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ABSTRACT

Patent search is the task of finding relevant existing patents,
which is an important part of the patent’s examiner’s process
of validating a patent application. In this paper, we stud-
ied how to transform a query patent (the application) into
search queries. Three types of search features are explored
for automatic query generation for patent search. Further-
more, different types of features are combined with a learn-
ing to rank method. Experiments based on a USPTO patent
collection demonstrate that the single best search feature is
the combination of words and noun-phrases from the sum-
mary field and the retrieval performance can be significantly
improved by combining three types of search features.
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1. INTRODUCTION

Since patents play an important role in Intellectual Prop-
erty protection, patent search has attracted considerable at-
tention recently. Prior-art search, one of the main types of
patent retrieval, helps the patent examiners to find previ-
ously published relevant patents when they need to validate
or invalidate a patent application. Compared with other
search tasks, prior-art search has its own unique proper-
ties. First, different from a technical report, the writers of
a patent will focus on how to extend the coverage of their
patent or to emphasize novel aspects of the patent, but not
how to help the reader understand the techniques easily.
Therefore, it is not unusual to see vague expressions and
non-standard terminology in a patent. Second, prior-art
search is a recall-oriented retrieval task, where not miss-
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ing a relevant document is more important than retrieving
a relevant document at the top rank. Usually, in prior-art
search, the patent examiners will carefully examine the first
100 or 200 documents retrieved by the search engine instead
of browsing just the top few results. These properties mean
that information retrieval models that work well with TREC
collections may not be applicable in the patent environment.

Previous work on prior-art search focused on developing
the retrieval model, but ignored the generation of a search
query from the query patent. Most of this research used the
claims extracted from the query patent as the search query
without carefully considering whether it is the best choice.
Larkey [1] has studied how to transform a patent into a query
for patent classification, however this approach has not been
explored carefully for prior-art search. Our previous work
[2] started to work on this problem and found the summary
part of a patent is a much better source for generating query
words for prior-art search than the claim part. In this pa-
per, we will explore more factors in automatic query gener-
ation and attempt to combine different search features with
learning to rank methods. Furthermore, we will report on
recall-oriented performance measures, since they are more
interesting for the patent task.

In the next section, we briefly describe related work. Then,
in section 3, we present the types of features that are used
in the experiments. Section 4 discusses how these features
are combined. Section 5 presents the experimental results
and discusses them.

2. RELATED WORK

Larkey [1] studied the problem of patent classification
instead of prior-art search. However, due to the different
properties of these two tasks, observations from patent clas-
sification are not necessarily valid for prior-art search, and
sometimes even opposite conclusions can be reached. For
example, the experiments in this paper show that words
from the title field are the least useful for prior-art search,
while Larkey assigned more weight to the title for patent
classification. Osborn et al. [3] reported some early results
about patent retrieval on a subset of the USPTO collection.
With phrases as the indexed features, they observed some
improvement on retrieval performance. Takaki et al. [4]
analyzed the claim part of the patent and discovered query
subtopics. The final score of a retrieved document was a
weighted combination of the scores of using each extracted
query topic as the query. Mase et al. [5] proposed a two-
stage strategy for patent retrieval. In the first stage, the
claim part of the query patent was used to retrieve the top



ALGORITHM: Transforming Patent to Query
INPUT: Patent, Num, Field, Weight, NP

OUTPUT: Query

PROCESS: Rank words in Field according to their tfidf
scores and then select Num top ranked words as the query
words. Assign Weight to each query word to get Query.,.
Repeat the above steps for noun-phrases to get Querynp.
If NP is true, set Query as the combination of Query.,
and Querynp; otherwise set Query as Query..

Table 1: Equations used to calculate low-level fea-
tures. ‘nor’ denotes the normalized value.

Figure 1: General algorithm for transforming the
query patent to an effective search query.

1,000 patents. In the second stage, several techniques were
used to rerank the top 1,000 patents. In a recent paper, Fujii
[6] applied link analysis techniques to the citation structures
of the patent collection. After combining the citation-based
scores with the text-based scores for patents, better perfor-
mance than only using the text information was achieved.

