
Regression Rank: Learning to Meet the

Opportunity of Descriptive Queries

Matthew Lease1 , James Allan2, and Bruce Croft2

1 Brown Laboratory for Linguistic Information Processing (BLLIP)
Brown University

Providence, RI 02912-1910 USA
mlease@cs.brown.edu

2 Center for Intelligent Information Retrieval (CIIR)
University of Massachusetts Amherst

140 Governors Drive, Amherst, MA 01003-9264 USA
{allan,croft}@cs.umass.edu

Abstract. We present a new learning to rank framework for estimat-
ing context-sensitive term weights without use of feedback. Specifically,
knowledge of effective term weights on past queries is used to estimate
term weights for new queries. This generalization is achieved by intro-
ducing secondary features correlated with term weights and applying
regression to predict term weights given features. To improve support
for more focused retrieval like question answering, we conduct document
retrieval experiments with TREC description queries on three document
collections. Results show significantly improved retrieval accuracy.

1 Introduction

Term-based approaches to document retrieval are remarkably expressive: a vast
number of rankings are possible given different settings of individual term weights.
Practical effectiveness, however, depends heavily on how accurately estimated
term weights match the user’s underlying information need. Standard formu-
lations of vector similarity [21], the probabilistic approach [23], and query-
likelihood [18] adopt a fixed weighting scheme that ignores query context and
any observational evidence from past queries. We show such information can be
leveraged by supervised estimation to significantly improve the accuracy of term-
based retrieval. Our framework also allows term-based models to be extended
with arbitrary new features, enabling incremental transition from term-based
approaches toward richer query and document representations.

Our particular interest is to improve retrieval accuracy for verbose, descrip-
tive queries like “What criticisms have been made of World Bank policies, ac-
tivities or personnel?” (TREC topic 331). Document retrieval for such queries
plays an important role as the foundation and fall back technology for more
focused retrieval like question answering. However, in comparison to shorter and
less informative keyword queries like “World Bank Criticism”, verbose queries
actually tend to yield worse retrieval accuracy with current retrieval methods [2,
8]. At the Reliable Information Access workshop [4], detailed failure analysis of

2 Matthew Lease, James Allan, and Bruce Croft

verbose queries found that in most cases, significantly improved retrieval could
be achieved by simply better estimating term weights (e.g. by emphasizing key
terms found in the query and related documents). Historically, the most common
approach taken to improve upon context-independent term weighting has been to
incorporate feedback: the overall query is used to find related documents, which
are then used to re-weight and expand the original query [11,13, 25]. Unfortu-
nately, explicit feedback requires user interaction, and blind feedback performs
inconsistently depending on retrieval accuracy of the original query.

Instead, we pursue supervised estimation as an alternative means of incor-
porating query context (and improving initial retrieval accuracy for any sub-
sequent blind feedback performed). Imagine we have observed some number of
past queries along with implicit or explicit evidence of their relevant documents.
Employing such evidence to better estimate term weights for novel queries poses
several challenges. For a vocabulary of N words, a context-independent term-
based model requires estimating N parameters for each query (terms not present
in the query are still typically assigned some non-zero weight). Even if one could
accurately estimate this many parameters, say from a commercial search en-
gine log, the learned model would still ignore query context. If one did wish
to model context-sensitivity, a straightforward approach would require an expo-
nential number of parameters and so be completely impractical. Consequently,
recent work in learning to rank (LTR) [7] has backed off from modeling individ-
ual words and instead employed aggregate lexical measures alongside additional
non-lexical features. While aggregating lexical features certainly simplifies learn-
ing, it abandons the expressiveness of modeling individual terms.

Regression Rank presents a middle way between recent LTR and classic ap-
proaches, intended to capture the best of each: we can continue to leverage
individual terms, predict contextual term weights given past queries, and incre-
mentally add other features. Given a term-based retrieval model (§2.1) and a
set of training queries with relevant documents, we begin by estimating effective
term weights for each query (§2.2). To reduce the parameter space for effective
generalization, we define secondary features correlated with term weights (§2.3).
Finally, a regression function is learned to predict term weights for novel queries
using secondary features (§2.4). While we restrict attention here to term-based
retrieval, the retrieval model can be extended by arbitrary additional features
given correlated secondary features for predicting retrieval model feature weights.

