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ABSTRACT

Topic models provide a powerful tool for analyzing large
text collections by representing high dimensional data in a
low dimensional subspace. Fitting a topic model given a set
of training documents requires approximate inference tech-
niques that are computationally expensive. With today’s
large-scale, constantly expanding document collections, it is
useful to be able to infer topic distributions for new doc-
uments without retraining the model. In this paper, we
empirically evaluate the performance of several methods for
topic inference in previously unseen documents, including
methods based on Gibbs sampling, variational inference, and
a new method inspired by text classification. The classification-
based inference method produces results similar to iterative
inference methods, but requires only a single matrix multi-
plication. In addition to these inference methods, we present
SparseLDA, an algorithm and data structure for evaluat-
ing Gibbs sampling distributions. Empirical results indicate
that SparseLDA can be approximately 20 times faster than
traditional LDA and provide twice the speedup of previously
published fast sampling methods, while also using substan-
tially less memory.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Experimentation, Performance, Design

Keywords

Topic modeling, inference

1. INTRODUCTION
Statistical topic modeling has emerged as a popular method

for analyzing large sets of categorical data in applications
from text mining to image analysis to bioinformatics. Topic
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models such as latent Dirichlet allocation (LDA) [3] have the
ability to identify interpretable low dimensional components
in very high dimensional data. Representing documents as
topic distributions rather than bags of words reduces the ef-
fect of lexical variability while retaining the overall semantic
structure of the corpus.

Although there have recently been advances in fast infer-
ence for topic models, it remains computationally expensive.
Full topic model inference remains infeasible in two common
situations. First, data streams such as blog posts and news
articles are continually updated, and often require real-time
responses in computationally limited settings such as mobile
devices. In this case, although it may periodically be possi-
ble to retrain a model on a snapshot of the entire collection
using an expensive “offline” computation, it is necessary to
be able to project new documents into a latent topic space
rapidly. Second, large scale collections such as information
retrieval corpora and digital libraries may be too big to pro-
cess efficiently. In this case, it would be useful to train a
model on a random sample of documents, and then project
the remaining documents into the latent topic space inde-
pendently using a MapReduce-style process. In both cases
there is a need for accurate, efficient methods to infer topic
distributions for documents outside the training corpus. We
refer to this task as “inference”, as distinct from “fitting”
topic model parameters from training data.

This paper has two main contributions. First, we present
a new method for topic model inference in unseen documents
that is inspired by techniques from discriminative text clas-
sification. We evaluate the performance of this method and
several other methods for topic model inference in terms of
speed and accuracy relative to fully retraining a model. We
carried out experiments on two datasets, NIPS and Pubmed.
In contrast to Banerjee and Basu [1], who evaluate different
statistical models on streaming text data, we focus on a sin-
gle model (LDA) and compare different inference methods
based on this model. Second, since many of the methods we
discuss rely on Gibbs sampling to infer topic distributions,
we also present a simple method, SparseLDA, for efficient
Gibbs sampling in topic models along with a data structure
that results in very fast sampling performance with a small
memory footprint. SparseLDA is approximately 20 times
faster than highly optimized traditional LDA and twice the
speedup of previously published fast sampling methods [7].

2. BACKGROUND
A statistical topic model represents the words in docu-

ments in a collection W as mixtures of T“topics,” which





batch manner is both unrealistic in time-sensitive stream-
ing document collections, and inefficient because it cannot
be parallelized across documents without substantial inter-
process communication.

Gibbs3 is an online version, which processes all docu-
ments independently. When a test document arrives, we
sample topics for a number of iterations using only topic-
word counts in Φ̂ from the training corpus and the current
document. For the next incoming document we reset Φ̂ to
include only counts from the training corpus and that new
document.

This algorithm differs from the previous two methods in
that it produces estimates of θd given only the words in the
training documents and in document d. Gibbs1 and Gibbs2
produce estimates given the entire data set.

3.4 Time- and Memory-Efficient Gibbs Sam-
pling for LDA

The efficiency of Gibbs sampling-based inference meth-
ods depends almost entirely on how fast we can evaluate
the sampling distribution over topics for a given token. We
therefore present SparseLDA, our new algorithm and data
structure that substantially improves sampling performance.
Although we apply this method to topic inference on new
documents, the method is applicable to model fitting as well.

