
BEYOND BAGS OF WORDS:
EFFECTIVELY MODELING DEPENDENCE AND

FEATURES IN INFORMATION RETRIEVAL

A Dissertation Presented

by

DONALD A. METZLER JR.

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2007

Computer Science

c© Copyright by Donald A. Metzler Jr. 2007

All Rights Reserved

BEYOND BAGS OF WORDS:
EFFECTIVELY MODELING DEPENDENCE AND

FEATURES IN INFORMATION RETRIEVAL

A Dissertation Presented

by

DONALD A. METZLER JR.

Approved as to style and content by:

W. Bruce Croft, Chair

James Allan, Member

John Buonaccorsi, Member

Andrew McCallum, Member

Andrew Barto, Department Chair
Computer Science

To Shelley and my parents.

ACKNOWLEDGMENTS

This thesis would not have been possible without the immense support that I re-

ceived from many people within the Computer Science Department at the University

of Massachusetts Amherst (UMass). First and foremost, I would like to thank my

advisor, W. Bruce Croft, for instilling in me all of the virtues necessary to conduct

novel, meaningful research. Bruce taught me the importance of being cognizant of

the past, asking the right questions, analyzing results critically, and striving to be the

absolute best. I would also like to thank the other faculty of the Center for Intelli-

gent Information Retrieval (CIIR), which includes James Allan, Andrew McCallum,

and R. Manmatha, each of which I was fortunate enough to work with on some level

or another throughout my studies. I must also thank my fellow CIIR graduate stu-

dents and David Fisher for all of the guidance, help, and feedback they provided over

the years. In particular, I would like to thank Trevor Strohman and Fernando Diaz

for their nearly endless supply of thought-provoking discussions. I would also like

to thank Kate Moruzzi, the CIIR secretary, for all of her help with the administra-

tive aspects of my studies, and Andre Gauthier, the CIIR system administrator, for

thanklessly supporting my resource intensive experiments.

I must also acknowledge all of the people that I was fortunate enough to collaborate

with outside of UMass. I graciously thank Alistair Moffat, Justin Zobel, and Yaniv

Bernstein for their hospitality and endless entertainment during my visit to Australia.

Finally, I thank Susan Dumais and Chris Meek for mentoring me and giving me the

opportunity to see what it was like to be a researcher in an industrial research lab

during my summer at Microsoft Research.

v

ABSTRACT

BEYOND BAGS OF WORDS:
EFFECTIVELY MODELING DEPENDENCE AND

FEATURES IN INFORMATION RETRIEVAL

SEPTEMBER 2007

DONALD A. METZLER JR.

B.S., ROSE-HULMAN INSTITUTE OF TECHNOLOGY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Current state of the art information retrieval models treat documents and queries

as bags of words. There have been many attempts to go beyond this simple represen-

tation. Unfortunately, few have shown consistent improvements in retrieval effective-

ness across a wide range of tasks and data sets. Here, we propose a new statistical

model for information retrieval based on Markov random fields. The proposed model

goes beyond the bag of words assumption by allowing dependencies between terms

to be incorporated into the model. This allows for a variety of textual and non-

textual features to be easily combined under the umbrella of a single model. Within

this framework, we explore the theoretical issues involved, parameter estimation, fea-

ture selection, and query expansion. We give experimental results from a number of

information retrieval tasks, such as ad hoc retrieval and web search.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES . xvii

CHAPTER

1. INTRODUCTION . 1

1.1 From Archie to Google . 1
1.2 The Academic and Industrial Perspectives . 2
1.3 Paradigm Shifts . 3
1.4 A Robust Retrieval Model . 7
1.5 Outline . 8
1.6 Contributions . 10

2. RELATED WORK . 12

2.1 Bag of Words Models . 12

2.1.1 Binary Independence Retrieval Model . 14

2.1.1.1 Estimation with Relevance Information 16
2.1.1.2 Estimation without Relevance Information 16
2.1.1.3 Tree Dependence Model . 18

2.1.2 2-Poisson Model . 19
2.1.3 BM25 Model . 21
2.1.4 Unigram Language Models . 22
2.1.5 Other Bag of Words Models . 23

2.2 Models That Go Beyond the Bag of Words Assumption 24

vii

2.2.1 n-Gram Language Models . 25
2.2.2 Indri Inference Network Model . 26

2.2.2.1 Document Representation . 27
2.2.2.2 Language Models . 28
2.2.2.3 Representation Nodes . 29
2.2.2.4 Query Nodes . 30
2.2.2.5 Explicit vs. Implicit Query Generation 31

2.2.3 Other Models That Go Beyond the Bag of Words
Assumption . 32

2.3 The Current State of the Art . 33

3. A MARKOV RANDOM FIELD MODEL FOR INFORMATION
RETRIEVAL . 34

3.1 Modeling Relevance . 34
3.2 MRFs for IR . 35

3.2.1 Graph Structure . 37
3.2.2 Potential Functions . 39

3.3 Building MRFs . 42

3.3.1 Dependence Model Type . 43
3.3.2 Clique Set Type . 43
3.3.3 Weighting Function . 47

3.3.3.1 Weighting Functions for TQD, OQD, and UQD 47
3.3.3.2 Weighting Functions for TQ, OQ, and UQ 50
3.3.3.3 Weighting Functions for D . 50

3.3.4 Examples . 50

3.4 Ranking . 54
3.5 Discussion . 55

4. THE THEORY OF LINEAR FEATURE-BASED MODELS 57

4.1 Linear Feature-Based Models . 58
4.2 Previous Uses of Linear Feature-Based Models in IR 60
4.3 Parameter Space . 61

4.3.1 Reduction to Multinomial Manifold . 62
4.3.2 Rank Equivalence . 64
4.3.3 Distance Between Models . 64

viii

4.4 Parameter Estimation . 66

4.4.1 Direct Search . 67

4.4.1.1 Grid Search . 68
4.4.1.2 Coordinate Ascent . 68
4.4.1.3 Discussion . 71

4.4.2 Optimization Using Surrogate Functions . 72

4.4.2.1 Perceptron Learning . 73
4.4.2.2 RankNet . 73
4.4.2.3 Support Vector Machine Optimization 74
4.4.2.4 Discussion . 75

4.5 Quantifying the Impact of Metric Divergence . 75

5. EVALUATION OF THE BASIC MRF MODEL 79

5.1 Ad Hoc Retrieval . 80

5.1.1 MRF Models for Ad Hoc Retrieval . 82

5.1.1.1 Full Independence . 82
5.1.1.2 Sequential Dependence . 84
5.1.1.3 Full Dependence . 88

5.1.2 Evaluation . 93

5.1.2.1 Smoothing . 93
5.1.2.2 Collection Size . 96
5.1.2.3 The Role of Features . 98
5.1.2.4 Robustness . 102
5.1.2.5 Long Queries . 106
5.1.2.6 BM25 Weighting . 109
5.1.2.7 Comparison to Bigram Model . 111
5.1.2.8 Generalization . 112

5.1.3 Summary of Results . 117

5.2 Web Search . 118

5.2.1 Previous Models for Web Search . 120
5.2.2 Document Priors . 123

5.2.2.1 Inlink Count . 123
5.2.2.2 PageRank . 124

ix

5.2.3 MRF Models for Web Search . 126
5.2.4 Results . 129

6. AUTOMATIC FEATURE SELECTION . 135

6.1 Related Work . 136
6.2 Automatic Feature Selection . 137

6.2.1 Motivation . 137
6.2.2 Algorithm . 138

6.3 Evaluation . 139

6.3.1 No Retraining vs. Retraining . 141
6.3.2 Number of Features . 142
6.3.3 Feature Analysis . 142
6.3.4 Summary of Results . 145

7. LATENT CONCEPT EXPANSION . 147

7.1 Related Work . 148
7.2 Latent Concept Expansion . 150

7.2.1 Query Expansion . 154
7.2.2 Comparison to Relevance Models . 155

7.3 Experimental Results . 155

7.3.1 Ad Hoc Retrieval Results . 156

7.3.1.1 Expansion with Single Term Concepts 156
7.3.1.2 Expansion with Multi-Term Concepts 158

7.3.2 Robustness . 159
7.3.3 Multi-Term Concept Generation . 161

7.4 Discussion . 163

7.4.1 Relevance vs. Relevant Documents . 163
7.4.2 The Role of Dependence . 164

8. CONCLUSIONS AND FUTURE WORK . 166

8.1 Using the MRF Model . 166
8.2 Summary of Ad Hoc Retrieval Results . 167
8.3 Contributions . 167
8.4 Future Work . 171

x

APPENDICES

A. DATA SETS . 173

A.1 Anatomy of a TREC Data Set . 173
A.2 Summary of Data Sets . 177

B. EVALUATION METRICS . 178

BIBLIOGRAPHY . 181

xi

LIST OF TABLES

Table Page

3.1 Example clique sets for the query q1 q2 q3 under full dependence
model. 44

3.2 Summary of Dirichlet and BM25 weighting functions that can be
used with cliques in the TQD, OQD, and UQD clique sets. Here, M
and N act as weighting function parameters that affect how
matching is done, tfe,D is the number of times expression e
matches in document D, cfe,D is the number of times expression e
matches in the entire collection, dfe is the total number of
documents that have at least one match for expression e, |D| is
the length of document D, |D|avg is the average document length,
N is the number of documents in the collection, and |C| is the
total length of the collection. Finally, µt, µw, kt

1, k
w
1 , bt, and bw

are weighting function hyperparameters. The t and w superscripts
indicate term and window hyperparameters, respectively. 49

3.3 Summary of ICF and IDF weighting functions that can be used with
cliques in the TQ, OQ, and UQ clique sets. 51

4.1 Features used in the bag of words experiments. tfw,D is the number
of times term w occurs in document D, cfw is the number of
times term w occurs in the entire collection, dfw is the number of
documents term w occurs in, |D| is the length (in terms) of
document D, |C| is the length (in terms) of the collection, and N
is the number of documents in the collection. 77

4.2 Training and test set mean average precision values for various ad hoc
retrieval data sets and training methods. The † represents a
statistically significant improvement over language modeling and ‡
denotes significant improvement over the balanced SVM model.
Tests done using a one tailed paired t-test at the 95% confidence
level. 77

5.1 Test set results for the MRF-FI model. 84

xii

5.2 Mean average precision for various parameter settings for LM-U-N
using the MRF-SD model. 86

5.3 Test set results for the MRF-SD model. A † indicates a statistically
significant improvement over the MRF-FI model. 87

5.4 Mean average precision using the MRF-FD model over different
combinations of term, ordered, and unordered features. 90

5.5 Test set results for the MRF-FD model. A † indicates a statistically
significant improvement over the MRF-FI model and a ‡ indicates
statistically significant improvement over the MRF-SD model. 91

5.6 Median values for various statistics computed across judged relevant
(Rel) and non-relevant (Nonrel) documents. 99

5.7 The 10 most improved and 10 most hurt test set queries when using
the MRF-SD model on the ROBUST04 data set. Effectiveness is
measure in terms of average precision. 104

5.8 The 10 most improved and 10 most hurt test set queries when using
the MRF-SD model on the GOV2 data set. Effectiveness is
measure in terms of average precision. 105

5.9 Test set mean average precision for description-length queries using
full and sequential dependence models. All improvements are
statistically significant. 108

5.10 Test set results for the MRF-BM25 model. The †, ‡, and * indicate
statistically significant improvements over the MRF-FI, BM25
and MRF-SD models, respectively. Recommended term and
window hyperparameter values are also provided. 110

5.11 Test set results for the bigram language model. The † indicates a
statistically significant improvement over the MRF-FI model and
the ↓ indicates a statistically significant decrease in effectiveness
compared to the MRF-SD model (i.e., MRF-SD > MRF-BM25).
Recommended smoothing parameter values are also provided. 111

5.12 Intracollection generalization results for mean average precision.
Values given are effectiveness ratios. 113

5.13 Intercollection generalization results. Table includes mean average
precision effectiveness ratios across all possible train/test splits
using the F2EXP model. 114

xiii

5.14 Intercollection generalization results. Table includes mean average
precision effectiveness ratios across all possible train/test splits
using the MRF-SD model. 115

5.15 Summary of test set mean average precision for the MRF-FI,
MRF-SD, and MRF-FD models across all of the ad hoc retrieval
data sets. Values in parenthesis denote percentage improvement
over MRF-FI model. A † indicates a statistically significant
improvement over the MRF-FI model, and a ‡ indicates a
statistically significant improvement over the MRF-SD model.
Recommended smoothing values are given for each collection, and
recommended MRF model parameters are provided for each
model. 117

5.16 URLs in the GOV2 collection with the largest raw PageRank scores.
The number of inlinks for each URL is also shown. 126

5.17 Summary of named page weighting functions. The NP, NP-O-M , and
NP-U-N weighting functions are based on mixtures of field
language models, and INLINK and PAGERANK are based on
document priors. The αf values correspond to the mixing
probabilities P (f |D). Term and window smoothing parameters
are denoted by µt

f and µw
f , respectively. 128

5.18 Summary of named page finding results. 130

5.19 Results comparing the mean reciprocal rank of the LM-Mixture and
MRF-NP models with and without document priors. 131

5.20 The 10 most improved and 10 most hurt queries on the TREC 2006
Terabyte Track named page finding data set. Effectiveness is
measured in terms of reciprocal rank. 132

6.1 Training and test set mean average precision values for no retraining
and retraining. 141

6.2 Comparison of test set mean average precision for language modeling
(MRF-FI), BM25, MRF model using language modeling weighting
(MRF-SD), MRF model using BM25 weighting (MRF-BM25),
and MRF learned using our proposed feature selection algorithm
(MRF-FS). A † indicates a statistically significant improvement
over both the MRF-FI and BM25 models and a ‡ indicates a
significant improvement over the MRF-BM25 model. 145

xiv

7.1 Test set mean average precision for MRF-FI, MRF-SD, relevance
models (RM3), and latent concept expansion (LCE). The
superscripts α, β, and γ indicate statistically significant
improvements over MRF-FI, MRF-SD, and RM3,
respectively. 156

7.2 Test set precision at 10 for MRF-FI, MRF-SD, relevance models
(RM3), and latent concept expansion (LCE). The superscripts α,
β, and γ indicate statistically significant improvements over
MRF-FI, MRF-SD, and RM3, respectively. 157

7.3 Test set mean average precision values for multi-term concept LCE
experiments. 158

7.4 One and two term expansion concepts for the query price fixing
(ROBUST04 topic 622) and tax evasion indicted (ROBUST04
topic 650). Concepts are listed in descending order of P (e|Q) and
P (e1, e2|Q), respectively. 158

7.5 Fifteen most likely one, two, and three word concepts constructed
using the top 25 documents retrieved for the query hubble
telescope achievements on the ROBUST04 collection. 162

8.1 Test set mean average precision across a range of retrieval models.
The model parameters were trained to maximize mean average
precision. Bold value indicates the best technique that does not
make use of pseudo-relevance feedback. 168

8.2 Test set geometric mean average precision for across a range of
retrieval models. The model parameters were trained to maximize
mean average precision. Bold value indicates the best technique
that does not make use of pseudo-relevance feedback. 168

8.3 Test set precision at 10 across a range of retrieval models. The model
parameters were trained to maximize mean average precision.
Bold value indicates the best technique that does not make use of
pseudo-relevance feedback. 169

8.4 Test set precision at R (R-prec) across a range of retrieval models.
The model parameters were trained to maximize mean average
precision. Bold value indicates the best technique that does not
make use of pseudo-relevance feedback. 169

A.1 Overview of TREC collections and topics used in most of our
experiments. 176

xv

A.2 TREC data sets used in Chapter 4. The disk numbers refer to the
TREC volumes used to construct the index. 177

B.1 Summary of common information retrieval evaluation metrics, where
R(1, k) is defined in Equation B.1 and |R| is the total number of
judged relevant documents. 179

B.2 Overview of aggregate measures. For each aggregate measure we
show how it is computed. Here, N refers to the total number of
queries being aggregated and qi is the ith query in the set. Notice
that GMAP is zero if any query has an average precision of zero.
In order to correct this, AvgP’(qi) is defined to be
max(AvgP(qi), .00001). 180

xvi

LIST OF FIGURES

Figure Page

1.1 A summary of the three primary information retrieval paradigm
shifts. They include the TF shift (aboutness), the IDF shift
(informativeness), and the noise shift (noisiness). 7

2.1 An example spanning tree for five terms, rooted at D. 19

2.2 Indri’s inference network retrieval model . 27

2.3 Example Indri document representation for the document A B C A B.
The features correspond to the single terms A, B, C, and bigrams
“A A”, “A B”, “A C”, “B A”, “B B”, “B C”, “C A”, “C B”, and
“C C”, respectively. The function f takes a document and set of
features as input and outputs a document representation. 28

3.1 Examples of three ways to model the joint distribution P (Q,D) using
Markov random fields. 36

3.2 Example Markov random field model for three query terms under
various independence assumptions, including full independence
(left), sequential dependence (middle), and full dependence
(right). 38

3.3 Illustration showing how the full independence model generalizes
unigram language modeling and BM25 (top), and how the
sequential dependence model generalizes bigram language
modeling (bottom). 56

5.1 TREC topic number 744. 80

5.2 Training set mean average precision as a function of term and
window smoothing parameters using the sequential dependence
model on the AP data set. 94

5.3 Training set mean average precision as a function of term and
window smoothing parameters using the sequential dependence
model on the WSJ data set. 95

xvii

5.4 Training set mean average precision as a function of term and
window smoothing parameters using the sequential dependence
model on the ROBUST04 data set. 95

5.5 Training set mean average precision as a function of term and
window smoothing parameters using the sequential dependence
model on the WT10G data set. 96

5.6 Relationship between the number of documents in a collection and
the relative improvement in mean average precision of the
MRF-FD model over unigram language modeling (MRF-FI). Note
that the x-axis is log scaled. 97

5.7 Plot of average distance between sequential query terms for WT10G
data set. Coll represents the entire collection, nonrel the set of
judged non-relevant documents, and rel the set of judged relevant
documents. 101

5.8 Robustness of MRF-SD and MRF-FD models for the AP, WSJ,
ROBUST04, WT10G, and GOV2 test sets. The MRF-FI model is
used as the baseline by which the improvements are computed.
The evaluation metric used is average precision. 103

5.9 Mean average precision values plotted over MRF-SD parameter
simplex for AP, WSJ, WT10g, and GOV2 collections. 116

5.10 Example TREC named page finding topics. 119

5.11 Inlink count prior. 124

5.12 PageRank prior. 127

5.13 Robustness of the MRF-NP models for the 2005 and 2006 Terabyte
Track named page finding data sets. The LM-Mixture model is
used as the baseline by which the improvements were computed.
The evaluation metric used is reciprocal rank. 134

6.1 Mean average precision versus number of iterations for the training
and test sets of the AP, WSJ, ROBUST04, WT10G and GOV2
data sets. 143

7.1 Graphical model representations of relevance modeling (top), latent
concept expansion using single term concepts (middle), and latent
concept expansion using two term concepts (bottom) for a three
term query. 151

xviii

7.2 Histograms that demonstrate and compare the robustness of
relevance models (RM3) and latent concept expansion (LCE) with
respect to the MRF-FI model for the AP, WSJ, ROBUST04, and
WT10G data sets. 160

A.1 Example TREC document. 174

A.2 Example TREC topic. 175

A.3 Portion of a TREC relevance judgment file. The format of each line
is: query-id 0 doc-id judgment. Judgments of 0, 1, and 2 refer
to non-relevant, relevant, and highly relevant, respectively. 176

xix

CHAPTER 1

INTRODUCTION

1.1 From Archie to Google

Information retrieval is a dynamic discipline with a rich history. However, for

much of its history, it had little or no impact on people’s everyday lives. Many of the

earliest consumers of information retrieval technologies were government researchers,

scientists, and librarians. That began to change after the invention of the World Wide

Web (web) in the early 1990s.

Before the introduction of the web, a number of information sources were available

online. Most of the online information was published and controlled by government

organizations or academic institutions. It was uncommon for everyday citizens to use

these online systems, let alone publish their own content. The web revolutionized

the way that information was published. It allowed individuals and organizations to

create content that was instantly available and easy to access. It also provided a way

of linking content together, which was not possible with the older online systems. As

computing costs decreased and online popularity increased, the amount of information

available on the web exploded.

As more electronic documents started appearing online, a natural desire to search

the content arose. Various search tools were developed to help users find relevant

files and documents. The earliest Internet search tools, Archie, Gopher, Veronica,

and Jughead allowed users to search FTP servers. However, the popularity of FTP

waned after the introduction of the web. This ushered in a new era that gave rise to

web search engines. Unlike their predecessors, which were used by small fractions of

1

the population, web search engines such as Google are used every day by millions of

users across the globe. Therefore, what started as a small, relatively unknown field

of study, has evolved into an integral part of modern society.

1.2 The Academic and Industrial Perspectives

Yahoo and Google were both grown out of academic research projects. They

currently are the two most popular commercial web search engines in the United

States. Clearly, the academic research community, in the early days of the web,

was developing cutting edge search technologies. However, as the commercial search

engines came of age, it become increasingly difficult for the academic researchers to

keep up with the collection sizes and other critical research issues related to web

search. This caused a divide to form between the information retrieval research being

done within academia and industry.

There are several reasons for this divide. First, as commercial search engines

mature, they are able to collect more data in the form of query logs, click-through

patterns, and other types of user data which is invaluable to web search. The com-

panies have little incentive to release this data to academia, especially amid growing

privacy concerns. Second, commercial search engines have much more computing

power than most academic research institutions. Therefore, they are able to crawl

more web pages, build larger indexes, use real data streams, and experiment with

much more costly computations. Finally, commercial search engines are very pro-

tective of their search algorithms and techniques and do not typically publish their

findings in scholarly conferences and journals. This is not surprising, since reveal-

ing technical details of ranking functions may allow spammers and other malicious

entities to adversely influence search results.

To put things into perspective, let us compare academic and industrial collection

sizes. The Text REtrieval Conference (TREC), which was started in 1992, provides

2

a set of standard, reusable test collections (i.e., document collection, queries, and

relevance judgments) that most academic information retrieval researchers use when

evaluating retrieval systems. The largest TREC test collection, called GOV2, is a

2004 crawl of the .gov top level domain. It consists of approximately 25 million web

pages (428GB of text). In comparison, it is believed that Google has upwards of

25 billion items in its index, which is 1,000 times larger than GOV2. In addition,

many of the most widely used academic information retrieval models were initially

developed for test collections that consist of fewer than 1 million documents.

One of the goals of this work is to reduce the divide in understanding that exists

between academic and commercial information retrieval systems with respect to large

data sets. Many of the techniques and ideas developed here have been inspired by

large test collections, such as GOV2. While the GOV2 collection is admittedly not

web-scale, it is a significant and sizeable improvement over the test collections that

have been used to develop most of the current state of the art information retrieval

models.

1.3 Paradigm Shifts

As we just alluded to, large collections, such as those handled by commercial

search engines, provide a new set of challenges for information retrieval researchers.

In this work, we develop highly effective information retrieval models for both smaller,

classical data sets, and larger web collections. As we will show throughout this work,

the current state of the art academic retrieval models are not robust enough to achieve

consistently effective retrieval results on large collections.

Most of the these models are based on the so-called “bag of words” assumption.

Under this assumption, text (e.g., queries and documents) are represented as un-

ordered sets of terms. This means that any notion of term ordering is lost. For

example, under this representation, the texts the bear ate the human and the hu-

3

man ate the bear are identical. However, these pieces of text clearly have different

meanings. While this is an overly simplistic representation, very few have been able

to develop non-bag of words retrieval models that are consistently and significantly

better than the state of the art bag of words models. Many researchers over the past

few decades have tried in vain, but there has been very little success.

The ranking functions associated with bag of words retrieval models often consist

of some combination of term frequency (TF) and inverse document frequency (IDF).

The IDF component acts to discriminate between informative and non-informative

query terms. Those terms that have a high IDF are considered more informative,

because they rarely occur in the collection. On the other hand, terms that have a

low IDF are considered uninformative, since they occur in many documents. As the

number of documents in a collection increases, IDF becomes increasingly important

in order to discriminate between those documents that only contain non-informative

query terms and those that contain highly informative query terms.

On the other hand, the TF component, which is often normalized in some way

with respect to the document length, is used to discriminate between documents that

contain a query term several times and those that contain the term many times. This

makes the assumption that documents that contain more mentions of a given query

term are more “about” the given term and therefore are more likely to be relevant

to the query. As we will discuss shortly, this is a bad assumption, especially as

collection sizes increase and documents become noisier. The TF component becomes

more important as documents get longer, since query terms are unlikely to occur more

than one time in a very short document, and since long documents are more likely to

contain more diverse term occurrence statistics.

Therefore, the TF and IDF components used within bag of words ranking func-

tions, when combined together, discriminate along two dimensions – informativeness

4

(IDF) and aboutness (TF). However, when dealing with large web collections, a third

dimension that we call noisiness enters the picture.

All collections, even small ones that consist entirely of news articles, contain some

noise. However, large web collections are likely to contain abundant amounts of noise.

The standard TF and IDF features are not enough to overcome this noise. In fact,

these features may actually help amplify the noise in some cases. Let us consider the

query habitat for humanity run against the GOV2 collection. Using a state of the

art bag of words retrieval model, many of the top ranked results are relevant to the

request. However, there are several results very high in the ranked list that do not

contain a single occurrence of the term humanity. Instead, these documents contain

hundreds of occurrences of the high IDF term habitat. These documents are ranked

so highly because they contain many occurrences of a very high IDF term.

Documents that contain hundreds of occurrences of some high IDF term are going

to result in poor, noisy matches for most bag of words models based on TF and IDF.

Such documents may arise by coincidence, or a spammer who wishes to increase the

ranking of a given web page may “stuff” the page with such terms. In either case, it

is very undesirable for these documents to be ranked highly.

Another more subtle way that noise may be introduced into bag of words matches

happens when two or more query terms match a document, but the matches are

random or unrelated to the query. For example, in the habitat for humanity case,

consider a document that contains a paragraph that discusses habitat changes caused

by global warming and another paragraph that discusses the negative impacts of

global warming on humanity. Both the terms habitat and humanity will match this

document, but the matches are unrelated to the query. That is, the terms just

happened to match by chance. This is another example of noisy matches that can

arise in large collections. In fact, as collection size grows, so does the chance that any

two query terms will randomly match within some document.

5

Hence, new ranking function components, above and beyond TF and IDF must be

used in order to reduce the number of noisy matches. There are a few ways to address

this issue. First, one of the simplest ideas is to cap the TF component and not allow

it to grow unbounded. While this addresses some noise issues, it fails to address

the problem of randomly matching query terms. Second, in order to address the

so-called term stuffing problem, anti-spam techniques may be developed in order to

automatically detect malicious or misleading content. However, like capping TF, this

only addresses some of the noise issues. Finally, term proximity features may be used

in order to ensure that matches are not random and that they are somehow related to

the query. For example, these types of features could be used to promote documents

that contain the exact phrase habitat for humanity as opposed to those that simply

contain random occurrences of the terms habitat and humanity on their own. It is

this third option that we heavily explore within this work in order to overcome the

limitations imposed by TF and IDF alone. It is important to notice that by using

term position information, we are abandoning the bag of words assumption and move

to a richer, more realistic text representation.

Aboutness, informativeness, and noisiness reflect the three primary information

retrieval paradigm shifts. Here, a paradigm shift is a new way of approaching a

problem with a given set of characteristics. The paradigm shifts are summarized

in Figure 1.1. The figure plots three data sets (CACM, TREC Disks 1 and 2, and

GOV2) with respect to their average document length and the number of documents

in the collection. As the figure shows, the TF paradigm shift moves along the average

document length axis and the IDF shift moves along the number of documents axis.

We also see that the noise shift moves along both axes, but is only present for large

collections, such as GOV2.

We hypothesize that many of the previous attempts to go beyond the bag of words

assumption have failed because of the small data sets used. In fact, most, if not all,

6

n
u

m
b

e
r

o
f

d
o

cu
m

e
n

ts
TREC

Disks 1,2

GOV2

25M

noise filter shift

(e.g., proximity, spam)

IR Paradigm Shifts

avg. doc length

n
u

m
b

e
r

o
f

d
o

cu
m

e
n

ts
Disks 1,2

CACM

30 500 900

300

500K

tf shift

idf shift

Figure 1.1. A summary of the three primary information retrieval paradigm shifts.
They include the TF shift (aboutness), the IDF shift (informativeness), and the noise
shift (noisiness).

of the previous research on non-bag of words model have been evaluated on test

collections within the region shown in Figure 1.1. Poor, or inconclusive results, were

achieved because the data sets did not exhibit the characteristics necessary to exploit

the noise reducing features associated with non-bag of words models. Therefore, new

models that go beyond the bag of words assumption should be tested on large, noisy

data sets in order to properly evaluate their full potential.

1.4 A Robust Retrieval Model

In this work, we develop a robust statistical information retrieval model based on

Markov random fields. In particular, the model is designed to support the following

desiderata:

1. Support basic information retrieval tasks (e.g., ranking, query expansion, etc.).

2. Easily and intuitively model query term dependencies.

7

3. Handle arbitrary textual and non-textual features.

4. Consistently and significantly improve effectiveness over bag of words models

across a wide range of tasks and data sets.

The model we develop goes beyond the bag of words assumption in two ways.