To evaluate our approach, we conduct retrieval experiments with TREC de-
scription queries on three document collections (§3). Results show both signifi-
cantly improved retrieval accuracy and a large potential for further improvement.

2 Method

This section describes Regression Rank’s four components:

1. A retrieval model (parameterized uniquely for each query)
2. A procedure for estimating retrieval model parameters on a given query
3. A set of secondary features correlated with retrieval model parameters
4. A regression procedure to infer retrieval model parameters from features

Regression Rank: Learning to Meet the Opportunity of Descriptive Queries 3

2.1 The Retrieval Model

Generally speaking, any parametric retrieval model can be used in our frame-
work. The only real constraint is the need for secondary features which correlate
with model parameters and can be practically extracted from queries. In this
work, we adopt classic term-based retrieval and use our framework to estimate
context-sensitive term weights. We plan to enrich the retrieval model in future
work by combining individual terms with other features (§4).

Of the three classic approaches [18, 21, 23], we adopt query likelihood. Each
observed document D is assumed to be generated by an underlying language
model parameterized by ΘD. Given an input query Q = q1 . . . qm, we infer
D’s relevance to Q as the probability of observing Q as a random sample
drawn from ΘD. If we further assume bag-of-words modeling, ΘD specifies
a unigram distribution {θD

w1
. . . θD

wN
} over the document collection vocabulary

V = {w1 . . . wN}. Given these definitions, query likelihood may be succinctly
expressed as log p(Q|ΘD) =

∑m
i=1 log θD

qi
. This formulation is somewhat cum-

bersome, however, since the relative importance of query terms can only be ex-
pressed by their relative frequency. Fortunately, we can arrive at an equivalent
and more convenient formulation by explicitly modeling the user’s information
need [10]. Specifically, we assume the observed Q is merely representative of a la-
tent query model parameterized by ΘQ = {θQ

w1
. . . θQ

wV
}, consistent with intuition

that the underlying information need might be verbalized in other ways than Q.
Letting fQ

w denote the frequency of word w in Q, query likelihood may be re-
expressed in terms of ΘQ’s maximum-likelihood (ML) estimate, 1

m
{fQ

w1
. . . fQ

wV
}:

log p(Q|ΘD) =

m∑

i=1

log θD
qi

=
∑

w∈V

fQ
w log θD

w = m
∑

w∈V

ˆ
θ

Q
w log θD

w

rank
= −D(Θ̂Q||ΘD)

where
rank
= denotes rank-equivalence. This derivation shows that inferring doc-

ument relevance on the basis of Q’s likelihood given ΘD has an alternative
explanation of ranking based on minimal KL-divergence between ΘQ and ΘD

(assuming ΘQ is estimated by ML). The significance of this for our task is show-
ing query likelihood’s implicit ML assumption that all query tokens are equally
important to the underlying information need. While this assumption appears
fairly benign for keyword queries, it is problematic for verbose queries because
natural language terms greatly vary in their degree of correlation with the core
information need. Fortunately, we see by this same token a clear opportunity to
improve retrieval accuracy by adopting a more effective estimation technique.

While estimation of both ΘQ and ΘD impacts retrieval accuracy, our focus
in this paper is better estimating the query model underlying verbose queries.
Consequently, we adopt standard Dirichlet-smoothed estimation of ΘD, inferring

θ̂D
w as a mixture of document D and document collection C ML estimates [26, 14]:

θ̂D
w = λ

fD

w

|D| + (1 − λ)
fC

w

|C| , λ = |D|
|D|+µ

, where µ specifies a fixed hyper-parameter

strength of the prior in smoothing. This reduces parameterization of our query
likelihood approach entirely to the query model ΘQ. Our subsequent estimation
goal, therefore, will be accurate prediction of ΘQ on novel queries.

4 Matthew Lease, James Allan, and Bruce Croft

2.2 Estimating the Query Model

A key idea of our approach is that one can generalize knowledge of successful
query models (§2.1) from past queries to predict effective query models for novel
queries. In order to do this, we must have query models to generalize from. This
requires a method for estimating a query model ΘQ for each training query given
examples of its relevant (and possibly non-relevant) documents. This is akin to
explicit feedback [13], only we are performing this feedback on training queries
rather than the input query.

