
Query Reformulation Using Anchor Text

Van Dang
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
vdang@cs.umass.edu

W. Bruce Croft
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
croft@cs.umass.edu

ABSTRACT

Query reformulation techniques based on query logs have
been studied as a method of capturing user intent and im-
proving retrieval effectiveness. The evaluation of these tech-
niques has primarily, however, focused on proprietary query
logs and selected samples of queries. In this paper, we sug-
gest that anchor text, which is readily available, can be an
effective substitute for a query log and study the effective-
ness of a range of query reformulation techniques (includ-
ing log-based stemming, substitution, and expansion) us-
ing standard TREC collections. Our results show that log-
based query reformulation techniques are indeed effective
with standard collections, but expansion is a much safer form
of query modification than word substitution. We also show
that using anchor text as a simulated query log is as least
as effective as a real log for these techniques.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Query For-
mulation

General Terms

Algorithms, Measurement, Performance, Experimentation.

Keywords

Query substitution, query expansion, query reformulation,
query log, anchor text, anchor log.

1. INTRODUCTION
When users interact with a search engine, they not only

find documents satisfying their information need, they also
provide the search engine with implicit feedback about the
results returned by the system. The search engine keeps
track of this information in the form of a query log, which
basically includes queries submitted by users and documents
from the result pages that have been clicked on to view.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’10, February 4–6, 2010, New York City, New York, USA.
Copyright 2010 ACM 978-1-60558-889-6/10/02 ...$10.00.

Since a query log is a rich information source about users,
the analysis of these logs has recently become an active re-
search area. Query logs have been used for many tasks, one
of which is query reformulation [23, 13, 3, 25, 27]. Query
reformulation aims to solve the vocabulary mismatch prob-
lem in Information Retrieval (IR) by changing the original
query to a form that is a better match with relevant doc-
uments. Much of the previous work operates on the whole
query level, which is more commonly known as query rec-
ommendation. This class of techniques first clusters similar
queries based on commonly clicked documents [3, 25] or the
similarity of vocabulary used in clicked documents [27], and
uses queries in the same cluster as recommendations for one
another.

The techniques that we focus on generate new queries by
substituting or adding words or phrases to the original query.
For example, the technique proposed by Jones et al. [13]
works on the phrase level by looking at successive pairs of
queries in user sessions. Two queries that are different from
each other by only one phrase are selected and the corre-
sponding pairs of phrases are recorded as substitution can-
didates, which are used to generate substitutions for new
queries. This study, however, did not evaluate the retrieval
effectiveness of the new queries with substitutions. Another
example of recent work on log-based query reformulation is
that of Wang and Zhai [23], which works on the word level.
The method first extracts term associations based on their
context distribution. For a new query, the method will de-
cide whether to substitute a term with one of its “similar”
words based on whether this new word matches the context
of the query better than the original term. This method has
been shown to be effective with web queries using click data
as relevance judgments.

Context sensitive stemming based on query logs is another
type of query reformulation that has been studied [20]. In-
stead of reducing words into their root forms at indexing
time, the stemmer determines at query time which word
variants should be used to expand the query. Although it
was demonstrated in the work of Peng et al. [20] that context
sensitive stemming is useful for web search, they evaluate it
on a sample of web queries and do not compare it against
traditional stemming approaches.

These and other studies of query reformulation based on
query logs nearly all make use of nonstandard approaches to
evaluation and proprietary query logs. This makes the com-
parison of techniques difficult and their applicability to new
applications and domains unclear. In this paper, we com-
pare reformulation techniques using TREC collections and

suggest modifications based on the results. In particular, we
find that expansion is a more reliable form of modification
than substitution.

To address the problem of the lack of availability of query
logs, we instead propose to use anchor text to simulate the
important parts of a log. Anchor text is well-known to be
an important feature for effective web search. Previous re-
searchers have also noted the similarity of anchor text to
queries. For example, Nallapati et al. [19] used anchor text
as relevant queries to train a retrieval model. Kraft and Zien
[14] demonstrated that using anchor text to refine a query
is better than doing so with the document collection. There
have also been studies showing that anchor text resembles
real queries in terms of term distribution and length [11].
Given these results, in this paper we construct a simulated
query log or anchor log from the anchor text in a web test
collection. We then evaluate the log-based query reformula-
tion techniques using both the anchor log and a real query
log (the MSN query log [18]) and show that the anchor log
produces results that are at least as effective.

In the next section, we describe how we construct the an-
chor log and compare it to the MSN log. Section 3 presents
the query substitution technique that we use in more de-
tail. Section 4 describes the context-sensitive query stem-
ming technique. Section 5 contains the experimental results
based on the anchor log and query log, as well as a discus-
sion of those results. Section 6 briefly mentions some more
related work and Section 7 concludes.

2. BUILDING AN ANCHOR LOG
A query log can contain a broad range of information

about user behavior during interaction with a search engine
while formulating a query and browsing the search results.
The most important parts of the log for query reformulation
techniques are the user queries and the URLs (or other iden-
tifiers) of documents that are clicked on for those queries.
Session information, which records the sequence of queries
in a search session, is also used by some techniques.

