WSD). We note that while, in
general, both WSD-UNI and WSD-BI outperform SD, in most
cases WSD-UNI outperforms WSD-BI as well. This indicates
that a unigram weighting has more impact on the retrieval
performance than the bigram weighting. This result is in
line with previous results reported by Lease for TREC collec-
tions [17], which showed that by solely weighting unigrams,
one can significantly outperform the unweighted sequential
model baseline.

Another important finding shown in Table 6, is that WSD,
which combines both unigram and bigram weights, outper-
forms WSD-UNI in 5 out of 6 comparisons, and always out-
performs WSD-BI. In addition, WSD attains statistically signif-

icant differences in comparison with WSD-UNI for description

queries on a large web collection GOV2. This fact under-
scores the importance of weighting for all the concepts in
the sequential dependence model.

Endogeneous and Exogenous Features.
Recall from Section 3.3 that WSD uses two types of features

for estimating concept importance: endogeneous (collection-
dependent) and exogeneous (collection-independent). While
applying collection-dependent features for term weighting
has been extensively studied in traditional information re-
trieval [28], the research on combining them with external
sources of information is more recent [3, 18]. Therefore, it
is interesting to examine the contribution of each of these
feature types to the overall model performance.

Table 7 compares the performance of the weighted se-
quential dependence model when either only endogeneous
(WSD-ENDO) or only exogeneous (WSD-EXO) features are used
to the performance of the fully weighted sequential depen-
dence model (WSD). It is evident from Table 7 that using
either the endogeneous or the exogeneous features results
in comparable performance, and both of them outperform
the unweighted dependence model. This indicates that both
of these features are useful for learning the optimal weights
for WSD. In both cases, however, their combination results
in gains in MAP in 4 out of 6 comparisons. In addition,
we found that both WSD-ENDO and WSD-EXO display statisti-
cally significant differences with WSD on a large web collection
GOV2 for description queries.

4.3 Evaluation on a commercial web corpus
Previous research has shown that modeling sequential term

dependencies has a significant positive impact on retrieval
performance in the web search setting [2, 20, 23]. Given the
retrieval performance gains obtained from using the weighted
variant of the sequential dependence model demonstrated on
TREC collections in the previous section, the following set
of experiments explores whether these gains can be directly
transferred into a web search setting. To this end, in this
section we test the ranking with a weighted sequential de-



title ROBUST04 W10g GOV2
MAP MAP MAP

WSD 27.21 22.20 33.38
WSD-UNI 26.85† 21.88 33.43
WSD-BI 26.75† 20.65† 32.58

desc ROBUST04 W10g GOV2
MAP MAP MAP

WSD 27.18 25.23 27.38
WSD-UNI 27.17 24.86 26.77†

WSD-BI 26.02† 20.43† 27.00
† Statistically significant difference with WSD

Table 6: Comparison of retrieval results for title (left) and description (right) TREC queries with either only
unigram features (WSD-UNI), only bigram features (WSD-BI) or both.

title ROBUST04 W10g GOV2
MAP MAP MAP

WSD 27.21 22.20 33.38
WSD-ENDO 26.85† 21.76 32.81
WSD-EXO 27.01 21.19† 33.54

desc ROBUST04 W10g GOV2
MAP MAP MAP

WSD 27.18 25.23 27.38
WSD-ENDO 27.07 23.28 26.95†

WSD-EXO 27.33 24.68 27.33†

† Statistically significant difference with WSD

Table 7: Comparison of retrieval results for title (left) and description (right) TREC queries with either only
endogenous features (WSD-ENDO), only exogenous features (WSD-EXO) or both.

pendence model on a proprietary web corpus provided by a
large commercial search engine.

To differentiate between the effect of concept weighting on
queries of varying length, as was done in the case of TREC
corpora, we divide the queries into three groups based on
their length. Length is defined as a number of word tokens
separated by space in the query.

The first group of queries (Len-2 ) includes very short
queries of length two. The second group (Len-3 ) includes
queries of length three. The third group (Len-4+) consists
of more verbose queries of length varying between four and
twelve.

While the queries in the first two groups mostly have a
navigational intent, the queries in the third group tend to
be more complex informational queries. For each group, we
randomly sample 1,000 web search queries for which rele-
vance judgments are available. We then train and evaluate
(using five fold cross-validation) a separate sequential de-
pendence model and weighted sequential dependence model
for each group.

4.3.1 Retrieval results

Table 8 shows the summary of the retrieval results on
the three query groups. To demonstrate the impact on the
relevance at the top ranks of the retrieved list we report the
DCG@1 and DCG@5 measures. To demonstrate the overall
ranking quality, we report the results for DCG at unlimited
depth (denoted DCG).

Table 8 demonstrates two important findings. First, in-
cluding term dependence information is highly beneficial for
queries of all lengths. SD attains up to 15.4% improvement
over QL, which is a bag-of-words model. This result is highly
significant, given the large size of our query set.

Second, concept weighting results in significant improve-
ments for longer (Len-4+) queries, and its performance is
comparable for shorter queries to the performance of the
unweighted dependence model (slight improvement on Len-

2 and slight decrease in performance on Len-3 ). For group
Len-4+, WSD attains improvement of close to 2.5% for DCG@1
and DCG@5. This is a highly significant improvement, espe-
cially when taking into account the importance of relevance
at top ranks for the web search task.

