
Answer Extraction using Language Models and Data-Mining

Wei Li

Department of Computer Science

University of Massachusetts, Amherst, MA 01003

weili@cs.umass.edu

Abstract

In this report, I present a combined approach

of language modeling and an automatically

built answer model for finding answers from

the relevant documents. We make use of a

data-mining technique, Snowball, to collect

patterns for the answer model. It only needs a

few samples to start with and the patterns are

automatically evaluated. As shown by the test

results, this model outperforms our current

heuristic approach in the QuASM system and

the answer model is proven to be helpful.

1. Introduction

The goal of question answering is to provide

users with short phrases that explicitly answer

their questions. So unlike document retrieval,

which returns a list of relevant documents, a

QA system needs to perform an additional task

called answer extraction. An easy solution to

this problem is to do a secondary retrieval on

the returned documents. However, the success

of traditional IR techniques usually relies on

the similarity between the word distributions

of queries and relevant documents, which is

not always true for questions and answers.

The NLP and IE communities have explored

alternative techniques for answer extraction.

In our current QA system QuASM, a question

is classified according to the type of answer it

is seeking, and entity phrases are recognized

in the documents. Then we score the answers

in a heuristic way, which considers the match

between entity types and the question class, as

well as context information.

In this report, I present an answer extraction

framework that combines both IR and NLP/IE

techniques. We start with language modeling

[1], a statistical approach that has gained more

and more successes in the IR area. The basic

idea is to build one language model for each

answer candidate1, and rank them according to

their probabilities to generate the question.

At the same time, we also want to use the

question class information, which has not been

utilized by language modeling. Instead of just

comparing question class with entity types as

QuASM does, we build an answer model for

every class of questions to capture all kinds of

answer patterns.

The intuition behind the answer models is that

questions often ask about binary relations. For

example, in the TREC-10 evaluation, most

“location” questions ask about the following

three relations:

<organization, headquarter>,

<person, hometown> and

<country, capital>.

Then an answer should be a piece of text that

expresses the corresponding relation. So once

we have a collection of text patterns for those

relations, we could evaluate answer candidates

by comparing them against those patterns.

To automatically collect answer patterns, we

borrow a semi-supervised learning technique,

Snowball [2], from the data-mining area. We

1The current requirement for answer extraction is to restrict
the result within a certain length of text, i.e., approximately
two sentences. For the rest of the report, the term “answer
candidate” is used to refer to any two consecutive sentences.

use weighted vectors to represent the patterns,

which allow us to define the degree of match

between patterns and answer candidates, and

furthermore, to adjust the pattern generality by

changing the matching threshold.

The rest of this report is organized as follows:

in section 2, I will review some related work;

section 3 describes our approach, including

the implementation of language modeling for

answer extraction, the algorithm for building

the answer models, and how to use the answer

models and combine them with the language

models; section 4 presents evaluation results;

section 5 is a discussion about our method and

section 6 concludes the report.

2. Related Work

People have long noticed the surface string

mismatch between the question formulation

and the string containing its answer. Various

directions were explored to solve this problem.

Berger et al. [3] propose a machine learning

approach to answer extraction, which makes

use of a training set of answered questions.

The learning process is designed to capture the

relation between questions and answers with a

statistical model. Four strategies have been

examined. Adaptive TFIDF is an extension to

the traditional tf-idf algorithm, which adjusts

the idf weight of each word to maximize the

accuracy of answering training questions. The

second method, Automatic Query Expansion,

learns the correlation between question terms

and answer terms from the training data, based

on their mutual information. Then the system

could automatically expand a query with its

related answer words. These two models can

be viewed as variants to existing document

retrieval techniques, while the other two are

quite different. The Statistical Translation

Model explicitly addresses the lexical chasm

between questions and answers, and treats the

answer extraction problem as bilingual text

translation. A stochastic matrix is learned to

capture the co-occurrences between words in

questions and words in answers. The fourth

method, Latent Variable Model, attempts to

cluster a question and its answer based on

their underlying topic. While these machine

learning techniques improve the accuracy for

finding correct answers, all of them require a

large set of training data, which is usually not

available for various QA tasks.

Brill et al. [4][5] search the answers on the

Web instead of a single, small dataset. The

abundance and variation of the data provide

better chances to find answers that match the

questions. Given a question, they generate

multiple queries and send them to a search

engine. Then the retrieved summaries are

processed to extract answers and score them

based on several factors. In the case that it is

required to find answers within a given data

source, such as the TREC evaluation, they just

locate the answers in the dataset using some

projection schemes.

Most other systems make use of linguistic

resources or NLP/IE/KR techniques such as

dictionaries, WordNet, named entity extraction,

POS tagging, etc [6][7][8][9][10][11][12][13].

Predictive Annotation (PA), as described in

the system GuruQA [12][11], is a technique

that applies named entity tagging for answer

extraction. The basic idea is to recognize what

type of entity the question is looking for and

then use it as a guide for the answer. While

this approach being explored in many QA

systems, PA has implemented it in a different

way. Instead of extracting answers from the

documents retrieved by a traditional IR system,

PA modifies the retrieval process directly. It

works as follows. An NE tagger is used on the

documents and the entity types (referred to as

QA-tokens) are indexed as well as the entity

words. Then when a question comes, it will be

classified and converted into a query that

includes the corresponding QA-token for the

question class. This query is forwarded to the

search engine. It is easy to see that the match

between QA-tokens automatically contributes

to the score of a passage and eventually affects

the ranking of answer candidates.

Breck et al. [13] use knowledge representation

and natural language processing techniques

for answer extraction, treating it as finding

variable bindings that satisfy a logical format

of questions. After the relevant documents are

retrieved using traditional IR methods, they

are then processed to dynamically generate a

knowledge base. Questions are thus converted

into KR queries that are used to find answers

in the knowledge base. Note that some of the

predicates used for document representation

correspond to various types of named entities

and are generated using an NE tagger.