We apply the simple yet effective strategy of grid search [17]: sampling re-
trieval accuracy from a target metric space at regular points corresponding to
candidate query models. Estimating the query model based on metric perfor-
mance rather than likelihood avoids the issue of metric divergence [17] and makes
it easy to re-tune the system later according to a different metric if so desired.
A few details of our grid search approach merit further detail. First, grid search
requires choosing the granularity of assignments to sample. Our choice of granu-
larity reflects a reinterpretation of earlier work in query reduction [8]. This prior
work generated all possible reductions (i.e. term subsets) of a verbose query and
then explored alternative methods of picking the right subset. In the spirit of the
earlier derivation (§2.1) in which query formulation was transformed into query
model estimation, we let query reductions define the set of grid points at which
to evaluate retrieval accuracy in the metric space. Considering all such reduc-
tions provides fairly robust coverage of the query model’s effective assignment
space. Because previous work showed most optimal query reductions contained
six or fewer terms [9], we adopted this as an efficiency expedient, limiting our
sampling to query models containing six or fewer non-zero parameters.

The second noteworthy detail concerns how the query model is estimated
once samples have been obtained from the metric space. The easiest solution
would be to simply pick the query model whose sample achieved maximum
score on the target metric. However, it turns out this is not the most effective
strategy in the context of our framework. Recall our objective is to enable even-
tual regression across queries (§2.4). The problem with the easy solution above
is that subsequent regression will be based on a single sample that may be drawn
from a sharply-peaked local maximum on the metric surface. This would mean
that were we to attempt to recover this parameterization via regression, small
regression errors could yield a significant drop in metric performance. Instead,

we estimate ΘQ as the expected query model Θ̂Q =
∑

s[Metric(Θs)Θs], a sum
in which each sample query model Θs is weighted by the retrieval accuracy it
achieved3. The intuition here is that this expectation should yield parameter
values tending to perform well in general, and so the parameterization will more
likely correspond to a smoother portion of the metric surface.

Finally, to provide a more stable basis for regression, we perform a non-linear
normalization after which the expected query models fully span the interval [0, 1].
On the development set (§3), this yielded a consistent improvement.

3 Technically this sum should be normalized to yield a proper distribution, but since
query-likelihood is a linear model, ranking is invariant to scaling of the parameters.

Regression Rank: Learning to Meet the Opportunity of Descriptive Queries 5

2.3 Secondary Features

Given examples of past queries and corresponding inferred query models, our
next task is to identify secondary features. These features should both correlate
with the query model and generalize across queries so that we may predict
appropriate query models on future queries. This section describes our current
feature set; a complete listing appears in Table 1. While existing features have
proven effective, their paucity and simplicity show exploration of the feature
space remains an important topic for future work.

Parameter Description

Q = q1 . . . qm , i Query Q of length m, indexed by i
C, N Collection C containing N documents
n, w Integer scalar & lexical token (parameters)
T Part-of-speech tag-set

Feature Template ID Type Definition

term frequency: tf(C,Q, i)

1 integer tfi: raw frequency of qi in C
2 real tfi/maxm

j tfj

3 real tfi/
Pm

j
tfj

4 real log(tfi)
5 real log(tfi/maxm

j tfj)
6 real log(tfi/

Pm

j tfj)

document frequency: df(C,Q, i)

7 integer dfi: # documents in C containing qi

8 real dfi/ maxm
j dfj

9 real dfi/
Pm

j dfj

10 real log(dfi)
11 real log(dfi/ maxm

j dfj)
12 real log(dfi/

Pm

j dfj)

residual idf: ridf(C,qi) [2] 13 real log(N/dfi) − log(1/1 − eαi) , αi = tfi/N

Google tf: gtf(qi) [2] 14 integer raw frequency of qi in Google 1-grams

stopword: stop(qi) 15 boolean is qi a stopword?

qi’s location in Q: loc(i,m, n)
16 boolean does i = n? (query initial)
17 boolean does m − i = n? (query final)

lexical info: context(Q, i, w)
18 boolean does qi−1 = w?
19 boolean does qi+1 = w?
20 boolean is qi trailed by comma?

part-of-speech: pos(qi, T) 21 boolean is tag(qi) ∈ T

Table 1. Secondary features used to predict the query model. We define log(0) ≡ 0 and
anything

0
≡ 0 to account for out-of-vocabulary query terms. Features are parameterized

templates, instantiated with various settings to produce multiple feature instances.