An anchor log constructed from anchor text is much more
limited. Each anchor text is associated with a link to a par-
ticular document. Since the anchor text is chosen manually
to represent the page, its content is very relevant to the doc-
ument. Brin and Page [6] point out that the anchor texts
often provide more accurate description of the page than
the page itself. Thus, in this paper, we simply construct an
anchor log that consists of pairs (anchor text, URL) where
the anchor text corresponds to a query in a query log, and
the URL is the associated link for the anchor text, which
corresponds to a click in a query log.

For this paper, we built the anchor log from the TREC
Gov-2 web collection (25 million web pages crawled from the
.gov domain during early 2004). Only anchors that contain
English words and non-stopwords were kept. The same sim-
ple filter was applied on the MSN Log. Table 1 compares
some basic statistics to the MSN query log, which was a
sample of user queries submitted to a search engine over a
one month period. Although the size of the anchor log is
much larger than the MSN Log, it contains a lot of noise
in the form of anchors such as “index”, “print version”, and
“click here”. These common anchors could be removed quite
easily, but we did not do it for this paper.

One of the limitations of the anchor log is that it does
not contain session information. Since the query reformu-

Table 1: Statistics of MSN Log and Anchor Log
MSN Log Anchor Log

Total Queries 14,035,893 526,966,029
Unique Queries 6,087,365 20,838,241

Average Query Length 2.68 2.62

lation technique we evaluate uses session data to filter out
unrelated words, we defined a session in the anchor log to
be simply the group of anchor texts that point to the same
web page. It should also be noted that session information
in the MSN log is limited due to the sampling methodology.

3. CONTEXT SENSITIVE QUERY SUBSTI-

TUTION
This section briefly describes the method proposed by

Wang and Zhai [23]. The method first estimates the context
distribution for all words in the query log. It then learns a
translation model to “translate” from one word to another
based on their distributional similarity. Finally, a substi-
tution model is built on the top of the translation model.
Given a query term and a query context, the substitution
model will decide whether to make a substitution, and if so,
which candidates among those suggested by the translation
model should be used. Details are as follows.

3.1 Definition of Context
The i-th left context (Li) of a query term w is the set

of words that occur at the i − th position away from w on
its left hand side in the query. The i-th right context (Ri)
is defined in a similar manner. For example, if the query is
oscar winner selection, we say that oscar is in the L1 context
of winner and selection is in the R1 context.

3.2 Context Distribution
Let C denote a particular type of context (it can be either

Li or Ri) and C(w) denote the set of words that are in the
C context of w and countw(ci) denote the number of times
that the word ci occurs in the C context of w. Given a term
w, the probability distribution of its context words is given
by

PC(ci|w) =
countw(ci)

P

cj∈C(w) countw(cj)
(1)

To avoid the zero-probability problem, a smoothed distribu-
tion is also given,

P̃C(ci|w) =
countw(ci) + µP (ci|θ)

P

cj∈C(w) countw(cj) + µ
(2)

where P (ci|θ) is the probability of the word ci in the entire
collection and µ is the Dirichlet prior parameter, which was
set to 1500 in all of our experiments.

3.3 Translation Model
The translation model is used to capture words that can

be used in the same context. The idea is words that occur
in similar context are “related” to one another, and thus can
be good substitution candidates for one another.

The translation model uses the KL divergence between w

and s to model the probability of “translating” from w to s,

denoted as t(s|w). The estimation of t(s|w) is given by

t(s|w) =
e−D(PC(.|w)||P̃C(.|s))

P

u e−D(PC(.|w)||P̃C (.|u))
(3)

where D(PC(.|w)||P̃C(.|s)) is the KL divergence calculated
as

D(PC(.|w)||P̃C(.|s)) =
X

c∈C(w)

P (c|w)log
P (c|w)

P̃C(c|s)
(4)

Wang and Zhai [23] used a combination of L1 and R1

to estimate the translation probability. In our experiments,
however, we observed almost no difference in retrieval per-
formance between using only the L1 context and the com-
bination. Thus, we used only L1 in our experiments, which
turns out to be identical to the distributional word similarity
estimate [21, 10].

As noted by the authors [23], for any given word w the
translation model only suggests paradigmatic words. There
is no guarantee that they are related in meaning. In an
effort to filter out unrelated word pairs, they compute the
normalized mutual information between all pairs (s, w) as

NMI(s, w) =
MI(s,w)

MI(w, w)
(5)

where MI(s, w) is the mutual information of s and w over
the query log sessions. Pairs (s, w) that have NMI below a
pre-defined threshold τ are discarded. The idea is unrelated
words would not often appear in the same sessions. τ was
set to 0.001 in our experiments. However, the elimination
of such pairs is not done in this step but in the next.