Srihari and Li [10] have studied IE techniques

in different levels for the QA task. They make

use of a natural language shallow parser to

capture the structural information in questions

in order to classify them correctly. Note that

they have a larger set of question categories

than typically used. For example, there are

several sub-types for the “location” class, such

as city, country, mountain, river, and so on. In

response, they require a more specific named

entity tagger that could recognize the above

entities. This extended NE tag set matches the

expected answer and entities in the documents

more accurately, and also provides a better

foundation for the next level of IE application,

i.e., defining relationships between entities.

What they propose is to extract all kinds of

relationships for the entities and use them

directly as answers when questions ask about

such relations. For example, for a “person”

entity, the interesting relationships include his

name, title, age, gender, birth time, birthplace

and so on. This can be viewed as an extension

to the conventional MUC relation extraction

task in the sense that it covers more types of

relations and thus a wide range of questions.

Instead of constructing a large list of entities

and their relationships from the documents,

another approach tries to maintain a set of

answer patterns to capture such relations and

applies them to the documents when questions

are given. The success of Soubbotin et al. [14]

on the TREC-10 evaluation relies much on a

large set of such patterns, which are manually

defined and very extensive. Actually, this kind

of patterns has also been used in other QA

systems to some extent [15][16]. Let us revisit

Brill et al.’s system [4][5]. When formulating

queries from a question, they apply a set of

rewriting rules, which essentially correspond

to the expected answer contexts. The number

of patterns used here is far less than the ones

used by Soubbotin, but they still work quite

well when searching the Web, where even

several simple patterns are very likely to hit

the answers.

Another example would be MURAX [6], a

QA system that searches answers in an online

encyclopedia and uses some simple heuristic

patterns to help answer extraction. One family

of patterns is defined based on the observation

that for some questions, especially for “what”

and “which” questions, the target is explicitly

specified and the answer should be an instance

of it. Suppose a question starts with “What

river …?”. Then we know that its answer is a

river instance. So MURAX applies a set of

patterns indicating this “instance of” relation

to answer candidates and gives high credits to

those who match the relation with the target

phrase. Another type of patterns deals with the

situation when target terms are unrecognizable.

MURAX then tries to identify the question

term, as demonstrated by the underlined part

in question “Who killed Abraham Lincoln?”.

In this case, the answer should be related to

the question term by the verb. So MURAX

simply matches the verb in answer candidates

with various patterns corresponding to active

and passive forms. Actually, this idea has been

extended by following researches, which no

longer require the occurrence of the same verb

to capture the relation between question term

and answer term.

Given the effectiveness of answer patterns, the

remaining question is how to obtain them. All

the above systems use handcrafted methods,

while an alternative is to automatically learn

the patterns. In the IE area, people have been

studying a similar problem, i.e., how to induce

information extraction rules automatically. A

popular approach is to apply machine learning

techniques to obtain the rules from annotated

training data. For example, CRYSTAL [17] is

a system that builds a dictionary of concept

node definitions and applies them to unseen

texts to extract new information. The concept

nodes represent the information that users are

interested in, and the definitions describe their

context restrictions such as sentence structures

and occurrences of certain words. It requires a

set of parsed, annotated sentences to generate

such rules.

RAPIER [18] makes use of a simpler pattern

representation that does not include syntactic

information. So there is no need to parse the

texts. They use some more robust techniques

such as POS tagging and WordNet to construct

the rules. The learning algorithm is inspired by

inductive logic programming and it generates

patterns by gradually dropping constraints to

cluster the more specific patterns into more

general ones.

Craven et al. [19] present a machine learning

approach to construct a knowledge base from

the Web documents, which includes relations

as well as entities. One assumption of this task

is that relations among different entities are

usually reflected by the link structure of the

Web pages, which then becomes an important

component of the resulting rules. To achieve

this, the training data is composed of not only

individual labeled pages but also the relations

among them. The learning algorithm employs

a first-order representation for the rules and

searches them in a general-to-specific way.

As we can see, all of the above methods need

a large manually tagged training set in order to

obtain reliable patterns. And the rules learned

from one dataset are usually not transferable

to other datasets. So for different applications,

we need different training data. To avoid the

large amount of manual labor involved in the

training procedure, people try to reduce the

required label information. An example would

be AutoSlog-TS, as introduced by Riloff [20].

The basic idea is to exhaustively generate an

extraction pattern for each noun phrase in the

training set and then evaluate all of them. The

evaluation method assumes that the training

corpus can be divided into two sets: relevant

and non-relevant, with regard to a particular

domain. Then the relevance rate for a pattern

could be calculated as the number of times it

being activated in a relevant document divided

by the total number of times activated by any

document in the corpus. This is a major factor

in the evaluation criterion. As we can see, the

manual effort has been reduced from tagging

the training set to differentiating relevant and

non-relevant documents. However, this still

requires going through every document in the

training corpus to decide its relevancy.

The difficulty to obtain labeled data is not

unique to our problem. In many applications,

it is easy to get a large number of unlabeled

examples, but expensive to get labeled ones.

So the machine learning community has been

studying semi-supervised learning techniques,

which take advantages of abundant unlabeled

data to reduce the need for labeled data. One

approach is to apply EM to generative models,

treating the labels of unlabeled data as missing

values. Nigam et al. [21] propose a combined

model of EM and a naïve Bayes classifier for

text classification. The basic algorithm trains a

classifier using the initial labeled documents.

Then it probabilistically labels the unlabeled

documents and trains a new classifier based on

all documents and their labels. This process is

repeated until convergence. The assumption

behind this algorithm is that the documents are

generated by a mixture model and each class

corresponds to a mixture component. To deal

with the cases that the assumption is violated,

they further propose two extensions: assigning

different weights to the labeled and unlabeled

data, and modeling each class with multiple

mixture components.

A widely used technique for semi-supervised

learning is bootstrapping. The basic idea is to

start with a very small set of labeled instances

and iteratively enlarges it by predicting labels

for unlabeled examples. There are many ways

to decide which unlabeled instances should be

added. A typical example of bootstrapping is

Co-Training. It applies to the datasets whose

features could be naturally divided into two

sets and each of them is sufficient to learn the

classifier given enough labeled examples. As

there is only a small amount of labeled data,

two classifiers are learned independently using

the two feature sets. Then they incrementally

label unlabeled examples, and at each round,

the newly labeled instances will be added to

the other classifier’s training set. Co-Training

was first proposed by Blum and Mitchell [22]

for web page classification. Then it has been

applied to various text processing tasks, such

as statistical parsing [23], statistical machine

translation [24] and reference resolution [25].