Query model parameters can be understood as expressing relative term im-
portance within the context of the overall query. As such, it should not be sur-
prising that the classic statistics of term frequency (tf) and document frequency
(df) appear in our feature set (Features 1-12) to model term ubiquity and speci-
ficity, respectively. Since we are interested in relative rather than absolute term
importance, we also compute these statistics relative to the other query terms

6 Matthew Lease, James Allan, and Bruce Croft

(i.e. normalized) as well as in raw form. In addition to these classic statistics, we
follow previous work [2] to employ Google 1-gram tf [3] and residual inverse-df
(idf) statistics (Features 13-14). The massive volume of the former is intended
to provide another useful estimator of term frequency, particularly in the case
of small collections, and the latter assumes important terms can be detected by
distributional deviation from Poisson. While Google-based statistics provide a
useful measure of term frequency on the Web, we also found it useful to gather
the above collection-based statistics (i.e. tf , idf , and residual idf) from Giga-
word [6] in addition to the target retrieval collection. This is reflected in Table 1’s
notating these feature templates as parameterized by a collection argument C

to produce different feature instances for each collection. Use of out-of-domain
data was motivated by previous work’s empirical evidence of increased corre-
lation between term importance and idf as collection size grows [2], as well as
another line of prior work having demonstrated significant retrieval benefit from
leveraging external corpora [5, 14]. A final traditionally-inspired feature, stop(qi)
(Feature 15), asks whether or not a given query term appears in the stop list
(§3). While we do employ deterministic stopping, we stop before stemming to
avoid accidental stemming collisions with the stop list. Nevertheless, stop words
produced by stemming often are in fact unimportant to the query, and including
a feature comparing stemmed words to the stop list proved useful.

Features 16-17 (location) correlate term importance with proximity to the
start or end of the query string (experiments in §3 set n = 5 as the window
size), and we found it beneficial to instantiate this feature for both the user’s
original query and its normalized version used in retrieval (i.e. after stopword
removal, converting hyphenated compounds into separate terms, etc.). Features
18-20 (context) correlate term importance with presence of certain surrounding
terms or punctuation. All possible terms were considered during feature col-
lection, but few actually survived to instantiation due to feature pruning (see
below). Feature 21 asks whether a given term’s part-of-speech is a member of
a given tag-set, correlating tag-sets with term importance. Given that the only
distinction currently employed is distinguishing nouns and verbs from other cate-
gories, our implementation admittedly reflects a bit of over-engineering: we fully
parse the original query strings with a treebank parser [15] after detecting sen-
tence boundaries [20]. While tags might be more easily obtained, this was done
to support future work exploring syntactic features.

Because a given statistic will be more reliably estimated under more frequent
observation, we employed feature pruning to discard any instantiated feature
that was not observed at least a parameter η times in the training data; we
set η = 12 based on development set tuning (§3). As mentioned earlier, this
significantly reduced the number of lexical features and generally helped filter
out chance correlations from sparse features. Non-sparse features like tf which
occur for every term were unaffected by pruning. Following previous work [7],
feature values were normalized to the interval [0, 1].

Regression Rank: Learning to Meet the Opportunity of Descriptive Queries 7

2.4 Inferring the Query Model via Regression

Given examples of target term weights paired with corresponding secondary
features, our final task is to predict the query model given the features. We
accomplish this via a standard technique of regularized linear regression.

Given N query terms in the training data, let Y = {y1 . . . yN} denote the
target term weights and X = {X1 . . .XN} the feature vectors. Next, let d de-
note the number (i.e. dimensionality) of features and Xi = {x0

i , x
1
i . . . xd

i } the ith
feature vector (with x0

j = 1 by definition for all j). Also, let W = {w0w1 . . . wd}
denote the weight vector with w0 as the bias term. Assuming X and Y are drawn
from the joint distribution p(X, y), our goal is to minimize expected loss given
our prediction f(X, W): E(X,y)∽p[L(f(X, W), y)]. Lacking oracle knowledge of

p(X, y), we approximate this with the empirical loss
∑N

i L(f(Xi , W), Yi) =∑N

i (yi−
∑d

j=1 wjx
d
i)2 = (Y −XW)T (Y −XW) and minimize to find an optimal

weight vector W ∗. Conveniently, this sum of least squares optimization problem
has a closed form solution: W ∗ = (XTX)−1XT Y . However, since this ML so-
lution often overfits, we can alternatively revise the empirical loss formulation
as