First, the model can easily exploit various types of dependencies that exist between

query terms. This eliminates the term independence assumption that often accom-

panies bag of words models. Second, arbitrary textual or non-textual features can be

used within the model. Thus, it is possible to use simple features such as TF and

IDF, or more complex features, such as those based on term proximity. Other pos-

sible features include PageRank, inlink count, readability, spam probability, among

others. None of the current state of the art models allow arbitrary features to be

incorporated as easily as our model.

As we will show, combining term dependencies and arbitrary features results in

a very robust, powerful retrieval model. Within the model, we propose several ex-

tensions, such as an automatic feature selection algorithm and a query expansion

framework. The resulting model and extensions provide a flexible framework for

highly effective retrieval across a wide range of tasks and data sets. Our algorithm

consistently and significantly outperforms the current state of the art models, espe-

cially when applied to very large web data sets.

1.5 Outline

The remainder of this work is laid out as follows:

• Chapter 2 - Related Models – We survey related information retrieval mod-

els. We include both bag of words models, such as language modeling and

BM25, as well as models that have attempted to go beyond the bag of words

assumption, like n-gram language models, the Indri retrieval model, and others.

8

• Chapter 3 - A Markov Random Field Model for Information Retrieval

– We present the basics of our Markov random field (MRF) model for informa-

tion retrieval, including the theoretical underpinnings of the model and how to

use the model for ranking. In addition, we describe a novel way of compactly

representing textual features that we use throughout the remainder of the work.

• Chapter 4 - The Theory of Linear Feature-Based Models – We present

the theory of linear feature-based retrieval models, which is a broad class of

retrieval models. We show that our MRF model, when used for ranking, is an

instantiation of a linear-feature based model. Our theoretical analysis sheds

novel insights into the parameter space of such models. We describe a novel

parameter estimation technique for these methods and do a detailed literature

survey of other parameter estimation techniques that have been recently pro-

posed.

• Chapter 5 - Evaluation of the Basic MRF Model – We experimentally

evaluate the MRF model on ad hoc and web search tasks. Our results show

consistent and significant improvements in effectiveness over baseline bag of

words models on both tasks. We also examine the generalization properties of

the model. Our results show that estimated parameters generalize very well

both within and across collections.

• Chapter 6 - Automatic Feature Selection – We present a fully supervised,

automatic feature selection algorithm that can be used with the MRF model

or any feature-based model. The algorithm adds great flexibility to the MRF

model by removing the need to manually select features. We experimentally

evaluate various aspects of the algorithm and comparing it against models with

manually selected features. Our results show that the models automatically

9

learned using the algorithm are either indistinguishable from or significantly

better than models with manually chosen features.

• Chapter 7 - Latent Concept Expansion – We develop a powerful query

expansion framework for the MRF model. Our expansion technique is called

latent concept expansion. It allows arbitrary features and term dependencies

to be modeled both in the original query and the expansion concepts. This is

the first query expansion model ever developed that provides this type of flexi-

bility. Our results show that latent concept expansion significantly outperforms

relevance modeling, which is currently the state of the art query expansion

technique.

• Chapter 8 - Conclusions and Future Work – We summarize our contribu-

tions and provide a comprehensive table summarizing our primary results. In

addition, we discuss potential areas of future work.

1.6 Contributions

The following is a summary of our primary contributions:

1. Robust retrieval model. We develop a new, formally motivated, statistical

retrieval model based on Markov random fields that robustly and effectively

handles term dependencies and the combination of arbitrary features.

2. Better understanding of features for information retrieval. By modeling

dependencies between terms and encoding rich features, such as those based on

phrases and term proximity, we are able to better understand how and when

such features can improve retrieval effectiveness.

3. Novel parameter estimation technique. Our technique exploits the nature

of rank-equivalence and works to directly maximize the underlying retrieval

10

metric, which leads to better performance than maximizing the data likelihood

or margin. This avoids the problem of metric divergence.

4. Automatic model learning. We propose a supervised feature selection al-

gorithm that can be used to automatically learn highly effective models. This

eliminates the need for human experts to manually select model features on a

per-task basis.

5. Concept-based query expansion. Our retrieval model provides an elegant

mechanism for expanding queries using multi-term concepts in the context of

relevance or pseudo-relevance feedback.

6. State of the art retrieval effectiveness. Our model shows consistent and

significant improvements in retrieval effectiveness over current state of the art

retrieval models on ad hoc retrieval and web search tasks.

11

CHAPTER 2

RELATED WORK

In this chapter we survey information retrieval models that are relevant to our

work. There is no standard or formal way of describing retrieval models. However,

most models can be uniquely described in terms of their document representation,

query representation, and a ranking function. In the most common scenario, the

ranking function takes a document and query representation as input, and outputs a

score that is indicative of how relevant the document is to the query.

Throughout our discussion we will refer to documents, queries, and relevance.

However, it should be noted that these terms are actually intended to be used quite

generally. For example, in an automatic question answering system, a ‘document’ is

an answer, a ‘query’ is a question, and ‘relevance’ is defined according to whether or

not the answer, with regard to the question, is correct [112]. Other examples include

image retrieval, where the ‘documents’ are images, and a query-query similarity task,

where the ‘documents’ are queries [67, 69].

2.1 Bag of Words Models

We begin by looking at so-called bag of words retrieval models. As we will see,

these models make use of many different types of document representations, query

representations, and ranking functions. However, the one thing that all of these

models have in common is the fact that term order is ignored when constructing

the document and query representations. That is, given a document A and Aπ, a

permutation of A, the representations of A and Aπ are identical.

12

This assumption is obviously overly simple. It conflates many texts that have very

different semantic meanings into a single form. For example, the texts the human ate

the bear and the bear ate the human have very different semantic meanings, but are

represented the same way under the bag of words assumption. While it is not known

how the human brain represents text, it is unlikely that term ordering is completely

ignored. Indeed, term orderings play an important role in semantics. Therefore, it

is difficult to expect a computer, using such a simple representation, to determine

relevance as accurately as a human assessor can.

Despite the fact that the bag of words assumption is so simple, some believe that it

is a reasonable first approximation [57, 97]. For example, in 1988, Salton and Buckley

stated:

In reviewing the extensive literature accumulated during the past 25
years in the area of retrieval system evaluation, the overwhelming evidence
is that the judicious use of single term identifiers is preferable to the
incorporation of more complex entities...

Although this was written in 1988, there has been little, if any, conclusive evidence

to discredit this claim.

Throughout this work, we argue, and aim to validate experimentally, that models

based on the bag of words assumption are inferior to models that consider richer

representations. We acknowledge that single term identifiers are likely to be the

most powerful and discriminative types of identifiers. However, we propose a num-

ber of other identifiers (features) that can be used to significantly improve retrieval

effectiveness well beyond the state of the art bag of words models discussed in this

chapter.

Finally, one important thing to note is that the bag of words assumption does

not force the underlying model to treat term occurrences as independent events. For

example, it is possible for bag of words models to incorporate term co-occurrence

13

statistics into the ranking function, thereby modeling one very basic form of term

dependence [7, 110, 116]. We return to the subject of term dependence models shortly.

2.1.1 Binary Independence Retrieval Model

We begin our discussion of bag of words models by describing the Binary Inde-

pendence Retrieval (BIR) model, which is one of the earliest probabilistic models for

information retrieval [92]. The model is also known by many other names includ-

ing the Okapi model, the City model, the Robertson-Sparck Jones model, and the

classical probabilistic model.

Under the BIR model, documents are represented as binary vectors d indexed over

a fixed vocabulary V (i.e., d ∈ {0, 1}|V|). The vocabulary typically consists of single

terms, but may also include more general concepts, such as phrases. If a term, w ∈ V,

occurs one or more times in a document, then dw = 1, otherwise dw = 0. Documents

are then ranked according to the Probability Ranking Principle (PRP) [87].

Probability Ranking Principle. If a reference retrieval system’s re-
sponse to each request is a ranking of the documents in the collection in
order of decreasing probability of relevance to the user who submitted the
request, where the probabilities are estimated as accurately as possible
on the basis of whatever data have been made available to the system for
this purpose, the overall effectiveness of the system to its user will be the
best that is obtainable on the basis of those data.

The PRP states that documents should be ranked in decreasing order of probability of

relevance given all of the available evidence. Thus, documents are ranked according to

P (R = 1|d), whereR is a binary random variable that models relevance. Also, in order

to make parameter estimation feasible, the model assumes that the term occurrence

variables (dw) are conditionally independent, given a relevance class. Using these

assumptions, we now derive the BIR model’s ranking function:

14

P (R = 1|d) rank
=

P (R = 1|d)
P (R = 0|d)

=
P (d|R = 1)P (R = 1)

P (d|R = 0)P (R = 0)

rank
=

P (d|R = 1)

P (d|R = 0)

=
∏

w∈V

P (dw = 1|R = 1)δwP (dw = 0|R = 1)1−δw

P (dw = 1|R = 0)δwP (dw = 0|R = 0)1−δw

=
∏

w : δw=1

P (dw = 1|R = 1)P (dw = 0|R = 0)

P (dw = 0|R = 1)P (dw = 1|R = 0)

∏

w∈V

P (dw = 0|R = 1)

P (dw = 0|R = 0)

rank
=

∑

w : δw=1

log
P (dw = 1|R = 1)P (dw = 0|R = 0)

P (dw = 0|R = 1)P (dw = 1|R = 0)
(2.1)

where
rank
= denotes rank equivalence1 and δw is 1 if term w occurs in the document

and 0 otherwise.

Although the model, at first glance, appears to make the relatively strong as-

sumption of conditional independence, the model is actually much less restrictive [24].

Instead, as Cooper shows, the model allows dependencies to exist between terms, but

requires the strength of the dependence to be equal in both the relevant (R = 1) and

the non-relevant (R = 0) sets of documents, thereby linking the dependence. There-

fore, instead of assuming conditional independence, the model actually assumes linked

dependence. Even though this is a weaker assumption, it is still restrictive and unlikely

to hold, in general.

One criticism of the model is that there is no explicit query involved. Rather,

the model assumes that P (R = 1|d) is implicitly conditioned on some underlying

information need. This simplifies the model to a certain extent, but raises certain

theoretical issues when researchers try to incorporate aspects of the query into the

model.

1Two functions are defined to be rank equivalent if they guaranteed to produce the same ordering
of items when sorted according to function value. Monotonic transforms, scaling (by a constant),
and translation (by a constant) are all examples of rank-preserving operations.

15

In order to use the model for ranking, P (dw = 1|R = 0) and P (dw = 1|R = 1)

must be estimated for all w. This is a total of 2|V| parameters, which for large

vocabularies, is an immense number of parameters. We now describe how these

parameters are typically estimated when we have relevance information and when we

do not.

2.1.1.1 Estimation with Relevance Information

If we are given relevance information for a given information need then estimation

is straightforward. Assume we are given a set of documents that are known to be

relevant to the information need, as well as a set that are known to be non-relevant.

In the simplest case, we can get this information from a user who has manually judged

a set of documents. Using this information, we obtain the following estimates:

P (dw = 1|R = 0) =
nrw + αnr

NR + αnr + βnr

(2.2)

P (dw = 1|R = 1) =
rw + αr

R + αr + βr

(2.3)

where nrw is the number of judged non-relevant documents that term w occurs in, NR

is the total number of judged non-relevant documents, rw is the number of judged

relevant documents term w occurs in, R is the total number of documents judged

relevant, and α and β are smoothing parameters that avoid zero probabilities and

help overcome data sparsity. Historically, the smoothing parameters have been set to

αnr = αr = 0.5 and βnr = βr = 0, although there is no reason to believe these are the

optimal settings.

2.1.1.2 Estimation without Relevance Information

As we just showed, estimation with relevance information is rather straightfor-

ward. However, for most queries, a system will not have access to relevance informa-

tion. Not surprisingly, parameter estimation under this scenario proves to be much

16

more challenging. In order to use the model when there is no relevance information,

a number of assumptions must be made [28, 94]. These assumptions include:

1. P (dw = 1|R = 0) = P (dw = 1|R = 1) for all terms that do not occur in the

query.

2. P (dw = 1|R = 1) = 0.5 for all terms that occur in the query.

3. P (dw = 1|R = 0) = dfw+αnr

N+αnr+βnr
for all terms that occur in the query, where dfw

is the number of documents that w occurs in and N is the number of documents

in the collection.

The first two assumptions are poor and very unlikely to hold true. However, they

greatly simplify how the ranking function is computed, which is necessary, given the

lack of relevance information.

The third assumption is the most reasonable. It assumes that we have observed no

relevant documents and that every document in the collection is non-relevant. This

information is treated as real relevance information and plugged into Equation 2.2 to

derive the estimate of P (dw = 1|R = 0) shown above. Of course, this assumption is

not completely accurate. However, it has been shown that the collection, as a whole,

acts as a good proxy for modeling the set of non-relevant documents.

After invoking these assumptions, the BIR model ranking function simplifies to

the following form:

P (R = 1|d) rank
=

∑

w : δw=1∧w∈Q

log
N − dfw + 0.5

dfw + 0.5
(2.4)

where w ∈ Q indicates that term w occurs in the query and we set αnr = βnr = 0.5,

which is commonly used in this scenario. The term inside of the summation is the well-

known Okapi IDF. This derivation provides one of the many theoretical justifications

for the importance of IDF [88].

17

2.1.1.3 Tree Dependence Model

The tree dependence model is one of many extensions that have been proposed for

the BIR model [110]. It attempts to model first order dependencies between terms

by making use of the Chow expansion [19]. The Chow expansion is a method for

approximating a joint distribution in terms of first order dependencies.

The tree dependence model constructs a weighted, undirected graph G for both

the relevant and non-relevant sets, such that the vertices of G are the terms in the

vocabulary, there exists an edge between every pair of terms, and the edge weights

are the expected mutual information between the two terms, which is computed as:

I(t1, t2|R) =
∑

δ1∈{0,1}

∑

δ2∈{0,1}

P (dt1 = δ1, dt2 = δ2|R) log
P (dt1 = δ1, dt2 = δ2|R)

P (dt1 = δ1|R)P (dt2 = δ2|R)

(2.5)

where t1 and t2 are terms, and P (dt|R) and P (dt1 , dt2|R) are typically estimated using

relevance information.

This graph is then used in the following way. First, a maximum spanning tree

is constructed from the graph. Next, an arbitrary node is chosen as the root, which

allows all of the edges to be directionalized. Finally, the directed graph is used to

compute a first order approximation to the joint distribution over all of the terms by

assuming that a term is dependent on its parent term2.

Figure 2.1 show an example maximum spanning tree over a graph with five terms.

As we see, the root node is term D. The first-order approximation of the joint

distribution can then be written as:

P (A,B,C,D,E) = P (D)P (A|D)P (C|D)P (B|C)P (E|C) (2.6)

2The root node, which has no parents, is assumed to not be dependent on any other terms.

18

A

B

C

D
E

Figure 2.1. An example spanning tree for five terms, rooted at D.

In the context of the BIR model, this approximation can be used to compute

P (d|R = 0) and P (d|R = 1), which results in the following ranking function:

P (R = 1|d) rank
=

P (d|R = 1)

P (d|R = 0)

=
∏

w∈V

P (dw = 1|dπw
= δπw

, R = 1)δwP (dw = 0|dπw
= δπw

, R = 1)1−δw

P (dw = 1|dπw
= δπw

, R = 0)δwP (dw = 0|dπw
= δπw

, R = 0)1−δw

rank
=

∑

w : δw=1

log
P (dw = 1|dπw

= δπw
, R = 1)P (dw = 0|dπw

= δπw
, R = 0)

P (dw = 0|dπw
= δπw

, R = 1)P (dw = 1|dπw
= δπw

, R = 0)

(2.7)

where πw is the parent term of w in the spanning tree.

Parameter estimation in the tree dependence model is even more difficult than in

the BIR model because the data sparseness problem is only exacerbated by the large

number of conditionals that must be estimated. Furthermore, the model has never

shown consistent improvements in effectiveness over the BIR model [110]. Therefore,

the model is interesting mostly from a theoretical and historical perspective.

2.1.2 2-Poisson Model

As we just explained, the BIR model represents documents as binary vectors.

This representation can only capture whether or not a term occurs in a document. It

19

ignores the number of times the term occurs (term frequency), which, as we discussed

in Chapter 1, is important, especially as document lengths increase.

The 2-Poisson model was proposed to overcome this limitation [48, 93]. Under

this model, documents are represented as vectors of term frequencies. The vector is

indexed over a fixed vocabulary V , and thus d ∈ N
|V| for every document d.

The 2-Poisson ranking function is derived analogously to the BIR ranking function,

as follows:

P (R = 1|d) rank
=

P (d|R = 1)

P (d|R = 0)

=
∏

w∈V

P (dw = tfw|R = 1)

P (dw = tfw|R = 0)

=
∏

w : tfw>0

P (dw = tfw|R = 1)P (dw = 0|R = 0)

P (dw = 0|R = 1)P (dw = tfw|R = 0)

∏

w∈V

P (dw = 0|R = 1)

P (dw = 0|R = 0)

rank
=

∑

w : tfw>0

log
P (dw = tfw|R = 1)P (dw = 0|R = 0)

P (dw = 0|R = 1)P (dw = tfw|R = 0)
(2.8)

where term frequencies, as before, as assumed to be conditionally dependent3 and tfw

denotes the number of times that term w occurs in the document.

To use the model, P (dw = tfw|R = 0) and P (dw = tfw|R = 1) must be esti-

mated. As its name implies, the 2-Poisson model assumes that term frequencies are

distributed according to a mixture of two Poissons, as given by:

P (dw = tfw|R = 1) = P (E = 1|R = 1)
e−αwα

tfw
w

tfw!
+ P (E = 0|R = 1)

e−βwβ
tfw
w

tfw!
(2.9)

P (dw = tfw|R = 0) = P (E = 1|R = 0)
e−αwα

tfw
w

tfw!
+ P (E = 0|R = 0)

e−βwβ
tfw
w

tfw!
(2.10)

where αw and βw are parameters of the Poisson distributions, and E is a binary

variable that represents eliteness [48, 89].

3As in the BIR model, the weaker linked dependence assumption holds.

20

Eliteness is a hidden, or latent, variable that reflects whether or not a given term is

actually “about” a document or not. Therefore, elite terms are “about” a document,

and non-elite terms are not. Given the subjective nature of its definition, it is very

difficult to quantify or actually model eliteness in practice. For this reason, the model

is interesting purely from a theoretical point of view.

2.1.3 BM25 Model

The BM25 model, proposed by Robertson and Walker, is an empirical, hand-

crafted approximation of the 2-Poisson model [89]. It was first introduced at TREC

in 1995, and has been widely used ever since [90]. The ranking function is given by:

P (R = 1|d) ≈
∑

w∈Q∩d

tfw,Q
(k1 + 1)tfw,d

k1

(

(1− b) + b
|d|

|d|avg

)

+ tfw,d

log
N − dfw + 0.5

dfw + 0.5
(2.11)

where tfw,Q is the number of times term w occurs in the query, tfw,d is the number

of times term w occurs in the document, |d| is the number of terms in the document,

|d|avg is the average document length, N is the number of documents in the collection,

dfw is the number of documents term w occurs in the collection, and k1 and b are

model parameters.

The model is very simple to implement and, with carefully chosen model param-

eters, has been shown to consistently achieve state of the art effectiveness. Unfor-

tunately, the model, despite being inspired by the 2-Poisson model, is heuristic and

has no built-in mechanism for modeling term dependencies. It has been shown that

it is possible to incorporate query independent features, such as PageRank into the

model [26], as well as term proximity information [18], However, these improvements

are heuristic and are unrelated to the assumed underlying 2-Poisson model. Further-

more, there is no convenient, formally motivated framework for easily adding other

types of features to the model, which limits the usefulness of the model.

21

2.1.4 Unigram Language Models

Language modeling, a statistical technique first applied to speech recognition [96],

has also been successfully applied to information retrieval [84]. Since its introduction,

it has grown in popularity and has been proven to be a robust, highly effective retrieval

model. In the context of information retrieval, language models are statistical models

of text generation. In this section we will describe the simplest type of language

model, the unigram model, which is based on the bag of words assumption. Later,

we describe more complex language models.

The most common strategy for using language models for information retrieval is

called the query likelihood approach. Given a query Q, documents are ranked accord-

ing to the likelihood that the query was generated, given document D as evidence.

Typically, for the sake of smoothing the document model, a Bayesian estimate is used.

Using the approach, documents are ranked according to:

P (Q|D) =
∏

q∈Q

P (q|D)

=
∏

q∈Q

∫

θD

P (q|θD)P (θD|D)

∝
∏

q∈Q

∫

θD

P (q|θD)P (D|θD)P (θD) (2.12)

where the unigram language model (θD) is typically a multinomial distribution over

a fixed vocabulary [101]. In addition, for computational simplicity, it is assumed that

P (θD) is Dirichlet. This is typically called Bayesian or Dirichlet smoothing [123].

Under these assumptions, we derive the following estimate for P (w|D):

P (w|D) =
tfw,D + µP (w|C)

|D|+ µ
(2.13)

where it is assumed that the Dirichlet parameters are αw = µP (w|C), where µ is a

model hyperparameter and P (w|C) = cfw

|C|
, with cfw being the number of times term

22

w occurs in the collection and |C| is the total number of terms in the collection. Using

this estimate, documents are then ranked according to:

P (Q|D)
rank
=

∑

q∈Q

log
tfw,D + µP (w|C)

|D|+ µ

rank
=

∑

q∈Q∩D

log

tfw,D+µP (w|C)

|D|+µ

µP (w|C)
|D|+µ

+
∑

q∈Q

log
µP (w|C)

|D|+ µ

rank
=

∑

q∈Q∩D

log

[

1 +
tfw,D

µ
· |C|
cfw

]

− |Q| log(|D|+ µ) (2.14)

which can be interpreted as another variant on the standard tf.idf formula with built-

in document length normalization.

Although we described Bayesian smoothing here, it should be noted that many

other types of smoothing are possible [123, 124, 125]. Also, distributions other than

the multinomial have been proposed for modeling documents and queries, such as the

multiple-Bernoulli distribution [68].

Even though language modeling is more formally motivated than BM25, the rank-

ing functions are quite similar, with both relying on the standard tf , idf , and docu-

ment length normalization components. Many of the problems with BM25 are also

carried over to this model. For example, language models are models of text gener-

ation and therefore it is difficult to incorporate non-textual features into the model.

Arbitrary query independent features are often encoded using a document prior [54],

but this is not applicable to query dependent features. One possible solution is to

use a general Näıve Bayes model, but such a model, by its very nature, is incapable

of modeling term dependencies. As we will soon show, there have been a number of

models proposed to address this problem using more complex language models.

2.1.5 Other Bag of Words Models

The axiomatic approach to retrieval [37] and the divergence from randomness

model [2] are two recently proposed bag of words retrieval models. The ranking

23

functions of these two models are variants on the tf.idf theme. While the models

shed interesting insights into retrieval modeling, they have not been shown to be

significantly better or more flexible than language modeling or BM25.

The tree dependence model was one of the first bag of words models that at-

tempted to capture the dependence that exists between terms. Several other bag of

words models have been proposed to capture dependencies, as well. Early examples

include the Bahadur Lazarsfeld expansion (BLE) [86] which is an exact, but computa-

tionally intensive, method of modeling high order dependencies, and the Generalized

Dependence Model, which generalizes both the tree dependence model and the BLE

expansion [119].

Other examples include latent semantic analysis [31, 49], term association mod-

els [7, 38, 102, 116], cluster-based language models [33, 55, 61], topic models [8, 9, 44,

115], and pseudo-relevance feedback [34, 58, 122].

Despite the increased complexity, many of these have failed to yield substantial

improvements in effectiveness. Several of the models, including cluster-based lan-

guage modeling and some of the topic models, have shown significant improvements

in retrieval effectiveness. However, these models are often computationally intensive,

making them impractical to apply to web-scale collections. The model that we pro-

pose in this work does not require any expensive computations and can easily be

applied to very large collections. In addition, it allows other types of term depen-

dence features, beyond simple co-occurrence statistics, to be used, thus making it

more robust and practical for a wide range of tasks and data sets.

2.2 Models That Go Beyond the Bag of Words Assumption

We now describe a set of models that go beyond the bag of words assumption.

These models are typically more complex, less efficient, and less effective. For these

reasons they are not widely used within the information retrieval community. How-

24

ever, it is important to describe the breadth of work done in this area in order to

provide a clear picture of the difficulty involved with developing highly effective mod-

els that go beyond the bag of words assumption.

2.2.1 n-Gram Language Models

In this section we describe n-gram language models (for n > 1). These models

are simple generalizations of the unigram language model approach that take context

into account. That is, n-gram language models generate terms by conditioning on the

previous n−1 terms encountered. In a unigram model, generating the term Lincoln is

equally likely regardless of the previous term. In a bigram model (n = 2), Lincoln has

a higher likelihood of being generated after president than after brick, for example.

Therefore, n-gram models capture the sequential structure of language generation.

As with unigram language models, documents are ranked according to query like-

lihood, which is computed as:

P (Q|D) =

|Q|
∏

i=1

P (qi|qi−1, . . . , qi−n+1, D) (2.15)

where P (qi|qi−1, . . . , qi−n+1, D) can be estimated in a number of ways [41, 101, 105],

many of which include some form of backoff to a unigram model. One way of esti-

mating bigram probabilities, from [41], is:

P (wi|wi−1, D) = (1− λ1)

[

(1− λ2)
tfwi,wi−1,D

tfwi−1,D

+ λ2
tfwi,D

|D|

]

+

λ1

[

(1− λ3)
cfwi,wi−1

cfwi−1

+ λ3
cfwi

|C|

]

(2.16)

where λ1, λ2, and λ3 are free parameters that control the smoothing.

Gao et al. showed that this model consistently outperformed unigram language

models across a number of data sets using description-length queries [41]. Unfortu-

nately, the model, as described, performs poorly on title-length queries. The model

25

is a generalization of Jelinek-Mercer smoothing, which is known to work well on

longer queries [125]. Therefore, the model must be adjusted to be more like Dirichlet

smoothing in order to perform well on title queries. This can be achieved by setting

λ1 = µ1

µ1+|D|
. We note that this modification does not follow naturally or formally

from some underlying model. Instead it is a heuristic modification that only works

because it makes the ranking function more like the Dirichlet ranking function.

Although n-gram language models capture the relationship between terms better,

they are still not adequately robust for our needs. One criticism of such models is

that they rely on evidence from the previous n − 1 terms, when in fact the next

n−1 terms might provide just as strong evidence. Consider the text white house rose

garden. In a reasonable bigram language model of general English, P (house|white)

would be assigned a high probability, but P (rose|house) would not. Therefore, under

the bigram model, the likelihood of this sequence may actually be underestimated.

However, conditioning on both past and future words could overcome such a problem.

It is also noted that n-grams are typically overly strict, in that they do not allow the

modeling of longer-range, unordered dependencies, such as the fact that two terms

tend to often appear, not necessarily in order, within close proximity to each other.

As we will show, our model is capable of handling a wide range of dependencies,

including those that n-gram language models are not capable of.

2.2.2 Indri Inference Network Model

The retrieval model implemented in the Indri search engine [107] is an enhanced

version of the model described in [64], which combines the language modeling [101]

and inference network [109] approaches to information retrieval. The resulting model

allows rich, structured queries to be evaluated using language modeling estimates

within the network. Figure 2.2 shows a graphical model representation of the net-

work. Within the model, documents are ranked according to P (I|D,α, β), the belief

26

D

θtitle θbody θh1

α,βtitle

α,βbody

α,βh1

r1 rN… r1 rN… r1 rN…

q1 q2

I

Figure 2.2. Indri’s inference network retrieval model

the information need I is met given document D and hyperparameters α and β as

evidence.

2.2.2.1 Document Representation

Typically, in the language modeling framework, documents are represented as a

sequence of terms. Based on this sequence, a multinomial language model over the

vocabulary is estimated. However, it is often the case that we wish to model more

interesting text phenomenon, such as phrases or the absence of a term. Therefore,

a different representation scheme is necessary. In the Indri model, documents are

represented as multisets of binary feature vectors. Given a document, a feature vector

is extracted for every position within the document. Figure 2.3 provides an example

representation using this scheme. As the figure shows, the document is represented by

a set of five vectors, one for each position within the document. This representation

is very general and provides a way of modeling almost arbitrary textual features.

27

f(A B C A B,

A

B

C

AA

AB

AC

BA

BB

BC

CA

CB

CC

) =

1
0
0
0
1
0
0
0
0
0
0
0

,

0
1
0
0
0
0
0
0
1
0
0
0

,

0
0
1
0
0
0
0
0
0
1
0
0

,

1
0
0
0
1
0
0
0
0
0
0
0

,

0
0
1
0
0
0
0
0
0
0
0
0

Figure 2.3. Example Indri document representation for the document A B C A B.
The features correspond to the single terms A, B, C, and bigrams “A A”, “A B”, “A
C”, “B A”, “B B”, “B C”, “C A”, “C B”, and “C C”, respectively. The function f

takes a document and set of features as input and outputs a document representation.

This representation moves away from modeling text towards modeling features of

text. Throughout the remainder of this section we refer to such models as language

models, although they really are better described as language feature models.

2.2.2.2 Language Models

Since the document event space is binary, it is no longer appropriate to estimate

multinomial language models for each document. Instead, multiple-Bernoulli models

are estimated, as in Model B of [68]. This overcomes the theoretical issues encountered

in [64]. Note that the multiple-Bernoulli model imposes the assumption that the

features (ri’s) are independent, which of course may be a poor assumption depending

on the feature set.