Bootstrapping has also shown successes in IE

area. For example, Riloff et al. [26] present a

multilevel mutual bootstrapping technique that

builds a semantic lexicon and a dictionary of

extraction patterns at the same time. Starting

with a handful of seed semantic entities, they

alternatively select the best pattern and use it

to extract new entities, which will be used to

generate the next pattern. The criterion used to

evaluate patterns is composed of two factors.

One of them is the ratio for a pattern to hit a

lexicon entry and the other is the number of

such hits.

Another application of bootstrapping methods

is to extract relation pairs from text documents,

such as DIPRE [27] and Snowball – the one

we are using for answer pattern collection. As

we will see later, the basic ideas of these two

systems are very similar to Riloff’s approach.

However, as dealing with different tasks, they

differ in many implementation aspects such as

pattern representation and pattern generation.

Bootstrapping has also been applied to answer

extraction for the QA task. An example is the

system proposed by Ravichandran and Hovy

[28]. A comprehensive comparison between

this approach and our model will be presented

in the discussion section.

3. System Description

3.1. Language Models

A language model is a probability distribution

over a vocabulary of words. Given a language

model, we can calculate its probability to

generate a piece of text as follows:

),...,|()...|()(),...,(111211 −
= nnn wwwPwwPwPwwP

The simplest model is the unigram model,

which assumes independence between words.

So the above formula becomes:

)()...()(),...,(211 nn wPwPwPwwP =

To make use of a language model, we usually

need to first estimate it from some sample data.

The most common method for estimation is

the Maximum-Likelihood-Estimation, which

is actually counting the frequencies. To avoid

overfitting, we need to use some smoothing

techniques to make it more general.

As for our answer extraction task, we build

one unigram language model for each answer

candidate and then calculate its probability to

generate the question. Since we are estimating

the language model from just two sentences,

we have a severe problem of sparse data. So

adequate smoothing becomes critical in this

case. We have used the whole set of retrieved

documents as a background model to smooth

the probabilities estimated from the answer

candidates:

)()1()()(21 wPwPwP λλ −+=

Here P1(w) is the probability estimated from

the answer candidate, P2(w) is the probability

from the background model and
�
 = d / (d + constant),

where d is the length of the answer candidate

and the constant is determined empirically.

3. 2. Answer Models

An answer model is a collection of patterns to

express several binary relations pertaining to a

class of questions. In order to build this model,

we actually build one sub-collection for each

relation and then merge them together. The

method we used is Snowball, a bootstrapping

approach that simultaneously extracts relation

pairs and patterns from text documents. The

algorithm is sketched below. To better explain

the procedure for pattern collection, I use the

relation of <organization, headquarter> as an

example.

3.2.1 Seeds

The first step is to find several samples. One

advantage of Snowball is that we don’t need a

large number of training data. Only five pairs

are used as the initial seeds:

• <Microsoft, Redmond>

• <Boeing, Seattle>

• <IBM, Armonk>

• <Intel, Santa Clara>

• <Exxon, Irving>

3.2.2 Occurrences

Then Snowball finds all occurrences of every

seed. An occurrence of a relation tuple refers

to a sentence that contains the two entities of

the pair. Consider the following sentence:

“Microsoft is based in Redmond.”

It is an occurrence of <Microsoft, Redmond>.

Each occurrence is divided into five parts:

 left + entity-1 + middle + entity-2 + right

Entity-1 and entity-2 are the two components

of the tuple and the other three are the strings

surrounding them. Note that we also consider

punctuations as part of the strings since they

were proven to be helpful in the evaluation of

Snowball. There are restrictions on the lengths

of strings. If the middle part is longer than a

certain length, which is 10 tokens in practice,

the occurrence is ignored. This is because we

don’t want to extract too complicated patterns.

Furthermore, we limit the left and right parts

to a 5-token window surrounding the entity

pair. The next step is to convert the context

strings into weighted vectors. It will be later

discussed that our patterns are represented in

the same way. This representation is more

flexible to decide if patterns or occurrences

match each other. We could define the degree

of match between patterns and set a threshold

to show how close we require two matching

patterns to be. In this way, we won’t miss a

new tuple even if its context is slight different

from our patterns. This flexibility cannot be

achieved by using text strings since it requires

exact string match for two patterns to match

each other. The weight of a token t in a vector

is defined in terms of the number of times it

occurs in the corresponding string s (denoted

by C(t)):

∈
=

st
tCtCstW

'

2)'(/)()|(

This roughly shows how important this token

is in this context. As well as tokens, the three

vectors also have weights associated with

them to show their individual importance. In

practice, we set WL = WR = 0.2 and WM = 0.6.

This is because the middle part is generally

more useful than the other two to decide the

relationship. To distinguish between the two

possible orders for the two entities, we use

another indicator that is set to be true if the

first entity occurs before the second. So the

above example occurrence is represented as

follows:

 order = “true”

 left = “”

 middle = “<is:0.58>, <based:0.58>, <in:0.58>”

 right = “<.:1.0>”

3.2.3 Pattern Generation

This step is to cluster similar occurrences and

then calculate their centroids to form patterns.

We define the similarity between occurrences

or patterns in terms of the inner products of

their weighed vectors. The score is calculated

as follows:

If p1.order != p2.order, then Sim(p1, p2) = 0;

 Else Sim(p1, p2) =

WL * InnerProduct(p1.left, p2.left)

 + WM * InnerProduct(p1.middle, p2.middle)

 + WR * InnerProduct(p1.right, p2.right)

We also define the similarity between two

clusters as the similarity between the centroids.

At the beginning of the clustering algorithm,

every occurrence is in one individual cluster.

We then repeatedly merge similar ones. Let

C(k) denote the set of clusters at iteration k,

the following rules are used to get C(k+1):

C(k+1) ← empty set;

For each cluster C in C(k):

 Let C’ be its most similar cluster in C(k+1);

 If Sim(C, C’) >= threshold, merge C into C’;

 Else add C to C(k+1);

The similarity threshold is set to be 0.6, and

the algorithm repeats until no merge is done.