∑N
i L(f(Xi, W), Yi) = (Y − XW)T (Y − XW) + βWT W where β defines a

regularization parameter. This L2 (i.e. ridge) regression also has a closed-form
solution: W ∗ = (βI + XTX)−1XT Y , where I denotes the identity matrix. In
addition to ML and L2, we also tried L1 (i.e. lasso) regression, which penalizes
the absolute value of W is instead of its square. While lasso regression does not
have a closed-form solution, many techniques exist for computing it.

On the development set (§3), experiments measuring squared loss of ML, L1,
and L2 methods found L2 consistently performed best, with manual sweep of
β finding an optimal setting at β = 1. Consequently, we adopted L2 with this
setting of β in our retrieval experiments.

3 Evaluation

Collection # Docs Topics

Robust04 528,155 301-450,601-700
W10g 1,692,096 451-550
GOV2 25,205,179 701-850

Table 2. Collections and topics used.
All development was performed on 149
Robust04 topics (301-450 except 342);
remaining topics and collections were
reserved for blind evaluation. Final re-
sults (Table 3) use all available data.

We evaluated Regression Rank on
three TREC collections of varying size
and content (Table 2). Given our in-
terest in improving support for fo-
cused retrieval like question answer-
ing, our document retrieval evalua-
tion centers on description queries.
Model training used 5-fold cross-
validation, and Indri [24] was used
for retrieval. Mean-average precision
(MAP) and top-5 precision (P@5) are
taken from trec_eval 8.14. Results
marked significant†(p < .05), highly significant‡(p < .01), or neither re-
flect agreement between t-test and randomized test statistics computed by

4 http://trec.nist.gov/trec_eval

8 Matthew Lease, James Allan, and Bruce Croft

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

#
 Q

u
e

ri
e

s
Im

p
ro

ve
d

Query Length

−3

0

3

6

9

M
A

P
 I

m
p

ro
ve

m
e

n
t

Fig. 1. Retrieval accuracy improvement on the development set as a function of query
length. Bars show the number of queries for each query length and ratio improved.
MAP improvement achieved at each length is marked by ’+’.

ireval [22]. Experimental conditions reproduce those of previous work [2] for
fair comparison. Queries were stopped at query time using the same 418 word
INQUERY stop list [1] and then Porter stemmed [19]. The same Dirichlet pa-
rameter µ = 1500 (§2.1) was used. Queries generated by Regression Rank and
other experimental data is available online for download5.

We first present results for the development set (Table 2). For a baseline,
we follow standard practice and estimate the query model ΘQ by maximum-
likelihood (ML), assigning uniform weight to each query token. Using ML esti-
mation, title queries achieve 2.83%‡ higher MAP (absolute) than the more infor-
mative description queries. Additional terms introduced by description queries
tend to individually correlate more weakly with the core information need and
should generally be assigned lower weight in ΘQ. ML fails to do this and retrieval
accuracy suffers as a result. By better estimation, Regression Rank is able to
improve 4.17%‡ over ML description accuracy and 1.34% over ML title accuracy.

When comparing between retrieval accuracy of title and description queries,
analyzing the effect of verbosity is occasionally complicated by important title
words missing from the descriptions6 . In these cases, title queries may benefit
from being more informative in addition to being more focused. To control for
this, we identified 122 development set topics for which all title words were con-
tained in the descriptions, and we evaluated this topic subset. The difference in
ML estimated title accuracy over description accuracy fell 0.5% to 2.31%† (abso-
lute). Furthermore, Regression Rank showed greater improvement of 4.54%‡ over
ML estimated description queries and 2.23%‡ over ML estimated title queries.

5 http://www.cs.brown.edu/people/mlease/ecir09
6 Name variations also occur. For example, earlier Key Concepts work [2] noted that

title and description queries differed in use of ”United States” vs. ”U.S.” and pre-
processed queries to use the latter form exclusively in their published results.