3.4 Query Substitution Model
Given a query q = w1 . . . wi−1wiwi+1 . . . wn where wi is

the candidate for substitution, the substitution model can
estimate the probability of substituting the term wi for any
new term s. The substitution probability P (wi → s|q) is
given by

P (wi → s|q) ∝ t(s|wi) × P (w1 . . . wi−1 wi+1 . . . wn|s) (6)

where P (w1 . . . wi−1 wi+1 . . . wn|s) can be considered the
probability that the new term s fits into the context of the
query and is computed as

˜PL2
(wi−2|s)× ˜PL1

(wi−1|s)× ˜PR1
(wi+1|s)× ˜PR2

(wi+2|s) (7)

For details about the formula, see [23].

3.5 Candidate Queries Generation
For any given query q = w1 . . . wi−1wiwi+1 . . . wn, the

model will iterate through all terms wi and try to replace
each of them. This results in a set of substituted queries
each of which is different to q by only one term.

For each wi, assuming that the translation model recom-
mends n candidates s1, s2, . . . , sn to replace wi, the substitu-
tion model will determine whether to make the substitution,
and if so which candidate to select by following three steps:

1. Consider only the top M translation candidates si

sorted by their t(si|wi)

2. Remove all si that have NMI(si, wi) < τ

3. All remaining candidates si are considered equally good
and t(si|wi) is set to 1.0 for all si. Their P (wi → si|q)
is then computed by formula (6)

The substitution model decides to make the substitutions
for each of the remaining si that satisfies

P (wi → si|q)

P (wi → wi|q)
> 1 (8)

The idea is that we only make the substitution when the
new term is better than the original term. In case the sub-
stitution wi → si is made, P (wi → si|q) is used as the score
of this substituted query. In the end of this step, we have a
list of N substituted queries sorted by their score.

4. CONTEXT SENSITIVE QUERY STEM-

MING
We can see that context sensitive query stemming is, in

fact, a special form of query reformulation where the candi-
dates are now limited to only variants of query words.

Finding stemming candidates is much easier than finding
substitution candidates in query reformulation. It is as sim-
ple as finding all variants for each query word. Instead of
constructing the translation model, we cluster all unigrams
in the Google-ngram corpus into groups based on their root
form given by the Porter stemmer. Each word wi is treated
as the stemming variants for all other words wj within its
group. We set t(s|w) to 1 for all pairs of words.

Unlike query substitution, where we generate a set of
ranked candidate queries, we generate only one single new
query using stemming. The procedure is very simple. We
also iterate over all query terms. For each term wi, we use
formula (6) to calculate the score for it and all its variants
wj . We expand the query with all wj that satisfy

P (wi → wj |q)

P (wi → wi|q)
> θ (9)

We empirically set θ = 0.5 in our experiment to tolerate
variability in probability estimation. The entire procedure
is, in fact, very similar to that proposed by Peng et al. [20],
except that their technique limits the stemming problem to
handling pluralization. Since stemming a word in most cases
will not change the query intent (at least the risk is much less
than that of substituting it with a totally different word),
we find that formula (7) is too strict for stemming. Thus,
we relax (7) to

i+2
Y

j=i−2,j 6=i

˜PLR2(wj |s) (10)

where ˜PLR2(.|s) is a distribution over all words co-occurring
with s within a distance of two words either to the left or
right.

5. EVALUATION
In this section, we compare the effectiveness of the anchor

log and the MSN log for the task of query reformulation
using substitution and stemming.

5.1 Experimental Setup
Test Collections: All evaluation is done using three stan-
dard TREC collections: Robust 04, WT10G and Gov-2. It
should be noted that the three collections are quite different;
Robust04 is a newswire collection, while the other two are
web collections.

Table 2: Summary of three TREC collections
Collection # Docs # Query
Robust04 528,155 250
WT10G 1,692,096 100
Gov-2 25,205,179 150

Query Set : We used all queries associated with each col-
lection to evaluate the logs’ effectiveness. In particular,
we treat all title queries as “short” queries and description
queries as “long” queries. Table 2 provides the statistics of
the three test collections.
Evaluation Metric: We used precision at 5 (P@5) and pre-
cision at 10 (P@10) to measure retrieval effectiveness.

We used Lemur/Indri1 as the retrieval software and lan-
guage modeling [8] was used for retrieval. Parameter values
were chosen empirically. The Dirichlet prior µ was set to
1500 and the normalized mutual information threshold was
τ = 0.001. We set M (the number of translation candidates
considered by the substitution model) to 20. Stopword re-
moval was done only at query time in all experiments.

5.2 Query Stemming Experiment
In this section, we compare the retrieval performance given

by the context sensitive stemming method using query logs
against the baseline where no stemming is done and the
conventional stemming approach using the Krovetz stem-
mer (K-stem).

5.2.1 Experiment Design

We prepared two indexes for each collection: one stemmed
using the Krovetz stemmer and one unstemmed. For the
baseline approach, the original query is used to do retrieval
on the unstemmed collection. The conventional stemming
approach first stems the query and then uses it to do re-
trieval on the stemmed index. The context sensitive stem-
ming approach first learns stemming variants from a given
log (either the MSN log and the anchor log) as described in
Section 4. It then decides at run-time what stemming vari-
ants will be added to the original query to create the query
that is used against the unstemmed index.

