
Alternating Projections for Learning
with Expectation Constraints

Kedar Bellare
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
kedarb@cs.umass.edu

Gregory Druck
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
gdruck@cs.umass.edu

Andrew McCallum
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
mccallum@cs.umass.edu

Abstract

We present an objective function for learn-
ing with unlabeled data that utilizes auxil-
iary expectation constraints. We optimize
this objective function using a procedure that
alternates between information and moment
projections. Our method provides an alter-
nate interpretation of the posterior regular-
ization framework (Graca et al., 2008), main-
tains uncertainty during optimization un-
like constraint-driven learning (Chang et al.,
2007), and is more efficient than general-
ized expectation criteria (Mann & McCallum,
2008). Applications of this framework in-
clude minimally supervised learning, semi-
supervised learning, and learning with con-
straints that are more expressive than the un-
derlying model. In experiments, we demon-
strate comparable accuracy to generalized ex-
pectation criteria for minimally supervised
learning, and use expressive structural con-
straints to guide semi-supervised learning,
providing a 3%-6% improvement over state-
of-the-art constraint-driven learning.

1 Introduction

Maximum entropy parameter estimation, in which the
objective is to choose the most uncertain distribution
that satisfies a set of expectation constraints, is widely
used for supervised learning (Berger et al., 1996; Laf-
ferty et al., 2001). Recently there has been interest
in learning with unlabeled data using auxiliary expec-
tation constraints. For example, limited prior knowl-
edge about the labels that words are likely to indi-
cate has been used to learn accurate discriminative
models for NLP tasks (Druck et al., 2008; Mann &
McCallum, 2008), and structural constraints on out-
put variables have been used to guide semi-supervised

learning (Graca et al., 2008; Chang et al., 2007).

Several frameworks have been proposed for learn-
ing with auxiliary constraints. Generalized expec-
tation (GE) (Druck et al., 2008; Mann & McCal-
lum, 2008) enforces arbitrary expectation constraints
on a underlying Markov random field model by pe-
nalizing constraint violation in the objective func-
tion. EM with posterior constraints (EMPC) (Graca
et al., 2008) (also called posterior regularizaton more
recently (Ganchev et al., 2009)) modifies the E-step
of the EM algorithm to project the model posterior
onto the set of distributions that satisfy the auxil-
iary constraints. Constraint-driven learning (CODL)
(Chang et al., 2007) re-estimates model parameters
using the n-best outputs according to the model and
auxiliary constraint violation penalties. Importantly,
these frameworks learn with auxiliary constraints that
are not in one-to-one correspondence with the parame-
terization of the desired probabilistic model. This flex-
ibility can be used to learn a feature-rich model with
only a few auxiliary constraints, or specify auxiliary
constraints that would make inference in the underly-
ing model intractable.

In this paper we present an objective function for
learning with auxiliary expectation constraints. We
optimize this objective function using alternating pro-
jections (AP). In the first step of optimization, we find
the auxiliary distribution that is the information pro-
jection of the model distribution onto the set of dis-
tributions that satisfy the auxiliary expectation con-
straints. In the next step, we re-estimate the model pa-
rameters using a moment projection that matches the
moments of the model and auxiliary distribution. This
method provides an alternate interpretation of EMPC,
as we discuss in Section 4.2. Unlike CODL, which uses
a point estimate of labels for unlabeled data, AP pre-
serves uncertainty between projection steps. AP also
provides a more efficient method for learning with con-
straints in structured output models than GE, and can
additionally be used in an online setting.



In experiments, we compare with GE for minimally su-
pervised learning of logistic regression models for docu-
ment classification, and conditional random field mod-
els for sequence labeling. The experiments show that
AP gives comparable accuracy while providing com-
putational advantages. Additionally we use expressive
structural constraints to guide semi-supervised learn-
ing of sequence labeling models, outperforming previ-
ously state-of-the-art CODL by 3-6% on a standard
reference extraction task.