A Bayesian approach is taken and a multiple-Beta prior is imposed over the dis-

tribution of language models (θ). The Beta is chosen for simplicity, as it is the

conjugate prior to the Bernoulli distribution. Thus, P (D|θ) is distributed according

to Multi−Bernoulli(θ) and P (θ|α, β) is distributed according to Multi−Beta(α, β).

28

Hence, our belief at node θ is computed as:

P (θi|D,α, β) =
P (D|θi)P (θi|αi, βi)
∫

θi
P (D|θi)P (θi|αi, βi)

= Beta(#(ri, D) + αi, |D| −#(ri, D) + βi) (2.17)

for each i where #(ri, D) is the number of times feature ri is set to 1 in document

D’s multiset of feature vectors.

Such a model is estimated using the entire document text. Additionally, if a

document is structured, as HTML, SGML, and XML documents are, then language

models can be estimated for each field. To do so, we treat all of the text in that

appears within a given field as a pseudo-document. For example, a model can be

estimated for all of the text that appears within the h1 tags of a web page document.

2.2.2.3 Representation Nodes

The ri nodes correspond to document features that can be represented in an Indri

structured query. There is a one-to-one correspondence between ri nodes and the

features used to represent the document. Therefore, the ri nodes represent binary

events that feature i is observed.

Indri implements a number of textual features, including single terms, #N (or-

dered window N), and #uwN (unordered window N). Please refer to [64] for more

details on these operators.

Using the framework developed thus far, the belief at a given representation node

is computed as:

P (ri = 1|D,α, β) =

∫

θi

P (ri = 1|θi)P (θi|D,αi, βi)

= E[P (ri|θi)]

=
#(ri, D) + αi

|D|+ αi + βi

(2.18)

29

Furthermore, selecting αi = µP (ri = 1|C) and βi = µ(1 − P (ri = 1|C)) results in

the multiple-Bernoulli model equivalent of the multinomial model’s Dirichlet smooth-

ing [123] estimate:

P (ri|D,α, β) =
#(ri, D) + µP (ri|C)

|D|+ µ
(2.19)

where µ acts as a tunable smoothing parameter.

2.2.2.4 Query Nodes

The query node operators are soft probabilistic operators that are used to combine

evidence within the network. The operators are primarily used to combine evidence

from representation nodes and other query nodes. The operators implemented in

Indri are #combine (same as #and), #weight (same as #wand), #or, #not, #sum,

#wsum, and #max [64].

The information need node, I, is also a query node that acts to combine all of

the evidence of the query into a single belief. It is this belief (i.e., P (I = 1|D,α, β))

that is used to rank documents. Therefore, the ranking function is defined in terms

of query and representation nodes. For example, consider the following Indri query:

#weight(1.0 #or(american #1(united states)) 2.0 presidents)

For this query, the resulting ranking function would first compute beliefs for american

and #1(united states), then combine the beliefs using the probabilistic #or operator.

The belief of this #or operator and the belief of presidents would be combined using

the probabilistic #weight operator to produce the belief that the information need is

satisfied. Within the inference network framework, queries are not explicitly defined.

Instead, a structured query is used to construct a query network, which encodes a

user’s information need.

Finally, we note that, since language modeling probabilities are used within the

network, the #wsum operator no longer makes sense. Instead, the #combine (#and)

and #weight (#wand) operators are more appropriate, since they produce an idf

30

effect [64]. It can be shown that the Indri query #combine(q1 . . . qN) using the

estimates just described returns exactly the same ranked list as the query q1 . . . qN

using the traditional (multinomial with Dirichlet smoothing) query likelihood model.

2.2.2.5 Explicit vs. Implicit Query Generation

The Indri retrieval model can be used in two ways. First, given a simple keyword

query, a system can be developed to convert the query into a structured Indri query.

This process acts to transform the simple query into a richer representation. For

example, phrases, synonyms, or task-specific operators may be automatically added

to the query in order to improve effectiveness over the simple keyword query. The

Indri retrieval model was successfully used in this capacity during the 2004-2006

TREC Terabyte Tracks [71, 72, 70], and the 2005 TREC Robust Track [66].

Alternatively, users can use the query language to manually construct complex

queries. It has been shown that intelligently constructed manual queries can signifi-

cantly outperform automatically generated queries [64]. However, the query language

is too complex for novice users to use successfully. Only expert users, such as infor-

mation analysts and librarians, are likely to benefit from such a query language. For

this reason, algorithmic query construction is important.

Despite its success, the Indri retrieval model does not provide a formal mecha-

nism for learning how to combine various types of evidence, making use of arbitrary

evidence, or automatically converting a short keyword query into a rich structured

query. The model that we present in this work is inspired by the Indri retrieval

model, and attempts to overcome some of its limitations. As we will show, our pro-

posed model does not require users to use a complex query language. It allows users

to enter their information needs as short, keyword queries. Furthermore, the model

can incorporate arbitrary textual and non-textual evidence, automatically learn the

31

best set of features to extract from the query, and provides a framework for learning

how to combine the various types of evidence.

2.2.3 Other Models That Go Beyond the Bag of Words Assumption

There have been many models proposed to that go beyond the bag of words

assumption [20, 29, 27, 35, 30]. We now briefly highlight several of these models.

Fagan examines how to identify and use non-syntactic (statistical) phrases [35].

Fagan identifies phrases using factors such as the number of times the phrase occurs

in the collection and the proximity of the phrase terms. His results suggest no single

method of phrase identification consistently yields improvements in retrieval effective-

ness across a range of collections. For several collections, significant improvements in

effectiveness are achieved when phrases are defined as any two terms within a query or

document with unlimited proximity. That is, any two terms that co-occurred within

a query or document were considered a phrase. However, for other collections, this

definition proved to yield marginal or negative improvements.

Work done by Croft et al. shows similar results [29]. Their results showed phrases

formed with a probabilistic AND operator slightly outperformed proximity phrases.

The probabilistic AND operator boosts the scores of documents where the phrase

terms co-occur. Therefore, little benefit was shown as the result of modeling term

proximity.

In addition to the n-gram language models we described, several other language

model variants have been proposed that attempt to model term dependencies [41, 77].

The dependence language model presented by Gao et al. in [41] showed consistent im-

provements over a baseline query likelihood system on a number of TREC collections.

However, the model uses a link structure for each query which is not straightforward

to construct. Our proposed model does not require a query link structure to be con-

32

structed. However, if such information is available, it can easily be incorporated into

the model.

Recently, Mishne and de Rijke explored the use of proximity information to im-

prove web retrieval [73]. Our model shares many closely related insights. Despite the

high level similarity, the details of the models differ greatly, with our model allowing

more general query dependencies and features to be considered in a more formally

well-grounded framework.

Therefore, there have been many models proposed to go beyond the bag of words

assumption, but none of them have allowed the use of arbitrary features, easy model-

ing of term dependencies, and yielded consistent, significant improvements in retrieval

effectiveness. The model that we propose in the next chapter combines and gener-

alizes the best aspects of these previous models within a robust, effective retrieval

framework.

2.3 The Current State of the Art

Despite the large number of attempts to go beyond the bag of words assumption,

there have been very few, if any, models that have been proven to be consistently

better than the current best bag of words models (i.e., language modeling and BM25).

In fact, strong evidence that BM25 and language modeling are considered the state

of the art retrieval models comes from looking at the models used by participants

in recent years at TREC. Outside of several obscure, poor performing models, a

majority of participant used either BM25 or language modeling, with some additional

task-specific engineering added on top. Therefore, little progress has been made

in advancing the state of the art of retrieval models since the advent of language

modeling and BM25 a decade ago.

33

CHAPTER 3

A MARKOV RANDOM FIELD MODEL FOR
INFORMATION RETRIEVAL

In this chapter we introduce our Markov random field retrieval model. Only the

basics of the model are covered in this chapter. Subsequent chapters will go into more

detail and describe various extensions of the basic model.

3.1 Modeling Relevance

We begin by describing what we seek to model. The four primary variables in

most information retrieval systems are users (U), queries (Q), documents (D), and

relevance (R). We define our event space to be U × Q × D and define relevance,

R ∈ R, to be a random variable over U × Q × D. Thus, some relevance value is

associated with every user, query, document tuple. Other factors, such as time and

context are ignored.

These variables interact in real information systems in the following way. Users

submit queries to the system and are presented a ranked list of documents. Some

of the documents in the ranked are relevant, while others are non-relevant. Suppose

that we were to collect a list of query/document pairs (Q,D), such that some user

found document D relevant to query Q. Imagine that such a list was collected across

a large sample of users. The resulting list can be thought of as a sample from some

underlying population of relevant query/document pairs that are aggregated across

34

users and conditioned on relevance. This, is then, a relevance distribution1, which

is similar in spirit to the one proposed by Lavrenko [57]. It is this distribution,

P (Q,D|R = 1), the joint distribution over query and document pairs, conditioned

on relevance, that we focus on modeling. For notational convenience, we drop the

explicit conditioning on relevance (i.e., R = 1) throughout the remainder of this work,

unless otherwise noted.

3.2 MRFs for IR

There are many possible ways to model a joint distribution. In this work, we

choose to use Markov random fields. Markov random fields, sometimes referred to

as undirected graphical models, are commonly used in the statistical machine learn-

ing domain to model complex joint distributions. As we will show throughout the

remainder of this section, there are many advantages and few, if any, disadvantages

to using MRFs for information retrieval.

A Markov random field is constructed from a graph G. The nodes in the graph

represent random variables, and the edges define the independence semantics between

the random variables. The independence semantics are governed by the Markov

property.

Markov Property. Let G = (V,E) be the undirected graph associated
with a Markov random field, then P (vi|vj 6=i) = P (vi|vj : (vi, vj) ∈ E) for
every random variable vi associated with a node in V .

The Markov Property states that every random variable in the graph is independent

of its non-neighbors given observed values for its neighbors. Therefore, different edge

configurations impose different independence assumptions.

1Note that we make the assumption that relevance is binary, which is commonly used for in-
formation retrieval tasks. If relevance is non-binary, then a different relevance distribution can be
estimated for each relevance level.

35

DD
d1

d2 dm…

q1 q2 qnQ … q1 q2 qn…

(A) (B) (C)

Figure 3.1. Examples of three ways to model the joint distribution P (Q,D) using
Markov random fields.

There are several ways to model the joint distribution P (Q,D) using Markov

random fields. Figure 3.1 summarizes the various options that are available. Option

A constructs a graph with two nodes, a query node Q and a document node D.

However, this model is too coarsely specified and does not provide any insight into

the types of term dependencies that are being modeled since it models whole queries

and documents. Option B breaks the query apart into individual terms and treats

the document as a whole. Given a query of length n, this results in a graph with n

query term nodes and a document node. This option provides more specific control

over which query term dependencies are modeled. Finally, option C breaks apart

both the document and the query into individual terms. Given a query of length n

and a document of length m, our graph would contain n query term nodes and m

document term nodes. This option provides the most flexibility for modeling both

query and document term dependencies. However, the model is likely to be overly

complex. Modeling dependencies between query terms is more feasible than modeling

dependencies between document terms since queries are generally much shorter than

documents and exhibit less complex dependencies between terms.

Option B satisfies our needs without being overly complex, and so it will be used

throughout the remainder of this work. Thus, given a query of length n, our graph G

36

consists of n query term nodes and a single document node D. The random variables

associated with the query term nodes are multinomials over the underlying vocabulary

V and the random variable associated with the document node is also a multinomial

over the set of documents in the collection. We note that variations on this theme

are possible. For example, it may be appropriate to include several document nodes

or even other types of nodes, such as document structure nodes within the MRF.

The joint probability mass function over the random variables in G is defined by:

PG,Λ(Q,D) =
1

ZΛ

∏

c∈C(G)

ψ(c; Λ) (3.1)

where Q = q1 . . . qn are the set of query term nodes, D is the document node, C(G) is

the set of maximal cliques in G, each ψ(·; Λ) is a non-negative potential function over

clique configurations parameterized by Λ and ZΛ =
∑

Q,D

∏

c∈C(G) ψ(c; Λ) normalizes

the distribution. It is generally infeasible to compute ZΛ due to the exponential

number of terms in the summation.

Therefore, in order to compute the joint distribution we need a graph G, potential

functions ψ, and the parameter vector Λ. Detailed descriptions of these components

are given in the following sections.

3.2.1 Graph Structure

We have already described how the nodes of our MRF are chosen. We now must

show how these nodes can be connected together. As explained before, the Markov

Property dictates the dependence semantics of the MRF. Therefore, it is relatively

straightforward to explore various independence assumptions by constructing MRFs

with different graph structures.

We consider three generalized graph structures, each with different underlying

independence assumptions. The three structures are full independence (FI), sequen-

tial dependence (SD), and full dependence (FD). Figure 3.2 shows graphical model

37

��
��

��
��

��
��

��
��

J
J

J
J
J

D

q1 q2 q3

��
��

��
��

��
��

��
��

J
J

J
J
J

D

q1 q2 q3

��
��

��
��

��
��

��
��

J
J

J
J
J

D

q1 q2 q3

Figure 3.2. Example Markov random field model for three query terms under various
independence assumptions, including full independence (left), sequential dependence
(middle), and full dependence (right).

representations of each. These generalized structures are considered because of their

significance to information retrieval. As we now show, each corresponds to a well-

studied class of retrieval models.

The full independence structure makes the assumption that query terms qi are

independent given some document D. That is, the likelihood of observing query term

qi is not affected by the observation of any other query term, or more succinctly,

P (qi|D, qj 6=i) = P (qi|D). This corresponds to the independence assumption made by

many of the bag of words models that were described in Chapter 2.

As its name implies, the sequential dependence structure assumes a dependence

between neighboring query terms. Formally, this assumption states that P (qi|D, qj 6=i) =

P (qi|D, qi−1, qi+1). Models of this form are similar in nature to bigram and biterm

language models [101, 105].

The last structure we consider is the full dependence structure. In this structure,

we assume all query terms are in some way dependent on each other. Graphically,

a query of length n translates into the complete graph Kn+1, which includes edges

from each query node to the document node D, as well. This model is an attempt to

capture longer range dependencies than the sequential dependence structure. If such

a model can accurately be estimated, it should be expected to perform at least as

well as a model that ignores term dependence.

38

There are other reasonable ways of constructing G given a query, such as that

proposed by Gao et al. [41], in which dependencies between terms are inferred using

natural language processing techniques. The advantage of using one of the structures

just described is that there is no need to rely on natural language processing tech-

niques, which can often produce noisy output, especially on short segments of text.

Of course, some of the dependencies imposed by our structure may be incorrect, but

in general, they capture meaningful relationships between terms.

3.2.2 Potential Functions

In order to compute the MRF’s joint probability mass function (Equation 3.1), a

set of potential functions must be defined over configurations of the maximal cliques

in the underlying graph. These potential functions can be thought of as compati-

bility functions. That is, they are meant to reflect how compatible a given clique

configuration is. How compatibility is defined and measured depends on the task and

clique.

For example, in Figure 3.2, the nodes D and q1 form a maximal clique in the

full independence variant. The potential function defined over the clique should

reflect how compatible the term q1 is to D. Here, compatibility may be defined as

“aboutness” and measured using some tf.idf score for the term q1 in D.

Typically, potential functions are built top-down, starting with a maximal clique

and defining a potential over it. However, within our model, we choose to build

potential functions in a bottom-up fashion, which provides more fine grained control

over the behavior of the functions. This is accomplished by first associating one or

more real-valued feature functions with each (maximal or non-maximal) clique in the

graph. Each feature function has a feature weight associated with it that is a free

parameter in our model. Then, non-negative potential functions over the maximal

39

cliques are constructed from these feature functions and feature weights using an

exponential form. We now formally describe the details of this process.

1. Assign one or more feature functions to each clique in G. This assignment

can be encoded as a set of 3-tuples, C = {(c, f(·), λ)}ni=1, where c is a clique

of G, f(·) is the feature function assigned to the clique, and λ is the weight

(parameter) associated with the feature. Recall that the same clique may be

associated with more than one feature function.

2. For every (c, f(·), λ) ∈ C, assign c to one of the maximal clique(s) in G that c

is a subclique of. It is always possible to assign subcliques to maximal cliques,

although this assignment is not guaranteed to be unique.

3. For every maximal clique inG, define its potential function as ψ(·) = exp (
∑

c λf(·)),

where the sum goes over the cliques that were assigned to the maximal clique

in Step 2.

We now provide an example to illustrate the process. Consider the full indepen-

dence graph in Figure 3.2. Suppose that we make the following assignment of feature

functions and parameters to the graph:

({q1, D}, f1(q1, D), λ1)

({q1, D}, f4(q1, D), λ4)

({q2, D}, f2(q2, D), λ2)

({q2, D}, f4(q2, D), λ4)

({q3, D}, f3(q3, D), λ3)

({q3, D}, f4(q3, D), λ4)

({D}, f5(D), λ5)

where each fi is some real-valued feature function defined over the configurations of

the clique. The specific form of the feature functions is not important in this example.

40

After assigning each clique to a maximal clique, we construct the following poten-

tial functions:

ψ(q1, D) = exp [λ1f1(q1, D) + λ4f4(q1, D) + λ5f5(D)] (3.2)

ψ(q2, D) = exp [λ2f2(q2, D) + λ4f4(q2, D)] (3.3)

ψ(q3, D) = exp [λ3f3(q3, D) + λ4f4(q3, D)] (3.4)

This construction is not unique since the clique {D} is a subclique of all three

maximal cliques. Therefore, we can assign feature function f5(D) to any of the

maximal cliques. In the previous set of potential functions, it was assigned to the

maximal clique {q1, D}. If it had been assigned to the maximal clique {q3, D} instead,

the following potential functions would have been constructed:

ψ(q1, D) = exp [λ1f1(q1, D) + λ4f4(q1, D)] (3.5)

ψ(q2, D) = exp [λ2f2(q2, D) + λ4f4(q2, D)] (3.6)

ψ(q3, D) = exp [λ3f3(q3, D) + λ4f4(q3, D) + λ5f5(D)] (3.7)

It is critical to note that, even though the potential function definitions are not

guaranteed to be unique using this formulation, the joint probability mass function

will be unique. It is easy to see that, for this example, the joint, under all possible

assignments is equal to:

PG,Λ(Q,D) = Z−1
Λ exp[λ1f1(q1, D) + λ4f4(q1, D) +

λ2f2(q2, D) + λ4f4(q2, D) +

λ3f3(q3, D) + λ4f4(q3, D) + λ5f5(D)] (3.8)

This example also serves to illustrate that both functions and parameters can be

shared across potential functions. Here, the feature function f4 and parameter λ4

41

were shared across three cliques. In order to share a feature function across cliques,

we require that the input to the feature function be compatible with each clique. For

example, a feature function that takes two term nodes and a document node as input

can only be shared across cliques with two term nodes and a document node. We do

not permit a feature function that only takes a document node as input to be shared

with a clique that contains both a query term node and a document node. There are

no restrictions on sharing parameters across cliques, however. By sharing parameters

across cliques, we effectively tie parameters together, which reduces the number of

free parameters and can help overcome data sparseness issues.

3.3 Building MRFs

As we just showed, potential functions are constructed by assigning feature func-

tions and parameters to arbitrary cliques in the MRF. In this section, we describe

how textual and non-textual features can be represented and assigned to cliques.

Potentials can then be built from these features and be used to compute PG,Λ(Q,D).

In this section, we propose a novel method for representing MRFs for information

retrieval. We represent MRFs using a canonical form. The canonical form is designed

to be a compact, intuitive, and flexible method of representing MRFs. It can handle a

wide variety of graph structures and features that are useful for information retrieval

tasks. A canonical forms have the following structure:

(dependence model type, clique set type, weighting function)1 : λ1

(dependence model type, clique set type, weighting function)2 : λ2

· · ·

(dependence model type, clique set type, weighting function)n : λn

Here, a 3-tuple represents how feature functions are assigned to cliques. Each 3-tuple

assigns a feature function to one or more cliques within the graph. The variable

after the colon represents the parameter associated with all of the feature functions

42

assigned by the 3-tuple. As we showed in the previous section, this ties the parameters

of all of the feature functions associated with a 3-tuple together. The details of this

assignment and tying process will become clearer later in this section when we work

through several examples.

Given a canonical form, it is easy to systematically build the corresponding MRF

and derive both the joint probability mass function, as well as the ranking function.

We represent all MRFs throughout the remainder of this work using these canonical

forms. We now describe the meaning and details of each component in the 3-tuple.

3.3.1 Dependence Model Type

The first entry in the tuple is the dependence model type, which specifies the depen-

dencies, if any, that are to be modeled between query terms. As we described before,

dependencies are encoded by the edges in the MRF, with different edge configurations

correspond to different types of dependence assumptions.

In this work, we only allow the dependence model type to be full independence

(FI), sequential dependence (SD), or full dependence (FD), which are the three gen-

eralized graph structures described in Section 3.2.1 and illustrated in Figure 3.2.

For a given MRF, each feature function may have a different dependence model

type. The dependence model type simply defines the graph structure that the current

feature is applied to. The graph structure that the resulting MRF has depends on

the dependence model types of all of its features combined.

3.3.2 Clique Set Type

The second entry in the tuple, the clique set type, describes the set of (maximal or

non-maximal) cliques within the graph that the feature function is to be applied to.

Thus, each feature function can be applied to one or more cliques within the graph,

depending on the clique set.

43

Description Notation Example
Set of cliques containing the docu-
ment node and exactly one query
term

TQD {{q1, D}, {q2, D}, {q3, D}}

Set of cliques containing the docu-
ment node and two or more query
terms that appear in sequential or-
der within the query

OQD
{{q1, q2, D}, {q2, q3, D},
{q1, q2, q3, D}}

Set of cliques containing the docu-
ment node and two or more query
terms that appear unordered within
the query

UQD {{q1, q3, D}}

Set of cliques containing exactly one
query term

TQ {{q1}, {q2}, {q3}}

Set of cliques containing two or
more query terms that appear in se-
quential order within the query

OQ
{{q1, q2}, {q2, q3},
{q1, q2, q3}}

Set of cliques containing two or
more query terms that appear un-
ordered within the query

UQ {{q1, q3}}

Set containing only the singleton
node D

D {{D}}

Table 3.1. Example clique sets for the query q1 q2 q3 under full dependence model.

44

We propose seven clique sets that can be used within our model. These sets are

are summarized in Table 3.1. In order to motivate these clique sets, we enumerate

every possible type of clique that is of interest to us, beginning with cliques that

contain the document node and one or more query term nodes.

First, the simplest type of clique that contains the document node and one or

more query nodes is a 2-clique consisting of an edge between a query term qi and the

document D. A potential function over such a clique should measure how well, or

how likely query term qi describes the document.

Next, we consider cliques that contain two or more query terms. For such cliques

there are two possible cases, either all of the query terms within the clique appear

contiguously in the query or they do not. The fact that query terms appear con-

tiguously within a query provides different (stronger) evidence about the information

need than a set of non-contiguous query terms. For example, in the query train sta-

tion security measures, if any of the subphrases, train station, train station security,

station security measures, or security measures appear in a document then there is

strong evidence in favor of relevance.

Although the occurrence of contiguous sets of query terms provide strong evi-

dence of relevance, it is also the case that the occurrence of non-contiguous sets of

query terms can provide valuable evidence. However, since the query terms are not

contiguous we do not expect them to appear in order within relevant documents.

Rather, we only expect the terms to appear ordered or unordered within a given

proximity of each other. In the previous example, documents containing the terms

train and security within some short proximity of one another also provide additional

evidence towards relevance. This issue has been explored in the past by a number of

researchers [29, 35].

Therefore, for cliques consisting of the document node and one or more query

term nodes, we have the following clique sets:

45

• TQD – set of cliques containing the document node and exactly one query term.

• OQD – set of cliques containing the document node and two or more query terms

that appear in sequential order within the query.

• UQD – set of cliques containing the document node and two or more query terms

that appear unordered within the query.

Note that the cliques that make up each set may change for different dependence

model types. For example, OQD and UQD are empty under the full independence

assumption since that would result in a graph where there are no cliques with two or

more query term nodes. However, under the sequential dependence assumption, and

with a query of length 2 or more, such cliques will exist and OQD and UQD will be

non-empty.

Next, we consider cliques that only contain query term nodes. These clique sets

are defined in an analogous way to those just defined, except the the cliques are only

made up of query term nodes and do not contain the document node. Potential

functions over these cliques should capture how compatible query terms are to one

another. These clique potentials may take on the form of language models that impose

well-formedness of the terms. Therefore, we define following query-dependent clique

sets:

• TQ – set of cliques containing exactly one query term.

• OQ – set of cliques containing two or more query terms that appear in sequential

order within the query.

• UQ – set of cliques containing two or more query terms that appear unordered

within the query.

46

Finally, there is the clique that only contains the document node. Potentials

over this node can be used as a type of document prior, encoding document-centric

properties. This trivial clique set is then:

• D – clique set containing only the singleton node D

We note that our clique sets form a partition over the cliques of G. This parti-

tion separates the cliques into sets that are meaningful from an information retrieval

perspective. Thus, these clique sets make it easy to apply features in a very specific

manner within the MRF.

Of course, the clique sets we defined here are not unique. It is possible to define

many different types of clique sets. For example, another clique set may be defined as

“the clique that contains the first query term and the document node”. Given enough

training data, it may be possible to define such fine grained clique sets. However, given

the limited amount of training data, we focus our attention on the coarse grained

clique sets defined above.

3.3.3 Weighting Function

Finally, the third entry in the tuple is the weighting function, which defines the

feature function that is applied to the cliques defined by the clique set. In this section

we define weighting functions that can be used with the different clique sets we just

defined. It is not our goal to provide a comprehensive list of possible feature functions.

Instead, we simply seek to provide a few examples of the types of feature functions

that are possible.

3.3.3.1 Weighting Functions for TQD, OQD, and UQD

We first describe weighting functions that can be used with cliques in the TQD,

OQD, and UQD clique sets. These cliques consist of a set of query term nodes and a

47

document node. Therefore, the weighting functions applied to these cliques should

measure how much the document is “about” the query terms.

The weighting functions we propose are based on language modeling estimates and

the BM25 weighting model, which we described in Chapter 2. It is straightforward

to use the standard forms for these weighting functions for the single term cliques

(TQD). However, we must define how to match the query terms within documents

when when applying these weighting functions to ordered term cliques (OQD) and

unordered term cliques (UQD).

For ordered term cliques, we match terms in documents using the Indri ordered

window operator (#M), where the parameter M determines how many non-matching

terms are allowed to appear between matched terms [64]. For clique {qi, . . . , qi+k, D},

we match documents according to #M(qi . . . qi+k). This rewards documents for

preserving the order that the query terms occur in.

In the unordered clique set case, we match terms using the Indri unordered win-

dow operator (#uwN), where N defines the maximum size of the window that the

terms may occur (ordered or unordered) in. For clique {qi, . . . , qj, D} that contains k

query terms, documents are matched according to #uwNk(qi . . . qj). Notice that we

multiply the number of terms in the clique set by N . If N = 1, then all k query terms

must occur, ordered or unordered, within a window of k terms of each other within

the document. As N increases, the matching becomes looser. If N = unlimited, then

any document that contains all k query terms is matched. By using this matching

scheme, we reward documents in which subsets of query terms occur appear within

close proximity of each other.

Table 3.2 summarizes these weighting functions. Of course, many different types

of weighting functions can easily be used within the model. For example, if new,

more effective term weighting functions are developed in the future, then they can be

easily used instead of, or in addition to, the Dirichlet or BM25 weighting functions.

48

LM

fLM,T (qi, D) = log

[
tfqi,D+µt cfqi

|C|

|D|+µt

]

LM-O-M

fLM,O,M(q1, . . . , qk, D) = log

[

tf#M(q1...qk),D+µw
cf#M(q1...qk)

|C|

|D|+µw

]

LM-U-N

fLM,U,N(q1, . . . , qk, D) = log

[

tf#uwNk(q1...qk),D+µw
cf

#uwNk(q1...qk)

|C|

|D|+µw

]

BM25

fT,BM25(qi, D) =
(kt

1+1)tfw,D

kt
1

(

(1−bt)+bt |D|
|D|avg

)

+tfw,D

log N−dfw+0.5
dfw+0.5

BM25-O-M

fBM25,O,M(q1, . . . , qk, D) =
(kw

1 +1)tf#M(q1...qk),D

kw
1

(

(1−bw)+bw |D|
|D|avg

)

+tf#M(q1...qk),D

log
N−df#M(q1...qk)+0.5

df#M(q1...qk)+0.5

BM25-U-N

fBM25,U,N(q1, . . . , qk, D) =
(kw

1 +1)tf#uwNk(q1...qk),D

kw
1

(

(1−bw)+bw |D|
|D|avg

)

+tf#uwNk(q1...qk),D

log
N−df#uwNk(q1...qk)+0.5

df#uwNk(q1...qk)+0.5

Table 3.2. Summary of Dirichlet and BM25 weighting functions that can be used
with cliques in the TQD, OQD, and UQD clique sets. Here, M and N act as weight-
ing function parameters that affect how matching is done, tfe,D is the number of
times expression e matches in document D, cfe,D is the number of times expression
e matches in the entire collection, dfe is the total number of documents that have
at least one match for expression e, |D| is the length of document D, |D|avg is the
average document length, N is the number of documents in the collection, and |C|
is the total length of the collection. Finally, µt, µw, kt

1, k
w
1 , bt, and bw are weight-

ing function hyperparameters. The t and w superscripts indicate term and window
hyperparameters, respectively.