5.2.2 Results

Fig. 1 shows P@10 for all methods. With short queries,
there is no significant difference between different methods.
With long queries, however, we can see that stemming us-
ing either log works significantly better than the baseline
on all three collections. Krovetz stemming, on the other
hand, gives significant improvement over the baseline only
on WT10G. Significance is measured using the t-test with
p − value ≤ 0.05. We also note that the performance of the
anchor log is very similar to that of the MSN log.

5.3 Query Reformulation Experiment
In this section, we will first evaluate the effectiveness of

the substitution method on three TREC collections. Then
we show that expansion is a more reliable way to do query
reformulation, which results in much better overall perfor-
mance.

1http://www.lemurproject.org

Table 3: Statistics of queries used for reformulation
Collection Short Query Long Query
Robust04 224 246
WT10G 79 95
Gov-2 136 147

5.3.1 Experiment Design

At learning time, we stem both logs using the Krovetz
stemmer and apply the method described in Section 3 on
each log to build the corresponding substitution model. Note
that we did not stem the logs in stemming experiments. At
query time, for each query q, the top m candidates given by
the learned substitution model were used to do retrieval on
indexes stemmed also by a Krovetz stemmer. The best P@5
obtained by these m candidates is recorded as the P@5 of
the substitution solution for q. We varied m from 1 to 10
in our experiment. Due to the coverage problem, both logs
cannot reformulate all queries associated with each collec-
tion. Therefore, we created a subset of queries where the
translation model trained from both logs can provide “re-
lated” words to at least one query word and compared the
two logs based on these query sets instead of the original
ones. Information about these sets is given in Table 3.

5.3.2 Query Substitution with Short Queries

From Fig. 2 we can see that the substitution method does
not work well on the TREC collections though it has been
shown to work with web queries [23]. This result, however,
is not unexpected. By substituting the original query word
with another, we run a risk of changing the users’ original in-
tent. From the experiment the authors [23] described where
complete substitution helps, we can see that that the original
queries have a P@5 value of only about .04. This indicates
that many web queries in the query log they used (MSN)
were badly formulated (many of them contain spelling er-
rors). Since the performance of the original queries is quite
bad, it is relatively safe to do complete substitution. TREC
queries, on the other hand, have much better quality and
they yield a fairly good initial result - P@5 of 32.91%, 47.86%
and 56.91% on WT10G, Robust04 and Gov-2 respectively. It
should be noted that translation model, even with session in-
formation enhancement, does not produce synonyms, in fact,
it produces only paradigmatically related words. For exam-
ple, words such as“women”, “men”, “children”are considered
related, and“diamond”, “gold”, “necklace” and “watches” are
also considered related. Since these related words do not
necessarily have similar meanings, replacing one word with
another runs a very high risk of hurting the retrieval perfor-
mance. Table 4 gives some examples for cases where substi-
tution hurts retrieval performance. Consider the query “di-
amond smuggling” for example. Since “watches” is related
to “diamond” and “watches smuggling” appears more often
than “diamond smuggling” in the log, “watches smuggling”
will be rated as a good query. However, a substitution like
this totally changes the intent of the original query. Thus it
is easy to understand why the performance can decrease.

5.3.3 Query Expansion with Short Queries

Instead of substituting the original query word with the
translation candidate, we can expand the original query with
the candidate words. The candidate words and the original

Figure 1: Comparison in terms of P@10 among (i) context sensitive stemming, (ii) Krovetz stemming and
(iii) no stemming with both short queries and long queries on three collections. We can see with long queries,
context sensitive stemming is significantly (p − value ≤ 0.05, marked by ∗) better than no stemming on all
three collections while Krovetz is significantly better only on WT10G.

Figure 2: Query substitution results (P@5) with short queries on three collections

Table 4: Example of queries (for both MSN Log and anchor log) where substitution hurts the performance
whereas expansion can retain or even improve the performance of the original query

Original Query P@5 Substituted Query P@5 Expanded Query P@5

M
S
N

L
o
g

diamond smuggling 1.0 watches smuggling 0.0 #syn(diamond watches) smuggling 1.0
afghan women condition 0.8 afghan children condition 0.4 afghan #syn(women children) condition 1.0
executive privilege 0.2 administrative privilege 0.0 #syn(executive administrative) privilege 0.2
wetlands wastewater treatment 1.0 wetlands water treatment 0.8 wetlands #syn(wastewater water) treatment 1.0
adult immigrants english 0.8 adult students english 0.6 adult #syn(immigrants students) english 0.8
pearl farming 0.4 pearl planting 0.2 pearl #syn(farming planting) 0.4

A
n
ch

o
r

L
o
g

afghan women condition 0.8 afghan children condition 0.4 afghan #syn(women children) condition 1.0
airport security 0.8 aviation security 0.6 #syn(airport aviation) security 0.8
women parliaments 1.0 children parliaments 0.0 #syn(women children) parliaments 1.0
secret shoppers 0.4 secret village 0.0 secret #syn(shoppers village) 0.4
part time benefits 0.4 part time funds 0.2 part time #syn(benefits funds) 0.6
heroic acts 0.2 heroic actions 0.0 heroic #syn(acts actions) 0.2

Figure 3: Query expansion results (P@5) with short queries on three collections

query term are combined using the #syn operator imple-
mented in Indri.