2 Approach

Let x ∈ X and y ∈ Y be the input and output
random variables respectively. We assume that in-
put variables x are drawn from an underlying un-
known distribution p̂(x). Given an input x, the out-
put y is generated according to the unknown con-
ditional distribution p̂(y|x). Our goal during learn-
ing is to estimate this conditional distribution. Let
f = (f1, f2, . . . , fl) be a set of sufficient statistics or
features where fi : X × Y → R,∀i = 1, . . . , l.

2.1 Maximum Entropy Estimation

Let D = {(x1, y1), (x2, y2), . . . , (xm, ym)} be a data
set of labeled examples. The principle of maximum
entropy (Berger et al., 1996) states that of all distri-
butions q(y|x) that match the moments of the data
sample, we should choose the one with the maximum
entropy. This results in the following constrained op-
timization problem,

max
q

∑m
i=1 H[q(y|xi)]

s.t.
∑m

i=1 Eq(y|xi)[f(xi, y)] =
∑m

i=1 f(xi, yi)
∑

y q(y|xi) = 1,∀i = 1 . . .m

q(y|xi) ≥ 0,∀y, i = 1 . . .m, (1)

where H(·) is the entropy of the distribution. The
dual of this optimization problem is equivalent to
maximizing the log-likelihood of the data L(λ;D) =
∑m

i=1 log(qλ(yi|xi)) for the exponential distribution
qλ(y|x) = 1

Zλ(x) exp(λ · f(x, y)) (Berger et al., 1996).

The model parameters λ correspond to the Lagrange
multipliers in the unconstrained primal objective for
Equation (1). Here Zλ(x) =

∑

y′∈Y exp(λ · f(x, y′)) is
the partition function.

The objective defined above can be generalized to in-
clude other convex constraints (or penalties) and a
divergence from a base distribution (Dudik, 2007).
Given a base distribution q0(y|x) and a convex func-
tion U(

∑m
i=1 Eq(y|xi)[f(xi, y)]) we can optimize the pri-

mal problem,

min
q

m
∑

i=1

D[q(y|xi)‖q0(y|xi)] + U(
m

∑

i=1

Eq(y|xi)[f(xi, y)]),

(2)

where D(q(y|x)‖q0(y|x)) =
∑

y q(y|x) log
(

q(y|x)
q0(y|x)

)

is

the KL-divergence between conditional distributions q
and q0. Although we use KL-divergence in this paper,
other divergence measures can be used as well (Al-
tun & Smola, 2006). Using Fenchel’s duality theo-
rem (Dudik, 2007), the dual of Equation (2) is,

max
λ

m
∑

i=1

− log[
∑

y

q0(y|xi) exp(λ · f(xi, y))] − U∗(−λ), (3)

where U∗ is the conjugate of the convex function
U and λ ∈ R

l are the dual parameters. The pri-
mal variables q(y|x) with respect to dual parame-
ters λ are q(y|x) ∝ q0(y|x) exp(λ · f(x, y)). Equa-
tion (1) uses a uniform base distribution q0(y|x) and
equality constraints as the convex function U . Simi-
larly, when the convex function U is the L2 penalty
1
2α

‖
∑m

i=1 f(xi, yi) − Eq(y|xi)[f(xi, y)]‖2
2 and the base

distribution q0(y|x) is uniform, we obtain a minimiza-
tion of the L2-regularized log-loss over the data D,

L(λ;D) = min
λ

m
∑

i=1

− log(qλ(yi|xi)) +
α

2
‖λ‖2

2, (4)

where α is the weight for the L2-regularization term
and qλ(y|x) = 1

Zλ(x) exp(λ · f(x, y)) is an exponential

family distribution with Zλ(x) =
∑

y′ exp(λ · f(x, y′)).

2.2 Learning with Unlabeled Data using
Auxiliary Constraints

Although maximum entropy is widely used for super-
vised learning (Berger et al., 1996; Lafferty et al.,
2001), it cannot be applied to unsupervised and semi-
supervised learning. In the absence of constraints, the
maximum entropy distribution on unlabeled data is
the uniform distribution. Instead, prior work on semi-
supervised learning has focused on minimizing the la-
bel entropy on the unlabeled data points (Grandvalet
& Bengio, 2004; Jiao et al., 2006). This can be harmful
in practice because assigning all instances to a single
label minimizes entropy.

