Smoothing Click Counts
for Aggregated Vertical Search

Jangwon Seo', W. Bruce Croft!, Kwang Hyun Kim?, and Joon Ho Lee?

1 CIIR, University of Massachusetts, Amherst, MA, 01003, USA
2 NHN Corporation, 463-824, Korea
{jangwon, croft}@cs.umass.edu {khkim, joonho}@nhn.com

Abstract. Clickthrough data is a critical feature for improving web
search ranking. Recently, many search portals have provided aggregated
search, which retrieves relevant information from various heterogeneous
collections called wverticals. In addition to the well-known problem of rank
bias, clickthrough data recorded in the aggregated search environment
suffers from severe sparseness problems due to the limited number of
results presented for each vertical. This skew in clickthrough data, which
we call rank cut, makes optimization of vertical searches more difficult.
In this work, we focus on mitigating the negative effect of rank cut for
aggregated vertical searches. We introduce a technique for smoothing
click counts based on spectral graph analysis. Using real clickthrough
data from a vertical recorded in an aggregated search environment, we
show empirically that clickthrough data smoothed by this technique is
effective for improving the vertical search.

1 Introduction

Clickthrough data is invaluable information that records user actions in response
to search results. Recently, there have been a number of efforts using clickthrough
data to improve ranking. For example, by analyzing clickthrough data, we can
discover the users’ preferences for certain search results. These preferences can be
used to evaluate search systems [14] or to be incorporated for ranking functions
[2]. These approaches have proved to be effective for optimizing web search
ranking based on a single web repository.

Many search portals, however, now provide aggregated rankings based on
various domain-specific collections, e.g., news, blogs, community-based question
answering (CQA), images, etc. These domain-specific collections are often called
verticals. There is a separate index for each vertical and a search engine optimized
for the vertical returns its own results. Aggregation logic in the search portal
selects relevant verticals and displays results returned from each vertical in a
result page. This is referred to as aggregated search.

Clickthrough data of each vertical recorded in aggregated search has some
different properties than the data recorded in a typical web search. A result page
is a limited resource that the verticals share. In many cases, even if a vertical is
relevant, the vertical cannot have more than a few results in an aggregated result

page. Consequently, the clickthrough data can suffer from significant distortion.
For example, Figure 1 shows the click count distribution of a vertical where only
the top 5 results are delivered to aggregated search. We refer to the number of
results returned to aggregated search as the cut-off rank. Clearly, there is a steep
attenuation of click counts after the cut-off rank. We refer to the attenuation
caused by the cut-off rank as rank cut.

Previous studies on web search have reported that clickthough data suffers
from biases such as rank bias [14]. Generally, since rank bias is caused by users’
scanning behavior, click counts affected by rank bias show a smoothly decreasing
curve as the rank decreases. While we can observe rank bias in the top ranks
in Figure 1, the most dominant phenomenon is rank cut, which is caused by a
system parameter (cut-off rank) rather than user behavior. That is, if rank cut
exists, users have limited views of results from verticals. Then, while a click on
a document may be considered as a signal that the document is likely to be
relevant, more clicks on a document do not imply that the document is more
relevant. If we want to optimize vertical search using clickthrough data, this
phenomenon can be problematic. The problem of rank cut is not limited to any
specific type of aggregated search. That is, whether interleaving or grouping
results for aggregated search, as long as only a few results from each of many
verticals are selected for display in a result page, rank cut may occur.

Of course, there is a similar cut-off caused by displaying results in pages in
general web search. In web search, however, a page delivers more results (usually,
10) and users can easily see results beyond the current page by following the link
to the next page. On the other hand, in aggregated search, verticals typically
return at most five results and often only one or two results are returned. Fur-
thermore, in an aggregated result page, results from other verticals follow each
other or are interleaved with each other. Accordingly, when users want to see
more results, they naturally see results from other verticals rather than lower
ranked documents from the same vertical. Therefore, the effect of rank cut is
more noticeable in aggregated search.