As we can see from Fig. 3, the result obtained with ex-
pansion is much better than with substitution. On both
Robust04 and Gov-2, query logs start to provide improve-
ment over the original queries at m = 3. When we consider
up to top 10 reformulations for each original query, the an-
chor log provides a relative improvement of 10.81% and 8%
on Robust04 and Gov-2 respectively, and the MSN log gives
a relative improvement of 10.44% and 6.46% on Robust04
and Gov-2 respectively. On WT10G, the MSN search log
with expansion also improves the performance substantially,
whereas the anchor log provides some improvement, but not
as large.

Unlike substitution, expansion keeps the original words,
thus does not completely change the original query intent.
Table 4 shows that for those queries where substitution hurts
performance, expansion can retain (or even improve in some
case) the performance of the original query.

Table 5 gives some examples of good query expansions
provided by the two logs. All these reformulated queries give
better P@5 than the corresponding original queries. We can
see that both logs can provide the same reformulation to
some query. However, there are also queries where the two
logs give different reformulation and those where one log can
suggest good reformulations but the other does not.

5.3.4 “Chance” versus “Risk” Analysis

With both substitution and expansion, we add a new term
into the original query. Obviously, once we do so, there is
a chance the new word will bring some new relevant docu-
ments but we also run the risk of getting more non-relevant
documents. Now we will look into the balance between
“chance” and“risk”brought by the two methods. In order to
do this, for each method we separate the original query set
into two - (i) the subset of queries over which it provides im-
provement and (ii) the subset over which it hurts. We then
compare the performance of the recommended queries and
the original queries in each set. We use the term “Sub-Inc”
and “Sub-Dec” to denote set (i) and (ii) of the substitution
method and “Exp-Inc” and “Exp-Dec” to denote set (i) and
(ii) of the expansion method respectively.

Table 6 shows that the relative improvement (on the set
of improvable queries) given by the substitution technique

is, in fact, a lot more than that given by the expansion tech-
nique. What this means is when substitution can help, it im-
proves performance substantially, whereas the improvement
given by expansion is not as large. However, the number of
queries hurt by substitution is also considerably more than
those hurt by expansion. Consequently, substitution overall
cannot provide any significant improvement in P@5. Ex-
pansion, on the other hand, helps more than it hurts, thus
resulting in much better overall performance.

We also note from Table 6 that the original queries that
cannot be improved via reformulation (either substitution or
expansion) have much better performance than those where
reformulation can help. This confirms the intuition that it
is safer to reformulate queries where initial performance is
low. We believe that this partly explains why substitution
helps in the case of web queries as observed by Wang and
Zhai [23]. In addition, this also points out the limitation
of the current reformulation technique: although it can give
good reformulation in some cases, it is not reliable enough
for determining whether or not to reformulate. This is why
at m = 1, which means we consider only the best recom-
mended query, both substitution and expansion hurts P@5
dramatically. More error analysis will be provided in the
next section.

In summary, with the current reformulation techniques,
despite the fact that completely substituting the original
query term with a translation candidate helps in the case
of web queries [23], it does not help on TREC collections.
This is because TREC queries are reasonably well formu-
lated, and the risk of getting more non-relevant documents
introduced by the substituted queries is comparable or even
higher than the benefit they bring. Expansion, on the other
hand, works much better mainly because it can improve
more queries than it hurts. Our results also show that an
anchor log gives comparable performance to a real query log
for this task.

5.3.5 Error Analysis

From Fig. 2 and Fig. 3 we can see that if we do either
substitution or expansion using the best suggested query,
the performance suffers badly. There are two reasons that
account for this. The first, and main, reason is that the prob-
ability estimate given by formula (6) is not reliable enough.
Formula (6) is used as the means of estimating how good the

Table 5: Examples of good expansion
Original Query Expanded Query Original Query Expanded Query

M
S
N

L
o
g

hunting deaths hunting #syn(deaths accidents) railway accidents #syn(railway train) accidents
new fuel sources new #syn(fuel energy) sources oscar winner selection oscar winner #syn(selection promotion)
educational standards #syn(educational teaching) standards marine vegetation marine #syn(vegetation plants)
automobile recalls #syn(automobile auto) recalls overseas tobacco sales overseas #syn(tobacco cigarettes) sales
doctor assisted suicides #syn(doctor physicians) assisted suicides food drug laws food drug #syn(laws act)
cheese production cheese #syn(production companies) volkswagen mexico #syn(volkswagen vw) mexico
illegal immigrant wages illegal immigrant #syn(wages working) chevrolet trucks #syn(chevrolet chevy) trucks