The probability of a topic z in document d given an ob-
served word type w is

P (z = t|w) ∝ (αt + nt|d)
β + nw|t

βV + n·|t

. (5)

Sampling from this distribution involves calculating the
unnormalized weight in Eq. 5, which we refer to as q(z), for
each topic; sampling a random variable U ∼ U(0,

P

z
q(z));

and finding t such that
Pt−1

z=1
q(z) < U <

Pt

z=1
q(z). This

algorithm requires calculating q(z) for all topics in order
to determine the normalizing constant for the distribution
P

z
q(z), even though probability mass is generally concen-

trated on a small number of topics. Porteous et al. [7]
approach this problem by iteratively refining an approxima-
tion to

P

z
q(z). We take an arguably simpler approach by

caching most of the computation required to compute the
normalizing constant. By rearranging terms in the numera-
tor, we can divide Eq. 5 into three parts:

P (z = t|w) ∝
αtβ

βV + n·|t

+
nt|dβ

βV + n·|t

+
(αt + nt|d)nw|t

βV + n·|t

. (6)

Note that the first term is constant for all documents and
that the second term is independent of the current word type
w. Furthermore,

P

z
q(z) is equal to the sum over topics of

each of the three terms in Equation 6:

s =
X

t

αtβ

βV + n·|t

(7)

r =
X

t

nt|dβ

βV + n·|t

(8)

q =
X

t

(αt + nt|d)nw|t

βV + n·|t

. (9)

This process divides the full sampling mass into three
“buckets.” We can now sample U ∼ U(0, s + r + q). If
U < s, we have hit the “smoothing only” bucket. In this
case, we can step through each topic, calculating and adding

up αtβ

|V |β+nt
for that topic, until we reach a value greater

than x. If s < x < (s + r), we have hit the “document
topic” bucket. In this case, we need only iterate over the set
of topics t such that nt|d 6= 0 — a number that is usually
substantially less than the total number of topics. Finally,
if x > (s + r), we have hit the “topic word” bucket, and we
need only consider topics such that nw|t 6= 0. Again, this
number is usually very small compared to T .

The values of the three components of the normalization
constant, s, r, q, can be efficiently calculated. The constant s

only changes when we update the hyperparameters α. The
constant r depends only on the document-topic counts, so
we can calculate it once at the beginning of each document
and then update it by subtracting and adding values for
the terms involving the old and new topic at each Gibbs
update. This process takes constant time, independent of
the number of topics.

The topic word constant q changes with the value of w,
so we cannot as easily recycle earlier computation. We can,
however, substantially improve performance by observing
that the expression for q can be broken into two components:

q =
X

t

»

αt + nt|d

βV + n·|t

× nw|t

–

. (10)

The coefficient
αt+nt|d

|V |β+nt
can therefore be cached for every

topic, so calculating q for a given w consists of one multiply
operation for every topic such that nw|t 6= 0. As nt|d = 0
for almost all topics in any given document, this vector of
coefficients will also almost entirely consist of only αt

|V |β+nt
,

so we can save additional operations by caching these coef-
ficients across documents, only updating those topics that
have non-zero counts in the current document as we begin
each document, and resetting those values to the α-only
values as we complete sampling for each document.

If the values of α and β are small, q will take up most of the
total mass. Empirically, we find that more than 90% of sam-
ples fall within this bucket. In a Dirichlet-multinomial dis-
tribution with small parameter magnitudes, the likelihood
of the distribution is roughly proportional to the concentra-
tion of the counts on a small number of dimensions. We find
that the wallclock time per iteration is roughly proportional
to the likelihood of the model. As the sampler approaches
a region of high probability, the time per iteration declines,
leveling off as the sampler converges.

Clearly, the efficiency of this sampling algorithm depends
on the ability to rapidly identify topics such that nw|t 6= 0.
Furthermore, as the terms in Eq. 10 are roughly propor-
tional to nw|t, and since we can stop evaluating terms as
soon as the sum of terms exceeds U − (s + r), it is desir-
able to be able to iterate over non-zero topics in descending
order. We now present a novel data structure that meets
these criteria.

We encode the tuple (t, nw|t) in a single 32 bit integer by
dividing the bits into a count segment and a topic segment.
The number of bits in the topic segment is the smallest m

such that 2m ≥ T . We encode the values by shifting nw|t

left by m bits and adding t. We can recover nw|t by shift-
ing the encoded integer right m bits and t by a bitwise and

with a “topic mask” consisting of m 1s. This encoding has
two primary advantages over a simple implementation that
stores nw|t in an array indexed by t for all topics. First,
in natural languages most word types occur rarely. As the





of classes, and features fk, the parameters to be estimated
λk, the learned distribution p(y|x) is of the parametric ex-
ponential form [2]:

P (y|x) =
exp

`

P

k
λkfk(x, y)

´

P

y
exp

`

P

k
λkfk(x, y)

´ . (13)

Given training data D = {〈x1, y1〉, 〈x2, y2〉, ..., 〈xn, yn〉}, the
log likelihood of parameters Λ is

l(Λ|D) = log
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(λkfk(xi, yi) − log ZΛ(x)) −
X

k

λ2
k

2σ2
, (14)

The last term represents a zero-mean Gaussian prior on the
parameters, which reduces overfitting and provides identifi-
ability. We find values of Λ that maximize l(Λ|D) using a
standard numerical optimizer. The gradient with respect to
feature index k is

δ(Λ|D)

δλk

=
n
X

i=1

 

fk(xi, yi) −
X

y

fk(xi, y)p(y|xi)

!