Some search portals provide an option where users can issue queries directly
to vertical search engines. If a large volume of queries are input through separate
vertical search interfaces, we can use this clickthrough data for vertical search
optimization without considering aggregated search. However, not all verticals
have their own search interfaces and even if they did, sufficient clickthrough data
may not be collected because aggregated search is the default search option in
most cases.

Therefore, in this paper, we focus on improving vertical search using click-
through data by mitigating a negative aspect of clickthrough data recorded in
aggregated search, i.e. rank cut. To address rank cut, we introduce a technique
based on spectral graph analysis (click count regularization). Using a real ver-
tical collection and its click log data recorded in aggregated search, we study
the effectiveness of this click count smoothing technique for vertical search op-
timization.

2 Related Work

To the best to our knowledge, there is no work that explicitly addresses skews
in click distributions of verticals in aggregated search. On the other hand, there
is some prior work on exploiting clickthrough data in vertical search. Li et al.
[16] use click graphs to classify query intent for vertical search. Their work is
similar to our work in that both use semi-supervised learning techniques based
on clickthrough data. However, while they use click graphs to expand a vol-
ume of labeled queries for the purpose of training, we regularize click counts on
document graphs.

There have been many efforts to optimize general Web search using click-
through data. Joachims [12] introduces the use of clickthrough data to learn
ranking functions. Joachims et al. [14] investigate various biases in clickthrough
data by user behavior analysis and propose extracting implicit relevance feedback
from the data. Dupret and Piwowarski [9] and Chapelle and Zhang [5] analyze
browsing behaviors of users in response to search results using click models that
take bias into account.

Recent work by Gao et al. [10] focus on the sparseness problem of clickthrough
data. They introduce a random walk algorithm based on click graphs and a
discounting technique to expand clickthrough data. Since the rank cut problem
can be considered as a kind of sparseness problem, their work is the closest to
our work. However, their work differs from ours in that they use non-content-
based algorithms and their domain is limited to web search where the sparseness
problem is often less serious than aggregated vertical search. In other related
work, Radlinkski et al. [19] propose an active exploration method to tackle the
sparseness problem caused by rank bias.

Click count regularization can be considered as a label propagation algo-
rithm [21] [24] [4]. Label propagation is a semi-supervised learning algorithm
which leverages labeled data to classify unlabeled data. In particular, it assumes
that if two instances in a high-density region are close, their corresponding values
are similar. In addition, Diaz [8] leverages a graph Laplacian-based regulariza-
tion technique for re-ranking tasks in Information Retrieval. Similar to our work,
he builds document-content-based graphs. However, the objective to be regular-
ized is a document score vector. Moreover, a different cost and an optimization
technique are used.

3 Data Set

In this paper, as a data set for experiments, we use a snapshot of the community-
based question answering (cQA) vertical® of Naver, which is a major commercial
search portal in Korea. The snapshot which contains about 30 million documents
was directly downloaded from the service databases. Since the CQA service is
the most popular service in Naver and the most clicks occur on search results

3 http://kin.naver.com/

from the CQA vertical in aggregated search, we choose this data set. However,
since we want to look at the collection as a vertical in aggregated search, we do
not address unique features associated with CQA collections.

Naver provides an aggregated search service. In this service, there are various
verticals, e.g., news, CQA, blog, forum, image, video, book, etc. Each vertical
search engine retrieves its own relevant items for a user query. The results are
grouped according to the corresponding verticals and each group is ranked by a
vertical ranking algorithm. Note that there are various ways to aggregate search
results from verticals. The results can be interleaved with each other or grouped
by each corresponding vertical. Aggregated search provided in Naver uses the
latter. Currently, the CQA vertical returns 5 search results to the aggregated
search interface if the CQA vertical is determined to be a relevant vertical by
a vertical selection algorithm. In addition, although Naver provides a separate
search interface for each vertical, aggregated search is the default and most users
use aggregated search even when their queries are more suitable for a specific
vertical [17].