49

3.3.3.2 Weighting Functions for TQ, OQ, and UQ

Next, we consider weighting functions for the cliques in the TQ, OQ, and UQ

clique sets. These cliques consist of one or more query terms and no document nodes.

Weighting functions defined over them should reflect their general importance or

informativeness. Therefore, IDF-based measures are a natural set of feature functions

to use for these types of cliques.

The two IDF measures that we use as feature functions are inverse collection

frequency (ICF) and the Okapi IDF. Inverse collection frequency is very similar to

IDF, except it considers the number of times an expression occurs, rather than the

number of documents it occurs in. As with the weighting functions described in the

previous section, it is straightforward to apply standard IDF features to the single

term cliques (TQ). We use the same matching semantics as described in the previous

section for the ordered terms cliques (OQ) and the unordered terms cliques (UQ).

Our proposed feature functions are shown in Table 3.3. Other possible feature

functions for these types of cliques include measures of how lexically cohesive the

terms are and the average vocabulary level of the terms.

3.3.3.3 Weighting Functions for D

Depending on the task, there are a wide variety of weighting functions that

can be applied to the document node clique. Some examples include document

length [100], document quality [127], PageRank [10], URL depth [54], readability [99],

sentiment [80], and opinionatedness [79].

Although we do not explore all of these query independent features in this work,

we do make use of several of them for a web search task in Chapter 5.

3.3.4 Examples

Now that we have described each element that makes up the 3-tuple, we show how

to construct MRFs from canonical forms. We do this by working through a number

50

ICF

fICF,T (qi, D) = − log
cfqi

|C|

ICF-O-M

fICF,U,M(q1, . . . , qk, D) = − log
cf#M(q1...qk)

|C|

ICF-U-N

fICF,O,N(q1, . . . , qk, D) = − log
cf#uwNk(q1...qk)

|C|

IDF

fIDF,BM25(qi, D) = log N−dfw+0.5
dfw+0.5

IDF-O-M

fIDF,O,M (q1, . . . , qk, D) = log
N−df#M(q1...qk)+0.5

df#M(q1...qk)+0.5

IDF-U-N

fIDF,U,N(q1, . . . , qk, D) = log
N−df#uwNk(q1...qk)+0.5

df#uwNk(q1...qk)+0.5

Table 3.3. Summary of ICF and IDF weighting functions that can be used with
cliques in the TQ, OQ, and UQ clique sets.

of examples. In all of the following examples examples, it is assumed that the query

being evaluated is new york city.

Our first example is for the following canonical form:

(FI, TQD, BM25) : λ

This canonical form includes a single feature function. The feature uses the full

independence graph structure, is applied to the cliques in TQD, and uses the BM25

weighting function. This expands to the following assignment of feature functions:

({new, D}, fBM25,T (new, D), λ)

({york, D}, fBM25,T (york, D), λ)

({city, D}, fBM25,T (city, D), λ)

Notice that all of the features share the same parameter.

This assignment can then be transformed into the following set of potential func-

tions, using the process described in Section 3.2.2:

51

ψ(new, D) = exp[λfBM25,T (new, D)] (3.9)

ψ(york, D) = exp[λfBM25,T (york, D)] (3.10)

ψ(city, D) = exp[λfBM25,T (city, D)] (3.11)

where fBM25,T takes on the BM25 form as given in Table 3.2. The resulting probability

mass function is then given by:

PG,Λ(new york city, D) = Z−1
Λ exp[λfBM25,T (new, D) +

λfBM25,T (york, D) +

λfBM25,T (city, D)] (3.12)

We see that this joint probability mass function is rank equivalent to the BM25

score of query for document D. Analogously, if fBM25,T is replaced with fLM,T , the

probability mass function is rank equivalent to query likelihood scoring in the language

modeling framework.

Next, we consider the following canonical form:

(SD, OQD, LM-O-4) : λ

which contains a single feature that uses the sequential dependence model, is applied

to cliques in OQD, and uses the Dirichlet weighting function. This expands into the

following assignment of feature functions to cliques:

({new, york, D}, fLM,O,4(new, york, D), λ)

({york, city, D}, fLM,O,4(york, city, D), λ)

which is then transformed into the following set of potential functions:

ψ(new, york, D) = exp[λfLM,O,4(new, york, D)] (3.13)

ψ(york, city, D) = exp[λfLM,O,4(york, city, D)] (3.14)

52

where fLM,O,4 takes on the Dirichlet form and M , the ordered window size, is set to

4.

Finally, we provide an example of a more complex canonical form. Consider the

following canonical form:

(FD, OQD, LM-O-8) : λ1

(FI, TQ, IDF) : λ2

(FI, D, PageRank) : λ3

which then results in the following set of feature function assignments:

({new, york, D}, fLM,O,8(new, york, D), λ1)

({york, city, D}, fLM,O,8(york, city, D), λ1)

({new, york, city, D}, fLM,O,8(new, york, city, D), λ1)

({new}, fIDF,T (new, D), λ2)

({york}, fIDF,T (york, D), λ2)

({city}, fIDF,T (city, D), λ2)

({D}, fPageRank(D), λ3)

and the following potential function:

ψ(new, york, city, D) = exp[λ1fLM,O,8(new, york, D) + λ1fLM,O,8(york, city, D) +

λ1fLM,O,8(new, york, city, D) + λ2fIDF,T (new, D) +

λ2fIDF,T (york, D) + λ2fIDF,T (city, D) +

λ3fPageRank(D)] (3.15)

These examples illustrate that our proposed canonical form allows us to compactly

define a large, rich set of MRFs for use with information retrieval tasks.

53

3.4 Ranking

Using our canonical feature representation, we derive the following simplified form

of the joint distribution:

logPG,Λ(Q,D) =
∑

c∈TQD

λcfc(c) +
∑

c∈OQD

λcfc(c) +
∑

c∈UQD

λcfc(c)

︸ ︷︷ ︸

document + query dependent

+

∑

c∈TQ

λcfc(c) +
∑

c∈OQ

λcfc(c) +
∑

c∈UQ

λcfc(c)

︸ ︷︷ ︸

query dependent

+

∑

c∈D

λDfc(c)

︸ ︷︷ ︸

document dependent

− logZΛ
︸ ︷︷ ︸

document + query independent

(3.16)

(3.17)

where λc and fc are the parameter and weighting (feature) function associated with

clique c, respectively.

Given a query Q as evidence, we can use the model to rank documents in descend-

ing order according of the conditional PG,Λ(D|Q). Fortunately, properties of rankings

allow us to significantly simplify the computation. That is,

PG,Λ(D|Q)
rank
= logPG,Λ(D|Q)

= log
PG,Λ(Q,D)

PG,Λ(Q)

= logPG,Λ(Q,D)− logPG,Λ(Q)

rank
= logPG,Λ(Q,D) (3.18)

After dropping document independent expressions from logPG,Λ(Q,D), we derive

the following ranking function:

PG,Λ(D|Q)
rank
=

∑

c∈TQD

λcfc(c) +
∑

c∈OQD

λcfc(c) +
∑

c∈UQD

λcfc(c) +
∑

c∈D

λcfc(c) (3.19)

54

which is a simple weighted linear combination of feature functions that can be com-

puted efficiently for reasonable graphs since the partition function ZΛ does not need

to be computed. Later, in Chapter 7 we show how the reverse conditional, PG,Λ(Q|D),

can be used for query expansion.

Furthermore, we note that, under the assumption of binary relevance, ranking

documents according to PG,Λ(D|Q) adheres to the Probability Ranking Principle

(PRP) [87]. This can be shown as follows:

P (R = 1|Q,D) =
P (D|Q,R = 1)P (Q|R = 1)P (R = 1)

P (Q,D)
rank
= P (D|Q,R = 1) (3.20)

The rank equivalence follows because P (Q|R = 1) and P (R = 1) are document

independent, and P (Q,D) is uniform across all query/document pairs [40]. Therefore,

P (R = 1|Q,D) is rank equivalent to P (D|Q,R = 1), which is exactly PG,Λ(D|Q), as

defined in our model2. Hence, we have shown that ranking documents according to

PG,Λ(D|Q) is equivalent to ranking documents in descending order of probability of

relevance, which is the optimal strategy according to the PRP.

3.5 Discussion

In this chapter, we described the basics of our proposed Markov random field

model for information retrieval. We explained our underlying model of relevance,

basic MRF theory, and how MRF models can easily be constructed using a canonical

form. The proposed model is very robust, as it can model a wide variety of depen-

dencies between query terms, and can make use of arbitrary textual and non-textual

2Recall that we chose to implicitly condition on relevance (i.e., R = 1) in order to simplify the
notation.

55

θ

q1 q2 q3 q4

D

q1 q2 q3 q4

Unigram LM/BM25 Full Independence

θ

q1 q2 q3 q4

D

q1 q2 q3 q4

Bigram LM Sequential Dependence

Figure 3.3. Illustration showing how the full independence model generalizes uni-
gram language modeling and BM25 (top), and how the sequential dependence model
generalizes bigram language modeling (bottom).

features, as well. This is the first model for information retrieval that has both of

these important properties.

It is easy to show that our proposed model subsumes many previously proposed

information retrieval models, which further proves the model’s flexibility. Figure 3.3

shows two simple examples of how the MRF model generalizes other models. Here,

we see that the full independence model, with properly defined potential functions,

gives rise to unigram language modeling and the BM25 model. Similarly, the sequen-

tial dependence model subsumes bigram and biterm language models. By studying

previous retrieval models in the context of our MRF model, we gain fresh perspective

and insight into the underlying principles of these models.

This chapter skirted the issue of parameter estimation (i.e., how to set Λ). Since

this issue is critical to achieving good effectiveness, it gets a detailed treatment in the

following chapter.

56

CHAPTER 4

THE THEORY OF LINEAR FEATURE-BASED MODELS

Features lie at the very heart of information retrieval models. The two features

term frequency and inverse document frequency form the core of most modern re-

trieval models, including language modeling and the BM25 model. In most cases, the

only difference between any two models is how these elementary features are com-

bined. The resulting scoring functions are often non-linear and contain one or more

free parameters that can be tuned in various ways.

In this chapter we describe the theory behind a class of models we call linear

feature-based models. As its name implies, the scoring functions of these models are

comprised of a linear, weighted combination of features. One of the main benefits of

such models is their ability to combine many different kinds of features in a straight-

forward manner. There have been many models proposed that fall under this general

framework, including our proposed MRF model. Other models include, but are not

limited to, Gey’s logistic regression model [43], Nallapati’s discriminative model [76],

and Gao et al.’s linear discriminate model [42]. We return to details of these models

in Section 4.2.

Our goal is to synthesize the previous research done and present a general theory

of these types of models. This includes investigating what existing scoring functions

fit into the framework, characteristics of the underlying parameter space, and how

model parameters can be effectively estimated.

This chapter, beyond providing a general theory of linear feature-based models,

provides several interesting theoretical insights into our proposed MRF model, and

57

suggests ways to effectively estimate the model parameters, which we have not yet

explained.

4.1 Linear Feature-Based Models

This section provides a general description of linear feature-based models and

discusses characteristics of their underlying parameter space.

Suppose we are given a set of documentsD, queriesQ = {Qi}Ni=1, and training data

T . In addition, we are given a real-valued scoring function SΛ(D;Q) parameterized

by Λ, a vector of parameters. Given a query Qi, the scoring function SΛ(D;Qi)

is computed for each D ∈ D and documents are then ranked in descending order

according to their score.

The scoring function induces a total ordering1 (ranking)R(D, Qi, SΛ) onD for each

query Qi. For simplicity, we rewrite R(D, Qi, SΛ) as Ri(Λ) and let RΛ = {Ri(Λ)}Ni=1

be the set of rankings induced over all of the queries.

Finally, in order to evaluate a parameter setting, we need an evaluation function

E(RΛ; T) that produces real valued output given a set of ranked lists and the training

data. It should be noted that we require E to only consider the document rankings

and not the document scores. The scores are only used to rank the documents and

not used to evaluate the ranking. This is a standard characteristic among information

retrieval evaluation metrics such as mean average precision, precision at 10, among

others.

The general framework allows T to be any type of data that can be used to

compute the evaluation metric E over a set of ranked lists. For example, this data may

come in the form of TREC relevance judgments or web click-through data [50, 52].

To estimate the parameters we only need to evaluate E, so models may even use

1We assume ties are broken using some unique document identifier.

58

abstract concepts in place of T , such as novelty [46] or aspect precision/recall [121],

as long as E remains independent of the document scores.

Using this terminology, the generic information retrieval parameter estimation

problem is to find the parameter setting Λ that maximizes the evaluation metric

E over the parameter space. This can be formulated as the following optimization

problem:

Λ̂ = arg max
Λ

E(RΛ; T)

s.t. RΛ ∼ SΛ(D;Q)

Λ ∈MΛ (4.1)

where RΛ ∼ SΛ(D;Q) denotes that the orderings in RΛ are induced using scoring

function S, and MΛ is the parameter space over Λ.

Solving the general optimization problem proposed above is difficult. Therefore,

we aim to solve a more constrained version. We restrict our focus to scoring functions

from the following family:

S = {SΛ(D;Q) : ∃l(·) s.t. l is strictly monotonically increasing and

l(SΛ(D;Q)) = ΛTf(D,Q) + Z} (4.2)

where f(·, ·) maps query/document pairs to real-valued feature vectors in R
d, Z is a

constant that does not depend on D (but may depend on Λ or Q). That is, we require

there to exist some strictly monotonically increasing function l that, when applied to

S, yields a function that is linear in our parameters Λ. The ranking functions in S

define the universe of linear feature-based models.

Examples of functions within this family include linear discriminants, such as

those used with perceptrons, Support Vector Machines (SVMs) [16], and the so-

called maximum entropy distribution [32]. In addition, many information retrieval

59

ranking functions proposed in the past, at their very core, also live within this family,

including our proposed MRF model.

By definition, every S ∈ S can can be reduced to a linear form via a strictly

monotonically increasing function. Since such functions are rank preserving and sub-

sequently evaluation metric preserving, we can always write the parameter estimation

problem for any scoring function in S as:

Λ̂ = arg max
Λ

E(RΛ; T)

s.t. RΛ ∼ ΛTf(D,Q) + Z

Λ ∈MΛ (4.3)

This general optimization problem fully describes how documents are ranked and how

the parameters are estimated. Thus, linear feature-based models are instantiated by

choosing an evaluation function E, training data T , features f , and a parameter space

MΛ.

4.2 Previous Uses of Linear Feature-Based Models in IR

Many information retrieval models proposed in the past, at their very core, are

linear feature-based models [42, 43, 65, 76]. The models typically differ in their

formulation, features, or training. This section briefly summarizes several of these

models.

In 1994, Gey proposed a logistic regression model for information retrieval [43].

In terms of our discussion above, the scoring function is in S after application of the

rank-preserving logit transformation and thus is a linear feature-based model. Six

features were used in the model. The features were query absolute frequency, query

relative frequency, document absolute frequency, document relative frequency, idf,

and relative frequency in all documents. The maximum likelihood estimate was used

60

for the parameters. Results showed mixed improvements over a vector space baseline

when trained on one collection and tested on another.

In [76], Nallapati argued for a discriminative model for information retrieval, fo-

cusing in particular on a SVM formulation. Like Gey, Nallapati also made use of six

features. Table 4.1 shows the six features considered. In this case, the parameter

vector is estimated by training a linear SVM, with relevant documents considered

the “positive class” and non-relevant documents the “negative class”. Therefore, the

ranking task is treated as a classification problem. Results were mixed when compared

against a language modeling baseline.

Finally, Gao, et al. [42] described a linear discriminant model for information

retrieval. The model combined a number of single term and phrase features. The

ranking functions are linear feature-based models similar in spirit to those of Gey

and Nallapati, but were found to significantly outperform baseline systems more con-

sistently. One critical difference between this approach, and those proposed by Gey

and Nallapati, is that the model was trained by directly maximizing a lower bound

on mean average precision. As we will show shortly, careful, intelligent parameter

estimation is critical to the success of any linear feature-based model.

4.3 Parameter Space

Thus far we have only talked abstractly about the parameter space MΛ. There

are many potential ways to choose a parameter space, each with its advantages and

disadvantages. The most obvious choice, to not constrain the parameter space, occurs

when MΛ = R
d. The advantage of this model is that the parameter weights can be

either negative or positive. This allows the model to include features that convey

both negative and positive evidence. On the downside, the search space is somewhat

daunting, although not unmanageable.

61

Another option is to restrict the parameter values to be non-negative. Although

this may seem too strict, there are several reasons why it is an acceptable assumption

in most cases. In information retrieval, a majority of the features commonly used

provide positive evidence. For example, large tf or idf values are evidence in support

of relevance. If a feature is known a priori to provide negative evidence, then the

feature can still be used, with its value negated. If we do not know if a feature

provides positive or negative evidence and we ‘guess’ incorrectly, then the trained

model will simply assign that feature a weight of 0. If this occurs, the feature value

can be adjusted accordingly and the model retrained.

Therefore, the positivity constraint will typically have only a minor impact on the

model. As we will now show, several nice results can be shown to hold under this

assumption. Hence, for the remainder of this section, we assume that MΛ = R
d
+

def
=

{
Λ ∈ R

d : λi ≥ 0
}
.

4.3.1 Reduction to Multinomial Manifold

Only considering positive parameter values allows us to map our problem onto a

more intuitively appealing space with several nice characteristics. We will now show

that the parameter estimation problem previously described, under the positivity

constraint, is equivalent to the following constrained optimization problem:

Λ̂ = arg max
Λ

E(RΛ; T)

s.t. RΛ ∼ ΛTf(D,Q) + Z

Λ ∈ P
d−1 (4.4)

where P
k is a multinomial manifold (also known as a k-simplex) described by:

P
k =

{

Θ ∈ R
k+1 : ∀j θj ≥ 0,

k+1∑

i=1

θi = 1

}

(4.5)

62

The multinomial manifold P
k can be intuitively thought of as the space of all multi-

nomial distributions over k + 1 potential outcomes. We now give proof of this equiv-

alence.

Theorem. Any solution to the optimization problem over R
d
+ has a rank-equivalent

solution to the optimization over P
d−1.

Proof. Suppose that Λ̂ ∈ R
d
+ is the solution to the original optimization problem.

Now, consider the following transformation of Λ̂ to Θ̂:

θ̂i =
λ̂i

W
(4.6)

where W =
∑

i λ̂i. If W = 0, then λi is mapped to θi = 1
d

for all i, which is the

uniform distribution.

It is easy to see that the transformed parameter setting Θ̂ is in P
d−1, and thus the

transformation maps the original point onto the manifold. We must now show this

transformation preserves rank-equivalence. Under Θ̂, the scoring function becomes:

SΘ̂(D;Q) =
∑

i

θ̂if(D,Q)i + Z

=
∑

i

(

λ̂i

W

)

f(D,Q)i + Z

=
1

W

∑

i

λ̂if(D,Q)i + Z

rank
=

∑

i

λ̂if(D,Q)i (4.7)

where the last step follow from the fact that scaling (by 1
W

) and translating (by Z)

all scores in the same way has no effect on ranking. Thus, the model under the

transformed parameter Θ̂ ranks documents exactly the same as using Λ̂, the original

parameter value. We have therefore shown that any solution to the problem over

R
d
+ can be transformed into a rank-equivalent solution over P

d, thus completing the

proof �

63

It can be shown that this mapping from R
d
+ to P

d−1 is surjective (i.e., many-to-one

and onto). This suggests that our original parameter space is inefficient, in that many

(in fact, infinitely many) points within R
d
+ produce the same ranking. Within P

d−1,

all of these redundant points are conflated to a single point.

4.3.2 Rank Equivalence

We now show that the reduction to the multinomial manifold has an interesting

connection with the notion of rank equivalence. Given two parameter settings of a

linear, feature-based model, Λ1 and Λ2 in R
d
+, with a fixed set of features, we define

the binary relation “∼” as: Λ1 ∼ Λ2 if and only if Λ1 and Λ2, under the model, are

guaranteed to produce the same ranking for all queries. That is, “∼” is the binary

relation corresponding to rank equivalence between two parameter settings.

It is easy to see that “∼” is an equivalence relation as it is reflexive (Λ ∼ Λ),

symmetric (Λ1 ∼ Λ2 ⇒ Λ2 ∼ Λ1), and transitive (Λ1 ∼ Λ2 ∧ Λ2 ∼ Λ3 ⇒ Λ1 ∼

Λ3). It therefore induces equivalence classes over the original Euclidean parameter

space. In fact, every parameter on the multinomial manifold corresponds to a unique

equivalence class. Therefore, the set of parameters on the multinomial manifold can

be thought of as canonical parameters that can be used to describe any possible

parameter setting.

4.3.3 Distance Between Models

Our reduction provides another unique mechanism that is not available in most

other retrieval models. The reduction allows us, for a fixed set of features, to quanti-

tatively measure the distance between two models (i.e., two parameter settings). For

the BM25 retrieval model, there is no straightforward way of measuring the distance

between two parameter settings. In language modeling, there exists the notion of

distance in terms of KL-divergence between two models [56], but it is not the same

64

as the distance we can compute here. Instead, we can compute the distance between

the actual scoring functions themselves.

The näıve way to measure the distance between two parameter vectors which live

in R
d is to use the Euclidean distance. However, this leads to unappealing results.

For example, consider the following two parameter vectors in R
2:

Λ1 =

1

3

 ,Λ2 =

2

6

The Euclidean distance between these two vectors is
√

10, despite the fact that the

two parameter settings produce precisely the same ranking. Therefore, the intuitive

distance between these two parameter settings is 0. Now, suppose we apply the

mapping to the multinomial manifold (P1), that was defined above, to these two

points. The mapped points can be shown to be:

Θ1 =

0.25

0.75

 ,Θ2 =

0.25

0.75

Both of the original parameters are mapped to the same point in P
1, and thus they

have no distance between them. Now that it is clear the manifold better captures

the intrinsic properties of the parameters, we still have to answer the question of

how to properly measure the distance between arbitrary points on the manifold.

Results from information geometry tell us that the multinomial manifold follows a

non-Euclidean geometry, and therefore the Euclidean distance does not hold. Thus,

we must use a more appropriate distance metric, known as the geodesic distance,

which is a generalization of the Euclidean distance to non-Euclidean geometries. The

geodesic distance between two points, Θ,Θ′ ∈ P
d, is computed as:

d(Θ,Θ′) = 2 arccos

(
d+1∑

i=1

√

θiθ
′
i

)

(4.8)

65

where d(·, ·) ranges from 0 to π. Although we do not explore specific applications

of this distance in this work, a great deal of work considering various properties of

the multinomial manifold exists [60, 126]. Future applications may find uses for this

unique property.

We also note that the cosine distance is an equally valid measure of the distance

between two linear feature-based parameter settings. However, it is less theoretically

motivated in terms of the underlying intrinsic geometry of the parameter space.

Finally, it is important to state again that the properties discussed in this sec-

tion are only valid if the parameters are constrained to be non-negative. We feel

the theoretical benefits gained by imposing the constraint outweigh any potential

disadvantages.

4.4 Parameter Estimation

In this section we describe how to estimate the parameters of linear feature-based

models, which corresponds to solving the optimization proposed earlier in this chap-

ter. This is often called the learning to rank problem. The topic has recently gained

popularity in the machine learning and information retrieval fields, generating a large

number of tools and techniques. While many of these techniques take a purely ma-

chine learning approach to the problem, we attempt to focus more on the important

information retrieval aspects of the problem. We believe this is important, because

critical information retrieval issues are often ignored during the development of new

learning to rank techniques. This is somewhat unfortunate, since valuable insights

can often be gleaned by attacking these types of problems from an information re-

trieval perspective (e.g., via feature engineering, failure analysis, etc.) instead of a

machine learning perspective.

Many of the linear feature-based models that have been used for information

retrieval use parameters that are estimated using maximum likelihood, maximum

66

a posteriori, or maximum margin techniques. These techniques, however, do not

maximize the correct metric. Classification accuracy, likelihood, and margin size are

generally of little concern when ranking documents. It may be argued that estimating

parameters by maximizing the likelihood of some training data or minimizing classi-

fication error is optimizing a function that is correlated with the underlying retrieval

metric, such as mean average precision. However, this has been shown to be exper-

imentally invalid, and it can also be shown to be theoretically invalid, as well. This

phenomenon, where the metric being optimized diverges from the actual metric of

interest, is known as metric divergence [74]. Hence, the appropriate way to estimate

the parameters of linear feature-based models is to directly solve the optimization

problem given in Equation 4.3.

The remainder of this section describes various approaches for solving this opti-

mization problem, including two novel algorithms that perform a direct search over

the multinomial manifold. These algorithms can easily handle large training sets,

such as those that typically arise in information retrieval. They can also handle the

highly unbalanced nature of the training data. Although these techniques have nice

properties, they also have several pitfalls, as we will show. We will also briefly describe

other learning to rank approaches that have been proposed recently.

4.4.1 Direct Search

We now describe two novel direct search techniques that operate on the multino-

mial manifold. Here, direct search refers to the fact that the optimization problem

in solved in the original metric space. It is important to remember that these met-

ric spaces are typically non-smooth with respect to the parameter settings, which

prevents us from applying standard, gradient-based optimization techniques, such as

gradient ascent. Our proposed techniques are very simple, yet have been shown to be

very effective.

67

4.4.1.1 Grid Search

The most näıve approach to solving the optimization problem is to perform an

exhaustive grid search over the parameter space. That is, we place a grid over the

parameter space and evaluate E(RΛ; T) at every grid intersection, outputting the

parameter setting that yields the maximum at the end.

A grid search over R
d is unbounded and ill-defined. For this reason, we restrict

our discussion to the case where our parameter space is the multinomial manifold.

For this case, the grid search is bounded and can be easily implemented.

Given a parameter ε = 1
K

for K ∈ Z
+ that controls how fine grained our grid is,

we define G, the set of grid points in P
d+1 that we search over as:

G =

{

Λ = (k1ε . . . kdε) :
∑

i

kiε = 1, ki ∈ N

}

=

{

Λ = (k1ε . . . kdε) :
∑

i

ki = K, ki ∈ N

}

(4.9)

It is clear from this definition that, |G|, the number of parameter values we must

evaluate E at, depends both on d (the number of parameters) and K (how fine

grained our grid is). In fact, |G| ∈ Θ(Kd−1). Therefore, a grid search is feasible

only if both d and K are relatively small. For larger values, other training methods

that do not require as many sorting operations and metric evaluations must be used.

Although the grid search algorithm is relatively costly, it is guaranteed to find a global

maximum as K gets large. Algorithm 1 provides a simple implementation of the grid

search algorithm.

4.4.1.2 Coordinate Ascent

Coordinate ascent is another technique that can be used to solve non-smooth opti-

mization problems. One of the benefits of the algorithm is that it reduces multivariate

search problems into a set of single variable problems, which are often easier to tackle

68

Algorithm 1 Grid Search

1: (k1, k2, . . . , kd)← (0, 0, . . . , 0)
2: Λ∗ ← {}
3: E∗ ← −∞
4: while kd ≤ K do
5: i← 1
6: ki ← ki + 1
7: while i < d and ki = K do
8: ki ← 0
9: i← i+ 1

10: ki ← ki + 1
11: end while
12: if

∑

i′ ki′ = K then
13: Λ← (k1

K
, k2

K
, . . . , kd

K
)

14: E ← E(RΛ; T)
15: if E > E∗ then
16: E∗ ← E

17: Λ∗ ← Λ
18: end if
19: end if
20: end while
21: Return Λ∗

in non-smooth spaces. The algorithm first chooses one parameter to be free. It then

holds all other parameters as fixed and optimizes the objective function over the single

free parameter. This produces an uphill step along one coordinate dimension. This

process is repeated for all parameters over a number of iterations. The technique is

known to converge slowly on objective functions with long ridges. Variations of the

method, including Powell’s method, have been proposed to overcome this issue [85].

Coordinate ascent can be applied to the optimization problem under consideration

regardless of whether we choose to optimize in the original Euclidean parameter

space (Rd) or the mapped multinomial parameter space (Pd−1). Optimizing over the

manifold may be beneficial due to the reduction in the number of repeated local

extrema.

If coordinate ascent is performed over the multinomial manifold, then only a minor

modification to the original algorithm is necessary. All one dimensional searches done

69

by the algorithm will be performed as if they were being done in R
d. However, this

does not ensure that the updated parameter estimate will be a point on the manifold.

Therefore, after a step is taken in R
d, we project the point back onto the manifold,

which we showed is always possible. Note that this projection preserves the function

value since the unnormalized and projected parameter estimates lead to equivalent

rankings. Therefore, the optimization is implicitly being done in a space that we

know how to optimize over (Rd), but is continually being projected back onto to the

manifold.

Algorithm 2 Coordinate Ascent

1: Initialize Λ0 ← (λ0
1, λ

0
1, . . . , λ

0
d)

2: t← 1
3: repeat
4: Λt ← Λt−1

5: for i from 1 to d do
6: λt

i ← arg maxλi
E(RΛt ; T)

7: λt
j ←

λt
j

∑′
i λt

i′
∀j (optional)

8: end for
9: until |E(RΛt ; T)− E(RΛt−1 ; T)| > ε

10: Return Λt

The coordinate ascent algorithm is given in Algorithm 2. In the algorithm, Λt

denotes the parameter setting during iteration t. The algorithm first initializes Λ0,

which can be done uniformly (i.e., λ0
i = 1

d
), randomly, or in a more informed manner

using prior knowledge about the importance of each feature. Then, each λt
i is updated

according to arg maxλi
E(RΛt ; T), which holds all parameter values fixed except λi,

and finds the setting of λi that results in the maximum evaluation metric score. This

single dimensional search problem can be solved using a line search. The line search

can be done exhaustively or finite difference derivatives can be estimated and used

in lieu of exact derivatives. Of course, if E is partially differentiable with respect to

each parameter then it may be possible to solve the single dimensional search problem

70

analytically. After λt
i is updated, the updated parameter vector Λt is optionally

projected back onto the multinomial manifold.