Regression Rank: Learning to Meet the Opportunity of Descriptive Queries 9

-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

1
:R

o
b
u
s
t0

4
4
:R

o
b
u
s
t0

4
1
0
:G

ig
a
w

o
rd

9
:G

ig
a
w

o
rd 1
5

1
9
:d

o
c
u
m

e
n
ts

2
1
:n

o
u
n

6
:G

ig
a
w

o
rd

1
6
:n

o
rm

a
liz

e
d
,2 2
0

1
:G

ig
a
w

o
rd

1
6
:n

o
rm

a
liz

e
d
,4

1
7
:o

ri
g
in

a
l,
3

1
8
:d

o
c
u
m

e
n
ts

1
3
:G

ig
a
w

o
rd

1
6
::
n
o
rm

a
liz

e
d
,3

1
7
:n

o
rm

a
liz

e
d
,0

1
7
:o

ri
g
in

a
l,
4

2
1
:v

e
rb

1
2
:R

o
b
u
s
t0

4
1
3
:R

o
b
u
s
t0

4
1
6
:n

o
rm

a
liz

e
d
,1

5
:R

o
b
u
s
t0

4
1
4

1
1
:R

o
b
u
s
t0

4
1
7
:n

o
rm

a
liz

e
d
,1

B
IA

S
1
7
:n

o
rm

a
liz

e
d
,2

1
6
:n

o
rm

a
liz

e
d
,0

9
:R

o
b
u
s
t0

4
3
:R

o
b
u
s
t0

4
1
8
:c

o
u
n
tr

ie
s

1
8
:i
d
e
n
ti
fy

1
8
:d

is
c
u
s
s

1
2
:G

ig
a
w

o
rd

7
:R

o
b
u
s
t0

4
1
9
:w

o
rl
d

3
:G

ig
a
w

o
rd

4
:G

ig
a
w

o
rd

1
0
:R

o
b
u
s
t0

4

Fig. 2. Learned regression weights for secondary features on the development set. Fea-
ture “1:Robust04”, Robust04 raw term frequency tf , was assigned weight ≈ 4.1 and
is shown here clipped. Features assigned weight |w| < 0.03 are not shown. Robust04
document frequency df (“10:Robust04”) is seen to have the largest negative weight.

Figures 1 and 2 present additional analysis of development set results. Fig-
ure 1 examines change in retrieval accuracy as a function of query length and
shows improvement is achieved across lengths (in terms of both number of queries
improved and MAP improvement). Figure 2 shows the learned regression weights
assigned to secondary features. Features are identified by their ID from Table 1
and the argument to the feature template (e.g. ”21:noun” corresponds to Fea-
ture 21 where the term’s part-of-speech is a kind of noun). Term frequency and
document frequency are seen to define the extremes of positive and negative
correlation between feature and term weight.

Recall in §2.2 we estimated a query model ΘQ for each training query and
its relevant documents by sampling retrieval accuracy achieved under different
candidate models. Since subsequent regression is based on these estimated query
models, better estimation should yield more accurate retrieval following regres-
sion. To test this, we tried limiting sampling to queries of 15 words or less, which
reduced the total number of samples from 502K to 104K. Performing regression
based on this smaller set of samples, retrieval accuracy fell 1.07%‡ (absolute).
While these results are certainly sensitive to the sampling procedure used, it
nonetheless seems clear that strong estimation of training query models has an
important effect on downstream retrieval accuracy. This further suggests addi-
tional gains might be realized by better estimation.

Our main results (Table 3) use all queries for all three TREC collections
(Table 2). In addition to the ML baseline defined earlier, we also compare to
Bendersky and Croft’s Key Concepts model [2]. Regression Rank achieves highly
significant MAP improvement over ML description accuracy for all collections.
Compared to title query accuracy, MAP improvement was highly significant for
Robust04 and significant for W10g; both Regression Rank and Key Concepts
fail to improve over ML title accuracy for GOV2. Regression Rank also achieves
1.4%‡ and 1.6%† absolute MAP improvement over Key Concepts for Robust04
and W10g, with equal MAP achieved on GOV2.