Recent work in semi-supervised learning (Chang et al.,
2007; Mann & McCallum, 2008) has focused on in-
corporating prior knowledge into learning. In partic-
ular, we may have expectation constraints on auxil-
iary features f ′ = (f ′

1, . . . , f
′
t) that must be satisfied

on an unlabeled sample D′ = {xm+1, xm+2, . . . , xn}.
Generalized expectation (GE) (Mann & McCallum,



2008) adds additional terms to the objective func-
tion that score the model expectations of f ′. Pub-
lished work has focused on minimizing the divergence
of model expectations of f ′ and user-specified target
values u = (u1, . . . , ut) in addition to minimizing the
regularized log-loss over labeled data D,

LGE(λ) = min
λ

m
∑

i=1

− log(pλ(yi|xi)) +
α

2
‖λ‖2

2

+γU(
n

∑

j=m+1

Epλ(y|xj)[f
′(xj , y)]), (5)

where γ is the weight of the GE terms, pλ(y|x) is the
model distribution and U(·) is a divergence (e.g. KL
or squared divergence) from targets u. This objec-
tive, however, is expensive to optimize since it requires
computing the covariance between auxiliary features f ′

and model features f (cf. Section 4.4). Henceforth, let
∑

i =
∑m

i=1 and
∑

j =
∑n

j=m+1 be the summations
over labeled and unlabeled examples respectively.

Instead of directly optimizing the objective above, we
introduce an auxiliary distribution q(y|x) that satisfies
general convex constraints U(

∑

j Eq[f
′(xj , y)]) and ad-

ditionally has low divergence with the model distribu-
tion pλ(y|x). The general class of convex constraints
U(·) includes the divergence functions used by GE.
Thus, we optimize the joint objective,

O(λ, q) = min
λ,q

∑

i

− log(pλ(yi|xi)) +
α

2
‖λ‖2

2

+γ
[

∑

j

D(q(y|xj)‖pλ(y|xj))

+U(
∑

j

Eq[f
′(xj , y)])

]

, (6)

where γ weights the relative contribution of the la-
beled and unlabeled terms in the objective. The same
objective can be used in the absence of labeled data
by dropping the log-loss term from the objective. The
optimization over q(y|x) is similar to the generalized
maximum entropy problem described earlier. The dual
of this objective with respect to q(y|x) is,

O(λ, µ) = min
λ

max
µ

∑

i

− log(pλ(yi|xi)) +
α

2
‖λ‖2

2

−γ
[

∑

j

(log Zλ,µ(xj) − log Zλ(xj))

−U∗(−µ)
]

, (7)

where Zλ,µ(x) =
∑

y′∈Y exp(λ · f(y′, x)+µ · f ′(y′, x)) is
the normalization of the parameterized auxiliary dis-
tribution qλ,µ(y|x) = 1

Zλ,µ(x) exp(λ·f(y, x)+µ·f ′(y, x))

and µ are the parameters of the dual objective.

The convex function U can take many forms (Dudik,
2007). For example:

• L2 penalty 1
2β

‖u −
∑

j Eq[f
′(xj , y)]‖2

2 with con-

jugate U∗(−µ) = −µ · u + β
2 ‖µ‖

2
2. For example,

this can be used in a document classification task
ibm vs. mac to indicate that about 95% of docu-
ments containing the term “windows” should have
class ibm. In this case, the target u = 0.95N
where N denotes the number of documents with
the term “windows” and the feature functions
f ′(x, y) = I(“windows” ∈ x ∧ y = ibm) where I

is the indicator function.

• L1 box constraints |u−
∑

j Eq[f
′(xj , y)]| ≤ β with

conjugate U∗(−µ) = −µ·u+β|µ|. This constraint
can be used to indicate that an auxiliary expecta-
tion lies in the interval [u−β, u+β]. Hence, if we
know that 70-90% of the N documents contain-
ing the term “firewire” are about mac, then our
L1 box constraint has u = 0.8N , β = 0.1N and
f ′(x, y) = I(“firewire” ∈ x ∧ y = mac).