Then we extract all the centroids as patterns.

3.2.4 Exploring New Tuples

To find new tuples using the patterns, the first

problem we need to address is to identify the

potential tuples, i.e., entities of the particular

types. So we apply a named entity tagger on

the documents to recognize entities of interest.

As for <organization, headquarter> relation,

we construct three weighted vectors for every

pair of “organization” and “location” entities

that occur in one sentence, the same way as

we deal with occurrences in 3.2.2. Then the

candidate occurrence is compared to extracted

patterns. If it is similar enough to one of them

as the threshold equals 0.6, we will extract the

<organization, location> pair as a new tuple.

Note that we might get one pair using various

patterns, possibly with different match scores.

We keep all those information because they

will help us decide which tuples should be

saved and which should be removed.

One important feature of Snowball is that the

patterns and new tuples can be automatically

evaluated. Along with the flexibility of our

pattern matching scheme comes the risk of

getting unreliable patterns and tuples. And the

erroneous patterns or tuples in early iterations

will accumulate and lead the future collection

to a wrong direction. So we need a method to

evaluate patterns and tuples, and only keep the

high-quality ones. The basic idea is that if a

tuple is in the seed set of current iteration, we

then believe it is valid and can be used to

judge the newly discovered tuples. Here we

assume that the first entity is the key for the

relation, i.e., no two tuples share the same first

entity. For example, <Microsoft, Redmond> is

used for the first iteration of <organization,

headquarter> collection as a seed, i.e., a valid

tuple. Then any <Microsoft, other location>

pair we find is considered invalid. This gives

us a criterion to judge whether a tuple is valid

or not, and furthermore, to score the patterns

according to the qualities of the tuples they

discover. For each pattern, we define its belief

as:

belief(p) = positive / (positive + negative)

Here, positive is the number of valid tuples

discovered by this pattern and negative is the

number of invalid tuples. So at the same time

that new tuples are extracted, the beliefs of our

patterns are also updated.

The above method can only tell which tuples

are valid or invalid, but cannot evaluate other

tuples that are not seeds and don’t share the

same first entity with any seed. In this case,

we define a tuple’s belief based on the patterns

that discover it:

belief(t) = 1 – Πp(1 – belief(p) * Sim(t, p))

A tuple will get a high score if it is supported

by reliable patterns with high confidences.

Naturally, we set the belief to be 1 for a valid

tuple and 0 for an invalid tuple.

After the new tuples are evaluated, we can

select some good ones to merge to the seed set

and start the next iteration. The threshold for

the <organization, headquarter> relation is 0.8.

It may vary among different relations. Usually

we run 2 or 3 iterations to get enough patterns.

3.2.4 Parameter Summarization

As we can see, there are many parameters that

need to be empirically set. And I summarize

our choices in the following table:

Max Length Weight Threshold

LL 5 WL 0.2 T1 0.6

LR 5 WR 0.2 T2 0.6

LM 10 WM 0.6 T3 0.8

There are three thresholds. T1 is for clustering

similar occurrences, T2 is used to extract new

tuples with collected patterns and T3 is the

score threshold for selecting good tuples. Note

that T3 is not constant and the number listed

above is for the <organization, headquarter>

relation.

3.3. Combining Two Models

For language modeling, we have a natural way

to measure the probability for a candidate C to

be the answer to question Q as:

PL(C|Q) ∝ P(Q|C),

where P(Q|C) is the probability that question

Q is generated from the underlying language

model of candidate C.

As for the answer model, we should define the

probability for a candidate to be the answer in

terms of its similarity to the corresponding

answer model. Let T(C) be the set of tuples

discovered from candidate C using patterns in

the question’s answer model. Then it is further

restricted to the tuples whose first part appears

in the question. Only the tuples satisfying this

restriction could be the target of the question

and thus affect our belief in the candidate.

Then we can define

PA(C|Q) ∝ t∈T(C) belief(t)

To combine the two models together, we use

linear combination, where

P(C|Q) = � * PL(C|Q) + (1–�) * PA(C|Q)

It is the final score used to rank the answer

candidates. Before combination, we need to

normalize the results from the two models to

the same scale. The value of � is determined

empirically.

4. Evaluation

The evaluation has two purposes: the first one

is to see if language modeling is adequate for

answer extraction, and the other is to test the

effectiveness of answer models.

For the first part, we conduct an experiment

on the TREC-10 dataset, which contains 687

questions and 11 classes. The performance is

measured by MRR, the mean-reciprocal-rank.

The table below shows a comparison between

QuASM’s heuristic approach and language

modeling on individual classes and average

performance:

Class # of Q Heuristic LM

A 53 0.283 0.232

B 14 0.238 0.179

D 9 0.111 0.204

F 93 0.543 0.598

L 109 0.553 0.446

O 39 0.489 0.685

P 113 0.593 0.582

R 9 0.278 0.167

T 73 0.305 0.288

W 16 0.325 0.469

X 168 0.278 0.407

Avg. 696 0.421 0.448

Although I have listed the experiment results

of language modeling for different classes, we

know that the class information is not included

yet. But even with this restriction, the average

performance of language modeling is as good

as the heuristic model. So it is reasonable to

believe that language modeling is an adequate

framework for answer extraction and we can

further improve its performance by using the

class information.

To test the effectiveness of the answer models,

we choose the “location” (L) questions to do

the experiments. Based on our previous results,

the heuristic model performs much better than

the language models for this class. So we are

interested to see if adding the answer models

helps.

The database used for building the answer

models is made up of 16 TREC corpora. For

each document, we extract the TEXT part,

segment it into sentences and mark out the

entities with IdentiFinder [29].