To establish a test collection for the CQA vertical, we chose 972 of the most
frequent queries input to the Naver aggregated search interface, considering the
following: i) the queries should be able to address as many different topics as
possible, ii) the length distribution of the queries should be close to that of real
user queries. For each query, the top 50 documents retrieved by the current Naver
CQA vertical search engine are considered as a document set for relevance judg-
ments. We asked 20 editors to judge them on a four point scale: non-relevant,
partially relevant, relevant and highly relevant. In total, we made 46,270 rele-
vance judgments. Note that there are few overlaps between the judgment sets
of different topics. We use 500 queries as a training set and the remaining 472
queries as a test set.

We use query logs and click logs which were collected for one week - from
Aug 26, 2008 to Sep 01, 2008 - through both the aggregated search interface and
the CQA vertical search interface in Naver.

An entry of the query logs contains the following information:

< q,vi[(di1,r11)s -+ (din,)], v2[(dor, 721) -+], >

where ¢ is a user query, v; is a vertical ID, d;; is a document ID in v;, and ry;
is a rank of d;;. Therefore, from the query logs, we can know which documents
are returned to users.

An entry of the click logs contains the following information:

< q,v,d, 7 >

where g is a user query, and v and r are a vertical and a rank of clicked document
d, respectively. Therefore, from the click logs, we can know which documents are
clicked for a query.

We filtered out the click log entries which do not include any result from
the CQA vertical. Then we took click logs whose queries are contained in the
query set of the test collection. To compare queries in the logs with queries in

the test collection, we stemmed the queries using a Korean stemmer used for the
current Naver search engine. Consequently, we obtained about 3.3 million query
log entries corresponding to the test collection. We applied the same process to
the click logs and obtained about 1 million click log entries.

Note that only 178 test queries appear in click data collected from the sep-
arated CQA vertical search while all test queries appear in click data from the
aggregated search. This is because most users input queries to the aggregated
search interface. A similar situation can happen in case that a separated vertical
search interface is not popular or cannot be provided to users. Then, using only
the vertical click data seems inappropriate although the data is relatively free
from some artifacts such as rank cut. Accordingly, in this work, we merged click
data from the aggregated search interface and the separated CQA vertical search
interface.

To observe skewness in click log data, for each rank, we summed all click
counts over all queries in the test collection. Figure 1 presents the distribution
of click counts according to ranks. As we see, the only top 5 results dominate
significantly the entire click counts. This shows that the effect of rank cut can
be serious.

1000000

100000 | B=m_

10000

1000
—8—#clicks
100

; M

1

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 1. Distribution of click counts of a vertical recorded via aggregated search and
separated vertical search according to ranks. The horizontal axis is the rank and the
vertical axis is the click count. The aggregated search interface delivers the top 5 results
from the vertical to users.

4 Click Count Regularization

One problem that can be attributed to the rank cut is that beyond a cut-off
rank, there can be relevant documents which could have been clicked if they had
been delivered to users. We solve this problem by predicting the click counts of
such documents.

Our motivation is that if two documents are similar with respect to any
measure and one of them is clicked for a query, then the other is likely to be
clicked for the same query. This can be seen as an interpretation in terms of
click counts of the cluster hypothesis by van Rijsbergen, that states “closely
associated documents tend to be relevant to the same requests” [22].

Let us consider a click count itself as a label.* A document which has been
returned to users can be considered as a labeled instance whereas a document

4 We do not claim that a click is considered as a relevance label. A label here is a
metaphor for explaining a semi-supervised learning setting.

beyond the cut-off rank can be considered as an unlabeled instance. Then, we
would like to predict labels (click counts) of the unlabeled instances. This task
is similar to semi-supervised learning tasks such as label propagation [21] [24]
[4]. In this section, for ease of explanation, we refer to documents which have
been returned to users as labeled documents and to the other documents as
unlabeled documents. To determine if a document is labeled, we count query
log entries which contain the document. If the document has been returned
to users more than E times, we consider the document labeled. Note that some
labeled documents may not receive any clicks. In the regularization process, these
documents presumably contribute to non-relevant documents having small click
counts. We set £ = 100 in this paper because most documents ranked above
the cut-off of rank cut have been presented to users more than 100 times in our
data set.