• Affine constraints Eq[f
′(x, y)] ≤ u (Graca et al.,

2008) with conjugate U∗(−µ) = −µ · u, µ ≥ 0.
We can use this constraint in a citation extrac-
tion task to express a structural constraint that
the journal field appears at most once in the se-
quence. Here, Eq[f

′(x, y)] ≤ 1 with f ′(x, y) =
∑L

i=1 I(yi−1 6= journal, yi = journal) for label se-
quence y = (y1, y2, . . . , yL).

Such constraints serve as substitutes for labels on the
unlabeled data and can be expressed locally for each
instance or globally on the entire data set.

2.3 Learning with Alternating Projections

We optimize the min-max objective (Equation (7)) us-
ing coordinate descent on λ and µ parameters, fixing
one while optimizing the other. Starting with initial
parameters λ(0), µ(0) we alternate between the two fol-
lowing projection steps (t = 1, . . . , T ):

• I-projection (information projection): Find pa-
rameters µ(t) such that auxiliary distribution q is
close to pλ(t−1) and minimizes the convex function
U(

∑

j Eq(f
′(xj , y))). For ease of notation, we as-

sume that the constraints U are L2 penalty terms
1
2β

‖u−
∑

j Eq(f
′(xj , y))‖2

2. Hence, µ(t) is

arg max
µ

µ ·u−
∑

j

log Zλ(t−1),µ(xj)−
β

2
‖µ‖2

2, (8)

where β is the regularization constant.
The gradient of the above objective is



u −
∑

j Eq
λ(t−1),µ

[f ′(xj , y)] − βµ. This gra-

dient matches the auxiliary moments of features
f ′ to the user-specified targets u.

• M-projection (moment projection): We now fix
the q distribution and find parameters λ(t) as,

arg max
λ

∑

i

[

λ · f(xi, yi) − log Zλ(xi)
]

−
α

2
‖λ‖2

2

+γ
∑

j

[

λ · Eq[f(xj , y)] − log Zλ(xj)
]

. (9)

The gradient of this equation is given
by

∑

i (f(xi, yi) − Epλ
[f(xi, y)]) − αλ +

γ
∑

j (Eq[f(xj , y)] − Epλ
[f(xj , y)]). This gra-

dient matches model moments of features f to
the empirical moments on labeled data D and
auxiliary moments on unlabeled data D′,

We call the above optimization algorithm alternating
projections (AP). Since gradients in both projection
steps decompose according to the instances, we can
perform online optimization using stochastic gradient
descent (Bottou, 2004):

1. For t = 1, . . . , T , let η = 1
t+t0

where t0 = 1/η0,
η0 the initial learning rate. Let u be the target
expectations. Let labeled and unlabeled data set
sizes be m and n−m respectively. Let the initial
parameters be λ(0) and µ(0).

2. For a new labeled instance xt with label yt, set
µ(t) = µ(t−1) and λ(t) = λ(t−1) + η[f(xt, yt) −

Ep
λ(t−1)

[f(xt, y)] − αλ(t−1)

n
].

3. For a new unlabeled instance xt, set µ(t) =
µ(t−1)+η[ u

(n−m)−Eq
λ(t−1),µ(t−1)

[f ′(xt, y)]− βµ
(n−m) ]

and λ(t) = λ(t−1) + η[Eq
λ(t−1),µ(t−1)

[f(xt, y)] −

Ep
λ(t−1)

[f(xt, y)] − αλ(t−1)

n
].

This enables scaling our approach to large data sets.
Recent empirical evidence demonstrates the usefulness
of this online optimization procedure on real-world
tasks of sequence tagging (Liang et al., 2009) and de-
pendency parsing (Ganchev et al., 2009).