−
λk

σ2
. (15)

In the topic distribution labeling task, each data point
has a topic distribution, and is represented as (xi,yi). We
can also use the maximum log likelihood method to solve
this model. The only required change is to substitute y

for y. Using a distribution changes the empirical features
of the data (fk(xi, yi)), also known as the constraints in
a maximum entropy model, which are used to compute the
gradient. Whereas in a traditional classifier we use fk(xi, yi)
as empirical features, we now use fk(xi,yi) instead, where
yi is the labeled topic distribution of the ith data point.
Suppose that we have two classes (i.e. topics) and each in-
stance can contain two features (i.e. words). Training data
might consist of x = (x1, x2), y = 1 for a traditional clas-
sifier and x = (x1, x2),y = (p1, p2) for a topic distribution
classifier, such that p1 and p2 are the proportions of topic
1 and topic 2 for data point x and p1 + p2 = 1. Empirical
features (sufficient statistics of training data) for traditional
classifier would be (x1, 1) and (x2, 1). While the empirical
features for a topic distribution classifier would be (x1, 1),
(x2, 1), (x1, 2), and (x2, 2), with the first two weighted by
p1, and the remaining two weighted by p2. This substitution
changes the penalized log likelihood function:

l(Λ | D) = log
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Correspondingly, the gradient at feature index k is:

δ(Λ|D)

δλk

=

n
X

i=1
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pi(y)fk(xi, y) −
X

y

fk(xi, y)p(y|xi)

!

−
λk

σ2
. (17)

Where pi(y) stands for the probability of topic y in the cur-
rent instance, i.e. one of the elements of yi.

Once we have trained a topic proportion classifier, we can
use it to estimate θ for a new document. We compute the
scores for each topic using Eq. 13. This process is essentially
a table lookup for each word type, so generating θ̂ requires
a single pass through the document.

In experiments, we found that the output of the topic pro-
portion classifier is often overly concentrated on the single
largest topic. We therefore introduce a temperature param-
eter τ . Each feature value is weighted by 1

τ
. Values of τ < 1

increase the peakiness of the classifier, while values τ > 1
decrease peakiness. We chose 1.2 for NIPS data and 0.9
for Pubmed data based on observation of the peakiness of
predicted θ̂ values for each corpus.

5.2 Naive Bayes Classifier
From the trained topic model, we can estimate Φ, a matrix

with T (#topics) rows and W (#words) columns represent-
ing the probability of words given topics. Combined with a
uniform prior over topic distributions, we can use this ma-
trix as a classifier, similar to the classifier we obtained from
MaxEnt. This method performs poorly, and is presented
only as a baseline in our experiments. A document d is
represented as a vector, with each element an entry in the
vocabulary, denoted as w and the value as the number of
times that word occurs in the document, denoted as nw|d.
Using Bayes’ rule, the score for each topic is:

Score(z = t) =
X

w

φ̂w|tnw|d (18)

The estimated θ distribution is then simply the normalized
scores.

In experiments, we compare both classification methods
against the inference methods discussed in previous sections.
The two classifiers take less time to predict topic distribu-
tions, as they do not require iterative updates. Provided
they can achieve almost the same accuracy as the three in-
ference methods or their performance is not much worse, for
some particular task which requires real-time response, we
can choose classification-based inference methods instead of
sampling based or variational updated methods. The choice
of estimator can be a trade-off between accuracy and time
efficiency.

5.3 Hybrid classification/sampling inference
A hybrid classification/sampling-based approach can be

constructed by generating an estimate of θd given wd using
the MaxEnt classifier and then repeatedly sampling topic
indicators z given θ̂ and Φ̂. Note that given θ̂, P (zi|wi) ∝

θ̂tφ̂w|t is independent of all z\i. After the initial cost of set-
ting up sampling distributions, sampling topic indicators for
each word can be performed in parallel and at minimal cost.
After collecting sampled z indicators, we can re-estimate the
topic distribution θ̂ according to the topic assignments as in
Eq. 4. In our experiments, we find that this re-sampling pro-
cess results in more accurate topic distributions than Max-
Ent alone.

6. EMPIRICAL RESULTS
In this section we empirically compare the relative accu-

racy of each inference method. We train a topic model on
training data with a burn-in period of 1000 iterations for
all inference methods. We explore the sensitivity of each
method to the number of topics, the proportion between



Table 1: Top five topics predicted by different meth-

ods for a testing document
Method θt Highest probability words in topic

Gibbs1 0.4395 learning generalization error
0.2191 function case equation
0.0734 figure time shown
0.0629 information systems processing
0.0483 training set data

MaxEnt 0.2736 learning generalization error
0.2235 function case equation
0.0962 figure time shown
0.0763 information systems processing
0.0562 learning error gradient

training documents and “new” documents, and the effect of
topic drift in new documents.