4.3.2 Feature analysis

Similarly to the feature analysis performed in Section 4.2.2
for TREC corpora, in this section we analyze the importance
of different weights and features in the weighted sequential
model for the web corpus.

Unigrams and bigrams.
Table 9 compares the impact on the retrieval effectiveness

of the importance weights assigned by WSD to either unigrams
or bigrams in the sequential dependence model. Notice that,
contradictory to what was observed in Table 6 for the TREC
data, the bigram weights have more impact on the retrieval
effectiveness than the unigram weights.

For short queries in groups Len-2 and Len-3 , using bigram
weights alone and omitting the unigram weights results in
a slightly higher DCG at all measured ranks than using the
fully weighted dependence model.

A likely explanation for this effect is the dominance of
navigational intent for short queries in web search. TREC
topics, including the short title queries, mostly have an in-
formational intent and often consist of several separate con-
cepts of unequal importance (e.g., “abandoned mine recla-
mation”). Short two-three word web queries, on the other
hand, often consist of a single navigational bigram (“yahoo
mail”), or a bigram followed by an auxiliary term (“yahoo
mail login”).

Compared to the first two groups, using both unigram
and bigram weights in queries in group Len-4+ results in a
better performance than using either of them alone, which
is in line with the results for the TREC collections.

We hypothesize that this stems from the fact that a higher
percentage of these queries have an informational intent, and
they contain both unigram and bigram concepts of varying
importance (“best metal songs of the 80s”).

Overall, as evident from Table 9, the impact of concept
weights is influenced both by the query type and by the col-
lection. While the weighted sequential model can naturally
incorporate weighted and unweighted concepts, the optimal
weighting policy has to be determined using training on the
available data.



Len-2 Len-3 Len-4+
DCG@1 DCG@5 DCG DCG@1 DCG@5 DCG DCG@1 DCG@5 DCG

QL 0.803 2.231 10.750 0.784 2.290 8.204 0.629 1.691 5.844
SD 0.926 2.733 11.539 1.008 2.971 9.139 0.864 2.383 6.681

(+7.3/—) (+11.4/—) (+14.3/—)

WSD 0.929 2.754 11.585 0.995 2.929 9.087 0.884 2.443 6.741
(+7.8/+0.4) (+10.8/-0.6) (+15.4/+0.9)

- All the differences are statistically significant

Table 8: Comparison of retrieval results over a sample of web queries with query likelihood (QL), sequential
dependence model (SD) and weighted sequential dependence model (WSD). Numbers in parentheses indicate
% improvement in DCG over QL/SD (if available).

Endogenous and exogenous features.
Table 10 compares the performance of the weighted se-

quential dependence model when either only endogeneous
(WSD-ENDO) or only exogeneous (WSD-EXO) features are used
to the performance of the fully weighted sequential depen-
dence model (WSD). It is evident from Table 10 that using
either the endogeneous or the exogeneous features results in
most cases in comparable performance. Similarly to WSD,
both of them outperform the unweighted dependence model
on queries in group Len-4+.

For shorter queries in the first two groups combining the
two types of features results in a better performance than
using either one in isolation. For queries in a group Len-4+

using endogenous features alone results in a slightly better
performance than the WSD.

We note that the impact of exogeneous features on the
overall retrieval performance of the web queries might be
potentially boosted by including additional external sources,
instead of just three, as is done in our work. For instance,
a larger and a more recent sample of user queries than the
one used in this study could be employed. However, in the
current work we intentionally adhere to using a query log
available to other researchers, in order to promote the re-
producibility of our results on public data.

As a general “rule of thumb” strategy, a combination of
both endogenous and exogenous features appears to be the
preferred option both for the TREC and for the web corpora.

5. CONCLUSIONS AND FUTURE WORK
This paper presented a novel extension of the Markov

Random Field model for information retrieval. The pro-
posed model provides a robust, effective mechanism for learn-
ing query concept importance weights. We showed that pa-
rameter estimation in our model can be framed as a learning
to rank problem, allowing us to learn concept weights that
ultimately directly optimize an underlying information re-
trieval metric of interest. We also showed that endogenous
and exogenous features, such as web-based n-grams and
query log information, can be useful for learning document-
independent concept importance weights.

In our experiments, we used the proposed framework to
learn unigram and bigram importance weights. Our experi-
mental results showed that our proposed model consistently
and significantly outperforms the state-of-the-art sequential
dependence model across several TREC test collections as
well as a web collection from a commercial search engine.

There are several possible directions of future work. First,
it would be interesting to incorporate novel sources of con-
cept importance features. For instance, it may be possible

to exploit information from click logs to derive better im-
portance estimates.

Additionally, it may be useful to use learning to rank
framework similar to the one proposed in this paper to au-
tomatically learn parameterized versions of fT , fO, and fU

feature functions (see Table 2). The resultant model would
make use of a completely learned concept weighting func-
tion, which would include both document-dependent (con-
cept score) and document-independent (concept importance)
components. Such a function may produce even better re-
trieval effectiveness than the weighted sequential dependence
model proposed in our work.
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