3 Applications

In this section, we briefly describe the application of
AP to several learning problems. First, note that AP
can be applied either transductively, where the unla-
beled data includes the test data, or inductively, where
the model is applied to unseen data. Also, note that
constraints may be expressed on a per-instance ba-
sis (Graca et al., 2008), or summarizing the entire

unlabeled data set (Mann & McCallum, 2008). Per-
instance constraints are obtained by defining a feature
function f ′ that only returns a non-zero value for a
particular x.

Semi-supervised learning aims to incorporate available
unlabeled data into parameter estimation. We perform
semi-supervised learning using AP by first estimat-
ing the parameters of the model distribution p using
available labeled data. Subsequently, we choose the
auxiliary distribution q that is closest to p and addi-
tionally satisfies the auxiliary expectation constraints.
The predictions of the auxiliary distribution q are then
used as soft labels for the unlabeled data. Next, this
soft-labeled data is used in addition to the original la-
beled data to re-estimate the parameters of p. The ad-
ditional constraints on q may come from human prior
knowledge about the task, or from the labeled data it-
self. Importantly, the practitioner has the freedom to
specify which expectation constraints they expect to
hold on unlabeled data. For example, the practitioner
may choose to only apply the most confident and help-
ful constraints from the labeled data to the unlabeled
data.

In minimally supervised learning there are no labeled
examples but we may encode prior knowledge about
the task in the form of a few expectation constraints.
These constraints could directly be used in maxi-
mum entropy estimation, but the resulting exponential
model would only have parameters for the constraints.
Often we are aware of other potentially helpful fea-
ture functions for the task, but have no prior infor-
mation about their expectations. For example, in text
classification, we know that the words present in the
unlabeled data are likely to be relevant for the classi-
fication task, but we might only know the precise role
of a few words. Using AP, we can learn a feature-rich
model p from a few expectation constraints. In gen-
eral, this model will have better generalization per-
formance than a model that only has parameters for
constraint features.

Finally, it is important to note that the auxiliary dis-
tribution q and the model distribution p may have dif-
ferent parameterizations. It is exactly this fact that
allows us to use a small number of expectation con-
straints to guide the learning of a feature-rich model
(as described above). Another way in which we can
leverage this flexibility is to include constraints that
look at more output variables than the feature func-
tions in p. For example, although p may be a first-
order linear chain CRF, q may express long-range con-
straints over the entire sequence. Although this re-
quires approximate inference while learning q, the final
model p can be efficiently applied at test time.



4 Related Work

There has been much recent interest in learning with
auxiliary expectation constraints. In this section we
describe the relationship between our framework and
previously proposed methods.

4.1 Constraint-driven Learning

Constraint-driven learning (Chang et al., 2007)
(CODL) is an EM-like algorithm that incorporates
per-instance constraints into semi-supervised train-
ing of structured output models. In the E-step, the
inference procedure produces an n-best list of out-
puts ranked according to the sum of the model score
and a term that penalizes violated constraints. In
the M-step, the n-best list is used to re-estimate the
model parameters. AP has two important advantages
over CODL. First, CODL uses point estimates to re-
estimate the model distribution, whereas we maintain
a complete distribution over output variables. Second,
the constraint parameters in CODL are set manually.
In contrast, we ask practitioners to provide expecta-
tion values that are implicitly mapped to parameter
values. The language of expectations is likely more in-
terpretable to a human than the language of parameter
values.

4.2 Posterior regularization

Posterior regularization or EM with posterior con-
straints (EMPC) (Graca et al., 2008) is a modified
EM algorithm in which the E-step is replaced by the
information projection of the model posterior distri-
bution onto the set of distributions that satisfy auxil-
iary expectation constraints. Note that replacing the
conditional model pλ(y|x) in our objective (Equation
(6)) with a joint a model pλ(y, x) yields the objective
function optimized by Graca et al. (2008). Recently,
this framework has also been applied to discriminative
models (Ganchev et al., 2008; Ganchev et al., 2009).
We arrive at the same objective function and opti-
mization algorithm from the alternate perspective of
generalized maximum entropy (Dudik, 2007), which
provides additional justification for the use of EM in
a discriminative model.