The NTCIR patent retrieval track! has become one of the
most important platforms for comparing the retrieval per-
formance of different systems and testing new ideas. The
query topics are patents and the queries used are one or
more claims of the query patent. In NTCIRA4, expert judg-
ments were used as the relevance data. Due to the cost, only
34 query topics were developed. In NTCIR5 and NTCIRS,
a patent’s citations were used as relevance judgments and
thousands of query topics were developed automatically.

“Learning to rank” techniques have attracted considerable
attention in recent years. The basic idea is to learn the
retrieval model with machine learning techniques. Several
machine learning techniques have been used, such as Rank-
ing SVM [7], RankBoost [8] and RankNet [9]. Recently, a
boosting style method, AdaRank [10] was proposed which
considered the query as the basic unit and has the property
of directly optimizing the performance measure used for the
search task.

3. FEATURES FOR PRIOR-ART SEARCH

3.1 Retrieval-Score Features

This type of feature focuses on how to transform the query
patent into an effective search query. The retrieval score for
the transformed search query will be used as the feature. In
this paper, we use Indri [11] as the retrieval model, thus dif-
ferent retrieval-score features differ on how the query patent
is transformed into an Indri query.

To design a transforming method, we need to consider sev-
eral factors: Num, how many query words should be kept,
Field, where to extract query words; Weight, which weight-
ing methods are used for query words; NP, whether to use
noun-phrases as a complement. A general transforming al-
gorithm is provided in Fig. 1, where the discussed factors
are used as parameters.

For Num, we consider words from 10-100. For Field, we
consider six fields of a patent with explicit tags, the title
field (ttl), the abstract field (abst), the brief summary field
(bsum), the description of the figures(drwd), the detailed
text description field (detd) and the claim field (clms). Be-
sides them, we also extract the primary claim field (pclms),
which is the most important claim in the claim field. Also,
we consider the case that the query words or noun-phrases
are extracted from the whole patent (all), which ignores the
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Table 2: Summary of the category features. Q de-
notes the query patent and D denotes the patent in

the collection.
D Q D
Cl | <OCL> | <OCL> | C6 | <XCL> | <FSC>
C2 | <OCL> | <XCL> | C7 | <FSC> | <OCL>
C3 | <OCL> | <FSC> | C8 | <FSC> | <XCL>
C4 | <XCL> | <OCL> | C9 | <FSC> | <FSC>
C5 | <XCL> | <XCL> [ C10 [ <ICL> | <ICL>

structure information. For Weight, we consider to use the
equal weight (bool), use the term frequency (¢f) and use the
combination of term frequency and the inverted document
frequency (tfidf). For NP, we consider to use noun-phrase
(true) or not (false).

3.2 Low-Level Features

Some useful information from the query patent can’t be
expressed using Indri queries, so we designed two other types
of features. The first type corresponds to important statis-
tics used in information retrieval, such as tf, idf, tf.idf or
their variants. Similar features have been used by previous
work in learning to rank [12]. Table 1 shows the seven types
of low level features used. In Table 1, ¢; is the search query
transformed from the query patent, w; is the query word, §;
is the weight of w; and d; is the document(patent) in the col-
lection. c¢(w;, d;) denotes the number of times w; appears in
d;, |d;| denotes the total number of words in d;, |C| denotes
the total number of documents in the collection and df (w;)
denotes the number of documents where w; has appeared.

3.3 Category Features

The other type of feature that is difficult to represent us-
ing Indri queries are the category features, which use the
class information in the patent. The patent fields <OCL>,
<XCL>, <FSC/FSS> describe the primary class codes, the
secondary class codes, and the related class codes of the US
classification system, respectively. The <ICL> field indi-
cates the class codes of the international classification sys-
tem. A category feature can be defined as the similarity of
the category fields between the query patent and the patents
in the collections. Based on the combinations of different
types of category fields, 10 category features are obtained,
which are shown in Table 2. The similarity of two category
fields is decided by whether they share the same class code.