The answer model for the “location” questions

is composed of patterns for the following three

relations:

• <organization, headquarter>

• <person, hometown>

• <country, capital>

Some of the patterns collected along with their

beliefs are listed below:

<organization, headquarter>

 order = “false”

 left = “<In:1.0>”

 middle = “<a:0.58> <for:0.55> <spokesman:0.51>

 <spokeswoman:0.05>”

 right = “<the: 0.26> <said:0.26> <company:0.13>”

 belief = 0.9

 order = “true”

 left = “”

 middle = “<is:0.58> <in:0.58> <based:0.58>”

 right = “<.:0.86>”

 belief = 0.85

 order = “true”

 left = “”

 middle = “<is:0.51><headquartered:0.51><in:0.51>”

 right = “<.:1.0>”

 belief = 0.8

<person, hometown>

 order = “false”

 left = “<the:0.49> <in:0.33>”

 middle = “<town:0.69> <of:0.71>”

 right = “<.:0.47>”

 belief = 0.9

 order = “true”

 left = “”

 middle = “<born:0.60> <in:0.60> <was:0.46>”

 right = “”

 belief = 0.86

<country, capital>

 order = “false”

 left = “<In:1.0>”

 middle = “<a:0.46> <said:0.46> <official:0.46>”

 right = “<to:0.36> <was:0.27>”

 belief = 1.0

 order = “false”

 left = “<in:0.40>”

 middle = “<capital:0.71> <of:0.71>”

 right = “<the:0.14>”

 belief = 0.9

 order = “true”

 left = “<in:0.20>”

 middle = “<capital:0.5> <’:0.5> <s:0.5> <of:0.5>”

 right = “”

 belief = 0.76

The individual performances of these relations

are as follows:

Relation # of Q LM Combined

<O, H> 21 0.325 0.787

<P, H> 12 0.396 0.667

<C, C> 50 0.545 0.663

The performance of the combined model on

the whole “location” set is presented below.

Note that there are 26 questions that do not

belong to any of the three relations and will

not benefit from the answer models.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2

alpha

M
R

R

As we can see, the best result is achieved

when � = 0.5 and MRR = 0.603 for this value.

It is a significant improvement over language

modeling only (0.446), and it is also better

than the heuristic model (0.553).

5. Discussion

The basic idea of Snowball was inherited from

an existing technique called DIPRE [22]: Dual

Iterative Pattern Relation Expansion. These

two approaches share the same bootstrapping

procedure to extract structured relations. They

both need very minimal samples to start with

and then iteratively discover relation patterns

and tuples. As DIPRE searches the World

Wide Web, Snowball restricts itself to fixed

collections of text documents and makes two

major modifications.

The first difference is pattern representation.

In DIPRE, a pattern is defined as a five-tuple

<order, urlprefix, prefix, middle, suffix>. All

of them are kept in Snowball except urlprefix

because it is no longer available when we are

not searching the World Wide Web. And the

three context items prefix, middle and suffix,

which are strings in DIPRE, are replaced with

weighted vectors in Snowball.

As patterns are represented in different ways,

the operations upon them, such as how to

generate patterns from occurrences and how to

decide if a pair matches a pattern, are also

different. Since DIPRE uses strings for the

contextual information, it is simpler to define

those operations. To generate patterns, DIPRE

divides occurrences into groups based on their

orders and middles. Then for each group, one

pattern is defined as follows: order and middle

are the same as the occurrences in the group,

urlprefix is the longest matching prefix of all

urls, prefix is the longest matching suffix of

all prefixes and suffix is the longest matching

prefix of all suffixes. Given the patterns, the

problem of matching relation pairs against

them is a binary decision of string matching.

More specifically, it requires the pair to occur

in a document whose URL has the same prefix

as the pattern’s urlprefix and the context

matches its prefix, middle and suffix. This has

been implemented using regular expressions.

So in DIPRE, a pair either matches a pattern

or does not match. There is no state in the

middle. But Snowball has introduced the idea

of matching degree, which allows us to adjust

the patterns’ generality. As we can see, DIPRE

is very similar to a special case of Snowball,

where its matching threshold is set to be 1.

Another modification made by Snowball is to

incorporate a method that could automatically

evaluate the patterns based on their precisions

in finding valid tuples. Furthermore, the newly

discovered tuples can also be evaluated and

only the good ones are kept as seeds for the

next iteration. In DIPRE, there is no such

evaluation. All tuples are considered valid.

However, it does have some restrictions on the

patterns to prevent them from being overly

general. For each pattern, there are two factors

that affect whether it will be kept. The first

one is the specificity (denoted by s), which is

calculated as the product of the lengths of the

pattern’s four strings. The other is the number

of seeds with occurrences supporting the

pattern (denoted by n). DIPRE gives higher

credits to patterns that are more specific and

have more supporting seeds. So it requires that

s×n > threshold and n > 1. As the threshold is

greater than zero, the first requirement implies

s > 0, i.e., no pattern with empty strings will

be accepted. The second requirement excludes

those one-seed-based patterns because they

are not very reliable. Actually, this idea of

considering the number of supporting seeds

when evaluating patterns has been explored in

our own experiment and I will discuss it in

details in the following section.

Besides the two major modifications discussed

above, Snowball has also made use of some IE

techniques to improve the performance. For

example, DIPRE requires users to provide a

set of regular expressions to find new tuple

candidates. This is not very accurate and will

add more noises into the system. So Snowball

chooses to apply a named entity tagger and

only considers the two types of entities that

constitute the relation. Another usage of the

named entity tagger in our own experiment is

at the finding-patterns stage, though Snowball

doesn’t use it this way. Consider the following

example:

1. … spokesman Jim Desler said in …

2. … spokesman Tom Ryan said in …

The only difference between the above two

occurrences is the name of the spokesman.

More generally, we do not expect to see the

same person name in this context for different

tuples. However, they should be viewed as the

same pattern. So we replace those specific

names with their entity type PERSON and

thus collapse them together.

As we can see from the discussion so far, one

important feature of DIPRE is that it only

generates very specific patterns in order to

improve the precision of the collected relation

pairs. So the contexts are represented with

non-empty strings and patterns extracted from

different websites are generally not merged.

However, the large amount of data on the Web

allows DIPRE to retrieve a large set of tuples

even with those specific patterns. In one of the

experiments, it starts with five samples of the

<book, author> relation and finally obtains

over 15,000 pairs. According to the evaluation,

19 of 20 randomly picked pairs are valid. This

is quite impressive, but it doesn’t work so well

when we explore a similar approach for the

<organization, headquarter> relation on the 16

TREC collections. In our own experiments of

DIPRE, we exclude urlprefix from patterns

and keep the other four items. At first, we

could barely find any pattern that satisfies the

specificity requirements. The patterns with at

least two supporting seeds usually have empty

strings. Then we try to accept patterns that

break at most one restriction, but result in

many invalid tuples even in early iterations.