Although AP and EMPC share the same objective, ap-
plications of EMPC have primarily used per-instance
equality and inequality constraints on output vari-
ables. In this paper, we describe the use of L1 and L2

penalties for soft matching of target expectations. We
are also interested in the use of per-dataset constraints
that additionally consider input variables. Empirical
results show that such constraints are very helpful in
minimally supervised learning.

Importantly, EMPC has not been compared to related
frameworks for learning with unlabeled data and aux-
iliary expectation constraints such as GE and CODL.
This is the first paper to provide such a comparison.

4.3 Learning from Measurements

Liang et al. (2009) simultaneously developed a
Bayesian decision-theoretic framework for learning an
exponential family model using general measurements
on the unlabeled data. These measurements can be la-
bels, partial labels and other constraints on the model
predictions. By using a variational inference algo-
rithm, they arrive at an objective that is similar to
the one proposed in this paper. Hence, they provide
yet another interpretation of the learning algorithm.

4.4 Generalized Expectation Criteria

Generalized expectation (GE) criteria express prefer-
ences on the model expectation of some feature func-
tion. Let pλ(y|x) be a conditional random field model,
f ′ be a constraint function, D′ be unlabeled data, and
U be a score function. A GE criterion is then

G(λ) = U(
∑

x∈D′

Epλ(y|x)[f
′(x, y)]). (10)

Learning with these criteria proceeds by direct opti-
mization of an objective function that contains labeled
data likelihood (if there is labeled data), a prior on pa-
rameters, and the sum of multiple GE terms:

O(λ) = L(λ) + p(λ) +
∑

G

G(λ). (11)

When U is the squared difference from some target
expectation u, the partial derivative of G with respect
to a model parameter for some feature function fi is
the model expected covariance between the constraint
function f ′ and fi,

∂

∂λi

G(λ) = 2(u − f ′
λ)

(

∑

x∈D′

Epλ(y|x) [f ′(x, y)fi(x, y)]

− Epλ(y|x) [f ′(x, y)]Epλ(y|x) [fi(x, y)]
)

, (12)

where f ′
λ =

∑n
j=m+1 Epλ(y|xj)[f

′(y, xj)]. Therefore,
GE optimization can be interpreted as a bootstrap-
ping method that adjusts parameters for model feature
functions according to their model predicted similar-
ity with constraint functions. This covariance allows
GE to learn from long range interactions in graphical
models, for example, with feature functions that never
directly overlap but do occur within the same instance.



Unfortunately, computing this covariance is costly, as
the first term requires the computation of a marginal
distribution over as many possible distinct output vari-
ables as fi and f ′ consider. For a logistic regression
model in which constraint functions f ′ correspond to
model feature functions, GE training is O(|Y|). How-
ever, for a linear chain CRF, feature functions f ′ that
consider a single label require O(n|Y|3) time for in-
ference, where n is the length of the sequence. With
constraints on transitions, the running time increases
to O(n|Y|4), which is impractical for real world data
sets.

In contrast, AP only takes the time required to per-
form inference in the corresponding model if constraint
functions f ′ factor similarly to model feature functions
fi. Therefore, learning a linear chain CRF with AP
takes O(|Y|2) time for single label or transition func-
tions f ′. Although we may lose some power afforded
by the covariance-based parameter update for struc-
tured output models, we may compensate for this by
including more expressive features over the input se-
quence.

Additionally, online learning is not straightforward
with GE training, because expectations over the en-
tire data set are needed before the parameters can be
updated for any single instance.

5 Comparison with GE for Minimally

Supervised Learning

In this section, we present experiments comparing AP
and GE training for the minimally supervised scenario
in which we have only unlabeled data and auxiliary
constraints. We demonstrate that AP provides com-
parable accuracy to GE while providing computational
advantages.

5.1 Classification

We first compare AP and GE training of logistic re-
gression models for text classification. Druck et al.
(2008) describe GE training of logistic regression mod-
els for document classification with expectation con-
straints that specify affinities between words and la-
bels. For example, we know that the word “puck”
is indicative of label hockey for classifying documents
about sports. We use the same set of constraints, pro-
cessing of the data sets, and 10 unlabeled / test splits
as Druck et al. (2008).