In order to determine relationships between unlabeled documents and la-
beled documents, we specify how to measure similarity between documents. For
example, the heat kernel has good properties as a similarity measure [15]:

Khpeat(x1,22) = (471'15)7”/2 exp (—(4t)71distance(:171, x2)2) (1)

where t is a parameter. Since we will use the graph Laplacian which is closely
related to the heat equation [3] in this work, the Gaussian form of the heat
kernel is a favored choice as a similarity measure. Considering the heat kernel,
we define two similarity measures based on different distances: topic similarity
and quality similarity.

For topic similarity, we assume that a document D can be represented by a
multinomial distribution 6 = (tfy, /| D], tfw,/|D|," -, tfw,/|D]), where tfy, is a
term frequency of term wy and n is the size of vocabulary. Then, we can define
the geodesic distance on the n-simplex by 2 arccos(v/#; - v/f2) on a manifold of
multinomial models with the Fisher information metric [15]. Using this distance,
the heat kernel becomes the multinomial diffusion kernel that has been proved
to be effective in many tasks [15].

For quality similarity, we define a quality distance by 1 — min(q1, ¢2), where
qr is a quality score which has a range [0,1]. The quality score can be any
quality estimate such as PageRank [18]. We here use a quality estimate for a
CQA vertical which is similar to what has been done by Jeon et al. [11]. The
distance implies that if the qualities of both documents are good, the documents
are close. That is, click diffusion is assumed to occur only between good quality
documents.

We now build an affinity matrix W based on each similarity measure. One of
the most straightforward approaches to build an affinity matrix is to compute
the similarity between all documents in a collection. However, this is infeasible
in case of a large collection. Instead, since we are interested in documents whose
ranks are not high enough to be above cut-off rank R, we compute the similarity
between the top N documents, where N >> R. An N by N affinity matrix is
constructed as follows:

W}}_{K(:z:i,:zrj) i #j & K(zi,zj) >T
Y0 otherwise

where T is a threshold to make the affinity matrix sparse. Without the threshold,
click counts can be diffused to unrelated documents because similarity values are
not often 0, even when documents are not similar.

We may want to combine multiple similarity measures to make an affinity
matrix. For example, two documents which are similar in terms of both their
topics and quality may reveal a stronger connection than other two documents
which are similar in terms of only quality. We combine M affinity matrices
computing a geometric mean to preserve sparsity, that is, the combined entry is
0 if any entry in matrices to be combined is 0.

We now define a cost to be minimized by regularization, following the quadratic
cost criterion by Joachims [13] and Bengio et al. [4].

C(f) = Iy (f = NIF + = fTLF + el fII

where Iy is a diagonal matrix where Ijj;, = 1 only if ith column (or row) corre-
sponds to a labeled document and all other entries are 0, f is an original click
count vector, f is a regularized click vector, L is the un-normalized graph Lapla-
cian (L = D—W, where D is the diagonal degree matrix given by D; = Zj Wii),
and 7 and € are parameters which are greater than 0.

The first term of the cost is a constraint to minimize the difference between
the regularized click counts and the original click counts of the labeled docu-
ments. The second term is the Dirichlet sum, which expresses smoothness on
the underlying manifold [6]. The smaller the Dirichlet sum is, the smoother f is.
This term is crucial because the notion of smoothness implies that two similar
documents have similar click counts. The weight of this term can be controlled by
the parameter 7. The last term controls a size of f and gives numerical stability.
The weight of this term can be controlled by the parameter e.

Following Bengio et al. [4], we use the Jacobi method [1] to solve this linear
system. Then, the approximated solution can be written as follows:

FE+D) 1 I ®
; = Ji+ Wi fs
fi I[l]i+7TZj Wi; + ¢ w;/f ﬂ-; i

We can guarantee convergence of the Jacobi method as a strictly diagonally
dominant matrix is used. In our experiments, most runs quickly converged with
fewer than 10 steps.