Our experience shows that the success of

DIPRE relies much on a huge amount of data

and it works best in an environment like the

Web.

On the other hand, Snowball works much

better than DIPRE on a fixed data source. It

utilizes more general patterns that allow us to

get satisfying results in spite of data shortage.

However, there are still some difficulties when

we apply Snowball to construct our answer

models. The first problem is how to define the

weighted vectors. Our initial attempt is to use

the token frequency as its weight, but then we

realize that this definition has a bias toward

shorter patterns in terms of similarity. Take the

following two cases as an example:

Case 1:

P1 = “<x, 0.5>, <y, 0.5>”

P2 = “<x, 0.5>, <z, 0.5>”

Sim(P1, P2) = 0.25

Case 2:

P1 = “<a, 0.2>, <b, 0.2>, <c, 0.2>, <d, 0.2>, <e, 0.2>”

P2 = “<a, 0.2>, <b, 0.2>, <c, 0.2>, <d, 0.2>, <e, 0.2>”

Sim(P1, P2) = 0.2

Intuitively, the two patterns in Case 2 should

have higher similarity score because they are

identical and the ones in Case 1 are not. But

here we get the opposite result. So we turn to

another definition for the weighted vectors in

order to solve this problem. Currently, we use

the following formula to calculate a token’s

weight:

∈
=

st
tCtCstW

'

2)'(/)()|(,

where C(t) is the number of occurrences of

token t in string s. Given this definition, the

above example becomes:

Case 1:

P1 = “<x, 0.707>, <y, 0.707>”

P2 = “<x, 0.707>, <z, 0.707>”

Sim(P1, P2) = 0.5

Case 2:

P1 = “<a, 0.447>, <b, 0.447>, <c, 0.447>, <d, 0.447>,

<e, 0.447>”

P2 = “<a, 0.447>, <b, 0.447>, <c, 0.447>, <d, 0.447>,

<e, 0.447>”

Sim(P1, P2) = 1

Now we get the desirable result. Actually, this

definition guarantees that if two patterns are

identical, their similarity will always be 1 no

matter what their lengths are.

Another difficulty with Snowball involves the

pattern evaluation method. As we know, the

success of our approach relies on effectively

recognizing valid and invalid tuples. But the

literal comparison might cause trouble. For

example, as <Intel, Santa Clara> is a seed, we

treat <Intel, other location> as invalid tuples.

However, among those other locations, some

of them might be the variants of “Santa Clara”,

such as “Santa Clara, CA”. The performance

will be significantly affected if we are unable

to tell that this is also a valid tuple. Currently

we are using some simple heuristics to achieve

this. For instance, we consider two locations

the same if one of them is the prefix of the

other. But they cannot deal with all situations.

In the future, we will need more sophisticated

methods to solve this problem.

As I mentioned before, we have considered

various options for scoring patterns, some of

which involve the number of supporting seeds

for the pattern. We define three belief metrics

as follows:

belief(p) = positive / (positive + negative)

belief_1(p) = belief(p) × log2(positive)

belief_2(p) = belief_1(p) × log2(# of supporters)

As the first one focuses on the precision of the

pattern, the other two also account for its

coverage. However, introducing the number of

positive matches increases the belief of many

overly general patterns and thus depreciates

the precision. So we choose the first metric to

construct our answer models.

Another factor that can affect the quality of

the patterns is how to generate them from

occurrences. Currently, we are using a greedy

clustering algorithm, in which the merge of

two similar clusters is permanent. As most

greedy algorithms, the order of merges has a

great impact on the final clustering result.

However, we have not paid special attention to

this issue and set it completely based on the

order in which the occurrences are identified

in the documents. So improvement might be

achieved if we change the ordering to reflect

our confidences of merges. For example, we

could merge the two clusters that are most

similar and repeat until the similarity is below

a threshold.

Finally, I want to discuss a little bit about how

we combine the answer models with language

models. Besides the linear combination, as

described in Section 3, we have tried another

approach, which is an integrated probabilistic

model. The basic idea is as follows. For any

given question Q with class C, we want to

rank answer candidate A based on P(A|Q,C),

which is proportional to

)|(),|()|,(CAPCAQPCQAP =

Assuming P(Q|A,C) = P(Q|A), the first factor

is naturally captured in language models as the

probability of generating the question by the

answer candidate. So the remaining task is to

use the answer models to calculate the prior

P(A|C). This probability is independent from

the particular question Q and only shows our

belief for the candidate to be an answer to a

class of questions.

As we can see, the answer models are used in

different ways in the two approaches we have

explored. However, they both need to deal

with the same problem, i.e., we cannot classify

questions as specific as relations using our

currently question classifier. For example, the

“location” category involves three relations.

While the two questions “Where was George

Bush born?” and “Where is Microsoft?” are

both “location” questions, they are interested

in different relations and thus expect totally

different answers. So we need to figure out

which pattern set should be used. As for the

linear combination method, we do not answer

this question directly, but put together all

relations pertaining to one class and treat them

as one answer model. Obviously, this is very

inaccurate. For instance, since the candidate

“Microsoft is based on Redmond.” matches

one pattern of the <organization, headquarter>

relation very well, which is in the “location”

answer model, it will get a high score for all

“location” questions, including “Where was

George Bush born?”. To address this problem,

we furthermore require a pattern to affect our

belief in a candidate only if it discovers a tuple

whose first entity appears in the question. As

for the above example, the tuple extracted by

the pattern is <Microsoft, Redmond>, whose

first entity “Microsoft” is not in the question.

So this pattern will just be ignored. However,

it will contribute to the question “Where is

Microsoft?”. Actually, this method does not

only reduce errors caused by selecting the

wrong relation patterns, but also works well in

the situation where the candidate matches the

target relation but is not a valid answer. An

example would be “Bill Clinton was born in

Hope, Arkansas.” to the George Bush question.