The algorithm continues until the evaluation metric does not change more than ε

between subsequent iterations. If ε is set to 0, then the algorithm stops only when no

more uphill moves are possible. Setting ε > 0 may cause the algorithm to return a

solution that is not maximal. However, it also results in faster training and can help

minimize overfitting.

Our implementation of the algorithm uses a line search to solve the single dimen-

sional search problem, projects updated parameters onto the multinomial manifold,

and uses ε = 0.0001. After extensive evaluation, it was found that these settings

resulted in the most well-behaved configuration of the algorithm.

4.4.1.3 Discussion

Finding the maximum of an arbitrary evaluation function E using direct search

can be very difficult and error-prone, especially in high-dimensional space. Only

a grid search method, with a suitably chosen granularity, is guaranteed to find a

global maxima. Coordinate ascent is a local search technique that only finds a global

maxima if the evaluation function E is concave. Our experiments using this approach,

show that, for a certain set of term and phrase features, mean average precision is

approximately concave over a wide range of collections. This may be the case for

many related applications and feature sets, but is not true in general, as was pointed

out in [42]. For functions with many local maxima, a multiple random restart strategy

can be used to increase the chances of finding a global solution.

Another potential disadvantage of the direct search techniques presented here is

the fact that they are fully supervised. If little or no training data exists, then un-

supervised and active learning [98] techniques from machine learning can potentially

be employed. However, such methods are out of the scope of the current work.

71

Despite these disadvantages, our approach has the advantage that it can make use

of all of the training data and does not suffer in the face of highly unbalanced training

data. When training using maximum likelihood or SVMs, it is often important to

have balanced training data. However, in information retrieval it is very often the case

that there are many more relevant documents compared to non-relevant documents

for a given query. For this reason, the training data is very unbalanced. Nallapati

found that the data needed to be balanced in order to achieve good generalization

performance [76]. Balancing was done by undersampling the majority (non-relevant)

class. Although this led to improved performance over the unbalanced case, it had

the negative effect of throwing away valuable training data. Other solutions to the

unbalanced data problem for SVMs exist that do not require training data to be

compromised, such as allowing separate costs for training errors in the positive and

negative classes [75]. Since our coordinate ascent approach does not make any implicit

or explicit assumptions about the underlying distribution, we can use the training

data in its entirety.

4.4.2 Optimization Using Surrogate Functions

A number of other estimation techniques have been proposed for training linear

feature-based models for information retrieval. The common thread among these ap-

proaches is that they do not attempt to directly search in the evaluation metric space.

Instead, they typically optimize some smooth surrogate function that is related to the

evaluation metric space. By using a smooth, typically convex, surrogate function, it

is possible to apply standard optimization machinery to the problem. However, it is

not always the case that the optimum of the surrogate is equal to the optimum of the

actual metric. For example, the surrogate function may be a lower or upper bound on

the metric. Although these surrogates may yield reasonable estimates, many exhibit

metric divergence. In certain cases, however, the optimum of the surrogate is equal

72

to the optimum of the evaluation metric, thereby eliminating any metric divergence.

In the remainder of this section we summarize the various techniques proposed and

describe the properties of their surrogate functions.

4.4.2.1 Perceptron Learning

Gao et al. proposed using a perceptron-based algorithm to optimize mean average

precision [42]. The technique uses pairwise preferences as training data [117]. That

is, training data, denoted by R, comes in the form of tuples of the form (di, dj)q,

which indicates that document i should be ranked higher than document j for query

q. There are various ways to derive such preferences from manual relevance judg-

ments or click-through data [50]. The perceptron learning algorithm is demonstrated

in Algorithm 3. The perceptron approach, like our proposed coordinate ascent algo-

Algorithm 3 Perceptron Learning

1: Initialize Λ0 ← (1, 0, . . . , 0)
2: for t from 1 to MAX ITERATIONS do
3: for each (di, dj)q ∈ R do
4: if ΛTf(dj, q) > ΛTf(di, q) then
5: λi ← λi + η(f(di, q)− f(dj, q))
6: end if
7: end for
8: end for
9: Return Λ

rithm, is not guaranteed to find a global maxima. Instead, the perceptron learning

algorithm optimizes a lower bound on mean average precision. Therefore, metric

divergence may be a problem. In addition, this technique can not easily be applied

to other evaluation metrics. Despite this, the algorithm has been shown to produce

reasonable effectiveness over a wide range of data sets.

4.4.2.2 RankNet

Another approach, based on neural networks, called RankNet, has recently been

proposed [15]. A RankNet is trained using gradient descent over the following differ-

73

entiable cost function:

C(Q,R) =
∑

q∈Q

∑

(i,j)∈R

−P̂q,i,j logPq,i,j − (1− P̂q,i,j) log(1− Pq,i,j) (4.10)

where Q is the set of queries, R is the set of pairwise preferences used for training,

Pq,i,j = 1
1+exp[s(q,dj)−s(q,di)]

is the probability that document i ranks higher than docu-

ment j for query q under the current neural network (s(q, di) is the score of document

d for query q as computed by the neural network), and P̂q,i,j is the target probability

of document i being ranked higher than j (obtained from training data).

The gradients of this smooth cost function can be computed analytically, which

makes it easy to apply gradient descent to solve the optimization problem. However,

the model suffers from standard neural network training issues, such as local minima.

In addition, the cost function, which is simply the cross entropy between the target

distribution and the distribution modeled using the neural network, does not minimize

(or maximize) any specific retrieval metric. Therefore, it is vulnerable to metric

divergence. Several recent studies have attempted to address this problem [17, 62].

We also note that RankNet is a linear feature-based model when the underlying

neural network has no hidden layers. The underlying ranking function, in the presence

of hidden layers, may be highly non-linear.

4.4.2.3 Support Vector Machine Optimization

Finally, Joachims proposed a large margin training technique for multivariate per-

formance measures [50, 51]. The technique uses a surrogate objective function based

on SVM using structured outputs that can be solved using quadratic programming.

The approach can maximize a variety of information retrieval metrics, such as pre-

cision at k, precision-recall breakeven, and area under the ROC curve. In fact, any

metric that can be computed based solely on a contingency table can be maximized

efficiently. One particularly nice property of these metrics is that the maximum found

74

is the actual maximum, and therefore, there is no metric divergence. However, this is

not the case for any arbitrary metric. Recently, approaches based on this work have

been proposed to optimize lower bounds of average precision [120] and nDCG [59].

Furthermore, since the method is based on SVMs, it is easy to employ the “kernel

trick” and implicitly project inputs into a higher, possibly infinite, dimensional space.

4.4.2.4 Discussion

There are two downsides to these types of approaches. First, they specifically

work for one metric or a family of metrics. Second, many of them suffer from metric

divergence, even though the resulting optimization problems are easier and more

efficient to solve using well-established optimization techniques. The grid search and

coordinate ascent algorithms, however, do not suffer from either of these problem.

There currently is no well developed understanding of best practices for estimating

the parameters of linear feature-based information retrieval models. Most studies

have looked at traditional machine learning problems, which typically differ from

information retrieval tasks. Therefore, an interesting, and necessary, direction of

future work is to undertake a comprehensive evaluation of these techniques, in terms

of how effective they are across a wide range of retrieval data sets and metrics, how

well they generalize, and how efficient they are. Another critical question that must

be answered is whether or not non-linear models, such as those that arise when using

neural networks or SVMs with non-linear kernels, are more effective than simple linear

models.

4.5 Quantifying the Impact of Metric Divergence

In this section, we run several simple experiments against a number of ad hoc

retrieval data sets. These experiments are chosen to empirically show that training

by directly maximizing mean average precision is superior to training using a näıve

75

SVM approach. This allows us to determine, quantitatively, how significant the metric

divergence problem really is.

The goal of ad hoc retrieval is to retrieve as many relevant documents as high

in the ranked list as possible. Relevance is binary (relevant/non-relevant) and is

assessed according to whether the document is topically related to the query or not.

More details of ad hoc retrieval will be provided in the following chapter. For the

experiments in this chapter, we use mean average precision as our primary evaluation

metric. Please refer to Appendix B for further details on mean average precision.

We compare the effectiveness of three types of models. The first is a linear feature-

based model trained by directly maximizing mean average precision using the coordi-

nate ascent approach proposed earlier in this chapter. The second is Nallapati’s SVM

model [76], which treats relevant documents as the positive class and non-relevant

documents as the negative class and learns a (linear) SVM classifier. The model was

discussed in detail earlier in this chapter. Both an unbalanced and balanced version

of the model are investigated. The last model is a language modeling system [84],

which provides a baseline and sanity check for the effectiveness of the learned models.

Three standard newswire TREC collections are used. For each collection, 50 topics

are used for training and 50 for testing. Only the title portion of the TREC topics are

used. A summary of the collections used and the training and test topics are given

in Table A.2.

For these experiments, E = mean average precision, T = TREC relevance judg-

ments, f = set of 6 features shown in Table 4.1, and MΛ = R
d. Each model is trained

using only the data in the relevance judgments. That is, when the model is being

trained it only “knows” about the documents contained in the relevance judgments

and not about any of the unjudged documents in the collection. However, when being

tested, all documents in the collection are ranked. In the case of the balanced SVM

model, the non-relevant judgments from the relevance file were undersampled. The

76

Number Feature
1

∑

w∈Q∩D log(tfw,D)

2
∑

w∈Q∩D log(1 +
tfw,D

|D|
)

3
∑

w∈Q∩D log(N
dfw

)

4
∑

w∈Q∩D log(|C|
cfw

)

5
∑

w∈Q∩D log(1 +
tfw,D

|D|
N

dfw
)

6
∑

w∈Q∩D log(1 +
tfw,D

|D|
|C|
cfw

)

Table 4.1. Features used in the bag of words experiments. tfw,D is the number of
times term w occurs in document D, cfw is the number of times term w occurs in the
entire collection, dfw is the number of documents term w occurs in, |D| is the length
(in terms) of document D, |C| is the length (in terms) of the collection, and N is the
number of documents in the collection.

Disks 1,2 Disk 3 Disks 4,5
Train Test Train Test Train Test

Unbalanced SVM 0.0955 0.1091 0.1501 0.1336 0.1421 0.1434
Balanced SVM 0.1577 0.1849 0.1615 0.1361 0.1671 0.1897

Coordinate Ascent 0.1955‡ 0.2327†‡ 0.2080†‡ 0.1773‡ 0.2238†‡ 0.2328†‡
Language modeling 0.1883‡ 0.2155‡ 0.1875‡ 0.1642‡ 0.1819 0.1995

Table 4.2. Training and test set mean average precision values for various ad hoc
retrieval data sets and training methods. The † represents a statistically significant
improvement over language modeling and ‡ denotes significant improvement over
the balanced SVM model. Tests done using a one tailed paired t-test at the 95%
confidence level.

feature-based model is trained using the same features as the SVM, and therefore has

no additional power. The language modeling system ranks documents via query like-

lihood, with document models estimated using Bayesian (Dirichlet) smoothing [123]

and is trained by finding the smoothing parameter that maximizes the mean average

precision on the training data.

The results of the experiments are given in Table 4.2. As we see from the results,

our parameter estimation technique based on coordinate ascent results in consistently

and statistically significant improvements over both the unbalanced and balanced

SVM estimates. Furthermore, it significantly outperforms language modeling on 4

77

out of 6 runs. Language modeling, on the other hand, significantly outperforms the

SVM model on 4 out of the 6 runs.

The results indicate that language modeling, despite its simplicity, stands up very

well compared to sophisticated feature-based machine learning techniques. The re-

sults also provide empirical proof that SVM parameter estimation is simply not the

correct paradigm here, because it optimizes the wrong evaluation metric function.

Our estimation technique, however, is directly maximizing the evaluation metric un-

der consideration and results in stable, effective parameter estimates across the col-

lections. Therefore, metric divergence can significantly hinder the effectiveness of a

model.

78

CHAPTER 5

EVALUATION OF THE BASIC MRF MODEL

Our discussion, up until this point, has focused entirely on the theoretical issues

surrounding the Markov random field model. We now shift our focus to more practical

matters. In this chapter, we empirically evaluate the retrieval effectiveness of our

proposed MRF model. This requires us to choose one or more tasks to evaluate the

model against. There are a large number of important information retrieval tasks,

such as web search [10], enterprise search [25], question answering (QA) [112], blog

search [79], legal search [5], desktop search [83], and image search. Rather than

evaluating our model on all of these tasks, we restrict our focus to ad hoc retrieval

and web search. As we will describe in more detail shortly, these two tasks are the

the most common and widely used in information retrieval.

This chapter has three primary contributions. First, we define the basic MRF

models for IR. These models are our first attempts at using the MRF framework for

retrieval. These models are purposefully simple and designed to show the robustness

and functionality of the MRF framework. Later on, in Chapters 6 and 7, we describe

extensions of these basic models. Second, we compare the effectiveness of these basic

MRF models to the state of the art bag of words models. Finally, we do a detailed

analysis of various aspects of the basic models in order to develop a richer, more

complete understanding of the strengths and weaknesses of the framework.

79

<top>

<num> Number: 744

<title>

Counterfeit ID punishments

<desc> Description:
What punishments or sentences have been given in the U.S. for
making or selling counterfeit IDs?

<narr> Narrative:
Relevant documents will describe punishments for manufacturing or
selling counterfeit identification, such as drivers licenses,
passports, social security cards, etc. Fake professional
certifications and fake credit cards are relevant. Counterfeit goods
or auto serial numbers not relevant. Counterfeit checks are not
relevant. ”Counterfeiting” with no indication of type is relevant.

</top>

Figure 5.1. TREC topic number 744.

5.1 Ad Hoc Retrieval

Ad hoc retrieval is one of the most important information retrieval tasks. In the

task, a user submits a query, and the system returns a ranked list of documents that

are topically relevant to the query. Therefore, the goal of the task is to find topically

relevant documents in response to a query. It is critical to develop highly effective ad

hoc retrieval models since such models often play important roles in other retrieval

tasks. For example, most QA systems use an ad hoc retrieval system to procure

documents that are topically relevant to some question. The QA systems then employ

various techniques to extract answers from the document retrieved [112]. Thus, by

improving on the current state of the art ad hoc retrieval models, it is possible to

positively impact the effectiveness of a wide range of tasks.

In the remainder of this section we describe experiments using three different basic

MRF models. Our aim is to analyze and compare the retrieval effectiveness of each

80

model across collections of varying size and type. We make use of the AP, WSJ,

and ROBUST04 data sets, which are smaller collections that consist of news articles

that are mostly homogeneous, and two web data sets, WT10g and GOV2, which are

considerably larger and less homogeneous. Further details about the data sets are

provided in Appendix A.

Each of these are TREC data sets. A TREC data set consists of a collection of

documents, a set of topics, and human relevance assessments. An example ad hoc

topic is shown in Figure 5.1. A TREC topic typically consists of a title, description,

and narrative. It is important to note that a topic is not the same thing as a query,

although the two terms are often used interchangeably. A query must be distilled

from a topic. This is typically done by using the text contained in one or more of the

topic fields as the query. For all of the experiments in this section, except where noted

otherwise, we follow the common TREC procedure of using only the title portion of

the topic as our query. Therefore, the query that we distill for the topic given in

Figure 5.1 is counterfeit id punishments.

TREC relevance judgments are done by human assessors. When determining

relevance, the entire TREC topic is considered. The assessors judge documents using

a binary1 scale, where rating 0 indicates not relevant and rating 1 indicates relevant.

All of the evaluation metrics that we consider in this section are based on binary

judgments. For all of our experiments, we return a ranked list of no more than 1000

documents per query, as is standardly done during TREC evaluations. Furthermore,

the primary evaluation metric that we use to evaluate ad hoc retrieval is mean av-

erage precision. Further details about the retrieval metrics we use can be found in

Appendix B.

1Although some TREC collections actually do have ternary (i.e., not relevant, relevant, and
highly relevant) judgments, they have never been used during official evaluations. When ternary
judgments do exist, all relevant (rating 1) and highly relevant (rating 2) documents are considered
relevant, which thereby binarizes the judgments.

81

Finally, for all of our experiments, documents were stemmed using the Porter

stemmer and a standard list of 418 stopwords was applied. All model parameters

were estimated by maximizing mean average precision using our proposed coordinate

ascent algorithm (see Algorithm 2).

Throughout all of our experiments, statistical significance is always tested using

a one-tailed, paired t-test at significance level p < 0.05.

5.1.1 MRF Models for Ad Hoc Retrieval

We now define the three basic MRF models for the ad hoc retrieval task. The

models correspond to the three dependence model types shown in Figure 3.2. Each

model represents a different set of underlying dependence assumptions and makes use

of different features. We define each model in terms of its canonical form, provide its

joint probability mass function, and show its ranking function.

5.1.1.1 Full Independence

The first basic model that we consider makes use of the full independence model

shown in Figure 3.2 (left). Recall that, under this model, query term nodes are

independent of each other given a document as evidence. This model, therefore,

shares many properties with standard bag of words retrieval models.

We now introduce the first basic MRF model, which we call the Full Independence

MRF Model (MRF-FI model). It is constructed using the following canonical form:

(FI, TQD, LM) : λTD

(FI, TQ, ICF) : λTQ

The model defines two features. One feature is defined over the TQD clique set and

the other is defined over the TQ clique set. Both features use the full independence

assumption and language modeling features.

82

Notice that no feature is defined over D, the document node clique set. By not

defining a feature over the document node clique, we are enforcing the constraint that

documents, in isolation, provide no useful information for the ad hoc retrieval task.

While this may seem like an extreme assumption, it is actually quite valid. No single

document prior has ever been shown to significantly improve effectiveness across a

wide range of data sets. Therefore, in order to keep the model as simple as possible,

we simply do not define a feature over this clique. However, we note that for specific

tasks it may be beneficial to define such a feature.

The model results in the following joint probability mass function:

PG,Λ(Q,D) = Z−1 exp
[

λTD

∑

(qi,D)∈TQD

log
tfqi,D + µt cfqi

|C|

|D|+ µt
+

λTQ

∑

qi∈TQ

log
|C|
cfqi

]

(5.1)

Furthermore, it is easy to see that we obtain the following linear feature-based model

when ranking according to P (D|Q):

PG,Λ(D|Q)
rank
=

∑

(qi,D)∈TQD

log
tfqi,D + µt cfqi

|C|

|D|+ µt
(5.2)

which shows that the MRF-FI model reduces exactly to the unigram query likelihood

language modeling approach with Dirichlet smoothing (see Equation 2.14).

Although the MRF-FI model is not technically a bag of words model, we consider

it as our bag of words baseline. This is appropriate, since, as we just showed, the

model is rank equivalent to the unigram language modeling approach, which is a bag

of words model. Therefore, we use the MRF-FI model as a baseline by which we

compare other MRF models that actually go beyond the bag of words assumption.

Table 5.1 shows the test set results for the MRF-FI model across data sets. In

the table, MAP refers to mean average precision, GMAP is geometric mean average

83

AP WSJ ROBUST04 WT10G GOV2
MAP 0.2077 0.3258 0.2920 0.1861 0.2984

GMAP 0.1219 0.2267 0.1970 0.1176 0.1891
P@10 0.3460 0.4860 0.4293 0.3204 0.5180
R-Prec 0.2448 0.3558 0.3291 0.2199 0.3515

µt 1750 2000 1000 1000 1500

Table 5.1. Test set results for the MRF-FI model.

precision, P@10 is precision at 10 ranked documents, R-Precision is precision at R

(number of judged relevant documents), and µt denotes the smoothing parameter

learned on the training set. All models were trained to maximize mean average

precision. These numbers serve as our baselines, which we attempt to improve upon

by employing more complex models.

5.1.1.2 Sequential Dependence

The second of the basic MRF models corresponds to the sequential dependence

model shown in Figure 3.2 (center). It is the Sequential Dependence MRF Model

(MRF-SD model), which is constructed according to the following canonical form:

(FI, TQD, LM) : λTD

(FI, TQ, ICF) : λTQ

(SD, OQD, LM-O-1) : λOD

(SD, OQ, ICF-O-1) : λOQ

(SD, OQD, LM-U-4) : λUD

(SD, OQ, ICF-U-4) : λUQ

which defines features over single term (i.e., TQD and TQ) clique sets, as well as ordered

term clique sets (i.e., OQD and OQ). Unlike the MRF-SI model, this model makes

use of some of the MRF model’s strengths. As we see, the model defines ordered and

unordered window features over the ordered cliques in the graph. By doing so, we

84

go beyond the bag of words assumption. The joint probability mass function for the

model is:

PG,Λ(Q,D) = Z−1 exp
[

λTD

∑

(qi,D)∈TQD

log
tfqi,D + µt cfqi

|C|

|D|+ µt
+

λTQ

∑

qi∈TQ

log
|C|
cfqi

+

λOD

∑

(q1,q2,D)∈OQD

log
tf#1(q1q2),D + µw cf#1(q1q2)

|C|

|D|+ µw
+

λOQ

∑

(q1,q2)∈OQ

log
|C|

cf#1(q1q2)

+

λUD

∑

(q1,q2,D)∈UQD

log
tf#uw8(q1q2),D + µw cf#uw8(q1q2)

|C|

|D|+ µw
+

λUQ

∑

(q1,q2)∈UQ

log
|C|

cf#uw8(q1q2)

]

(5.3)

and the ranking function simplifies to the following linear feature-based model:

PG,Λ(D|Q)
rank
= λTD

∑

(qi,D)∈TQD

log
tfqi,D + µt cfqi

|C|

|D|+ µt
+

λOD

∑

(q1,q2,D)∈OQD

log
tf#1(q1q2),D + µw cf#1(q1q2)

|C|

|D|+ µw
+

λUD

∑

(q1,q2,D)∈UQD

log
tf#uw8(q1q2),D + µw cf#uw8(q1q2)

|C|

|D|+ µw
(5.4)

Recall that both the ordered (LM-O-M) and unordered (LM-U-N) features have

free parameters that allow the size of the unordered window (scope of proximity) to

vary. We now motivate our choices for selecting these specific values.

First, for M , the parameter that controls the ordered window matching, we de-

cided to use 1, because it results in an “exact phrase” feature that does not allow

any room in the ordered matching of query terms. This choice is motivated by the

85

N AP WSJ WT10g GOV2
2 0.1860 0.2776 0.2148 0.2697
8 0.1867 0.2763 0.2167 0.2832
50 0.1858 0.2766 0.2154 0.2817

Unlimited 0.1857 0.2759 0.2138 0.2714

Table 5.2. Mean average precision for various parameter settings for LM-U-N using
the MRF-SD model.

fact that exact phrases are commonly used in many different applications. Further-

more, there has been little previous research that looked at relaxing such phrases.

Therefore, choosing 1 is the most reasonable choice.

The other value, N , which controls the window width for unordered matching,

was chosen after careful consideration of previous research. Fagan shows that the

best choice of N varies across collections [35]. Optimal values found included setting

N to either 2, the length of a sentence, or “unlimited” (matches any co-occurrences of

the terms within a document). Croft et al. showed improvements could be achieved

with passage-sized windows of 50 terms [29]. Therefore, since there were no strong

conclusions, we experimented with window sizes of 2, 50, sentence, and “unlimited”

to see what impact each had on effectiveness. Instead of segmenting sentences at

index time, we observe that the average length of an English sentence is 8-15 terms,

and choose a window size of 8 terms to model sentence-level proximity.

The results, which were evaluated on the entire data set, are given in Table 5.2.

The results show very little difference across the various window sizes. However,

for the AP, WT10g, and GOV2 collection the sentence-sized windows performed

the best. For the WSJ collection, N = 1 performed the best. The only collection

where mean average precision varies noticeably is the GOV2 collection. These results

suggest that a limited scope of proximity (2-50 terms) performs reasonably, but can

be approximated rather well by an “unlimited” scope, which reaffirms past research

into dependence models based on co-occurrences. However, it appears as though

86

AP WSJ ROBUST04 WT10G GOV2
MAP 0.2147† 0.3425 0.3096† 0.2053† 0.3325†

GMAP 0.1265 0.2399† 0.2196† 0.1286† 0.2449†
P@10 0.3340 0.5080 0.4566† 0.3245 0.5680†
R-Prec 0.2580† 0.3633 0.3363 0.2374† 0.3716†

Table 5.3. Test set results for the MRF-SD model. A † indicates a statistically
significant improvement over the MRF-FI model.

smaller scopes of proximity may provide better performance for larger collections,

as evidenced by the GOV2 results. Therefore, given this experimental evidence, we

decide to set N = 4 for use with our basic MRF-SD model.

Now that we have describe why the rationale behind the manual construction of

our model, we must see how well it performs compared to the simple MRF-FI model.

The results are given in Table 5.3. Results that are statistically significantly better

than the MRF-FI model are indicated by a †.

The results show that the MRF-SD model is significantly better than the MRF-

FI model on every data set except WSJ for mean average precision, which is our

primary evaluation metric. The improvements in mean average precision are 3.4% for

AP, 5.1% for WSJ, 6.0% for ROBUST04, 10.3% for WT10G, and 11.4% for GOV2.

These results indicate very strong, consistent improvements over the bag of words

baseline.

Similar results are exhibited for geometric mean average precision. GMAP heavily

penalizes queries with a low average precision Therefore, GMAP is often used to

measure robustness [114]. As our results show, the MRF-SD model is quite robust

and significantly improves GMAP for every data set except AP. We do a deeper

analysis of the robustness of the MRF model later in this chapter.

We see that the precision at 10 is improved across most data sets, but is only

significant on two of them (ROBUST04 and GOV2). Therefore, it appears as though

most of the boost in mean average precision that is achieved from using the MRF-SD

87

model does not come from the very top of the ranked list. Instead, the improvement is

likely coming from lower in the ranked list, where the ordered and unordered window

features are bringing in more relevant documents and filtering out many of the low

ranked, poorly matching documents.

Finally, it is important to recall that training is done to maximize mean average

precision. It is likely that more significant improvements could be achieved for the

other metrics if the model were trained to optimize them.

5.1.1.3 Full Dependence

The third basic MRF model is derived from the full dependence model. The model,

which is shown in Figure 3.2 (right), is called the Full Dependence MRF Model (MRF-

FD model). The model attempts to incorporate dependencies between every subset

of query terms and is the most general of the basic models. Here, the number of

cliques is exponential in the number of query terms, which restricts the application of

this variant to shorter queries. This is not a problem for the MRF-FI and MRF-SD

models, which have a linear number of cliques. The model is constructed according

to the following canonical form:

(FI, TQD, LM) : λTD

(FI, TQ, ICF) : λTQ

(FD, OQD, LM-O-1) : λOD

(FD, OQ, ICF-O-1) : λOQ

(FD, OQD, LM-U-4) : λUD

(FD, OQ, ICF-U-4) : λUQ

(FD, UQD, LM-U-4) : λUD

(FD, UQ, ICF-U-4) : λUQ

which is similar to the MRF-SD model. However, the models differ in several key

ways. First, the MRF-FD model uses the full dependence model type. Second, the

88

MRF-FD model defines two new features for the unordered clique sets (UQD and UQ).

These clique sets are empty in the MRF-SD model. Furthermore, the parameters for

all the unordered features are tied together. While this is not required, it simplifies

the model.

The resulting joint probability mass function for the model is then given by:

PG,Λ(Q,D) = Z−1 exp
[

λTD

∑

(qi,D)∈TQD

log
tfqi,D + µt cfqi

|C|

|D|+ µt
+

λTQ

∑

qi∈TQ

log
|C|
cfqi

+

λOD

∑

(q1,...,qk,D)∈OQD

log
tf#1(q1...qk),D + µw cf#1(q1...qk)

|C|

|D|+ µw
+

λOQ

∑

(q1,...,qk)∈OQ

log
|C|

cf#1(q1...qk)

+

λUD

∑

(q1,...,qk,D)∈OQD∪UQD

log
tf#uw8(q1...qk),D + µw cf#uw8(q1...qk)

|C|

|D|+ µw
+

λUQ

∑

(q1,...,qk)∈OQ∪UQ

log
|C|

cf#uw8(q1...qk)

]

(5.5)

and the resulting ranking function is then:

PG,Λ(D|Q)
rank
= λTD

∑

(qi,D)∈TQD

log
tfqi,D + µt cfqi

|C|

|D|+ µt
+

λOD

∑

(q1,...,qk,D)∈OQD

log
tf#1(q1...qk),D + µw cf#1(q1...qk)

|C|

|D|+ µw
+

λUD

∑

(q1,...,qk,D)∈OQD∪UQD

log
tf#uw4k(q1...qk),D + µw cf#uw4k(q1...qk)

|C|

|D|+ µw
(5.6)

Now that we have defined the MRF-FD model, we would like to understand what

effect the ordered and unordered features have on the model’s effectiveness and how

well the models learned on one collection generalize to another. In order to measure

89

Term + Ordered Term + Unordered
Train \ Test AP WSJ WT10g GOV2 AP WSJ WT10g GOV2

AP 0.1847 0.2718 0.2180 0.2669 0.1840 0.2674 0.2179 0.2754
WSJ 0.1842 0.2733 0.2167 0.2613 0.1840 0.2674 0.2179 0.2754

WT10G 0.1847 0.2718 0.2180 0.2669 0.1838 0.2674 0.2189 0.2783
GOV2 0.1840 0.2705 0.2150 0.2675 0.1838 0.2674 0.2189 0.2783

Term + Ordered + Unordered
Train \ Test AP WSJ WT10g GOV2

AP 0.1866 0.2716 0.2226 0.2839
WSJ 0.1841 0.2738 0.2195 0.2694

WT10G 0.1865 0.2719 0.2231 0.2783
GOV2 0.1852 0.2709 0.2201 0.2844

Table 5.4. Mean average precision using the MRF-FD model over different combi-
nations of term, ordered, and unordered features.

this, we train on one data set and then use the parameter values found to test on

the other data sets. Results for models trained using terms and ordered features,

terms and unordered features, and terms, ordered, and unordered features are given

in Table 5.4.