We refer to this process as “click count regularization”. We call f after con-
vergence the regularized click count vector. Each value in f is referred to as a
regularized click count of the corresponding document. Figure 2 presents the
effect of click count regularization. As we see, before regularization, the click
count curve sharply decreases and only a few documents have clicks. On the
other hand, after regularization, we can observe slow attenuation and clicks on
more documents.

1000

IOO*\‘

10 - == Regularized click counts

=== Original click counts

1 I e e S LI i

1 23 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 2. Change of click counts after click count regularization. Clicks on documents for
each query in the testing set are sorted in decreasing order and averaged over all testing
queries. The horizontal axis is the sorted order and the vertical axis is the average click
counts.

5 Experiments and Discussion

We carried out the following experiments to evaluate effectiveness of the click
count regularization technique in vertical search.

5.1 Features and Learning

Two types of features are used for ranking experiments: text-based features
and click-based features. Text-based features are derived from a bag-of words
language modeling approach for Information Retrieval [7]. Specifically, we use
the Dirichlet-smoothed unigram language model [23]. For implementation of the
language model, we used the Indri search engine[20]. All documents are stemmed
by a Korean stemmer used for the current Naver search engine. We make four
language model-based features by applying different normalization factors or
taking the logarithm of the query-likelihood score.

Click-based features are derived from the ratio of a click count on a document
to the total click count for a given query. Similar to text-based features, we have
five different features via manipulation by different normalization factors and
the logarithm function.

For learning to rank with these features, we use the rank SVM algorithm
[12].

5.2 Baselines and Evaluation

We consider a weak baseline and two strong baselines for evaluation and com-
parison. The weak baseline is a model which does not use any click count-based
feature. That is, this is not different from the unigram language model. The
first strong baseline (strong baseline 1) is a model which uses features based
on the original click counts. That is, this baseline produces rankings in case
that any click count smoothing technique is not employed. The second strong
baseline (strong baseline 2) uses features based on click counts smoothed by
a state-of-the-art smoothing technique [10] instead of the original click counts.
This technique leverages a random walk algorithm on click graphs and a dis-
counting technique inspired by the Good-Turing estimator. Gao et al. [10] have

demonstrated that this technique is effective for addressing sparseness of click-
through data for Web search. Note that in contrast to our proposed technique,
this technique uses click graphs extracted from click logs without considering
document contents.

We evaluate the proposed click count regularization technique using the test
collection described in Section 3. For each query, we initially rank 50 documents
using the unigram language model on the test collection and re-rank the doc-
uments by a learned ranking model incorporating click count-based features.
To build affinity matrices, we consider ‘topic + quality’ combination as well
as topic similarity. We use four evaluation metrics: normalized discounted cu-
mulative gain at 5 and at 10 (NDCG@5 and NDCG@10), and mean average
precision (MAP). This scores are computed using relevance judgments on the
CQA vertical described in Section 3.

In order to tune models on the training queries, we find parameter values
which maximize NDCG at 5. A Dirichlet smoothing parameter p was set to
2000 since the value has showed the best performance for the weak baseline. For
click count regularization, parameters to be tuned are a similarity threshold 7'
(€ [0.1,0.9]), matrix combination parameters o’s (€ [0.1,0.9]), and two regular-
ization parameters, 7 and e (€ [0.1, 1]). To test the statistical significance of an
improvement, we perform a paired randomization test with p-value < 0.05.

5.3 Results

Table 1 shows the experimental results. Not surprisingly, even without using
the click count smoothing technique, the model incorporating click count-based
features (strong baseline 1) outperforms the model incorporating only unigram
language model-based features (weak baseline). This is in part because the Naver
CQA vertical search engine used for collecting clickthrough data outperforms
the weak baseline. Since click count-based features are extracted from clicks on
documents highly ranked by the vertical search engine, the performance of the
strong baseline can be assumed to be similar to or better than that of the real
vertical search engine. Consequently, all models incorporating click count-based
features significantly outperform the weak baseline.