On the other hand, we are not supposed to

touch the content of questions in order to

calculate the prior P(A|C) in the integrated

probabilistic model. Therefore we take another

approach to select the pattern set based on the

observation that different relations in one class

usually have different types for their first

entities. This is true for the “location” question,

in which the three relations are asking about

<organization, location>, <person, location>

and <location, location> respectively. So we

could guess the target relation of a question by

recognizing the type of entities in the question.

Apparently, this method works for the two

example questions I mentioned before. In the

case that there are multiple types of entities in

the question, we calculate the expected prior

as

 =
iR ii RAPCRPCAP)|()|()|(,

where Ri enumerates all relations in class C

and

entities

RTtypeofentities
CRP i

i
#

)(#
)|(=

T(Ri) refers to the type of the first entity in Ri.

As we can see, the performance of this method

depends much on the accuracy of the entity

recognizer. Unfortunately, IdentiFinder does

not work very well on our test data and thus

depreciates the overall performance. Besides,

this model could hardly be extended to classes

that have relations sharing the same types of

first entities. So we finally choose the linear

combination method instead. But we are still

interested to see how the probabilistic model

works when we have a more specific question

classifier that could classify questions into

relations.

So far, I have discussed several difficulties

using relation patterns for answer extraction

and possible solutions to them. Some of them

are addressed in another approach proposed

by Ravichandran and Hovy [23], which is

very similar to our method and also shares

some features with DIPRE. For each class of

questions, this model searches the World Wide

Web for occurrences of sample <question term,

answer term> pairs and records all substrings

containing both terms as patterns. Note that

these seeds do not necessarily belong to the

same relation set, which means we could use

both <Microsoft, Redmond> and <George

Bush, New Haven Connecticut> as seeds for

the “location” patterns. So the pattern set that

is collected for one class of questions might

involve multiple relations. After patterns are

generated, their precisions are calculated in a

similar way as we evaluate our patterns. So

they also have the canonicalization problem,

i.e., the answer term might have variants and

they need to be treated as the same term.

While we try to match variants to the original

term based on some simple rules at evaluation

phase, their solution is to list all possibilities

of writing an answer term in advance. Another

difference is that when evaluating a pattern

based on its precision in finding seed pairs, the

one seed that actually obtains the pattern is

excluded. This cross-checking method makes

the evaluation more reliable.

After patterns are evaluated, they are then

used to extract answers, requiring that the first

term in the resulting pair match the question

term. This is quite similar to the way that our

answer models are used in linear combination,

but even more accurate if question terms can

be well identified. However, its performance

is decreased, as there is no restriction on the

answer term. For example, while the question

is asking for a “location” entity, the model

might recommend a non-location phrase as the

answer if it matches one of the good patterns.

As in our system, we apply an entity tagger to

all answer candidates in order to reduce this

type of errors.

From the above comparison and the earlier

one with DIPRE, we could draw the following

conclusions:

1. The tremendous data available on the Web

and its great variety makes it easier to collect a

large set of specific answer patterns. So it is

our future direction to explore the Web for

pattern collection. However, as long as we

need to find answers in a particular dataset,

such as in the TREC evaluation case, we still

believe weighted vectors are more appropriate

representation than strings. This is because

even when collecting patterns from the Web, it

is not guaranteed that one of them exactly

matches the way that the answer is expressed.

So weighted vectors will offer extra flexibility

to recognize the answer when it is similar to

but not completely the same as the patterns.

2. Pattern evaluation has played an important

role to improve performance. To make it even

more effective, we need a more sophisticated

way to solve the canonicalization problem.

Actually, it may not only be applied to the

answer terms, but question terms as well. Our

current evaluation metric of precision is just

one of the various options, and we are going

to work on some alternative methods too. For

example, once we are able to obtain specific

patterns from the Web, we might try again the

two metrics I mentioned before, which take

into account the coverage of patterns and the

number of supporting seeds. Another issue

associated with pattern evaluation is how to

extend this approach to relations whose first

entity does not serve as the key, i.e., different

pairs could share the same first entity and they

are all valid.

3. When using the collected patterns to extract

answers, a good restriction on the resulting

pair should be that the first term matches the

question term and the second term matches the

target entity type. To achieve this, we need a

better named entity tagger and a very accurate

technique to identify question terms.

6. Conclusion

Question answering differs from information

retrieval in that it needs to retrieve specific

fact information rather than whole documents.

So answer extraction, the process of scanning

the relevant documents to find the accurate

answer, is an important component of a QA

system. In our previous researches, we have

found that the class of question is helpful for

judging answer candidates, and already made

use of it in a heuristic way.

This report has investigated a more principled

framework that combines language modeling

and answer models. Language modeling is a

probabilistic approach that has been widely

used for various IR tasks. As for the answer

extraction problem, its role is to judge the

relevance between answer candidates and the

question by their contents. Without using the

question class information, language modeling

performs as well as the heuristic model. And

we expect further improvement by combining

the answer models.

An answer model is a collection of patterns to

express answers to one class of questions. By

introducing such models, we want to capture

the difference between answers to different

classes of questions. In this report, we have

examined a data-mining technique, Snowball,

to build answer models. As the experiment for

the “location” questions shows, the combined

approach of language modeling and answer

model significantly improves the performance

over language modeling only.

For the future researches, we will try to obtain

patterns from the Web. Taking advantage of

this tremendous data resource, we believe that

our pattern collection process will be more

efficient and effective. We are also interested

in designing a solution to the canonicalization

problem in order to improve pattern qualities.

Another direction is to develop a technique for

precise recognition of question terms, which

could be used along with collected patterns for

more accurate answer extraction.

Acknowledgement

This material is based on work supported in

part by the Center for Intelligent Information

Retrieval and in part by NSF grant #EIA-

9983215.

Any opinion, findings and conclusions or

recommendations expressed in this material

are the authors and do not necessarily reflect

those of the sponsors.

References

[1] J. M. Ponte and W. B. Croft. A Language

Modeling Approach to Information Retrieval.

In Proceedings of the 21st ACM Conference

on Research and Development in Information

Retrieval (SIGIR’98), pages 275-281,

Melbourne, 1998.

