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Discriminatively trained undirected graphical models have garnered tremendous interest and empir-
ical success in natural language processing, computer vision, bioinformatics and many other areas
[16, 1, 11]. Some of these models use simple structure (e.g. linear-chains, grids, fully-connected
affinity graphs), but there has been increasing interest in more complex relational structure—
capturing more arbitrary dependencies among sets of variables, in repeated patterns. Reimplement-
ing variant structures from scratch is difficult and error-prone, however, and thus there have been
several efforts to provide a high-level language in which new undirected model structures can be
specified. These include SQL [17], first-order logic [13], and others such as Csoft [18].

Regarding logic, for many years there has been considerable effort in integrating first-order logic
and probability [10, 8, 14, 12, 13]. However, we contend that in this combination, the ‘logic’ aspect
is mostly a red herring. The power of relational factor graphs is in their repeated relational structure
and tied parameters. First-order logic is one way to specify this repeated structure although it is not
necessarily the best; in fact, its focus on boolean variables, difficulty in representing if-then-else,
inability to address graph problems such as reachability, and confusability to humans [3] makes it
less than ideal. Logical inference is appealing but is replaced by probabilistic inference in these
models, and is thus usually superfluous. In traditional deterministic programming Prolog has been
largely dropped in favor of imperative programming since programmers realized that (a) they typi-
cally need to keep the imperative solver in mind afterall to make tractable solutions, and (b) much
human knowledge is naturally expressed procedurally anyway.

We propose an approach to probabilistic programming that preserves the declarative statistical se-
mantics of factor graphs, while at the same time leveraging imperative constructs to greatly aid both
efficiency and natural intuition in specifying model structure, inference and learning. Rather than
first-order logic, model authors have access to a Turing complete language when writing their model
specification—the point, however, is not merely to be higher in the Chomsky hierarchy, it is ease-
of-use and efficiency. (If desired, implementations of extended first-order logic primitives are also
provided.)

Our design goals include: (1) representation of factor graphs, with their ability to represent both
undirected and generative directed graphical models, (although our emphasis is on undirected); (2)
massive scalability, both in terms of the observed input data set size, output data configuration
space, and the complexity (tree-width) of the factors; scalability should not rely on parallelism, but
should be able to take advantage of it when available; (3) efficient, built-in support for discriminative
training; in particular incremental, online learning; (4) a natural, easy-to-use avenue for procedural
knowledge to be expressed and integrated with declarative knowledge; our methods of injecting
imperative/procedural knowledge are indicated below in italics.

We achieve these goals with a system we call FACTORIE (loosely named for “Factor graphs, Impera-
tive, Extensible”), a software library for an object-oriented, strongly-typed, functional programming
language called Scala [9]. Our ideas could be implemented in any of a number of programming
languages, but we have been very happy with Scala so far. By providing a library and direct access
to a full programming language (as opposed to our own, new “little language”), the model authors
have familiar and extensive resources for implementing the procedural aspects of the design, as well
as the ability to beneficially mix data pre-processing, evaluation, and other book-keeping code in the
same file as the probabilistic model specification.
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For inference, we rely on MCMC to achieve efficiency with models that not only have large tree-
width, but an exponentially-sized unrolled network, as is common with complex relational data
[5, 13, 7]. The key is to avoid unrolling the network over multiple hypotheses, and to represent only
one variable-value configuration at a time. As in BLOG [7], MCMC steps can adjust model struc-
ture as necessary, and with each step the library automatically builds a DiffList—a compact object
containing the variables changed by the step, as well as undo and redo capabilities. Calculating the
factor graph’s ‘score’ for a step only requires DiffList variables, their factors, and neighboring vari-
ables. In fact, unlike BLOG and BLAISE [2], we build inference and learning entirely on DiffList
scores and never need to score the entire model, (which enables efficient reasoning about observed
data larger than memory, or models in which the number of factors is a high-degree polynomial of
the number of variables).

Model Structure. Factors, their templates and variables (binary, categorical, ordinal, real, etc)
are typed objects in our object-oriented system, enabling beneficial encapsulation, abstraction, in-
heritance and composition, and also permiting new user-defined variable types, such as set-valued
variables. At the heart of model structure definition is the pattern of connectivity between variables
and factors, and the DiffList must have extremely efficient access to this. Unlike BLOG, which uses
a complex, highly-indexed data structure that must be updated during inference, we specify this
connectivity imperatively: factor template objects have methods that find the factor’s other variable
arguments given a single variable from the DiffList. Our programmer’s interface for this imperative
structure definition is extremely compact. This approach also efficiently supports model structure
that varies conditioned on input and output [6] variable values. Variables’ value-assignment meth-
ods can be overriden to automatically change other variable values in coordination with the first
assignment—an often-desirable encapsulation of domain knowledge we term imperative variable
coordination. For example, in response to a named entity label change, a coreference mention can
have its string value automatically adjusted, rather than relying on MCMC inference to stumble
upon this self-evident coordination. Additionally, in a somewhat unconventional use of functional
mapping, we support separation between factor neighbors and sufficient statistics. Neighbors are
variables touching the factor whose changes imply that the factor needs to be re-scored. Sufficient
statistics are the minimal set of variable values that determine the score contribution of the factor.
These are usually the same; however, by allowing a function to perform the mapping, we provide
an extremely powerful yet simple way to allow model designers to represent their data in ways most
natural to the program, and concern themselves separately with how to score them. For example, the
two neighbors of a skip-edge factor [15] may each have cardinality equal to the number of named
entities, but we may only care to have the skip-edge factor enforce whether or not they match. We
term this imperative variable-sufficient mapping.

Inference. A key component of many MCMC inference procedures is the proposal distribution, or
“jump function,” which is imperative by nature. Of course this is also a natural place for injecting
prior knowledge about coordination of variable values and various structural changes. In fact, in
some cases we can avoid expensive deterministic factors altogether with property-preserving jump
functions [4]. For example, coreference transitivity can be efficiently enforced by proper initializa-
tion and a transitivity-preserving jump function; projectivity in dependency parsers can be enforced
similarly. We term this imperative constraint preservation.

Learning. Obtaining the gradient for traditional maximum likelihood (ML) parameter estimation
requires inference of factor marginals, which can be extremely expensive in complex models. Var-
ious online learning methods, such as perceptron, avoid the need for marginals, but still require
full decoding, which can also be expensive inside the inner loop of learning. We avoid both of
these expenses by sample-rank [4], which approximates the parameter gradient incrementally from
individual MCMC steps: for each jump, we obtain the difference between the model scores of the
original and proposed configurations (efficiently through the DiffList). We also obtain the difference
in ‘true scores’—a measure of which is closer to the gold-standard labels. If the model’s relative
ranking differs from the true relative ranking (or the score difference violates a margin), we perform
a perceptron-style update using the sufficient statistics of the DiffList. We have proven convergence
of sample-rank, mirroring the perceptron proof subject to marginal separability. Empirically the
method is extremely successful; it provides the current state-of-the-art in DARPA ACE coreference,
surpassing the previous results by 10% absolute [4]. Note that, unlike SEARN, which incrementally
builds the structured output and scores incomplete configurations, our approach always scores (dif-
ferences of) complete configurations—which is important for obtaining distributions over possible
worlds, and for models with factors that would be missing arguments in partial configurations.
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