10 Matthew Lease, James Allan, and Bruce Croft

Robust04 W10g GOV2

Query Model P@5 MAP P@5 MAP P@5 MAP

Title ML 48.11 25.32 31.20 19.49 56.24 29.61

Description

ML 47.63 24.51 39.20‡ 18.61 52.21 25.22

Seq. Depend. [16] 49.32† 25.64‡ 38.80‡ 19.14 56.38† 27.40‡

Key Concepts [2] 47.55 25.91‡ 41.40‡
† 20.40‡ 57.05‡ 27.44‡

Regression Rank 52.05†

‡ 27.33‡

‡ 40.60‡ 22.01†

‡ 54.50 27.35‡

Oracle Regression 60.16 32.01 46.60 27.95 62.60 33.43
Oracle Reduction 35.07 31.75 36.03

Table 3. Retrieval results using all queries and collections (Table 2) compare alter-
native term weight estimation methods for description queries. A maximum-likelihood
(ML) baseline is compared to Regression Rank and Key Concepts [2] models, as well as
a non-unigram sequential dependency model [16]. Our evaluation on W10g and GOV2
is blind whereas Key Concepts was developed using all collections. Key Concepts re-
sults were generated by Indri queries Michael Bendersky provided and vary slightly
from those in [2]. Oracle results for perfect regression and reduction show potential for
further improvement. Title query results under ML estimation are also shown. Scoret

d

superscripts and subscripts indicate significance vs. title and description ML baselines.

We also report retrieval accuracy for two oracle conditions: perfect regression
and perfect reduction. Perfect regression shows the retrieval accuracy that would
be achieved if we could exactly recover the target expected query models (§2.2).
This shows a large potential for further improvement by better estimation. Per-
fect reduction results show even greater accuracy is possible if we could perform
accurate regression of optimal reductions rather than expected query models.
However, this would present a further challenge to regression since expected
query models are more stable against regression error (§2.2). Finally, since ora-
cle results reflect the best query model found while sampling, better estimation
can be expected to show greater oracle accuracy as well.

4 Discussion

Regression Rank and Key Concepts [2] both improve verbose query retrieval
accuracy by using supervision to estimate a better unigram query model ΘQ.
However, each accomplishes this in rather a different way. For supervision, Key
Concepts relies on manual annotation to identify a key noun phrase for each
query. This is a difficult task for people to perform on complex queries, partic-
ularly when relationships are involved, and human intuition can often be mis-
taken [8]. In contrast, we leverage existing document relevance annotations (i.e.
explicit feedback on training queries) and empirically discover term importance
based on a target retrieval metric. Both approaches can benefit from additional
training data, and while manual annotation is probably easier with the Key Con-
cepts approach, our approach has the capacity to exploit a much larger body
of implicit feedback found in search engine logs. Another important difference
is what each approach learns to predict. The Key Concepts approach predicts

Regression Rank: Learning to Meet the Opportunity of Descriptive Queries 11

noun phrase weights rather than term weights. This means all terms outside
noun phrases are assigned no weight, and all terms within a noun phrase are
assigned equal weight (parameter tying). In order to achieve robust retrieval,
Key Concepts therefore mixes its predicted ΘQ with the original ML estimate.
Our approach, on the other hand, makes no a priori distinction between terms
and completely predicts ΘQ without use of ML mixing.

In addition to use of implicit feedback, various avenues exist for further im-
provement. Estimation of ΘQ given feedback could certainly benefit from using
a more sophisticated technique than grid search (§2.2). Our set of secondary fea-
tures (§2.3) could also certainly be improved, possibly by incorporating features
from earlier work on verbose queries [2, 8] or by considering richer features like
syntax [12]. In terms of the retrieval model (§2.1), we would like to go beyond un-
igram modeling to incorporate word interactions. While consistent improvement
has already been shown by modeling sequential dependencies [16], this work also
embodies an implicit ML assumption that all term pairs are equally relevant to
the core information need. Just as we have seen this assumption does not hold
for individual terms, the same can be said for term interactions, and we expect
better estimation should improve retrieval accuracy here as well.

5 Conclusion

This paper presented a novel learning to rank framework for estimating tra-
ditional term-based retrieval models in the absence of feedback. This was ac-
complished by introducing secondary features correlated with term weights and
applying regression to predict them as a function of features. Empirical vali-
dation with description queries on three TREC collections showed significantly
improved retrieval accuracy as well as a large potential for further improvement.

Acknowledgments

Support for this work was provided in part by NSF PIRE Grant No OISE-
0530118 and the Center for Intelligent Information Retrieval. We thank the
anonymous reviewers and our lab fellows for their useful comments. Any opin-
ions, findings, and conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the sponsors.