For the AP collection, there is very little difference between using ordered and

unordered features. However, there is a marginal increase when both ordered and un-

ordered features are used together. The results for the WSJ collection are different.

For that collection, the ordered features produce a clear improvement over the un-

ordered features, but there is very little difference between using ordered features and

the combination of ordered and unordered. The results for the two web collections,

WT10g and GOV2, are similar. In both, unordered features perform better better

than ordered features, but the combination of both ordered and unordered features

led to noticeable improvements in mean average precision.

From these results we can conclude that strict matching via ordered window fea-

tures is more important for the smaller newswire collections. This may be due to

the homogeneous, clean nature of the documents, where an ordered window match

is likely to be a high quality match instead of noise. For the web collections, the

90

AP WSJ ROBUST04 WT10G GOV2
MAP 0.2128 0.3429† 0.3092† 0.2140†‡ 0.3360†

GMAP 0.1257 0.2404† 0.2196† 0.1361†‡ 0.2421†
P@10 0.3540 0.5080† 0.45605† 0.3469†‡ 0.5720†
R-Prec 0.2543† 0.3694† 0.3394† 0.2417†‡ 0.3763†

Table 5.5. Test set results for the MRF-FD model. A † indicates a statistically sig-
nificant improvement over the MRF-FI model and a ‡ indicates statistically significant
improvement over the MRF-SD model.

opposite is true. Here, the fuzzy unordered window matches provide better evidence.

In these less homogeneous, noisy collections, an ordered window match is less likely to

be a high quality match and more likely to be a noisy match. Instead, fuzzy matches

are appropriate because they deal better with the noise inherent in web documents.

These results also suggest that parameters trained on any of the data sets general-

ize well to other data sets. This result is somewhat surprising; we expected parameters

trained on newswire (web) data would generalize better to newswire (web) test data.

However, this is not the case. It appears as though the parameters trained on any

reasonable data set will generalize well, which allows one to use a single setting of

the parameters across multiple data sets. This may imply that the features used here

only capture general aspects of the text and that more domain-specific features may

yield further improvements. We return to the issue of parameter generalization later

in this chapter.

We conclude our discussion of the MRF-FD model by reporting test set effective-

ness results. The results are given in Table 5.5. The improvements over the MRF-FI

model are highly consistent, even more so than the improvements we saw with the

MRF-SD model. Consistent and significant improvements in mean average precision

and geometric mean average precision are observed on every data set except AP. Fur-

thermore, both precision at 10 and R-prec are consistently improved across nearly all

of the data sets, as well.

91

These results indicate that the MRF-FD model is better at improving precision

at the top of the ranked list. This suggests that modeling dependencies between

non-adjacent query terms, via the use of ordered and unordered features, enhances

precision more so than modeling dependencies between adjacent query terms. By

using the full dependence model, we impose a more global (i.e., across all query terms)

type of proximity constraint on the query terms, whereas the sequential dependence

model imposes more of a local (i.e., only between adjacent query terms) proximity

constraint. Hence, the MRF-FD model promotes documents where all of the query

terms occur within a close proximity to each other, and the MRF-SD model only

promotes documents based on the proximity of pairs of adjacent query terms. The

MRF-SD model, therefore, may result in lower quality matches that do not satisfy

the global proximity constraints imposed by the MRF-FD model, which may lead to

fewer relevant documents returned at the top of the ranked list.

Despite the fact that the MRF-SD model only enforces local proximity constraints,

it is only significantly worse than the MRF-FD model on the WT10G data set. The

two models are statistically indistinguishable for all other metrics and data sets.

This is an interesting result with practical ramifications. If a system builder had

to decide whether to implement the MRF-SD model or the MRF-FD model, they

would need to analyze this efficiency/effectiveness tradeoff closely. Our results show

that, statistically, there is often no difference between the two models. However, as we

showed, the MRF-FD model does tend to produce better results across all data sets

and metrics. In terms of efficiency, the MRF-SD model requires less computation in

order to rank documents, since there are only a linear number of cliques. The MRF-

FD model, on the other hand, has an exponential number of cliques. Therefore, the

key practical factors to consider are average query length, importance of excellent

effectiveness, and computational resources.

92

Recent advances in inverted indexing technology and query evaluation may be

able to significantly improve the efficiency by which both MRF-SD and MRF-FD

models can be evaluated. These new techniques, based on impact ordered indexes,

pre-compute complicated features and store them directly in the index [3]. Then,

rather than computing an exponential number of feature functions per query, the

aggregated feature value can be read directly from the index. Of course, applying such

an indexing strategy requires a large amount of disk space to store the “feature lists”,

but could result in very fast query evaluation, especially using recently developed

query optimization techniques [4, 106].

5.1.2 Evaluation

In this section, we delve deeper into a number of issues related to the three basic

MRF models. By analyzing these issues, we develop a better understanding of the

MRF model. Many of the insights described here can be widely applied to other

information retrieval models.

5.1.2.1 Smoothing

All three of the basic models have one or more model hyperparameters that control

smoothing. These parameters live outside of the MRF model and must be tuned

separately. Previous research has shown that language modeling effectiveness is often

sensitive to the setting of the smoothing parameters [123]. Therefore, it is important

to consider how sensitive the effectiveness of the basic models are to the setting of

the hyperparameters.

There are two different hyperparameters associated with the basic models. They

are µt, which controls single term smoothing, and µw, which controls both ordered

and unordered window smoothing. We choose to smooth single terms different from

windows because terms tend to behave differently than windows and have different

occurrence statistics. Although not explored here, it is also possible to smooth the

93

0.172

0.174

0.176

0.178

0.18

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

AP

0.178-0.18

0.176-0.178

0.174-0.176

0.172-0.174

500

1500

2500

3500

4500

5500

0.162

0.164

0.166

0.168

0.17

500
1000

1500
2000

2500
3000

3500
4000

4500
5000

5500
6000

Window Mu

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

Term Mu

0.17-0.172

0.168-0.17

0.166-0.168

0.164-0.166

0.162-0.164

Figure 5.2. Training set mean average precision as a function of term and window
smoothing parameters using the sequential dependence model on the AP data set.

ordered window features differently than the unordered windows. However, we feel

that the two window types are similar enough that they can be smoothed in the same

way.

Since nobody has ever applied smoothing to ordered and unordered windows in

this way, it is important to analyze how sensitive effectiveness is with regard to the

window smoothing parameters. In Figures 5.2, 5.3, 5.4, and 5.5 we plot mean average

precision surfaces over a wide range of settings for µt and µw using the MRF-SD

model. Results are given for the AP, WSJ, ROBUST04, and WT10G data set.

The surfaces show that, in general, effectiveness is more sensitive to the setting of

the window smoothing parameter (µw) than the term smoothing parameter (µt). The

results suggest that it is important to tune the smoothing parameters, especially the

window smoothing parameter. These surfaces also support our decision to smooth

windows and terms differently, as it is apparent that setting µt = µw is often far from

the optimal setting.

94

0.25

0.255

0.26

0.265

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

WSJ

0.26-0.265

0.255-0.26

0.25-0.255

500

1500

2500

3500

4500

5500

0.23

0.235

0.24

0.245

500
1000

1500
2000

2500
3000

3500
4000

4500
5000

5500
6000

Window Mu

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

Term Mu

0.245-0.25

0.24-0.245

0.235-0.24

0.23-0.235

Figure 5.3. Training set mean average precision as a function of term and window
smoothing parameters using the sequential dependence model on the WSJ data set.

0.228

0.229

0.23

0.231

0.232

0.233

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

ROBUST04

0.232-0.233

0.231-0.232

0.23-0.231

0.229-0.23

0.228-0.229

500

1500

2500

3500

4500

5500

0.223

0.224

0.225

0.226

0.227

0.228

500
1000

1500
2000

2500
3000

3500
4000

4500
5000

5500
6000

Window Mu

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

Term Mu

0.228-0.229

0.227-0.228

0.226-0.227

0.225-0.226

0.224-0.225

0.223-0.224

Figure 5.4. Training set mean average precision as a function of term and window
smoothing parameters using the sequential dependence model on the ROBUST04
data set.

95

0.2

0.205

0.21

0.215

0.22

0.225

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

WT10G

0.22-0.225

0.215-0.22

0.21-0.215

0.205-0.21

0.2-0.205

500

1500

2500

3500

4500

5500

0.175

0.18

0.185

0.19

0.195

0.2

500
1000

1500
2000

2500
3000

3500
4000

4500
5000

5500
6000

Window Mu

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

Term Mu

0.2-0.205

0.195-0.2

0.19-0.195

0.185-0.19

0.18-0.185

0.175-0.18

Figure 5.5. Training set mean average precision as a function of term and window
smoothing parameters using the sequential dependence model on the WT10G data
set.

Finally, we note that the AP, WSJ, and WT10G curves are shaped similarly.

However, the ROBUST04 surface has a very distinct shape to it. The difference

appears to be that it is difficult to “saturate” the window smoothing parameter on the

AP, WSJ, and WT10G data sets, but that the window smoothing parameter quickly

saturates on the ROBUST04 collection. This result may have to do with the fact that

the ROBUST04 query set was specifically chosen to be difficult (for retrieval systems

built before 2004). It may be that these queries were “hard” because the models that

were applied to them did not take term proximity into account [12, 113]. Therefore,

when we apply our model to these queries, it may be possible to over smooth the

window features, which reduces the effect of term proximity on the ranking function

and decreases effectiveness.

5.1.2.2 Collection Size

In Chapter 1, we described the various paradigm shifts that have occurred in

information retrieval. We argued that as collection sizes grew and average document

96

WT10G

GOV2

8.00%

10.00%

12.00%

14.00%

16.00%

Im
p

ro
v

e
m

e
n

t
in

 M
A

P
 o

v
e

r
B

a
g

 o
f

W
o

rd
s

M
o

d
e

l

WSJ

AP

ROBUST04

0.00%

2.00%

4.00%

6.00%

100000 1000000 10000000

Im
p

ro
v

e
m

e
n

t
in

 M
A

P
 o

v
e

r
B

a
g

 o
f

W
o

rd
s

M
o

d
e

l

Number of Documents

Figure 5.6. Relationship between the number of documents in a collection and the
relative improvement in mean average precision of the MRF-FD model over unigram
language modeling (MRF-FI). Note that the x-axis is log scaled.

lengths increased, new types of features beyond term frequency and inverse document

frequency would become important. We argued that these new types of features that

go beyond bags of words would act to filter out all of the noisy matches that were

made by chance.

We test this hypothesis by analyzing how much better the MRF-FD model is

compared to the MRF-FI model across a range of data set sizes. This data is plotted

in Figure 5.6. In the Figure, the x-axis represents the number of documents in the

collection (log scale) and the y-axis represents the relative improvement in mean

average precision of MRF-FD over MRF-FI.

Although there are only 5 data points, there is clearly an increasing trend in the

data, with bigger improvements seen for the larger collections. The trend, of course,

is not perfect, but it does help validate our hypothesis that bag of words features

97

begin to fail as collection sizes increase. It will be interesting to see whether this

trend continues as larger data sets are made available. Clearly, bag of words models,

such as language modeling or BM25, are not well suited for ad hoc retrieval against

web-scale collections.

5.1.2.3 The Role of Features

We have just shown that going beyond the bag of words assumption and making

use of term proximity features is highly effective, especially on very large collections.

In this section, we take this analysis one step further and investigate the role of various

types of features across the data sets. This analysis provides insights into why certain

features are more effective than others on a given data set and helps us understand

which other types of features may be important in the future.

To aid our analysis, we compute statistics for various information retrieval fea-

tures. The statistics are computed in the following manner. For every query, we

compute the feature of interest for every document in D, the document set of inter-

est. The average feature value is then computed across all of the documents in D.

We then use the median of the average values as our primary statistic. We use the

median, rather than the average, because many of the feature distributions are highly

skewed. This procedure is carried out for the following features:

• Overlap – |Q∩D|
|Q|

, which is the fraction of query terms that occur in the doc-

ument. If this value is 1, then every query term occurs in the document. We

note that this is similar in spirit to Buckley et al.’s titlestat measure [13].

• Average TF –
∑

w∈Q tfw,D

|Q|
, which is the average term frequency of the query

terms in the document.

• Average Distance (Sequential) – The average distance (with respect to term

positions) between every pair of query terms that are adjacent to each other.

Single term queries are ignored when computing this feature.

98

Overlap Avg. TF Avg. Dist. (Seq)] Avg. Dist. (Tot)
Rel Nonrel Rel Nonrel Rel Nonrel Rel Nonrel

AP 0.63 0.52 2.6 1.84 212 207 215 210
WSJ 0.67 0.53 2.7 1.93 370 460 387 471

ROBUST04 0.67 0.53 2.9 2.42 430 4933 452 5998
WT10G 0.80 0.66 6.5 5.16 1389 10357 1414 10357
GOV2 0.94 0.76 18.6 18.79 7090 7826 7164 8017

Table 5.6. Median values for various statistics computed across judged relevant
(Rel) and non-relevant (Nonrel) documents.

• Average Distance (Total) – The average distance between every pair of query

terms. Again, single term queries are ignored when computing this feature.

These features are meant to capture various bag of words features (overlap and average

TF), as well as notions of term proximity (average distances).

The medians, as computed using the procedure described above, are given in

Table 5.6. Results are given for the AP, WSJ, ROBUST04, WT10G, and GOV2 data

sets. The statistics are computed for both the set of judged relevant documents and

the set of judged non-relevant documents. By comparing the median values of these

features in both sets, we are able to better understand which features discriminate

well between relevant and non-relevant documents.

Of course, the judged relevant and judged non-relevant documents are heavily

biased because of the pooling procedure used at TREC. However, these statistics

still provide valuable insights into the fine line between relevant and non-relevant

documents and what types of features are important for data sets with varying char-

acteristics.

We first analyze the overlap feature. As the results show, the overlap is higher

in the relevant set than in the non-relevant set. This is to be expected, as relevant

documents typically contain most of the query terms. However, there is a noticeable

increasing trend in the value as the collection size increases. This suggests that as

collections get larger, relevant documents that appear high in the ranked list (i.e.,

99

those that would get pooled and judged) will contain most, if not all, of the query

terms. This suggests that it might be useful to run the query as a simple conjunctive

Boolean query first, and then apply a more complex ranking function to the filtered

set of documents.

A similar trend exists for the average term frequency feature, with larger average

TF values for larger collections that contain longer documents. This, again, should not

be surprising, since collections that contain longer documents will naturally contain

more term occurrences. Furthermore, since many of the judgment pools include a

large number of runs that use bag of words models based on tf.idf scoring, it is only

natural for the results to be biased towards high term frequencies. The gap in TF

from the relevant to the non-relevant set is not very large, and therefore average TF

alone cannot be used as a very good discriminator. Indeed, it it very interesting to

observe that the median average TF of non-relevant documents for GOV2 is larger

than the median average TF of relevant documents. This suggests that many of the

bag of words models return documents that contain many chance occurrences of the

query terms. Since these are not meaningful occurrences of the query terms, the

documents were actually non-relevant. This is where the term proximity and other

types of features begin to become important, as we will now show.

The two term proximity features show the greatest discriminative potential of any

of the features we looked at, especially as collection sizes grow. For the AP and

WSJ collections, there is little difference between the term proximity features in the

relevant and non-relevant sets. However, for the ROBUST04, WT10G, and GOV2

data sets, there is a noticeable divide between the term proximity characteristics of the

relevant and non-relevant document sets. The biggest divide occurs for the WT10G

data set, which, not surprisingly, showed the biggest boost in effectiveness when the

MRF-SD and MRF-FD models were used. These statistics validate our arguments

as to the importance of term proximity features, especially on larger collections.

100

Figure 5.7. Plot of average distance between sequential query terms for WT10G
data set. Coll represents the entire collection, nonrel the set of judged non-relevant
documents, and rel the set of judged relevant documents.

They show that both local proximity, as modeled by the MRF-SD model, as well as

global proximity, as modeled by the MRF-FD model, actually model discriminative

characteristics of query terms that discriminate between relevant and non-relevant

documents.

Finally, in order to give an idea of the distribution of the average distance (se-

quential) feature, we plot a histogram and smoothed density estimate for the WT10g

data set in Figure 5.7. In addition to the statistics about the judged relevant and

non-relevant documents, the same statistics were also computed for the entire set of

documents. The entire set of documents is a much more realistic, less biased model

of “not relevant” than the judged non-relevant documents. As the figure shows, the

relevant distribution is highly skewed towards small values. The non-relevant dis-

tribution is skewed, but not as much as the relevant distribution. The collection

distribution does not appear to be as skewed as the other distributions, but it is clear

that the average distances compute across the collection are generally much larger

than both the judged relevant and non-relevant documents.

101

5.1.2.4 Robustness

Next, we investigate the robustness of the MRF-SD and MRF-FD models. Here,

we define robustness as the number queries whose effectiveness is improved/hurt (and

by how much) as the result of applying these methods. A highly robust model will

significantly improve many queries over the baseline and only minimally hurt a few.

In order to evaluate the robustness of the MRF-SD and MRF-FD models, we

plot histograms that show how many queries were helped or hurt by a given amount.

These plots are given in Figure 5.8. The bin labels indicate the relative change in

mean average precision with regard to the baseline MRF-FI model. We see from the

results that the distributions are skewed in the direction of positive improvements.

In fact, for most of the data sets, there are very few queries that are hurt by more

than 50%. Similarly, many queries are often improved by over 50% on every data set.

These histograms are only useful for aggregate data analysis. However, we would

like to know which queries were the most helped and most hurt by these more complex

models. In Tables 5.7 and 5.8 we provide the 10 most improved and 10 most hurt

queries when using the MRF-SD model on the ROBUST04 and GOV2 data sets,

respectively.

The first observation we make about these results is that the most improved

queries are often those that have poor MRF-FI average precision (e.g., below 0.1).

Of course, since these queries are so poor, it is very easy to achieve large relative im-

provements. However, some queries, such as price fixing (ROBUST04 topic 622), big

dig pork (GOV2 topic 835), and spanish civil war support (GOV2 topic 829) are sig-

nificantly improved and have “acceptable” MRF-SD average precision values. There

are very few cases of queries with large MRF-FI average precisions being significantly

hurt when the MRF-SD model is applied to them.

The second observation is that queries consisting of meaningful, common two word

phrases, such as gasoline tax (ROBUST04 topic 700), price fixing (ROBUST04 topic

102

20

25

30

35

AP

SD

0

5

10

15

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

SD

FD

15

20

25

30

WSJ

SD

0

5

10

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

SD

FD

30

40

50

60

ROBUST04

SD

0

10

20

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

SD

FD

15

20

25

30

WT10G

SD

0

5

10

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

SD

FD

15

20

25

GOV2

SD

0

5

10

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

SD

FD

Figure 5.8. Robustness of MRF-SD and MRF-FD models for the AP, WSJ, RO-
BUST04, WT10G, and GOV2 test sets. The MRF-FI model is used as the baseline
by which the improvements are computed. The evaluation metric used is average
precision.

103

Topic Query MRF-FI MRF-SD % Change
615 timber exports asia 0.1477 0.0697 -52.81%
685 oscar winner selection 0.2689 0.1740 -35.29%
623 toxic chemical weapon 0.2982 0.2238 -24.95%
651 ethnic population 0.0381 0.0305 -19.95%
659 cruise health safety 0.3216 0.2589 -19.50%
644 exotic animals import 0.1719 0.1392 -19.02%
698 literacy rates africa 0.5278 0.4314 -18.26%
612 tibet protesters 0.4528 0.3733 -17.56%
695 white collar crime sentence 0.2746 0.2316 -15.66%
693 newspapers electronic media 0.3108 0.2680 -13.77%

· · ·
639 consumer line shopping 0.1353 0.2094 54.77%
629 abortion clinic attack 0.1568 0.2527 61.16%
700 gasoline tax 0.2811 0.4579 62.90%
684 part time benefits 0.0881 0.1482 68.22%
627 russian food crisis 0.0102 0.0175 71.57%
638 wrongful convictions 0.0231 0.0468 102.60%
690 college education advantage 0.0027 0.0062 129.63%
689 family planning aid 0.0224 0.0583 160.27%
666 thatcher resignation impact 0.0078 0.0333 326.92%
622 price fixing 0.0287 0.1354 371.78%

Table 5.7. The 10 most improved and 10 most hurt test set queries when using the
MRF-SD model on the ROBUST04 data set. Effectiveness is measure in terms of
average precision.

104

Topic Query MRF-FI MRF-SD % Change
822 custers stand 0.0815 0.0562 -31.04%
833 iceland government 0.5150 0.3669 -28.76%
847 portugal world war ii 0.2513 0.1859 -26.02%
837 eskimo history 0.0622 0.0486 -21.86%
838 urban suburban coyotes 0.2778 0.2402 -13.53%
846 heredity obesity 0.1734 0.1517 -12.51%
816 usaid assistance galapagos 0.7751 0.7056 -8.97%
850 mississippi river flood 0.1799 0.1663 -7.56%
808 north korean counterfeiting 0.7212 0.6717 -6.86%
845 new jersey tomato 0.3892 0.3635 -6.60%

· · ·
825 national guard involvement iraq 0.0755 0.1183 56.69%
843 pol pot 0.3158 0.5012 58.71%
849 scalable vector graphics 0.2080 0.4029 93.70%
842 david mccullough 0.0806 0.1799 123.20%
805 identity theft passport 0.0412 0.0961 133.25%
844 segmental duplications 0.0543 0.1486 173.66%
830 model railroads 0.0327 0.0992 203.36%
829 spanish civil war support 0.0637 0.2183 242.70%
835 big dig pork 0.0593 0.2141 261.05%
806 doctors borders 0.0061 0.0750 1129.51%

Table 5.8. The 10 most improved and 10 most hurt test set queries when using the
MRF-SD model on the GOV2 data set. Effectiveness is measure in terms of average
precision.

105

622), pol pot (GOV2 topic 843), and model railroads (GOV2 topic 830), are more

likely to be improved than two word phrases that are not as common or meaningful,

such as ethnic population (ROBUST04 topic 651), tibet protesters (ROBUST04 topic

612), eskimo history (GOV2 topic 837), and heredity obesity (GOV2 topic 846). This

may be the result of how ordered and unordered feature weights are computed in

the MRF-SD model. It may be useful in the future to include notions of lexical

cohesiveness in the computation of ordered and unordered phrase features in order to

rectify this issue [111].

Finally, we note that parsing/stopword removal errors may have contributed to

the reduction in effectiveness observed for some of the queries. One clear example

of such an error is the query custers stand (GOV2 topic 822). The original title is

custer’s last stand. However, our query distillation process removes a large set of

stopwords, including the term last. When the MRF-SD model is applied to the query

custers stand, the exact phrase feature becomes a very poor feature, since the actual

exact phrase features that we want are custers last and last stand, instead of custers

stand. Interestingly, the query doctors borders (GOV2 topic 806), which is originally

doctors without borders is the most improved query for the GOV2 data set. A better

understanding of stopword removal from within phrases is needed in order to deal

with these cases in a more consistent manner.

5.1.2.5 Long Queries

Up until this point, we have only considered queries that were constructed from

the title portion of the TREC topics. These queries tend to be very short, high quality

queries that contain few, if any, function words. In this section, we examine whether

or not the MRF model maintains its effectiveness on long queries. In particular, we

are interested in evaluating the model on queries constructed from the description

portion of the TREC topic. The description field contains a longer natural language

106

description of the underlying information need and often contains more useful terms.

However, it also includes many function words. For this reason, we developed a

special stopword list that contains common function words that often occur in TREC

description fields. This stopword list is then applied to queries in order to remove

most of the noisy query terms, while keeping the important content terms.

In order to evaluate long queries, we define two new basic MRF models designed

specifically for long queries. The first, MRF-FI-L, is a variant of the MRF-FI model.

The LM weighting function is replaced with another language modeling weighting

function based on Jelinek-Mercer smoothing. This is done because previous research

has suggested that Jelinek-Mercer smoothing is more effective on longer queries than

Dirichlet smoothing [123]. This small change results in the following ranking function:

PG,Λ(D|Q)
rank
=

∑

(qi,D)∈TQD

log

[

(1− δt)
tfqi,D

|D| + δt cfqi

|C|

]

(5.7)

where δt is the term smoothing parameter. In a similar fashion, we modify the MRF-

SD model to use Jelinek-Mercer smoothing instead of Dirichlet smoothing. This

model has this ranking function:

PG,Λ(D|Q)
rank
= λTD

∑

(qi,D)∈TQD

log

[

(1− δt)
tfqi,D

|D| + δt cfqi

|C|

]

+

λOD

∑

(q1,q2,D)∈OQD

log

[

(1− δw)
tf#1(q1q2),D

|D| + δw cf#1(q1q2)

|C|

]

+

λUD

∑

(q1,q2,D)∈UQD

log

[

(1− δw)
tf#uw8(q1q2),D

|D| + δw cf#uw8(q1q2)

|C|

]

(5.8)

where δw is the ordered and unordered window smoothing parameter. Both δt and

δw must be in the range [0, 1].

The long query results are given in Table 5.9. These results show that the MRF-

SD-L model significantly outperforms the MRF-FI-L model on all data sets. In fact,

107

MRF-FI-L MRF-SD-L
AP 0.1778 0.1956 (+10.0%)

WSJ 0.2395 0.2544 (+6.2%)
ROBUST04 0.2910 0.3120 (+7.2%)

WT10G 0.1288 0.1639 (+27.3%)
GOV2 0.2003 0.2412 (+20.4%)

Table 5.9. Test set mean average precision for description-length queries using full
and sequential dependence models. All improvements are statistically significant.

the improvements here are much larger than those observed for the short queries,

which signifies that modeling dependencies between adjacent query terms is even

more important for longer queries. One potential reason for this behavior is the fact

that longer queries often contain many more spurious terms that, when matched in a

bag of words setting, will return many poor documents. Instead, when the adjacency

constraint is enforced, the number of these poor matches is reduced.

These results also indicate that the longer queries are much less effective than the

shorter version of the queries (see Table 5.3). This poor effectiveness is likely caused

by the increased noise in the query. Although many function words are removed from

the queries during pre-processing, some make it into the query. Similar results have

been observed at TREC, as well [113, 114]. This brings up the question of whether

or not more information, in the form of longer natural language queries, should be

expected to return better results than short keyword queries. If the search engine were

replaced by a librarian, then it is obvious that the more information that you were

to provide, the better the results would ultimately be. However, natural language

processing techniques have failed to have a positive effect on retrieval effectiveness,

especially for longer queries. Perhaps once natural language techniques are improved,

it may be reasonable to expect better effectiveness from longer queries. However, it

remains to be seen whether or not users of information retrieval systems will be willing

to enter long descriptive queries. Instead, the most likely answer in some technology

108

that lies between short keyword queries and fully descriptive queries. For example, a

user interface that allows users to enter a keyword query and then provides a set of

simple options to focus their search results. Such technologies are starting to show

up in web search engines, but whether or not they will enter the mainstream remains

yet to be seen.

5.1.2.6 BM25 Weighting

All of the basic MRFs proposed so far have used language modeling weighting

functions. As described in Chapter 2, the BM25 weighting function has been shown to

have effectiveness comparable to language modeling. For this reason, we are interested

in examining the effectiveness of MRF models built using BM25 weighting functions.

It is straightforward to modify one of the previously proposed MRF models to use

BM25 weighting. In order to keep things relatively simple and provide for an easy

comparison, we choose to modify the MRF-SD model. The resulting MRF-BM25

model is then given by the following canonical form:

(FI, TQD, BM25) : λTD

(FI, TQ, IDF) : λTQ

(SD, OQD, BM25-O-1) : λOD

(SD, OQ, IDF-O-1) : λOQ

(SD, OQD, BM25-U-4) : λUD

(SD, OQ, IDF-U-4) : λUQ

where the weighting functions are defined in Section 3.3.3. The MRF-BM25 model

has the same form as the MRF-SD model, but replaces the LM and ICF weighting

functions with analogous BM25 and IDF ones. This results in the following ranking

function:

109

AP WSJ ROBUST04 WT10G GOV2
MAP 0.2210† 0.3512†‡ 0.3101†‡ 0.2129†‡ 0.3476†‡

GMAP 0.1366†∗ 0.2471†‡ 0.2199†‡ 0.1181‡ 0.2817† ‡ ∗
P@10 0.3140 0.5140† 0.4525† 0.3388 0.6100† ‡ ∗
R-Prec 0.2666† 0.3698† 0.3366‡ 0.2508†‡ 0.3834†
(kt

1, b
t) (1.75, 0.3) (1.5, 0.3) (0.5, 0.3) (0.5, 0.2) (1.0, 0.4)

(kw
1 , b

w) (0.25, 0.1) (0.25, 0.1) (0.25, 0.0) (0.25, 0.0) (0.25, 0.0)

Table 5.10. Test set results for the MRF-BM25 model. The †, ‡, and * indicate
statistically significant improvements over the MRF-FI, BM25 and MRF-SD mod-
els, respectively. Recommended term and window hyperparameter values are also
provided.