In these experiments, AP uses auxiliary model feature
functions f ′ that only check for the presence of a par-
ticular word, and if it is present, return 1/c, where c
is the count of the word. With this construction, all
expectation constraints are equally weighted, and cor-

data set and constraints base GE AP
20 newsgroups (infogain) 0.643 0.704 0.680
20 newsgroups (LDA) 0.585 0.667 0.643
movie (infogain) 0.772 0.797 0.800
movie (LDA) 0.607 0.623 0.621
sector top (infogain) 0.719 0.730 0.726
sector top (LDA) 0.544 0.596 0.625
sraa (infogain) 0.585 0.651 0.713
sraa (LDA) 0.520 0.559 0.589
webkb (infogain) 0.745 0.774 0.772
webkb (LDA) 0.593 0.615 0.588

Table 1: Comparison of GE and AP training of lo-
gistic regression models using “labeled features”. Un-
derlined values indicate that the method significantly
outperformed all others. AP achieves similar perfor-
mance to GE, but could additionally be used in an
online setting, whereas GE could not.

respond to the constraints used by Druck et al. (2008).
For AP, we set the regularization parameters α and β
to 1 and 0.01, respectively, for all experiments.

The macro-F1 (average of F1 for each class label) re-
sults are presented in Table 1. We additionally report
the results of a baseline that uses GE but removes un-
constrained features, labeled base in the table. GE and
AP obtain comparable macro-F1, with AP performing
significantly better in three experiments, and GE per-
forming better in two. Both methods outperform the
baseline in all cases with the exception of AP on webkb
(LDA). Although the performance is comparable, AP
can additionally be used in an online setting.

5.2 Sequence Labeling

We next compare estimating linear chain CRF param-
eters using GE and AP. Mann and McCallum (2008)
describe GE training of CRFs given estimates of the
expectations of functions f ′ that consider a single la-
bel and the input sequence. We use the apartments
data set, in which the task is to segment Craigslist
apartment classifieds into fields such as features, rent,
size, and neighborhood. There are 11 labels in total.
We use the same data processing and the same set of
constraints as Mann and McCallum (2008).1 The con-
straints specify that, for example, if the word at some
position is “call”, then the label at that position should
be contact. In this experiment we use 200 unlabeled
examples (the train and dev splits of the apartments
data) and no labeled examples.

Despite not having the advantage of the covariance
term to spread parameter weight (see Section 4.3),

1See (Mann & McCallum, 2008) for details.



we obtain token accuracy of 61.2% with AP using the
same variance settings as in the previous section. If we
add an additional transition constraint that specifies
that 90% of all transitions should be self-transitions,
we obtain an accuracy of 68.1%, better than the 66.6%
accuracy obtained by GE (Mann & McCallum, 2008).

Importantly, computing the GE gradient takes
O(n|Y|3) time for a sequence of length n and con-
straint functions that consider a single label, whereas
AP takes O(n|Y|2). Additionally, including the self-
transition constraint with GE would require O(n|Y|4)
time, which is impractical for real data sets with tens
of labels. In contrast, expressing the same constraint
in AP still takes O(n|Y|2) time, a quadratic speed-up.

6 Higher-order Constraint

Experiments

In this section, we consider the effect of adding higher-
order constraints for a sequence segmentation and la-
beling task. We present empirical results on the Cora
reference extraction task (Peng & McCallum, 2004)
which consists of 500 labeled citations of computer sci-
ence research papers. We used a tokenized version of
the data set provided by (Chang et al., 2007) with
a similar data split of 300/100/100 training, devel-
opment and test examples. The label set consists of
13 labels: author, editor, title, booktitle, journal, date,

volume, pages, publisher, tech, institution, location and
note. In addition to the Cora data, we used an unla-
beled data set with 1000 citations identical to (Chang
et al., 2007).