A
n
ch

o
r

L
o
g

hunting deaths hunting #syn(deaths accidents) railway accidents #syn(railway railroad) accidents
new fuel sources new #syn(fuel energy) sources pearl farming pearl #syn(farming industry)
educational standards #syn(educational teaching) standards eskimo history eskimo #syn(history culture)
automobile recalls #syn(automobile auto) international art crime international art #syn(crime fraud)
doctor assisted suicides #syn(doctor physicians) assisted suicides wildlife extinction #syn(wildlife animals) extinction
cheese production cheese #syn(production prices) blood alcohol fatalities blood alcohol #syn(fatalities deaths)
illegal immigrant wages illegal #syn(immigrant workers) wages windmill electricity windmill #syn(electricity power)

Table 6: Performance separated by “chance” and
“risk”. The 2nd column denotes the number of
queries in each subset given in the 1st column. The
3rd column indicates P@5 of original queries in each
subset. The 4th column indicates P@5 obtained by
reformulated queries and the relative change to that
of the original queries. “Affected queries”means the
number of queries for which the model actually de-
termines to generate substitution/expansion
Subset # Query Org. Q P@5 Reform. Q P@5

MSN Log
WT10G (57 affected queries)

Sub-Inc 18 0.2667 0.5778 (+116.65%)
Sub-Dec 14 0.4664 0.1429 (-69.36%)
Exp-Inc 16 0.3125 0.5625 (+80%)
Exp-Dec 5 0.3858 0.16 (-58.53%)

Robust04 (180 affected queries)
Sub-Inc 63 0.3143 0.6032 (+91.92%)
Sub-Dec 42 0.6495 0.2857 (-56.01%)
Exp-Inc 55 0.3782 0.6291 (+66.34%)
Exp-Dec 10 0.5679 0.26 (-54.22%)

Gov-2 (112 affected queries)
Sub-Inc 34 0.3471 0.6412 (+84.73%)
Sub-Dec 36 0.688 0.3278 (-52.35%)
Exp-Inc 27 0.4 0.6815 (+70.37%)
Exp-Dec 9 0.5743 0.2222 (-61.31%)

Anchor Log
WT10G (57 affected queries)

Sub-Inc 19 0.3368 0.6421 (+90.65%)
Sub-Dec 14 0.4378 0.0714 (-83.69%)
Exp-Inc 15 0.3467 0.6 (+73.06%)
Exp-Dec 6 0.5548 0.1667 (-69.95%)

Robust04 (176 affected queries)
Sub-Inc 62 0.3387 0.629 (+85.71%)
Sub-Dec 53 0.6619 0.3057 (-53.81%)
Exp-Inc 58 0.3241 0.5793 (+78.74%)
Exp-Dec 10 0.6879 0.32 (-53.48%)

Gov-2 (99 affected queries)
Sub-Inc 34 0.3235 0.6824 (+110.94%)
Sub-Dec 32 0.699 0.3125 (-55.29%)
Exp-Inc 32 0.3875 0.7313 (+88.72%)
Exp-Dec 14 0.7121 0.3286 (-53.85%)

Table 7: Examples of bad reformulations due to the
unreliability of formula (6) and the log sparsity

Type Query Context Reformulation

F
o
rm

u
la

(6
) cancer treatments prostate → breast

cancer treatments prostate → lung
best retirement country → state

security airport → museum
school success magnet → charter

S
p
a
rs

it
y pearl farming → planting

world war ii portugal → soccer
controlling acid rain → plant

edwards womens issues john → james

reformulation is, while what it really measures is how often
we see a query in the log. The fact that a new query ap-
pears more often than the original one does not necessarily
imply that the reformulation is a good one. Take the query
“prostate cancer treatment” for example. Since “breast can-
cer”, “lung cancer” and “prostate cancer” are different types
of cancer, they tend to appear in the same context. Thus,
it is reasonable that KL divergence extracts them as related
words. It happens that “breast cancer treatment” and “lung
cancer treatment” have higher frequencies in the logs, so
the substitution model determines that “prostate” can be
replaced with “breast” or “lung”. It is obvious that such
reformulations will lead to a performance drop since it com-
pletely changes the query intent.

The second reason is the sparsity of the log. For example,
with “john edwards womens issues”, the probability of seeing
“john edwards womens” is too small. Thus, the substitution
model decided to replace/expand “john” with other names
such as “james”. Table 7 shows more examples of poor re-
formulations caused by both problems.

5.3.6 Query Reformulation with Long Queries

Fig. 4 and Fig. 5 show the results for substitution and
expansion of long queries respectively. In the case of ex-
pansion, the results are similar to those obtained with short
queries. Substitution, on the other hand, is more effective
in this case. It is comparable to expansion on WT10G and
even slightly better than expansion on Robust04 and Gov-2.

Substitution, in fact, is a set of two actions: (i) dropping
the original query term and (ii) adding the new term to the
query. In order to study why substitution can be helpful on
long queries, we examine the effect of (i) and (ii) separately.