PG,Λ(D|Q)
rank
=

λTD

∑

(qi,D)∈TQD

(kt
1 + 1)tfw,D

kt
1

(

(1− bt) + bt
|D|

|D|avg

)

+ tfw,D

log
N − dfw + 0.5

dfw + 0.5
+

λOD

∑

(q1,q2,D)∈OQD

(kw
1 + 1)tf#1(q1q2),D

kw
1

(

(1− bw) + bw
|D|

|D|avg

)

+ tf#1(q1q2),D

log
N − df#1(q2q2) + 0.5

df#1(q1q2) + 0.5
+

λUD

∑

(q1,q2,D)∈UQD

(kw
1 + 1)tf#uw8(q1q2),D

kw
1

(

(1− bw) + bw
|D|

|D|avg

)

+ tf#uw8(q1q2),D

log
N − df#uw8(q1q2) + 0.5

df#uw8(q1q2) + 0.5

(5.9)

which has four hyperparameters, as opposed to the two hyperparameters in the MRF-

SD model. While the two extra parameters make the model more flexible, to a certain

extent, it also makes it more difficult to properly tune.

The results of our experiments using the MRF-BM25 model are shown in Ta-

ble 5.10. Test set results are given and significance tests are done comparing the

retrieval effectiveness against MRF-FI, BM25 (see Equation 2.11) and MRF-SD. Ac-

cording to our primary evaluation metric, mean average precision, we see that the

MRF-BM25 is always significantly better than the MRF-FI model and significantly

better than BM25 on all data sets, except AP. Furthermore, the MRF-BM25 model is

statistically indistinguishable from the MRF-SD model. These results indicate that

the improvement in effectiveness we observed when using the MRF-SD model was

110

AP WSJ ROBUST04 WT10G GOV2
MAP 0.2116† 0.3319† ↓ 0.3012† ↓ 0.2165† 0.3371†

GMAP 0.1229 0.2313↓ 0.2076† ↓ 0.1347† 0.2137† ↓
P@10 0.3420 0.4880↓ 0.4343↓ 0.3061 0.5500
R-Prec 0.2537† 0.3561↓ 0.3339 0.2499† 0.3744†
µ1 2750 2250 1000 2750 1250
λ2 0.995 0.998 0.970 0.950 0.990
λ3 1.00 1.00 1.00 0.99 1.00

Table 5.11. Test set results for the bigram language model. The † indicates a
statistically significant improvement over the MRF-FI model and the ↓ indicates
a statistically significant decrease in effectiveness compared to the MRF-SD model
(i.e., MRF-SD > MRF-BM25). Recommended smoothing parameter values are also
provided.

not specific to the language modeling weights used. Indeed, as we just showed, simi-

lar improvements can be obtained using BM25 weights. Therefore, this general form

of model can be used in a “plug ’n play” manner, using any reasonable weighting

function.

5.1.2.7 Comparison to Bigram Model

We now compare our model against another non-bag of words model. The model

that we choose to compare against is the bigram language model (see Equation 2.16),

ranked using query likelihood. This model has recently been shown to be one of the

most consistently effective non-bag of words models to date [41]. We compare the

effectiveness of the model against the MRF-FI and MRF-SD models. We choose the

MRF-SD model since it is a direct generalization of the bigram model and models no

additional dependencies, thus making it the most similar model to compare against.

In our experiments, we train the bigram model’s smoothing parameters to maxi-

mize mean average precision. The test set results are shown in Table 5.11. For each

data set, we provide a set of recommended parameter settings. Furthermore, we in-

dicate statistically significant improvements over the MRF-FI model and statistically

significant decreases in effectiveness versus the MRF-SD model.

111

The results show that the bigram model is significantly better than the MRF-

FI model across all data sets. This result is consistent with previous results [41].

However, the model is significantly worse than the MRF-SD model on the WSJ and

ROBUST04 data sets. We note that the bigram model is never significantly better

than the MRF-SD model for any metric. This result indicates that while the bigram

model can be highly effective, the MRF-SD model is still a better choice, based purely

on effectiveness.

Furthermore, we argue that the MRF framework, in general, is always a bet-

ter choice than the bigram model. Since the MRF model clearly generalizes and

supercedes the bigram model, it will always be more flexible and provide more mod-

eling options. Furthermore, the bigram model uses a very rigid set of unigram and

bigram features that cannot be changed across tasks. However, the MRF model pro-

vides an easy mechanism for including a wide range of arbitrary features. Therefore,

there is little reason to choose the bigram model over the MRF model.

One particularly interesting result of the bigram experiments is that the improve-

ment over the MRF-FI model increases as the collection size grows in a similar manner

to the MRF-SD model. This result further supports our claim that term dependence

and term proximity features are of the utmost importance when collection sizes grow,

document lengths increase, and collections become noisier.

5.1.2.8 Generalization

Finally, we investigate several aspects of how well the MRF model parameters

generalize. An underlying goal of parameter selection strategies is to produce a model

that generalizes well. A model is said to generalize well if, when trained on one set

of data, remains effective on an unseen test set. A model that is capable of achieving

excellent effectiveness on a training set but performs poorly on a test set is of minimal

value. Therefore, if some parameter selection method results in effectiveness m̂, and

112

AP WSJ ROBUST04 WT10G GOV2 Avg.
LM 99.33 99.57 100.0 94.28 99.42 98.52

BM25 99.35 99.67 98.67 98.34 99.79 99.17
F2EXP 100.0 99.97 97.95 95.50 99.66 98.62

MRF-SD 97.93 97.39 99.23 100.0 100.0 98.91

Table 5.12. Intracollection generalization results for mean average precision. Values
given are effectiveness ratios.

the optimal effectiveness is m∗, we then compute the following:

G =
m̂

m∗
(5.10)

which we define as the effectiveness ratio. An ideal model, that generalizes perfectly,

would achieve an effectiveness ratio of 1 for every unseen data set. In information

retrieval, even a 2-5% change in some measures, such as mean average precision, can

be statistically significant, and therefore effectiveness ratios below 0.90 indicate a

model’s inability to generalize can severely hinder its effectiveness. Most reasonable

retrieval models will have an effectiveness ratio greater than 0.95.

We are particularly interested in intracollection and intercollection generalization,

which are two different ways of measuring the generalization properties of a model,

which we now describe.

Intracollection generalization deals with how well a model trained on a set of topics

from some collection generalizes to another set of topics on that same collection. This

is a common setting in TREC evaluations, where collections are often reused from

year to year, and systems are typically trained on the topics from the previous year(s).

We ran a number of experiments to test the intracollection properties of vari-

ous retrieval models. The retrieval models considered are language modeling (LM),

BM25, F2EXP (an axiomatic retrieval model that was designed to be less sensitive to

parameter estimation [37]), and the MRF-SD model. In these experiments, parame-

ters are estimated by maximizing mean average precision on the training set. Models

113

Train\Test AP WSJ ROBUST04 WT10G GOV2 Avg.
AP - 99.2 94.3 93.0 93.6 95.0

WSJ 99.1 - 97.4 96.4 96.2 97.3
ROBUST04 95.0 97.7 - 97.5 99.6 97.4

WT10G 91.8 92.7 96.5 - 93.4 93.4
GOV2 95.6 98.2 99.3 97.2 - 97.6
Avg. 95.4 96.9 96.9 96.0 95.8 96.2

Table 5.13. Intercollection generalization results. Table includes mean average
precision effectiveness ratios across all possible train/test splits using the F2EXP
model.

are evaluated according to the effectiveness ratio on the test set. The metric used to

compute the effectiveness ratio is mean average precision.

The results are given in Table 5.12. The table lists the effectiveness ratios of each

model across each data set, as well as the average effectiveness ratio across all data

sets. A model with perfect intracollection generalization would have an effectiveness

ratio of 100. The results indicate that all of the models do a relatively good job of gen-

eralizing, with average effectiveness ratios well above 98%. We note that the F2EXP

model tends to generalize better within newswire collections, while the dependence

model generalizes better for web collections. The BM25 model, however, has the best

average effectiveness ratio, which indicates its parameters do a particularly good job

of capturing collection-dependent characteristics, rather than topic set-specific ones.

The other type of generalization we consider is intercollection generalization. This

type of generalization measures how well a model trained on a topic set from one col-

lection generalizes to a different topic set on a different collection. This is a practical

scenario for ‘off the shelf’ retrieval systems that may be used across a wide range of

different collections. It is unlikely that the end users of these systems will be willing

or able to provide training data to the system, and therefore the system must be

shipped with a very solid set of pre-tuned, highly generalizable parameters.

114

Train\Test AP WSJ ROBUST04 WT10G GOV2 Avg.
AP - 100 99.7 98.4 98.9 99.3

WSJ 100 - 99.7 98.4 98.9 99.3
robust04 99.6 99.6 - 99.7 99.3 99.5
WT10G 98.1 98.9 99.8 - 97.0 98.5
GOV2 99.6 99.4 99.7 98.0 - 99.2
Avg. 99.3 99.5 99.7 98.7 98.5 99.1

Table 5.14. Intercollection generalization results. Table includes mean average
precision effectiveness ratios across all possible train/test splits using the MRF-SD
model.

In order to measure the intercollection generalization, we compute the effectiveness

ratio for every possible combination of training/test splits. The results for the F2EXP

and MRF-SD models are shown in Tables 5.13 and 5.14, respectively.

As we see from the table, the cross-collection effectiveness ratios for the MRF-SD

model are higher for every training/test set pair, with very few exceptions. In fact,

on average, the MRF-SD comes within 1% of the optimal setting regardless of which

collection is used for training, whereas the F2EXP model only comes within 4% of

the optimal on average. The Dirichlet and BM25 models (not shown) have average

effectiveness ratios of 98.9% and 96.9%, respectively. Therefore, the MRF-SD model

and Dirichlet models are more robust when it comes to cross-collection generalization

and make them good candidates for “out of the box” implementations that require a

single parameter setting to work well across a wide range of collections.

As further evidence of the model’s generalization properties, Figure 5.9 illustrates

the well-behaved, nearly concave surfaces that arise when mean average precision is

plotted over the multinomial parameter simplex of the MRF-SD ranking function for

various data sets. Each of the mean average precision surfaces has the same general

form, which indicates that the features capture an inherent property that persists

across different types of collections. Although there is no guarantee that such a

nicely concave surface will exist for all features and all evaluation metrics, it provides

115

 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
MAP:

Term Ordered Window

Unordered Window

 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
MAP:

Term Ordered Window

Unordered Window

 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23
MAP:

Term Ordered Window

Unordered Window

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
MAP:

Term Ordered Window

Unordered Window

Figure 5.9. Mean average precision values plotted over MRF-SD parameter simplex
for AP, WSJ, WT10g, and GOV2 collections.

116

MRF-FI MRF-SD MRF-FD (µt, µw)
AP 0.2077 0.2147 (+3.4%)† 0.2128 (+2.5%) (1750, 5000)

WSJ 0.3258 0.3425 (+4.8%) 0.3429 (+5.2%)† (2000, 1000)
ROBUST04 0.2920 0.3096 (+6.0%)† 0.3092 (+5.9%)† (1000, 750)

WT10g 0.1861 0.2053 (+10.3%)† 0.2140 (+15.0%)†‡ (1000, 6000)
GOV2 0.2984 0.3325 (+11.4%)† 0.3360 (+12.6%)† (1500, 4500)

(λTD
, λOD

, λUD
) N/A (0.85, 0.10, 0.05) (0.80, 0.10, 0.10)

Table 5.15. Summary of test set mean average precision for the MRF-FI, MRF-SD,
and MRF-FD models across all of the ad hoc retrieval data sets. Values in parenthesis
denote percentage improvement over MRF-FI model. A † indicates a statistically
significant improvement over the MRF-FI model, and a ‡ indicates a statistically
significant improvement over the MRF-SD model. Recommended smoothing values
are given for each collection, and recommended MRF model parameters are provided
for each model.

some evidence that the functions we are maximizing over the simplex are not too

difficult to optimize using simple algorithms, such as the coordinate ascent method

we proposed in Chapter 4.

5.1.3 Summary of Results

For completeness, we summarize the main results of our ad hoc retrieval experi-

ments in Table 5.15. The table shows test set mean average precision across all data

sets for the MRF-FI, MRF-SD, and MRF-FD basic models. It also includes rec-

ommended smoothing parameters for each collection, as well as recommended MRF

model parameters for each model.

These results show that the hand constructed non-bag of words MRF models

(MRF-SD and MRF-FD) consistently outperform the bag of words model (MRF-FI).

Although we only show results here that make use of language modeling weighting

functions, we note that the results achieved using the MRF-BM25 model, which uses

BM25 weighting functions, did consistently and significantly outperform the MRF-FI

model in terms of mean average precision across all data sets, thereby satisfying one

of the goals of our work. As we will show in Chapter 6, moving away from hand built

117

MRFs towards automatically constructed ones yields even more significant increases

in effectiveness.

5.2 Web Search

Web search is one of the most popular and widely used information retrieval

applications. The goal of a web search system is to retun a set of web pages that

are relevant to a user’s query. There are several important differences between ad

hoc retrieval and web search. First, not all web search queries are content-based, or

informational, searches. For example, a user who enters the query mcdonalds locations

is not looking for documents that are about McDonalds locations. Instead, they are

likely searching for the web page on the McDonald’s web page that lists where their

restaurants are located. This type of query, where a user seeks out a specific page

that they either know exists or think is very likely to exist, is known as a navigational

query. Additionally, a user who enters the query cheap digital cameras is neither

seeking information about digital cameras nor seeking a specific page. Instead, the

user is likely interested in purchasing a digital camera. Such queries, which are

intended to lead to an online transaction, are known as transactional queries. A

study done by Broder in 2002 reports that approximately 50% of web queries are

informational, 20% navigational, and 30% transactional [11].

Since these three query types are so different, they are often evaluated differently.

Content-based (informational) web retrieval was evaluated in the previous section

with our experiments on the WT10G and GOV2 data sets. Evaluation of transactional

queries is difficult, since it often requires product databases and query clickthrough

logs, which are not currently publicly available for privacy and intellectual property

reasons. In this section, we focus on navigational queries, for which there are publicly

available TREC data sets.

118

<num> Number: NP1048
<title> us embassy vietnam
</top>

<top>

<num> Number: NP1049
<title> phil english biography
</top>

<top>

<num> Number: NP1050
<title> tenet 9/11 testimony
</top>

<top>

<num> Number: NP1051
<title> hubble timeline
</top>

<top>

<num> Number: NP1052
<title> cdc west nile 2003 statistics by state
</top>

Figure 5.10. Example TREC named page finding topics.

119

These data sets were used during the TREC Web Track (1999-2004) and the

TREC Terabyte Track (2004-2006). During these tracks, there were several naviga-

tional search-related subtasks. Of particular interest to us is the named page finding

task that was run during the TREC Terabyte Track in 2005 and 2006. We are in-

terested in this task because of the large data (GOV2) set and the large number of

queries available to experiment with (252 from 2005, 181 from 2006).

The named page finding task requires systems to find “bookmarkable” pages that

users either know exist or presume are likely to exist [21]. One of the main differences

between named page finding and ad hoc retrieval is that there is typically only one

relevant document for every named page finding query. Another key difference is

that the primary evaluation metric is mean reciprocal rank, instead of mean average

precision2. Several example named page finding topics are shown in Figure 5.10.

In the remainder of this section, we first review previously proposed approaches

to web search (named page finding). We then propose our basic MRF model for web

search. Finally, we evaluate our model on the TREC Terabyte Track named page

finding topics.

5.2.1 Previous Models for Web Search

Web data sets are very different than standard ad hoc retrieval data sets. They are

typically larger and tend to be noisier, because users may publish their own content.

Furthermore, web pages contain HTML markup and can link to other pages. These

additional pieces of information play a particularly important role for navigational

queries. For this reason, navigational search models often focus on link structure and

document structure.

2Average precision is equal to reciprocal rank for queries with only one relevant document, so
the two measures will only differ for those topics that have more than one relevant document

120

Link structure refers to the hyperlink structure of the web. Graph-based al-

gorithms are typically applied to the link structure of the web in order to find

hubs and authoritative pages. Examples of these algorithms include PageRank and

HITS [10, 53]. These algorithms, along with other web-specific features such as inlink

count, and URL depth have been shown to be useful for improvement the effectiveness

of navigational queries [54].

Methods that make use of document structure often treat certain HTML fields

in a special way. For example, a common technique is to weight the importance of

text occurring in various fields differently, such as the title field or the anchor text

pointing to the document [78, 91].

Recently, other aspects of web search, such as user behavior, have been found to

be useful, but is beyond the scope of this this work [1].

In this section, we use a bag of words language modeling approach as our baseline.

The model, which we refer to as LM-Mixture, makes use of both link structure and

document structure, has been shown to be highly effective in the past [78]. Given a

query, documents are ranked under the model according to:

P (D|Q) =
P (D)

∏

w∈Q

∑

f P (f |D)P (w|D, f)
∑

D P (D)
∏

w∈Q

∑

f P (f |D)P (w|D, f)

rank
= P (D)

∏

w∈Q

∑

f

P (f |D)P (w|D, f) (5.11)

where P (w|D, f) is the probability of generating term w from field f in document

D (i.e., this is a language model built from field f in document D), P (f |D) is a

mixing probability, and P (D) is the document’s prior probability. It is easy to see

that this model is closely related to the standard query likelihood ranking function,

except the monolithic document model is replaced with a mixture of field models and

a document prior is introduced.

121

There are other models that attempt to combine evidence from multiple fields,

including The BM25F model, which is a field weighted variant of BM25 [91]. The

model is similar in nature to the mixture of language models approach described here,

but field weighting is done differently. Rather than weighting terms after document

length normalization is done, as is done in Equation 5.11, term weights are incorpo-

rated before document length normalization. How to properly combine evidence and

handle document length normalization in the presence of multiple fields is still an

open question [103].

In order to fully specify the model we must describe how to estimate P (w|D, f),

P (f |D), and P (D). We begin with the field language model, P (w|D, f). This proba-

bility is estimated in a straightforward manner by treating all of the text that appears

in field f of document D as a pseudo-document. By doing so, we induce the pseudo-

document Df for field i and the pseudo-collection Cf , which is made up of all of the

pseudo-documents constructed from field f . Now, standard language modeling esti-

mation can be applied. We choose to model each field language model as a Dirichlet

smoothed language model, which results in the following estimate:

P (w|D, f) =
tfw,Df

+ µt
f

cfw,f

|Cf |

|Df |+ µt
f

(5.12)

where all of the f subscripts refer to statistics computed in the pseudo-document/pseudo-

collection and µt
f specifies the smoothing parameter for the field. Since there is a

single smoothing parameter per field, accurate estimation may be difficult. Hence,

smoothing parameter values are typically chosen to be two times the average length of

pseudo-documents of type f . We follow this general rule of thumb in our experiments

here.

The mixing probabilities, P (f |D) can either be set to
|Df |

|D|
or uniformly. Alterna-

tively, they can be hand or automatically tuned in order to maximize mean reciprocal

122

rank. In this work, we use a set of hand tuned values that have been found to be

effective in previous experiments.

5.2.2 Document Priors

There are many different document priors that can be estimated for navigational

web search tasks. In this section, we describe how to estimate priors based on inlink

count and PageRank. The priors are estimated using TREC relevance judgments,

although they may also be estimated in a completely unsupervised or semi-supervised

setting, given other resources, such as query click logs.

When computing P (D), we really are computing the prior probability that docu-

ment D is relevant given some external piece of evidence about D, such as the number

of links pointing to D or the PageRank of D. Therefore, instead of estimating P (D)

directly, we estimate P (R = 1|evidence), where evidence is some random variable

that only depends on the document itself.

5.2.2.1 Inlink Count

The inlink count of documentD is the number of web pages that point toD. Inlink

count is often a good feature to use for navigational queries because the pages that

are “bookmarkable” often have a high inlink count associated with them. Therefore,

we expect documents with larger numbers of inlinks to have a higher prior probability

of relevance.

Following the framework we described above, we compute the probability of rele-

vance, given the log of the inlink count (simply denoted l). We choose to apply the

log function in order to compress the range of values to a more reasonable set. The

resulting probability estimate, using Bayes’ rule, is:

P (R = 1|l = X) =
P (l = X|R = 1)P (R = 1)

P (l = X|R = 0)P (R = 0) + P (l = X|R = 1)P (R = 1)
(5.13)

123

2.50E-07

3.00E-07

3.50E-07

4.00E-07

4.50E-07

5.00E-07

P
(

R
 |

 #
 i

n
li

n
k

s
)

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

0 1 2 3 4 5 6 7 8 9

P
(

R
 |

 #
 i

n
li

n
k

s
)

log(# inlinks)

Figure 5.11. Inlink count prior.

where P (l = X|R) and P (R) are estimated empirically from TREC relevance judg-

ments. The relevance judgments used are from the TREC 2001 and 2002 Web Track

data set. Later, we will apply these priors to the larger TREC 2005-2006 Terabyte

Track data set (GOV2). It is unknown how well these probabilities will generalize to

this newer, larger data set, but we feel that the estimates should be fairly reasonable.

Figure 5.11 shows the estimated priors across a range of log inlink counts. We see

that the prior probability of relevance increases as the number of inlinks increases, as

expected.

5.2.2.2 PageRank

The problem with using inlink count alone is that there is no notion of authority

involved. It is very easy for a spammer to create thousands of fake web pages and

have them all point to each other (this is a so-called link farm). This results in

a large number of inlinks, but none of the pages are actually authoritative at all.

124

The PageRank algorithm is based on the notion of spreading authority throughout

a graph. The basic idea is that if a page has many inlinks from highly authoritative

pages, then that page is likely to be authoritative, as well.

The PageRank of document D, denoted rD,t, can be computed iteratively. Let t

denote the current iteration. Then, the PageRank is computed as follows:

rD,t+1 = α+ (1− α)
∑

p:p→D

rp,t

deg(p)
(5.14)

where α ∈ (0, 1] affects the amount of “random surfing” done, p → D indicates

that page p links to document D, and deg(p) is the number of links out of page p.

The values are iteratively updated and renormalized until they converge to the raw

PageRank value. There are other ways of computing PageRank, for example, by

solving an eigenvector problem, but we use the iterative approach in our work for

simplicity.

The raw PageRank is a value between 0 and 1. We assume that the true authori-

tativeness, or importance, of web pages is Zipfian in nature. That is, there are a small

number of highly authoritative pages, a larger number of less authoritative pages, all

the way down to a very large number of non-authoritative pages. Therefore, in order

to impose such a distribution, we sort the documents by their raw PageRank scores

and then geometrically bin the documents into 11 bins. This idea was inspired by

Anh and Moffat’s work on document-centric impact weighting [3]. This results in

each document being assigned a binned PageRank value between 0 and 10. We use

these binned PageRank values in order to estimate the document prior.

The PageRank prior is computed in a similar fashion to the inlink count prior, as

follows:

P (R = 1|PR = X) =
P (PR = X|R = 1)P (R = 1)

P (PR = X|R = 0)P (R = 0) + P (PR = X|R = 1)P (R = 1)

(5.15)

125

URL # Inlinks
http://www.usgs.gov 1,329,036
http://www.ca.gov 471,819
http://www.nih.gov 1,502,324
http://www.epa.gov 1,386,329

http://es.epa.gov/cgi-bin/ncerqamail.pl 1,349,131
http://es.epa.gov/ncer/rfa 1,344,630

http://www.hhs.gov 778,652
http://www.ornl.gov 639,570
http://www.doi.gov 761,456

http://www.medicare.gov 186,948

Table 5.16. URLs in the GOV2 collection with the largest raw PageRank scores.
The number of inlinks for each URL is also shown.

where PR denotes the binned PageRank value. Table 5.16 shows a list of the web

pages in the GOV2 collection with the highest raw PageRank values and the number

of inlinks those pages have. Although many of the pages with the highest PageRank

have very many inlinks, this is not always the case. The best example of this is the

fact that the Medicare web page has such a high PageRank, but only has 186,948

inlinks.

Lastly, Figure 5.12 shows the estimated document priors for each binned PageRank

value. The plot has an interesting shape to it. Documents with very low PageRank

are given a very low prior probability of relevance. The prior probability dramatically

increases as the PageRank reaches 8 and 9. Interestingly, a higher prior is assigned

to documents with PageRank 8 than 9 and that a zero probability is assigned to

documents with PageRank 10. This is very likely the result of data sparseness and

the fact that there are so few documents with PageRank 9 or 10 in our relevance

judgments.

5.2.3 MRF Models for Web Search

We now describe one of the many possible ways to use the MRF model for web

search. The mixture of language modeling approach described earlier (see Equa-

126

4.00E-07

5.00E-07

6.00E-07

7.00E-07

P
(

R
 =

 1
 |

 p
a

g
e

ra
n

k
)

0.00E+00

1.00E-07

2.00E-07

3.00E-07

0 1 2 3 4 5 6 7 8 9 10

P
(

R
 =

 1
 |

 p
a

g
e

ra
n

k
)

PageRank

Figure 5.12. PageRank prior.

tion 5.11) has been shown to be highly effective. Therefore, we wish to use the MRF

framework to generalize this model. By doing so, we will be able to model dependen-

cies between query terms, which allows us to make use of phrase and term proximity

weighting functions, which were shown to be very valuable for the ad hoc retrieval

task.

To achieve this, we modify the MRF-SD model by replacing the standard lan-

guage modeling feature weights (i.e., LM, LM-O-1, and LM-U-4) with analogous

mixture of language modeling feature weights. In addition, we add the inlink count

and PageRank document priors as feature weights defined over the document clique,

as well. These new feature weights, named NP, NP-O-M , NP-U-N , INLINK, and

PAGERANK are defined in Table 5.17. This gives rise to the basic MRF for web

search, which we call the MRF-NP model, defined by the following canonical form:

(FI, TQD, NP) : λTD

127

NP

fNP,T (qi, D) = log

[

∑

f αf

tfqi,Df
+µt

f

cfqi,f

|Cf |

|Df |+µt
f

]

NP-O-M

fNP,O,M(q1, . . . , qk, D) = log

[

∑

f αf

tf#M(q1...qk),Df
+µw

f

cf#M(q1...qk),f

|Cf |

|Df |+µw
f

]

NP-U-N

fNP,U,N(q1, . . . , qk, D) = log

[

∑

f αf

tf#uwNk(q1...qk),Df
+µw

f

cf
#uwNk(q1...qk),f

|Cf |

|Df |+µw
f

]

INLINK
fINLINK(D) = logP (R = 1|l = l(D))

PAGERANK
fPR(D) = logP (R = 1|PR = PR(D))

Table 5.17. Summary of named page weighting functions. The NP, NP-O-M , and
NP-U-N weighting functions are based on mixtures of field language models, and
INLINK and PAGERANK are based on document priors. The αf values correspond
to the mixing probabilities P (f |D). Term and window smoothing parameters are
denoted by µt

f and µw
f , respectively.

(FI, TQ, ICF) : λTQ

(SD, OQD, NP-O-1) : λOD

(SD, OQ, ICF-O-1) : λOQ

(SD, OQD, NP-U-4) : λUD

(SD, OQ, ICF-U-4) : λUQ

(FI, D, INLINK) : λIN

(FI, D, PAGERANK) : λPR

Using this canonical form, the MRF-NP ranking function is given by:

128

PG,Λ(D|Q)
rank
= λTD

∑

(qi,D)∈TQD

log

∑

f

αf

tfqi,Df
+ µt

f

cfqi,f

|Cf |

|Df |+ µt
f

+

λOD

∑

(q1,q2,D)∈OQD

log

∑

f

αf

tf#1(q1q2),Df
+ µw

f

cf#1(q1q2),f

|Cf |

|Df |+ µw
f

+

λUD

∑

(q1,q2,D)∈UQD

log

∑

f

αf

tf#uw8(q1q2),Df
+ µw

f

cf#uw8(q1q2),f

|Cf |

|Df |+ µw
f

+

λIN logP (R = 1|l = l(D)) +

λPR logP (R = 1|PR = PR(D)) (5.16)

The model provides a mechanism for weighting fields (αf), single term matches (λTD
,

ordered phrases (λOD
), unordered phrases (λUD

), inlink prior (λIN), and PageRank

prior (λPR). Thus, the model encompasses many of the features that have been shown

to be effective for navigational web search.

There are many alternative ways that this model may have been constructed.

For example, rather than mixing the field language models within the NP weighting

functions, each field language model could be its own feature weight. This would

promote the αf hyperparameters to full-fledged MRF model parameters, which would

allow them to be estimated using the machinery described in Chapter 4. Although we

do not attempt to empirically analyze the differences in the formulations, we believe

that there would be little, if any, difference in the effectiveness of the two models.

5.2.4 Results

We now empirically evaluate the retrieval effectiveness of the MRF-NP model.

For our experiments, we use the TREC 2005 and 2006 Terabyte Track named page

finding queries. These queries are evaluated against the GOV2 collection. Please

refer to Appendix A for further information on this data set.