Interestingly, the model using click counts smoothed by the random walk and
discounting technique (strong baseline 2) fails to show any significant difference
from the model using the original click counts (string baseline 1). The random
walk /discounting technique has been proved to be effective for sparseness prob-
lems in Web search clickth logs, but click logs for verticals in aggregated search
are often much sparser than click logs from Web search because of the effect of
rank cut. Therefore, relying only on sparse log information without considering
contents of documents may not be enough for addressing highly sparse click logs.

Click count regularization shows consistent improvements over both strong
baselines. Moreover, all improvements are statistically significant. When using
only the topic similarity-based affinity matrix, regularization shows statistically
significant improvements on the strong baseline for all evaluation metrics. When
using both of topic similarity and quality similarity, the results show the best

performance for most evaluation metrics although the improvements on the re-
sults only by topic similarity are somewhat marginal. This shows that given that
two documents are topically similar, the fact that their quality is equally high
may add a hint about the closeness of documents in terms of click-likelihood.

INDCG@5 NDCG@10 MAP

Text [weak baseline] 0.4944 0.5204 0.4476

Text + Original Click Counts [strong baseline 1] 0.6261 0.6160 0.5127

Text + RandomWalk/Discounting [strong baseline 2]| 0.6177 0.6159 0.5110

Text + Regularized Click Counts

topic 0.6327 0.6254 0.5252

topic+quality 0.6327 0.6260 0.5259
Table 1. Experimental results for evaluating effectiveness of regularized click counts.
All results by employing click count regularization are statistically significantly better
than the weak baseline and two strong baselines.

INDCG@5 NDCG@10 MAP

Text [weak baseline] 0.4944 0.4108 0.4476

Text + Original Click Counts [strong baseline 1] 0.5508 0.4225 0.4749

Text + RandomWalk/Discounting [strong baseline 2]| 0.5592 0.4271 0.4769

Text + Regularized Click Counts

topic 0.5739 0.4360 0.4915

topic+quality 0.5747 0.4373 0.4921
Table 2. Experimental results for evaluating effectiveness of regularized click counts
when only clicks on a document for a query are allowed. All results by employing click
count regularization are statistically significantly better than the weak baseline and
two strong baselines.

5.4 Robustness

The CQA vertical that we used returns 5 results in an aggregated search result
page. Indeed, in many real aggregated search applications, five results are quite
a lot, and it could be argued that this number of results should be sufficient to
collect user behavior information without click count regularization. However,
the number of verticals tends to increase every year and the page length that
users are willing to scan is not long. Therefore, there is a good chance that search
portals will reduce the number of results from each vertical in the aggregated
view. Indeed, we already find that only one or two results from a vertical are
displayed in aggregated search services of major search portals. Furthermore, in
the mobile search environment, the resources for displaying search results are
significantly more limited.

We want to see whether our smoothing technique works in such extreme but
still likely cases. To simulate this situation, we get rid of most records from
the click logs so that click logs for only one document with the largest number

of clicks for each query remains. Although we keep only one document with
the largest click count to simulate a situation where the cut-off rank is 1, this
setting should be somewhat relaxed in a real situation because dynamic features
of ranking functions may cause other documents to be ranked at 1 over a time
span. However, for now, we just assume a simple situation, that is, only one
document for a query in click logs.

Using this modified click log, we repeated the same experiments. The same
parameters trained with the original click logs are used. Table 2 shows the results.
As we see, click regularization works well even when there are clicks on only one
document for a query. Click count regularization leads to statistically significant
improvements on the strong baselines in all metrics without regard to types of
affinity matrices. Furthermore, in this extremely sparse setting, performance gain
of our regularization techniques over the strong baselines becomes noticeable.
In sum, these results show the robustness of click count regularization in that
the technique can address even clickthrough data collected when a more strict
resource constraint for aggregated search results is imposed on a vertical search
engine.