Figure 4: Query substitution results (P@5) with long queries on three collections

Figure 5: Query expansion results (P@5) with long queries on three collections

The experimental design is as follows. For each original
query qorg = w1 . . . wi−1wiwi+1 . . . wn, we generate as be-
fore a list of substituted queries so that each new query is
different to qorg at only one term and manually pick the
one with highest P@5 as the substitution solution qadd =
w1 . . . wi−1wjwi+1 . . . wn for qorg where wj is the substitu-
tion for wi. Next, we create a second version of qadd in which
we drop wi, denoted as qdrop. We compare the performance
of the original queries with the set of qadd and qdrop. This
is to investigate how dropping the original query term and
adding the new term separately affect retrieval performance.

Table 8 shows that in doing substitution with either log,
in most cases, the improvement from Qdrop to Qadd is not
very different on short and long queries. It is the change
from the original query to Qdrop that makes the difference.
With short queries, dropping a term always hurts perfor-
mance and the adding of the new term increases the perfor-
mance back up to the original level, resulting in no or very
slight improvement overall. With long queries, dropping the
original term actually increases the performance and then
is further increased by adding the new term, resulting in a
performance boost as seen in Fig. 4.

So, the fact that substitution works very well with long
queries is not necessarily because it can suggest better sub-
stitution candidates for long queries but rather because long
queries contain many redundant words, the elimination of

which is beneficial. This is consistent with current research
on long queries which states that either downweighting bad
terms [4, 17] or dropping them [15] tends to help with long
queries.

6. RELATED WORK
Query reformulation has a very long history, dating back

to the earliest relevance feedback techniques [22] where queries
are modified based on documents judged to be relevant or
non-relevant. When explicit judgments are not available,
pseudo-relevance feedback [26, 16] assumes top returned doc-
uments are relevant. More recent query reformulation tech-
niques have exploited external sources such as query logs
[23, 13, 3, 25, 27] and anchor text [19, 14]. In this paper,
we look specifically at the technique proposed by Wang and
Zhai [23], the most recent work in query reformulation us-
ing a query log. The authors have shown that the method
is very helpful on web queries. We evaluate it on standard
TREC collections and find that complete substitution meth-
ods are not very useful. Expansion, instead, produces much
better results overall.

In this paper, we also slightly modify the substitution
framework to do context sensitive query stemming, which
results in a very similar approach to Peng et al. [20]. How-
ever, while they investigates specifically the case of pluraliza-

Table 8: Separated effects of dropping a term and
adding a new term to the original query

Qorg Qdrop Qadd
M

S
N

L
o
g

S
h
o
rt

Q
.

WT10G 0.3291 0.2734 0.3468
Robust04 0.4786 0.4009 0.4937
Gov-2 0.5632 0.4529 0.5515

L
o
n
g

Q
.

WT10G 0.3158 0.3074 0.3768
Robust04 0.4764 0.5138 0.5976
Gov-2 0.5238 0.5578 0.6612

A
n
ch

o
r

L
o
g

S
h
o
rt

Q
.

WT10G 0.3291 0.2962 0.3418
Robust04 0.4786 0.3732 0.4768
Gov-2 0.5632 0.4706 0.5721

L
o
n
g

Q
.

WT10G 0.3158 0.3432 0.4042
Robust04 0.4764 0.513 0.5829
Gov-2 0.5469 0.5361 0.6463

tion stemming, we study general stemming. In addition, we
evaluate the technique on standard TREC collections and
compare its performance to that of the conventional stem-
ming approach.

In addition to query reformulation, query logs have been
used for a variety of tasks. They have been used to learn
retrieval functions [12, 1], spelling correction [2, 9], query
segmentation [5] and disambiguating abbreviations [24]. In
this paper, we studied reformulation tasks that can make
use of the limited data in an anchor log, but some of these
other log-based tasks may also be able to be tackled using
an anchor log.

Carman et al. [7] compare query logs to the tags that users
use to bookmark a web page. This work is very similar to
ours in spirit but they are quite different in practice. Tags
are not the same as anchor text and [7] focuses mainly on
data analysis rather than retrieval experiments.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we evaluated two query reformulation meth-

ods using TREC collections and an anchor log and a query
log. One of the main results of the paper is that an anchor
log extracted from a web collection can be very competitive
with a real query log for both query stemming and substi-
tution. This extends the findings of existing research [11]
which shows that anchor texts are close to real web queries
in terms of term distribution and length, and shows the pos-
sibility of doing log-based research without proprietary data.

Our results with the most recent log-based query substi-
tution method [23] show that it does not work very well with
short queries on TREC collections because the quality of the
initial query is quite good. Substituting query terms thus
runs a high risk of changing the query intent. Expansion,
on the other hand, is more reliable since it does not throw
away the original words and provides significant overall im-
provement.

With long queries, while expansion is still effective, sub-
stitution is much more helpful than it is with short queries.
The main reason for this is that long queries contain many
words that are not needed for retrieval. Dropping these
words (as part of substitution) improves the performance.
Substitution consists of dropping the original term and adding
a new term.

We also show that context sensitive stemming has consid-
erable potential for improving effectiveness. In particular, it

is consistently better than the conventional Krovetz stem-
ming on long queries. It should be noted that the context
sensitive stemming technique we used is very similar to ex-
pansion. This also helps to confirm that expansion is a very
good method for reformulation.