Our model p(y|x) is a linear chain conditional ran-
dom field (CRF) with edges between subsequent la-
bels of the label sequence y. Hence, the features in
our model have the functional form f(yt−1, yt,x). Our
CRF model allows us to use rich input features: (1)
token-based features including identity, token prefixes,
token suffixes and character n-grams, (2) lexicon fea-
tures detect the token is presence of a token in a lexicon
of author names, journal names, etc., (3) regular ex-
pressions detect common patterns for years and page
numbers, and (4) token, lexicon and regex features
within a fixed window of the token position.

We compare our method against the constraint-driven
learning framework (CRR07) (Chang et al., 2007).
The constraints used in our experiments are identical
to CRR07 and are shown in Table 2. The auxiliary
distribution q(y|x) has feature functions for each of
these constraints. The constraint values u are uni-
formly set to 0.99 for constraints (3)-(11). For con-
straint (2) we use a feature that tests whether there
is a transition on a non-punctuation character and a

1) Each field is a contiguous sequence of tokens and

appears at most once in a citation

2) Transitions between fields occur on punctuation marks

3) The citation can only start with author or editor

4) The words pp, pages correspond to page

5) Four digits starting with 20xx and 19xx are date

6) Quotations can appear only in titles

7) The words note, submitted and appear have label note

8) The words CA, Australia and NY are location

9) The words tech, technical have label tech

10) The words proc, journal, proceedings, ACM

are either journal or booktitle

11) The words ed, editors correspond to editor

Table 2: The list of constraints used in our citation
extraction task. The first entry in the table is a higher
order constraint that needs to look at the entire label
sequence.

constraint value 0.01. For (1) we use the constraint
1.0 ≥ E[f(y)] where feature f(y) counts the number
of field repetitions in a label sequence y.

Since our auxiliary distribution now uses higher-order
constraints we cannot perform exact inference in our
model to obtain feature expectations. We instead use
approximate inference in our auxiliary model using
Gibbs sampling. Additionally, to speed up training,
we use stochastic gradient descent (SGD) with an ini-
tial learning rate η = 1

t
= 0.1 where t is incremented

after each example (Bottou, 2004).

We initially trained a CRF model with increasing num-
ber of labeled examples N = 5, 20, 300 (Sup baseline).
Next, we train our CRF model either transductively
by applying constraints on the test data (AP-T) or
inductively by applying constraints on the unlabeled
data set (AP-I). In both cases, we weight the con-
tribution of the unlabeled data with γ = 0.1 and use
regularization constants α = 1.0 (Eq. (9)) and β = 1.0
(Eq. (8)). We ran the alternating projections method
for T = 10 iterations. The hyper-parameters of our
model are chosen by cross-validation.

N Sup AP-T AP-I CRR07

5 0.622 0.756 0.746 0.710
20 0.798 0.854 0.851 0.794
300 0.940 0.943 0.948 0.882

Table 3: Comparison of different models against
constraint-driven learning for different sizes N of the
data set. Results are averaged over 5 runs. The bold
results indicate significantly greater performance for
transductive and inductive learning.



We measure the performance of our models in terms
of the token labeling accuracy on test data. The re-
sults of reported in Table 3 are averaged over 5 runs
with a different random subset of the data. We used
the subsets identical to those used by (Chang et al.,
2007). We obtain state-of-the-art results on extraction
for both transductive and inductive learning. In both
cases, we achieve an absolute reduction in error over
CRR07 of 3% with 5 labeled examples and about 6%
with 20 and 300 labeled examples. Additionally, our
AP models improve over the supervised baseline sig-
nificantly with an error reduction of 12% with just 5
labeled examples.

7 Conclusions and Future Work

We presented a general framework for semi-supervised
learning with expectation constraints. The results
demonstrate the effectiveness of our method in com-
parison to previous state-of-the-art constraint-driven
learning frameworks. In addition, we show that impos-
ing constraints on long-range dependencies between la-
bels significantly reduces error in a sequence extraction
task without increasing computational cost.

In future work, we plan to apply our framework to the
task of domain adaptation and graph-based label reg-
ularization. In this paper, we only experimented with
feature-label constraints and a few higher-order con-
straints. We plan to explore richer convex constraints
and their effect on natural language problems.
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