6 Conclusion

In this paper, we described skews that exist in click log data of a vertical recorded
in an aggregated search interface, i.e. rank cut, in addition to the well-known
rank bias. In particular, rank cut can cause a serious sparseness problem for
clickthrough data. To address these issues, we proposed click count regularization
as a click count smoothing technique. This technique addresses rank cut using
spectral graph analysis. Through experiments, we demonstrated that click count
regularization can yield significant improvements compared to a strong baseline.
Furthermore, the robustness of click count regularization was empirically shown
by experiments in a simulated situation with only a single retrieved document.
For future work, we will consider various types of queries and verticals. In
this work, we focused on a general framework to address skews in vertical click-
through data and somewhat ignored the various properties of queries and ver-
ticals. For example, while some queries in verticals may require diversity of
results, others do not. Therefore, we will consider different approaches depend-
ing on types of queries and verticals. Furthermore, more unique features of each
vertical could be considered as part of defining new affinity relationships.

7 Acknowledgments

This work was supported in part by the Center for Intelligent Information Re-
trieval, in part by NHN Corp. and in part by NSF grant #IIS-0711348. Any
opinions, findings and conclusions or recommendations expressed in this mate-
rial are the authors’ and do not necessarily reflect those of the sponsor.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Acton, F.S.: Numerical Methods that Work. The Mathematical Association of
America, second edn. (1997)

Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating
user behavior information. In: SIGIR ’06. pp. 19-26 (2006)

Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: NIPS 14. pp. 585-591 (2001)

Bengio, Y., Delalleau, O., Le Roux, N.: Label propagation and quadratic criterion.
In: Chapelle, O., Scholkopf, B., Zien, A. (eds.) Semi-Supervised Learning, pp. 193—
216. MIT Press, Cambridge, MA (2006)

. Chapelle, O., Zhang, Y.: A dynamic bayesian network click model for web search

ranking. In: WWW ’09. pp. 1-10 (2009)

Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society (1997)
Croft, W.B., Lafferty, J.: Language Modeling for Information Retrieval. Kluwer
Academic Publishers, Norwell, MA, USA (2003)

Diaz, F.: Regularizing ad hoc retrieval scores. In: CIKM ’05. pp. 672-679 (2005)
Dupret, G.E., Piwowarski, B.: A user browsing model to predict search engine click
data from past observations. In: SIGIR ’08. pp. 331-338 (2008)

Gao, J., Yuan, W., Li, X., Deng, K., Nie, J.Y.: Smoothing clickthrough data for
web search ranking. In: SIGIR ’09. pp. 355-362 (2009)

Jeon, J., Croft, W.B., Lee, J.H., Park, S.: A framework to predict the quality of
answers with non-textual features. In: SIGIR ’06. pp. 228-235 (2006)

Joachims, T.: Optimizing search engines using clickthrough data. In: KDD ’02. pp.
133-142 (2002)

Joachims, T.: Transductive learning via spectral graph partitioning. In: ICML 2003.
pp. 290-297 (2003)

Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting
clickthrough data as implicit feedback. In: SIGIR ’05. pp. 154-161 (2005)
Lafferty, J., Lebanon, G.: Diffusion kernels on statistical manifolds. The Journal
of Machine Learning Research 6, 129-163 (2005)

Li, X., Wang, Y.Y., Acero, A.: Learning query intent from regularized click graphs.
In: SIGIR ’08. pp. 339-346 (2008)

Murdock, V., Lalmas, M.: Workshop on aggregated search. SIGIR Forum 42(2),
80-83 (2008)

Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Tech. Rep. 1999-66, Stanford InfoLab (1999)
Radlinski, F., Joachims, T.: Active exploration for learning rankings from click-
through data. In: KDD ’07. pp. 570-579 (2007)

Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: A language model-based
search engine for complex queries. In: Proceedings of the International Conference
on Intelligence Analysis (2005)

Szummer, M., Jaakkola, T.: Partially labeled classification with markov random
walks. In: et al., T.D. (ed.) Advances in Neural Information Processing Systems.
vol. 14. MIT Press (2001)

Van Rijsbergen, C.J.: Information Retrieval, 2nd edition. Dept. of Computer Sci-
ence, University of Glasgow (1979)

Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to ad hoc information retrieval. In: SIGIR ’01. pp. 334-342 (2001)

Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation. Tech. Rep. CMU-CALD-02-107, Carnegie Mellon University (2002)