We evaluate different inference methods using two data
sets. The first is 13 years of full papers published in the
NIPS conference, in total 1,740 documents. The second is
a set of 51,616 journal article abstracts from Pubmed. The
NIPS data set contains fewer documents, but each document
is longer. NIPS has around 70K unique words and 2.5M
tokens. Pubmed has around 105.4K unique words and about
7M tokens. We also carried out experiments on New York
Times data from LDC. We used the first six months of 2007,
comprising 39,218 documents, around 12M tokens, about
900K unique words. We preprocessed the data by removing
stop words.

We implemented the three sampling-based inference meth-
ods (using SparseLDA), the variational updated method,
and the classification-based methods in the MALLET toolkit
[5]. They will be available as part of its standard open-source
release.

6.1 Evaluation Measures
It is difficult to evaluate topic distribution prediction re-

sults, because the “true” topic distribution is unobservable.
We can, however, compare different methods with each other.
We consider the Gibbs1 inference method to be the most ac-
curate, as it is closest to Gibbs sampling over the entire cor-
pus jointly, a process that is guaranteed to produce samples
from the true posterior over topic distributions. In order
to determine whether sampling to convergence is necessary,
for inference methods Gibbs2 and Gibbs3, we report results
using 1000 iterations of sampling (Gibbs2 and Gibbs3) and
two iterations (Gibbs2.S and Gibbs3.S), which is the mini-
mum number of Gibbs sweeps for all topic indicators to be
sampled using information from all other tokens.

We represent the prediction results of each method as a
T -dimensional vector θ̂d for each document. We compare
methods using three metrics. In all results we report the
average of these measures over all “new” documents.

1. Cosine distance This metric measures the angle be-
tween two vectors P and Q representing θ̂d as esti-
mated by two different inference methods:

Dcos(P‖Q) =

P

t
ptqt

‖P‖‖Q‖
(19)

Values closer to 1.0 represent closely matched distri-
butions.

2. KL Divergence Another metric between distribu-
tions P and Q is KL divergence:

DKL(P‖Q) =
X

t

pt log
pt

qt

. (20)

Smaller values of this metric represent closer distribu-
tions. We use the “gold standard” inference method
as P .

3. F1 The previous two metrics measure the divergence
between probability distributions. As shown in Ta-
ble 1, however, it is common for estimators to pro-
duce rather different distributions while maintaining
roughly the same overall ordering of topics. In this
metric, we attempt to predict the set of topics that
account for the largest probability mass. Specifically,
we sort the entries in θ̂d for a given inference method
in descending order and select a set of topics T such
that

P

t∈T θ̂td ≤ 0.8. We can then treat TGibbs1 as
the correct topics and measure the precision and re-
call of Tm for all other methods m. The F1 measure is
the harmonic mean between the precision and recall.
Note that F1 does not take into account the order of
topics, only whether they are in the set of topics se-
lected by the gold standard method. Values close to
1.0 represent better matches.

For classification based inference methods we use unigram
counts as input features. Normalized term frequency fea-
tures (term counts normalized by document length) pro-
duced poorer results. We also tried including word-pair
features, on the intuition that the power of topic models
comes from cooccurrence patterns in words, but these fea-
tures greatly increased inference time, never improved re-
sults over unigram features, and occasionally hurt perfor-
mance. We hypothesize that the power of unigram features
in the discriminatively trained MaxEnt classifier may be
a result of the fact that the classifier can assign negative

weights to words as well as positive weights. This capability
provides extra power over the Näıve Bayes classifier, which
cannot distinguish between words that are strongly nega-
tively indicative of a topic and words that are completely
irrelevant.

6.2 Discussion
We first compare each method to the Gibbs1 inference

method, which is equivalent to completely retraining a model
given the original data and new data. We split the NIPS
data set into training and testing documents in a 7:3 ratio
and run an initial model on the training documents with 70
topics. We explore the effect of these settings later in this
section.

Figure 3 shows results for the three evaluation metrics.
The converged sampling methods Gibbs2 and Gibbs3 are
closest to Gibbs1 in terms of cosine distance, F1, and KL
divergence, but do not exactly match. The two-iteration ver-
sions Gibbs2.S and Gibbs3.S are close to Gibbs1 in terms of
cosine distance and KL divergence, but MaxEnt and Vari-
ational EM are closer in terms of F1. Hybrid MaxEnt con-
sistently outperforms MaxEnt. Figure 4 shows similar mea-
sures vs. Gibbs2, arguably a more meaningful comparison