References

1. J. Allan, M. Connell, W.B. Croft, F.F. Feng, D. Fisher, and X. Li. INQUERY and
TREC-9. In Proc. of TREC-9, pages 551–562, 2000.

2. M. Bendersky and W.B. Croft. Discovering key concepts in verbose queries. In
Proc. of SIGIR, pages 491–498. ACM New York, NY, USA, 2008.

3. T. Brants and A. Franz. Web 1T 5-gram v1, LDC Catalog No. LDC2006T13, 2006.
4. C. Buckley and D. Harman. Reliable information access final workshop report.

ARDA Northeast Regional Research Center Technical Report, 2004.

12 Matthew Lease, James Allan, and Bruce Croft

5. F. Diaz and D. Metzler. Improving the estimation of relevance models using large
external corpora. In Proc. of SIGIR, pages 154–161, 2006.

6. D. Graff, J. Kong, K. Chen, and K. Maeda. English Gigaword. Linguistic Data
Consortium catalog number LDC2005T12, 2005.

7. Thorsten Joachims, Hang Li, Tie-Yan Liu, and ChengXiang Zhai. Learning to
rank for information retrieval (lr4ir 2007). SIGIR Forum, 41(2):58–62, 2007.

8. G. Kumaran and J. Allan. A Case for Shorter Queries, and Helping Users Create
Them. In Proceedings of NAACL HLT, pages 220–227, 2007.

9. G. Kumaran and J. Allan. Effective and efficient user interaction for long queries.
In Proc. of SIGIR, pages 11–18, 2008.

10. J. Lafferty and C. Zhai. Document language models, query models, and risk min-
imization for information retrieval. In Proc. of SIGIR, pages 111–119, 2001.

11. Victor Lavrenko and W. Bruce Croft. Relevance based language models. In Pro-
ceedings of the 24th ACM SIGIR conference, pages 120–127, 2001.

12. Matthew Lease. Natural language processing for information retrieval: the time is
ripe (again). In Proceedings of the 1st Ph.D. Workshop at the ACM Conference on
Information and Knowledge Management (PIKM), 2007. To appear.

13. Matthew Lease. Brown at TREC’08 Relevance Feedback Track. In Proc. of the
17th Text Retrieval Conference (TREC) Conference, 2008.

14. Matthew Lease and Eugene Charniak. A Dirichlet-smoothed Bigram Model for
Retrieving Spontaneous Speech. In Proc. of 8th Workshop of the Cross-Language
Evaluation Forum (CLEF’07), LNCS-5152, pages 687–694. Springer-Verlag, 2008.

15. David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training for
parsing. In Proc. of HLT-NAACL 2006, pages 152–159, 2006.

16. D. Metzler and W.B. Croft. A Markov random field model for term dependencies.
In Proc. of SIGIR, pages 472–479, 2005.

17. Donald Metzler and W. Bruce Croft. Linear feature-based models for information
retrieval. Information Retrieval, 10(3):257–274, 2007.

18. Jay M. Ponte and W. Bruce Croft. A language modeling approach to information
retrieval. In Proc. of SIGIR, pages 275–281, 1998.

19. M. Porter. The Porter Stemming Algorithm. Accessible at http://www. tartarus.
org/martin/PorterStemmer.

20. Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach to
identifying sentence boundaries. In Proceedings of the fifth conference on Applied
natural language processing, pages 16–19, 1997.

21. Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document length nor-
malization. In Proc. of SIGIR, pages 21–29, 1996.

22. Mark D. Smucker, James Allan, and Ben Carterette. A comparison of statistical
significance tests for information retrieval evaluation. In Proc. of CIKM, pages
623–632, 2007.

23. K. Sparck Jones, S. Walker, and S.E. Robertson. A probabilistic model of in-
formation retrieval: development and comparative experiments (parts i and ii).
Information Processing and Management, 36:779–840, 2000.

24. T. Strohman, D. Metzler, H. Turtle, and W.B. Croft. Indri: A language model-
based search engine for complex queries. In Proceedings of the International Con-
ference on Intelligence Analysis, 2004.

25. C. Zhai and J. Lafferty. Model-based feedback in the language modeling approach
to information retrieval. In Proc. of CIKM, pages 403–410, 2001.

26. C. Zhai and J. Lafferty. A study of smoothing methods for language models applied
to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