4. FEATURE COMBINATION

Since we linearly combine different features, it is essential
to decide the combination weights. The citation field of
a patent <UREF> can be used as a substitute for manual
relevance judgments for training. Thus, a training set with
thousands of queries can be easily constructed. Given this
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Figure 2: Influence of Num on retrieval performance.

large scale training set, we use learning to rank techniques
to help “learn” the combination weights. The expectation is
that the weights that work well on the training set will also
generate reasonable performance on unseen queries.

AdaRank is used to combine different features in this pa-
per. In the training phase, at each round, AdaRank selects
one feature from the feature set based on its retrieval perfor-
mance on the training set and automatically calculates its
combination weight. Generally, the feature selected at each
round will focus on the “hard” queries, where previously se-
lected features do not perform well. In the predicting phase,
the selected features are combined to predict the rank of
documents for unseen queries.

5. EXPERIMENTS

5.1 Corpus

The same corpus as our previous work [2] is used. The
USPTO corpus consists of 1,604,386 patents published from
1980 to 1997. We used the patents published from 1980
to 1996 as the test collection, and the patents published in
1997 as candidates for the query set. We restricted the query
patents to have at least 20 citations and all the types of fields
we are interested in. The final size of the query set is 3,736,
which we randomly split it into a training set with 3,361
patents and a test set with 373 patents. Since it is extremely
difficult, or even impossible, to get relevance judgments from
experts for those thousands of queries, we use a patent’s
citation field <UREF> as a substitute, which is the same
strategy adopted by NTCIR5-6. Indri is used to index the
full text of patents in the collection. The Krovetz stemmer is
also used. The mean average precision (MAP) and the recall
at the first 100 documents (Recalll00) are reported. Two-
tailed t-tests are conducted to decide statistical significance.

5.2 Effect of Single Search Features

5.2.1 Effect of Retrieval-Score Features

For the retrieval-score features, as mentioned in Section
3.1, we explore retrieval performance with different values
of the parameters Num, Field, Weight and NP.

First, we test eight different values for Num?. The Weight
is set to bool and NP is set to false. The results are shown
in Fig. 23.

2The eight different values are 10, 20, 30, 40, 50, 60, 80, 100.

3Due to the space limit, we only show the results on Re-
calll00. The results on MAP is very similar

Table 3: Influence of Weight on retrieval perfor-
mance.

MAP Recall100

Field [ bool  thdf  If bool  hidf U

ttl 0.042 0.039 0.043 0.143 0.129 0.144

drwd | 0.044 0.048 0.047 0.133 0.144 0.143

detd | 0.055 0.057 0.066* | 0.167 0.171 0.189*

pclms | 0.059 0.062 0.055 0.179 0.183 0.167

clms | 0.066 0.066 0.064 0.194 0.195 0.187

abst 0.066 0.070 0.074* | 0.194 0.195 0.207*
all 0.067 0.068 0.078* | 0.193 0.198 0.215*
bsum | 0.078 0.082 0.094*%f | 0.223 0.231 0.252*}

Table 4: Influence of NP on retrieval performance.

MAP Recall100
Field w w+p w w+p
ttl 0.043 0.042 0.144 0.137

drwd 0.047 0.048 | 0.143 0.145
detd 0.066 0.066 [ 0.189 0.187
pclaim | 0.055 0.056 | 0.167 0.168
claim | 0.064 0.066* | 0.187 0.191
abst 0.074 0.074 [ 0.207 0.208
all 0.078 0.080* | 0.215 0.219*
bsum | 0.094 0.096* | 0.252 0.256

Fig. 2 shows that, for most fields, the best performance is
obtained with 20 or 30 words. With more words, the change
in the performance is not significant, but the time spent on
search is significantly increased. For the title field, 10 words
are enough, since the titles of most patents contain less than
10 words. Thus, in the following experiments, Num is set to
10 for the title field and 20 for other fields, considering the
balance between accuracy and efficiency.

Second, we explore the parameter Field and the parameter
Weight. NP is also set to false. The results are shown in
Table 3. * denotes tfis significantly different with both bool
and tfidf. T denotes ‘bsum-+tf’ is significantly different with
all other field and weight combinations.