[2] E. Agichtein and L. Gravano. Snowball:

Extracting Relations from Large Plaint-Text

Collections. In Proceedings of the 5th ACM

International Conference on Digital Libraries

(DL’00), 2000.

[3] A. Berger, R. Caruana, D. Cohn, D. Freitag

and V. Mittal. Bridging the Lexical Chasm:

Statistical Approaches to Answer-Finding. In

Proceddings of the 23rd ACM Conference on

Research and Development in Information

Retrieval (SIGIR’00), pages 192-199, 2000.

[4] E. Brill, J. Lin, M. Banko, S. Dumais and

A. Ng. Data-Intensive Question Answering. In

Proceedings of the Text REtrieval Conference,

2001.

[5] S. Dumais, M. Banko, E. Brill, J. Lin and

A. Ng. Web Question Answering: Is More

Always Better? In Proceedings of the 25th

ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR

2002), Tampere, Finland, 2002.

[6] J. Kupiec. MURAX: A Robust Linguistic

Approach For Question Answering Using An

On-Line Encyclopedia. In Proceedings of the

ACM SIGIR Conference, pages 181-190,

1993.

[7] S. Harabagiu, D. Moldovan, M. Pasca, R.

Mihalcea, M. Surdeanu, R. Bunescu, R. Girju,

V. Rus and P. Morarescu. FALCON: Boosting

Knowledge for Answer Engines. In Proceed-

ings of the ninth Text REtrieval Conference,

pages 479-488, 2000.

[8] E. Hovy, U. Hermjakob and C. Lin. The

Use of External Knowledge in Factoid QA. In

Proceedings of the tenth Text REtrieval Con-

ference, 2001.

[9] E. Hovy, L. Gerber, U. Hermjakob, M.

Junk and C. Lin. Question Answering in Web-

clopedia. In Proceedings of the 9th Text

REtrieval Conference, Gaithersburg, MD, Nov.

2000.

[10] R. Srihari and W. Li. Information Extra-

ction Supported Question Answering. In Pro-

ceedings of the 8th Text REtrieval Conference,

Gaithersburg, MD, Nov. 1999.

[11] J. Prager and E. Brown. One Search

Engine or Two for Question-Answering. In

Proceedings of the 9th Text REtrieval confer-

ence, 2000.

[12] J. Prager, E. Brown and A. Coden.

Question-Answering by Predictive Annotation.

In Proceedings of SIGIR’00, Athens, Greece,

2000.

[13] E. Breck, J. Burger, D. House, M. Light

and I. Mani. Question Answering from Large

Document Collections. In 1999 AAAI Fall

Symposium on Question Answering Systems,

North Falmouth, MA, 1999.

[14] M. M. Soubbotin and S. M. Soubbotin.

Patterns of Potential Answer Expressions as

Clues to the Right Answer. In Proceedings of

TREC-10 Conference, pages 175-182, 2001.

[15] O. Ferret, B. Grau, M. Hurault-Plantet, G.

Illouz, L. Monceaux, I. Robba and A. Vilnat.

Finding an answer based on the recognition of

the question focus. In Proceedings of the 10th

Text REtrieval Conference, page 362, 2001.

[16] G. Lee, J. Seo, S. Lee, H. Jung, B. Cho, C.

Lee, B. Kwak, J. Cha, D. Kim, J. An, H. Kim

and K. Kim. SiteQ: Engineering High Per-

formance QA System Using Lexico- Semantic

Pattern Matching and Shallow NLP. In Pro-

ceedings of the 10th Text REtrieval Conference,

pages 437-446, Maryland, 2001.

[17] S. Soderland, D. Fisher, J. Aseltine and W.

Lehnert. CRYSTAL: Inducing a conceptual

dictionary. In Proceedings of the 14th Inter-

national Joint Conference on Artificial Intelli-

gence, pages 1314-1319, 1995.

[18] M. E. Califf. Relational Learning Tech-

niques for Natural Language Information Ex-

traction. Ph.D. thesis, University of Texas at

Austin, August 1998.

[19] M. Craven, D. DiPasquo, D. Freitag, A.

McCallum, T. Mitchell, K. Nigram and S.

Slattery. Learning to Extract Symbolic Know-

ledge from the World Wide Web. In Proceed-

ings of the 15th National Conference on Artifi-

cial Intelligence (AAAI’98), pages 509-516,

1998.

[20] E. Riloff. Automatically Generating Ex-

traction Patterns from Untagged Text. In Pro-

ceedings of the 13th National Conference on

Artificial Intelligence, pages 1044-1049, 1996.

[21] K. Nigam, A. McCallum, S. Thrun and T.

Mitchell. Text Classification From Labeled

And Unlabeled Documents Using EM. In Pro-

ceedings of National Conference on Artificial

Intelligence (AAAI), 1998.

[22] A. Blum and T. Mitchell. Combining

Labeled and Unlabeled Data with Co-Training.

In Conference on Computational Learning

Theory 11, 1998.

[23] A. Sarkar. Applying Co-training Methods

to Statistical Parsing. In Proceedings of the 2nd

NAACL, Pittsburgh, PA, 2001

[24] C. Callison-Burch and M. Osborne. Co-

training for Statistical Machine Learning. In

Proceedings of the 6th Annual CLUK Research

Colloquium, 2003.

[25] C. Mueller, S. Rapp, and M. Strube.

Applying Co-Training to Reference Resolu-

tion. In Proceedings of ACL 2002, pages 352-

359, 2002.

[26] E. Riloff and R. Jones. Learning Diction-

aries for Information Extraction by Multi-

Level Bootstrapping. In Proceedings of the

16th National Conference on Artificial Intelli-

gence, 1999.

[27] S. Brin. Extracting Patterns and Relations

from the World Wide Web. In Proceedings of

the International Workshop on the Web and

Databases, pages 102-108, Valencia, Spain,

1998.

[28] D. Ravichandran and E. Hovy. Learning

Surface Text Patterns for a Question Answer-

ing System. In ACL Conference, 2002.

[29] BBN official site about the IdentiFinder:

http://www.bbn.com/speech/identifinder.html.