One of the issues we observed was that, while the first
recommended query given by the substitution rankings is
often not effective, there is usually a very good reformula-
tion somewhere in the top 10 list. We intend to apply ma-
chine learning techniques to rerank the list of recommended
queries.

The fact that complete substitution helps with one kind of
query and expansion helps with other leads to an interesting
question: why have we been treating substitution and ex-
pansion separately? We believe that it will be important to
develop a unified reformulation framework where the model
can decide not only whether to reformulate query, but also
whether to substitute or expand. We plan to investigate this
in the future.

8. ACKNOWLEDGMENTS
This work was supported in part by the Center for In-

telligent Information Retrieval, in part by NSF grant #IIS-
0711348, in part by NSF CLUE IIS-0844226, and in part
by NSF grant #IIS-0534383. Any opinions, findings and
conclusions or recommendations expressed in this material
are the author(s) and do not necessarily reflect those of the
sponsor.

9. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web

search ranking by incorporating user behavior
information. In Proceedings of SIGIR, pages 19-26,
2006.

[2] F. Ahmad and G. Kondrak. Learning a spelling error
model from search query logs. In Proceedings of HLT,
pages 955-962, 2005.

[3] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In Proceedings of KDD,
pages 407-416, 2000.

[4] M. Bendersky and W.B. Croft. Discovering key
concepts in verbose queries. In Proceedings of SIGIR,
pages 491-498, 2008.

[5] S. Bergsma and Q. Wang. Learning Noun Phrase
Query Segmentation. In Proceedings of

EMNLP-CoNLL, pages 819-826, 2007.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks

and ISDN Systems, 30(1-7):107-117, 1998.

[7] M. Carman, M. Baillie, R. Gwadera and F. Crestani.
A statistical comparison of tag and query logs. In
Proceedings of SIGIR, pages 123-130, 2009.

[8] W.B. Croft, D. Metzler, and T. Strohman. Search

Engines: Information Retrieval in Practice.
Addison-Wesley, 2009.

[9] S. Cucerzan and E. Brill. Spelling correction as an
iterative process that exploits the collective knowledge
of web users. In Proceedings of EMNLP, pages
293-300, 2004.

[10] I. Dagan, F. Pereira and L. Lee. Similarity-Based
Estimation of Word Cooccurrence Probabilities. In
Proceedings of ACL, pages 272-278, 1994.

[11] N. Eiron and K.S. McCurley. Analysis of anchor text
for web search. In Proceedings of SIGIR, pages
459-460, 2003.

[12] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of KDD, pages
133-142, 2002.

[13] R. Jones, B. Rey and O. Madani. Generating Query
Substitutions. In Proceedings of WWW, pages
387-396, 2006.

[14] R. Kraft and J. Zien. Mining anchor text for query
refinement. In Proceedings of WWW, pages 666-674,
2004.

[15] G. Kumaran and V.R. Carvalho. Reducing long
queries using query quality predictors. In Proceedings

of SIGIR, pages 564-571, 2009.

[16] V. Lavrenko and W.B. Croft. Relevance based
language models. In Proceedings of SIGIR, pages
120-127, 2001.

[17] M. Lease, J. Allan and W.B. Croft. Regression Rank:
Learning to Meet the Opportunity of Descriptive
Queries. In Proceedings of ECIR, pages 90-101, 2009.

[18] Proceedings of the 2009 workshop on Web Search Click

Data, Barcelona, Spain. ACM New York, NY, USA,
2009.

[19] R. Nallapati, W.B. Croft and J. Allan. Relevant query
feedback in statistical language modeling. In
Proceedings of CIKM, pages 560-563, 2003.

[20] F. Peng, N. Ahmed, X. Li, and Y. Lu. Context
sensitive stemming for web search. In Proceedings of

SIGIR, pages 639-646, 2007.

[21] F. Pereira, N. Tishby and L. Lee. Distributional
Clustering of English Words. In Proceedings of ACL,
pages 183-190, 1993.

[22] J. J. Rocchio. Relevance feedback in information
retrieval. In The SMART Retrieval System

Experiments in Automatic Document Processing,
pages 313-323, 1971.

[23] X. Wang and C. Zhai. Mining term association
patterns from search logs for effective query
reformulation. In Proceedings of CIKM, pages 479-488,
2008.

[24] X. Wei, F. Peng, and B. Dumoulin. Analyzing web
text association to disambiguate abbreviation in
queries. In Proceedings of SIGIR, pages 751-752, 2008.

[25] J. Wen, J. Nie and H. Zhang. Clustering user queries
of a search engine. In Proceedings of WWW, pages
162-168, 2001.

[26] J. Xu and W.B. Croft. Improving the effectiveness of
information retrieval with local context analysis. ACM

Trans. Inf. Syst., 18(1):79-112, 2000.

[27] R.B. Yates, C. Hurtado, and M. Mendoza. Query
recommendation using query logs in search engines. In
Proceedings of EDBT Workshop, pages 588-596, 2004.