The Recalll00 part of Table 3 verifies the results we ob-
tained in our previous work [2]: for Weight, ¢f is the best
weighting method; for Field, the summary field is much bet-
ter than the claim field. Also, the improvement of bsum-¢f
is more obvious on Recall1l00 than on MAP.

Third, we want to explore NP. Weight is set as tf. The re-
sults for each field type are displayed in Table 4. ‘w’ denotes
only using words; ‘w+p’ denotes combining words and noun
phrases with weights 0.8 and 0.2. * denotes significantly
different with the performance of ‘w’.

Table 4 shows that, in most cases incorporating noun
phrases improves performance slightly.

5.2.2 Performance of Low-Level Features

Since the low-level features do not give good retrieval per-
formance on their own, we use them to rerank the top 1000
documents returned by bsum+tf. Fig. 3 shows the perfor-
mance of L1-L7(see Table 1) .

Fig. 3 shows that the low-level features do not improve
the performance of ‘bsum’, which is used to decide the ini-
tial rank list of documents. Among low-level features, L3
(log(tf)), L4 (idf) and L7 (log(tf)idf) are better than the
others.

4The MAP part of this table has been reported in our pre-
vious work [2]. For completeness, it is also reported here.
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5.2.3 Category Features

Similar to the low-level features, we also use the retrieval-
score feature ‘bsum’ to obtain the initial rank and then use
the category features to rerank the retrieved documents.
Fig. 4 compares C1-C10 (see Table 2) with ‘bsum’.

Fig. 4 shows that the category features perform much
worse than ‘bsum’. Some potential reasons are: the class
code is too broad and the class code hierarchy is changed
every year.

5.3 Combining Different Types of Features

We use AdaRank to combine different types of features.
The experiments are conducted on seven different feature
sets: Ret, Low, Cat, Ret+Low, Ret+Cat, Low+Cat and
Ret+Low+Cat (All). The performance of SingleBest and
AdaRank are compared over each feature set. Results can
be found in Table 5. * denotes significantly different with
the SingleBest. «, § and ~ denote significantly different
with the performance of AdaRank on Ret, Ret+Low and
Ret+Cat, respectively.

Table 5 shows that the AdaRank combination performs
significantly better than SingleBest on most feature sets.
This is especially true when all candidate features are used,
AdaRank can improve SingleBest by 12.5% on MAP (0.108/
0.096) and by 13.3% on Recall100 (0.290/0.256). We further
compare the performance of AdaRank on Ret, Ret+Low,
Ret+Cat and All. AdaRank performs significantly better
on Ret+Low and Ret+Cat than on Ret. This observation
shows that although Low and Cat features are not as strong
as Ret features, they can provide some complementary infor-
mation to Ret features. After we put all features together,
All performs significantly better than Ret+Low and All can
also bring some improvement on Ret+Cat but not signif-
icant. The above observations show that the benefits of
combining all features together mainly come from the com-
plementarity of Ret and Cat features.

Table 5: Performance of different combination tech-

niques.
Feature MAP Recall100
Set SinBest AdaR SinBest AdaR
Ret® 0.096 0.101%* 0.256 0.268%*
Low 0.074 0.078 0.217 0.227
Cat 0.033 0.061%* 0.146 0.203*
Ret+Low” | 0.096 0.104*< 0.256 0.277*
Ret+Cat” | 0.096 0.108*¢ 0.256 0.287*<
Low+Cat 0.074 0.088 0.217 0.255%*
All 0.096 0.108*7 | 0.256 0.290%7

6. CONCLUSION

Prior-art search is an important task of patent retrieval.
In a departure from previous work, we focus on how to au-
tomatically transform a query patent into a search query.
After exploring different factors of a successful transforma-
tion, we provide answers to how many query words should
be used, where to extract query words, how to weight them
and whether to use noun-phrases. Furthermore, we show
that combining different features can significantly improve
retrieval performance. In the future, working on more reli-
able relevance judgments is an important issue.
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