In our experiments, we consider four fields in the mixture models. These fields are

body (full text of the web page), title (text within HTML elements) heading (text

129

LM-Mixture MRF-NP
MRR S@10 Not Found MRR S@10 Not Found

TREC 2005 0.414 0.563 0.175 0.441 0.583 0.171
TREC 2006 0.472 0.657 0.133 0.512 0.696 0.138

Table 5.18. Summary of named page finding results.

within h1, h2, h3, and h4 elements), and anchor (all of the anchor text that points

to a page). The collection was stemmed using the Porter stemmer and a standard

list of 418 stopwords was applied. The MRF model parameters were estimated by

maximizing mean reciprocal rank. No more than 1000 results were returned for each

query.

Little research has been done on term dependence and non-bag of words models for

named page finding. Hence, for experimental purposes, we use the mixture of language

models approach as our baseline. In order to ensure fairness, the LM-Mixture model

uses the same fields, mixing parameters (αf), and smoothing parameters (µt
f) as the

MRF-NP model. In addition, we also use the inlink count and PageRank document

priors with the LM-Mixture model. The two priors are combined into a single prior

as described in [54].

The results of our experiments are given in Table 5.18. We report results for mean

reciprocal rank (MRR), success at rank 10 (S@10), and not found. See Appendix B

for definitions of these metrics.

The results show that the MRF-NP model outperforms the baseline language

modeling mixture model in terms of MRR on both data sets. There is 6.5% improve-

ment on the 2005 queries and a 8.5% improvement on the 2006 queries. Both of these

results are statistically significant. Furthermore, the S@10 metric is improved on

both data sets, as well, indicating that the MRF-NP model pulls relevant documents

into the top 10. The last metric, not found, does not change significantly for the two

models, which indicates that they are both relatively stable in terms of completely

130

LM-Mixture MRF-NP
No Prior Prior No Prior Prior

0.463 0.472 0.498 0.512

Table 5.19. Results comparing the mean reciprocal rank of the LM-Mixture and
MRF-NP models with and without document priors.

failing to find any relevant documents. Although these numbers are relatively good,

there is still considerable room for improvement.

One thing that these results do not reveal, however, is how much of the increase

in effectiveness comes from the term proximity features and how much comes from

the document priors. In Table 5.19, we report the results of an ablation test that

attempts to quantify the importance of each type of feature. The results show that

document priors improve effectiveness 1.9% on for the LM-Mixture model and 2.8%

for the MRF-NP model. This indicates that the MRF model does a better job at

combining the evidence from the document priors than the LM-Mixture model. As for

the term proximity features, there is an improvement of 7.6% when no priors are used,

and an improvement of 8.5% when priors are used. These results show that the term

proximity features account for most of the improvement in effectiveness and that,

when used in conjunction with the document priors, there is a small additive effect.

Therefore, despite what Google would like you to think about PageRank being the

heart of their ranking function3, it appears as though, in reality, PageRank is far less

important than fundamental information retrieval features, such as term proximity.

As with our previous analysis, we are interested in developing a better under-

standing of the types of queries the MRF-based model excels at, and those it fails

at. Table 5.20 lists the 10 most helped and 10 most hurt queries from the 2006 data

set. These examples do not show any clear trends as to which types of queries are

likely to be helped or hurt by the model. In the future, it may be valuable to do an

3http://www.google.com/technology/

131

Topic Query LM-Mixture MRF-NP % Change
980 medline search 0.00 0.00 -100.0%
962 us iraq rebuilding accomplish-

ments
0.01 <0.00 -80.0%

1038 USPTO Guide and manuals 0.33 0.09 -72.7%
922 marine mammal gray whale 0.33 0.11 -66.6%
906 kickstart deviceprobe 0.33 0.17 -50.00%
943 american folklife center home-

page
1.00 0.50 -50.0%

1033 Coastal & Marine Geology In-
foBank

0.06 0.04 -33.3%

916 Texas Department of Banking,
Agency Philosophy

0.02 0.01 -31.5%

1005 bay trail map 0.20 0.14 -28.6%
1006 olympic games salt lake city new

jobs
0.01 0.01 -26.6%

· · ·
1041 CDC homepage <0.00 0.01 204.2%
936 patent DRAM cell constructions 0.14 0.50 250.0%
939 Sun Earth student section 0.14 0.50 250.0%
951 us embassy vienna 0.14 0.50 250.0%
984 informal personal caregiver em-

ployment
0.13 0.50 300.0%

1030 Space Shuttle Mission #75 0.03 0.14 442.9%
912 Tips for Mobile Homes Residents

in Wisconsin
0.03 0.25 650.0%

903 reasons to reduce waste 0.13 1.00 700.0%
1008 land use bill december 2003 0.02 0.17 816.7%
1027 1997 Surface Flows to Nevada

from Canadian Province of Ori-
gin, by Truck

0.10 1.00 900.0%

Table 5.20. The 10 most improved and 10 most hurt queries on the TREC 2006
Terabyte Track named page finding data set. Effectiveness is measured in terms of
reciprocal rank.

132

analysis to determine if the most helped queries can be automatically detected using

more sophisticated techniques, such as the so-called notion of concept density [34].

Finally, we examine the robustness of the MRF-NP method. The results are

given in Figure 5.13. These results are similar to the ad hoc retrieval results, with

many queries experiencing a large increase in reciprocal rank, and a small number

experiencing less significant decreases. The reason why there is a large peak in the

[0%,25%] bin is because the effectiveness of a large number of queries do not change

at all. The large peak around [50%,75%] is likely the result of how the reciprocal

rank is computed. If a relevant document moves up in the ranked list by a very small

number of positions, then, depending on where in the ranked list it original appeared,

the increase in reciprocal rank is likely to fall into this range.

133

150

200

250

NP 2005

0

50

100

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

80

100

120

140

160

NP 2006

0

20

40

60

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

Figure 5.13. Robustness of the MRF-NP models for the 2005 and 2006 Terabyte
Track named page finding data sets. The LM-Mixture model is used as the baseline
by which the improvements were computed. The evaluation metric used is reciprocal
rank.

134

CHAPTER 6

AUTOMATIC FEATURE SELECTION

As we showed in Chapter 2, many different types of retrieval models have been

proposed throughout the years. These include Boolean, vector space, logic-based,

probabilistic, and feature-based. One critical factor that must be considered when

developing information retrieval models is the type of features to be used or modeled.

Term frequency, inverse document frequency, document length, and term proximity

are the fundamental features that are used in most of the modern information retrieval

models including BM25 [89], language modeling [101], divergence from randomness

(DFR) [2], axiomatic approach to IR [37], and our proposed MRF model.

However, most of these models make use of hand selected, probabilistically-inspired,

or implicit features. Therefore, it is often difficult to adapt these types of models to

new tasks, especially when the task has new, completely different types of features

associated with it. Applying these models to new tasks typically requires an informa-

tion retrieval expert to modify the underlying model in some way in order to properly

account for the new types of features. This is a common theme in information re-

trieval modeling. Examples include incorporating PageRank as a prior into the BM25

model [26], allowing term proximity information as evidence in BM25 [18], modeling

document structure in both language modeling and BM25 [78, 91], including term

dependence in the DFR model [82], and allowing term associations in the axiomatic

model [38]. These examples illustrate that incorporating new types of evidence and

features into existing retrieval models is often non-trivial and can require significant

amounts of human involvement.

135

Therefore, it is desirable for models to be flexible and robust enough to easily

handle a wide range of features and provide a mechanism for automatically selecting

relevant features. Then, given a large pool of candidate features, it would be possible

to automatically learn the best model. Under this model learning paradigm, there

would no longer be a need to manually tune or modify some existing retrieval model

whenever a new task or data set is encountered. Instead, attention could be paid to

developing a rich pool of features that are widely applicable.

We argue that our proposed MRF model, and similar types of models, such as

Gao et al.’s linear discriminant model [42], are the correct types of models to use

when model flexibility and robustness are important. In this chapter, we propose

an automatic, supervised feature selection algorithm that can be used in conjunction

with these types of models. Our proposed algorithm is general and can be applied

to a wide range of feature sets, evaluation metrics, and methods for learning to rank.

Besides being more robust and flexible, we also show that models constructed using

our algorithm are often significantly more effective than the hand built basic MRF

models we evaluated in Chapter 5.

6.1 Related Work

A number of feature selection techniques for random field models have been pro-

posed in the machine learning literature [32, 63]. Our proposed algorithm is an adap-

tation of the feature induction technique proposed by Pietra et al. in [32]. Pietra et

al. propose a greedy approach for adding induced features to the underlying model.

During each iteration, the information gain for each induced feature is computed.

The feature with the highest information gain is then added to the model and the

entire model is retrained. Although we do not actually induce new features in our

present work, we use a similar algorithm for selecting from a large pool of features.

Another difference is that our algorithm scores each feature according to any infor-

136

mation retrieval metric of interest. The feature that improves the metric the most is

the one that is added to the model.

There has also been some information retrieval research into automatically learn-

ing ranking function using genetic programming [36]. These algorithms attempt to

find a locally optimal ranking function by iteratively “evolving” a population of rank-

ing functions using mutations and crossovers. Ranking functions are represented as

arithmetic trees that consist of arithmetic operators and standard bag of words infor-

mation retrieval features (e.g., term frequency, document length, etc.). The learned

ranking functions have been shown to be significantly more effective than baseline

ranking algorithms for several data sets [36].

Finally, result fusion techniques are another way of combining evidence from mul-

tiple types of features [6, 39]. If each individual feature is used as a ranking function,

then data fusion techniques can be used to determine the best way to combine the

rankings. However, using these techniques in this way does not directly address the

feature selection problem, which is our primary focus.

6.2 Automatic Feature Selection

As we described before, feature selection techniques are commonly used in the

machine learning community. In this section, we propose a feature selection algorithm

that can be used with our MRF model. The algorithm is specifically designed to be

used for information retrieval tasks.

6.2.1 Motivation

Feature selection is important for a number of reasons. First, it provides a general,

robust way of building models when there is little a priori knowledge about the types

of features that may be important for a given task or data set. By using a feature

selection algorithm, the model designer can focus less on building the best model and

137

can instead focus on designing good features. Second, feature selection can reduce

the number of noisy or redundant features in a large feature set. Such features

may reduce training efficiency and may result in a model that contains a number

of non-identifiable parameters. Non-identifiable parameters are those that cannot

be reasonably estimated given the training data. This often results from having

redundant or highly correlated parameters. Feature selection helps overcome the

problems associated with non-identifiable parameters. Finally, feature selection can

provide insights into the important features for a given task or data set. By inspecting

the order in which features are selected, we can often learn what characteristics of a

given task are the most important or the most exploitable. This knowledge can then

be used by the feature engineer to construct better features.

6.2.2 Algorithm

We now describe our automatic feature selection algorithm. While our discussion

will focus on how the algorithm can be applied to the MRF model for IR, it should

be noted that it can also be applied to a variety of other models. In particular, it can

be easily applied to linear feature-based models (see Chapter 4).

Let Mt denote the model learned after iteration t. Features are denoted by f and

the weight (parameter) associated with feature f is denoted by λf . The candidate set

of features is denoted by F . The entire set of feature weights for a model is denoted

by Λ. A model, then, is represented as set of feature/weight pairs. Finally, we

assume that SCORE(M) returns the utility or ‘goodness’ of model M with respect

to some training data. The utility function and the form of the training data largely

depends on the underlying task. For example, for ad hoc retrieval, it is likely that

SCORE(·) would return the mean average precision of using model M against some

set of training data, such as TREC topics and relevance judgments. For a homepage

finding task, SCORE(·) might be another metric, such as mean reciprocal rank. The

138

important thing to note here is that any utility function, regardless of whether or not

it is differentiable with respect to the model parameters, can be used. The ultimate

goal of our feature selection algorithm is to select features and set feature weights in

such a manner as to maximize the metric imposed by SCORE(·).

The algorithm begins with an empty model (i.e., M0 = {}). Then, we temporarily

add a feature f to the model. We then hold all weights except λf fixed and find the

setting for λf that maximizes the utility of the augmented model. This step can be

done using any number of learning to rank techniques or parameter estimation tech-

niques, including the ones described in Chapter 4. The utility of feature f (SCOREf)

is defined to be the maximum utility obtained during training. The feature’s utility

measures how good the current model would be if the feature were added to it. This

process is repeated for every f ∈ F , resulting in a utility being computed for every

feature in the candidate pool. The feature with the maximum utility is then added to

the model and removed from F . After the new feature is added, we can, optionally,

retrain the entire set of weights. The entire process is then repeated until either some

fixed number of features have been added to the model or until the change in utility

between consecutive iterations drops below some threshold. Algorithm 4 provides

pseudo-code for this algorithm.

Note that our algorithm is not guaranteed to find the global maximum for SCORE(M).

Instead, we are only guaranteed to find a local maxima. Many factors, including prop-

erties of SCORE(M), the number of features used, and the properties of the feature

used, will affect the quality of the learned model.

6.3 Evaluation

In this section we experimentally evaluate various aspects of our proposed feature

selection algorithm.

139

Algorithm 4 Feature selection algorithm.
1: t← 0
2: Mt ← {}
3: while SCORE(Mt)− SCORE(Mt−1) > ε do
4: for f ∈ F do
5: λ̂f ← arg maxλf

SCORE(M ∪ {(f, λf)})
6: SCOREf ← SCORE(M ∪

{

(f, λ̂f)
}

)

7: end for
8: f ∗ ← arg maxf SCOREf

9: M ←M ∪
{

(f ∗, λ̂f∗)
}

10: Λ← arg maxΛ SCORE(M) (optional)
11: F ← F − {f ∗}
12: t← t+ 1
13: end while

In order to investigate the strengths and weaknesses of the algorithm, we evaluate

its effectiveness on a wide range of ad hoc retrieval data sets. The TREC data sets

used in our experiments are summarized in Appendix A.

All collections were stopped using a standard list of 418 common terms and

stemmed using a Porter stemmer. Only the title portion of the TREC topics are

used to construct queries. Our primary evaluation metric is mean average precision.

Statistical significance is determined using a one-tailed paired t − test evaluated at

the p < 0.05 level.

We now describe our feature candidate pool in terms of the feature representation

scheme we proposed in Section 3.3. For dependence model type, the features may be

either FI (full independence), SD (sequential dependence), or FD (full dependence).

The clique set type may either be TQD, OQD, or UQD. The weighting functions include

LM, BM25, [LM, BM25]-O-[1, 2, 4, 8, 16, or 32], and [LM, BM25]-U-[1, 2, 4, 8, 16,

32, or unlimited]. As we see, the pool is very robust and covers many different types

of important features. It includes features that span all three type of dependence, use

all three types of clique sets, allow both Dirichlet or BM25 weighting, and vary the

window sizes for the ordered and unordered window matchings across a wide range

140

No Retrain Retrain
Train Test Train Test

AP 0.1863 0.2266 0.1865 0.2246
WSJ 0.2700 0.3553 0.2703 0.3543

ROBUST04 0.2387 0.3079 0.2391 0.3065
WT10G 0.2344 0.2129 0.2357 0.2140

Table 6.1. Training and test set mean average precision values for no retraining and
retraining.

of values. In total, after removing trivial and duplicate features, our candidate pool

consists of 48 features.

For all of our experiments, features are added until there is no change in training

set mean average precision between iterations (i.e., ε = 0) or until we have added 5

features. Preliminary experiments showed that adding more than 5 features never

resulted in significantly different training or test rest results.

6.3.1 No Retraining vs. Retraining

We wish to analyze what effect, if any, retraining (see Algorithm 4, line 10) has on

training and generalization properties of the model. Table 6.1 summarizes the mean

average precision obtained on the training and test set when retraining is used and

when it is not.

We first investigate whether or not the models learned with retraining vary sig-

nificantly from those learned without retraining. As Table 6.1 shows, the training set

mean average precision values for no retraining and retraining are nearly equivalent

for every data set. In fact, the differences are statistically indistinguishable. In addi-

tion, we discovered that the same set of features were added regardless of whether or

not retraining was done or not. Therefore, it appears as though retraining has little

effect on the learned model, both in terms of the features selected and the training

set mean average precision.

141

Next, we study the effect of retraining on the generalization properties of the

model. As the test set results in Table 6.1 show, there is very little difference in mean

average precision for no retraining versus retraining. The results, again, are statis-

tically indistinguishable for every data set. Hence, retraining does not significantly

affect how well the model generalizes to unseen data.

Therefore, given that retraining requires more computational power, has no effect

on either the learned model or the generalization properties of the model, we conclude

that there is no need to retrain the model each iteration.

6.3.2 Number of Features

We now analyze how sensitive the models are to the number of parameters, both

in terms of potential overfitting, and in terms of test set effectiveness.

Figure 6.1 plots the training and test set mean average precision versus the number

of features that have been added to the model. As the figure indicates, there appears

to be little, if any overfitting happening. The test set mean average precision never

significantly drops as more features are added to the model.

6.3.3 Feature Analysis

The greedy nature of our feature selection algorithm provides us with a mechanism

for analyzing the importance of different types of features across data sets. By looking

at the order in which features are selected, and the weight assigned to each, we can

develop deeper insights into the role that features play for a given task and/or data

set.

For example, for the WT10G data set, with no retraining, the features are selected

in the following order:

142

1 2 3 4 5

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

AP

Iterations

M
A

P

Training Set
Test Set

1 2 3 4 5

0.
26

0.
28

0.
30

0.
32

0.
34

0.
36

WSJ

Iterations

M
A

P

Training Set
Test Set

1 2 3 4 5

0.
22

0.
24

0.
26

0.
28

0.
30

0.
32

ROBUST04

Iterations

M
A

P

Training Set
Test Set

1 2 3 4 5

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

WT10G

Iterations

M
A

P

Training Set
Test Set

1 2 3 4 5

0.
29

0.
30

0.
31

0.
32

0.
33

0.
34

0.
35

0.
36

GOV2

Iterations

M
A

P

Training Set
Test Set

Figure 6.1. Mean average precision versus number of iterations for the training and
test sets of the AP, WSJ, ROBUST04, WT10G and GOV2 data sets.

143

(FI, TQD, BM25) : 0.8138

(FD, UQD, LM-U-8) : 0.0001

(SD, UQD, BM25-U-unlimited) : 0.0090

(FD, UQD, BM25-U-8) : 0.1575

(SD, OQD, BM25-O-8) : 0.0196

where the numbers after the colons are the weights assigned to each feature in the

final model.

As Figure 6.1 shows, there is a large increase in both training and test set mean

average precision after the second feature, LM-U-8, is added to the model. This large

increase, which is also exhibited for the GOV2 data set, reiterates the importance

of term proximity models for large web collections [65]. We see that simply adding

a single proximity feature increases mean average precision substantially. However,

there is a much smaller effect observed after further term proximity / dependence

model features are added to the model.

To provide a different example, we consider the order in which features are selected

for the WSJ collection. The features selected, in order, are:

(FI, TQD, BM25) : 0.5864

(SD, UQD, BM25-U-1) : 0.3746

(FD, UQD, BM25-U-32) : 0.0193

(FI, TQD, LM) : 0.0196

(FD, UQD, BM25-U-unlimited) : 0.0001

As with the WT10G model, the first feature selected is the full independence,

single term, BM25 feature. In fact, this feature was the first selected for every data

144

MRF-FI BM25 MRF-SD MRF-BM25 MRF-FS
AP 0.2077 0.2149 0.2128 0.2210 0.2266†‡
WSJ 0.3258 0.3332 0.3429† 0.3512† 0.3553†‡

ROBUST04 0.2920 0.2892 0.3092† 0.3101† 0.3079†
WT10G 0.1861 0.1948 0.2140† 0.2129† 0.2129†
GOV2 0.2984 0.2971 0.3360† 0.3476† 0.3398†

Table 6.2. Comparison of test set mean average precision for language modeling
(MRF-FI), BM25, MRF model using language modeling weighting (MRF-SD), MRF
model using BM25 weighting (MRF-BM25), and MRF learned using our proposed
feature selection algorithm (MRF-FS). A † indicates a statistically significant im-
provement over both the MRF-FI and BM25 models and a ‡ indicates a significant
improvement over the MRF-BM25 model.

set. This is not surprising, however, since the overwhelming importance of single term

features has long been understood.

However, no other strong regularities were observed across data sets. This in-

dicates that the each data set has unique characteristics that make certain features

more discriminative than others. Such characteristics may include things like query

length, noise, document length distribution, and properties of the underlying vocab-

ulary. This suggests that no single model, with a fixed feature set and fixed feature

weights, can be applied to every possible task and data set. Instead, adaptive models

and techniques, such as the one presented here, can provide a means for automatically

and robustly learning the best set of features to use on a task-by-task basis.

6.3.4 Summary of Results

Finally, we compare the retrieval effectiveness of the models automatically learned

using our feature selection algorithm (MRF-FS) with several other retrieval models,

including language modeling (MRF-FI model), BM25, and two MRF models with

hand selected features (MRF-SD and MRF-BM25, as defined in Chapter 5) that we

have been shown to be highly effective. For each model, parameters are tuned on the

training set to maximize mean average precision. Therefore, every model is properly

145

trained in accordance with the same evaluation metric. This allows us to compare the

effectiveness of automatically learned models with models that use manually chosen

features and have been proven to be highly effective.

Our results, which are summarized in Table 6.2, support previous observations

that show that using MRF models with hand chosen features are generally more

effective than bag of words models for ad hoc retrieval. However, we are interested in

how effective the automatically learned models are. For both the AP and WSJ data

sets, the mean average precision of the automatically learned model is statistically

significantly better than all of the other models, including the MRF models with

manually chosen features. The improvement in mean average precision over BM25

for the AP data set is 5.4% and 6.6% on the WSJ data set.

On the ROBUST04, WT10G, and GOV2 data sets, the automatically learned

models are statistically significantly better than language modeling and BM25, but

statistically indistinguishable from the two models with hand selected features. De-

spite the lack of a statistically significant improvement over the models with hand

selected features, the results still provide evidence that the learned model is highly

effective. Indeed, compared to BM25, the automatically learned model is 6.5% better

for ROBUST04, 9.3% better for WT10G, and 14.4% better for GOV2.

Therefore, our results show that our proposed feature selection algorithm produces

very effective models that are competitive with, and often significantly better than

models with hand selected features. The most important result, however, is that

every automatically learned model was significantly better than the two state of the

art bag of words models. This result is very powerful, as it shows that using this

framework, models can be automatically learned from a rich set of features and are

very likely to be significantly better than the best hand crafted bag of words models.

146

CHAPTER 7

LATENT CONCEPT EXPANSION

Users of information retrieval systems are required to express complex information

needs in terms of Boolean expressions, a short list of keywords, a sentence, a question,

or possibly a longer narrative. A great deal of information is lost during the process

of translating from the information need to the actual query. For this reason, there

has been a strong interest in query expansion techniques. Such techniques are used

to augment the original query to produce a representation that better reflects the

underlying information need.

Query expansion techniques have been well studied for various models in the past

and have shown to significantly improve effectiveness in both the relevance feedback

and pseudo-relevance feedback setting [58, 95, 118, 122].

Until now, our MRF-based models have been solely used for ranking documents

in response to a given query. In this chapter, we show how these models can be

extended and used for query expansion using a technique that we call latent concept

expansion (LCE). There are three primary contributions of our work.

First, LCE provides a mechanism for combining term dependence with query

expansion. Previous query expansion techniques are based on bag of words models.

Therefore, by performing query expansion using the MRF model, we are able to study

the dynamics between term dependence and query expansion.

Next, query expansion techniques in the past have implicitly only made use of

term occurrence features. By using more powerful feature sets, such as those we have

147

proposed earlier, it is possible to produce better expansion terms that discriminate

between relevant and non-relevant documents better.

Finally, our proposed approach seamlessly provides a mechanism for generating

both single and multi-term concepts. Most previous techniques, by default, generate

terms independently. There have been several approaches that make use of generalized

concepts, however such approaches were somewhat heuristic and done outside of the

model [81, 118]. Our approach is both formally motivated and a natural extension of

the underlying model.

Before describing the details of LCE and formally evaluating it, we review related

work in the area of query expansion.

7.1 Related Work

One of the classic and most widely used approaches to query expansion is the

Rocchio algorithm [95]. Rocchio’s approach, which was developed within the vector

space model, reweights the original query vector by moving the weights towards the set

of relevant or pseudo-relevant documents and away from the non-relevant documents.

Unfortunately, it is not possible to formally apply Rocchio’s approach to a statistical

retrieval model, such as language modeling for information retrieval.

A number of formalized query expansion techniques have been developed for the

language modeling framework, including Zhai and Lafferty’s model-based feedback

and Lavrenko and Croft’s relevance models [58, 122]. Both approaches attempt to

use pseudo-relevant or relevant documents to estimate a better query model.

Model-based feedback finds the model that best describes the relevant documents

while taking a background (noise) model into consideration. This separates the con-

tent model from the background model. The content model is then interpolated with

the original query model to form the expanded query.

148

The other technique, relevance models, is more closely related to our work. There-

fore, we go into the details of the model. Much like model-based feedback, relevance

models estimate an improved query model. The only difference between the two

approaches is that relevance models do not explicitly model the relevant or pseudo-

relevant documents. Instead, they model a more generalized notion of relevance, as

we now show.

Given a query Q, a relevance model is a multinomial distribution over the vocab-

ulary, P (·|Q), that encodes the likelihood of each term given the query as evidence.

It is computed as:

P (w|Q) =

∫

D

P (w|D)P (D|Q)

≈
∑

D∈RQ
P (w|D)P (Q|D)P (D)

∑

w

∑

D∈RQ
P (w|D)P (Q|D)P (D)

(7.1)

where RQ is the set of documents that are relevant or pseudo-relevant to query Q.

In the pseudo-relevant case, these are the top ranked documents for query Q. Fur-

thermore, it is assumed that P (D) is uniform over this set. These mild assumptions

make computing the Bayesian posterior more practical.

After the model is estimated, documents are ranked by clipping the relevance

model by choosing the k most likely terms from P (·|Q). This clipped distribution is

then interpolated with with the original, maximum likelihood query model [71]. This

can be thought of as expanding the original query by k weighted terms. Throughout

the remainder of this work, we refer to this instantiation of relevance models as RM3.

There has been relatively little work done in the area of query expansion in the

context of dependence models [47]. However, there have been several attempts to

expand using multi-term concepts. Xu and Croft’s local context analysis (LCA)

method combined passage-level retrieval with concept expansion, where concepts were

single terms and phrases [118]. Expansion concepts were chosen and weighted using

149

a metric based on co-occurrence statistics. However, it is not clear based on the

analysis done how much the phrases helped over the single terms alone.

Papka and Allan investigate using relevance feedback to perform multi-term con-

cept expansion for document routing [81]. The concepts used in their work are more

general than those used in LCA, and include Indri query language structures, such as

#UW50(white house), which corresponds to the concept “the terms white and house

occur, in any order, within 50 terms of each other”. Results showed that combining

single term and large window multi-term concepts significantly improved effective-

ness. However, it is unclear whether the same approach is also effective for ad hoc

retrieval, due to the differences in the tasks.

7.2 Latent Concept Expansion

We now describe how our MRF framework can be used in a novel way to generate

single and multi-term concepts that are topically related to some original query. As we

will show, the concepts generated using our technique can be used for query expansion

or other tasks, such as suggesting alternative query formulations.

We assume that when a user formulates their original query, they have some set

of concepts in mind, but are only able to express a small number of them in the form

of a query. We treat the concepts that the user has in mind, but did not explicitly

express in the query, as latent concepts. These latent concepts can consist of a single

term, multiple terms, or some combination of the two. Is is our goal to recover these

latent concepts given some original query.

This can be accomplished within our framework by first expanding the original

MRF graph G to include the type of concept we are interested in generating. We call

this expanded graph H. In Figure 7.1, the middle graph provides an example of how

to construct an expanded graph that can generate single term concepts. Similarly, the

graph on the bottom illustrates an expanded graph that generates two term concepts.

150

Figure 7.1. Graphical model representations of relevance modeling (top), latent
concept expansion using single term concepts (middle), and latent concept expansion
using two term concepts (bottom) for a three term query.

151

Although these two examples make use of the sequential dependence model (i.e.,

dependencies between adjacent query terms), it is important to note that both the

original query and the expansion concepts can use any dependence structure.

After H is constructed, we compute PH,Λ(E|Q), a probability distribution over

latent concepts, according to:

PH,Λ(E|Q) =

∑

D∈R PH,Λ(Q,E,D)
∑

D∈R

∑

E PH,Λ(Q,E,D)
(7.2)

where R is the universe of all possible documents and E is some latent concept that

may consist of one or more terms. Since it is not practical to compute this summation,

we must approximate it. We notice that PH,Λ(Q,E,D) is likely to be peaked around

those documents D that are highly ranked according to query Q. Therefore, we

approximate PH,Λ(E|Q) by only summing over a small subset of relevant or pseudo-

relevant documents for query Q. This is computed as follows:

PH,Λ(E|Q) ≈
∑

D∈RQ
PH,Λ(Q,E,D)

∑

D∈RQ

∑

E PH,Λ(Q,E,D)
(7.3)

where RQ is a set of relevant or pseudo-relevant documents for query Q and all clique

sets are constructed using H.

As an example, suppose that we were to perform LCE on a MRF-SD model and

expand by single term concepts. Then, the graph H would be like the middle one

in Figure 7.1. Under this setting, expansion concepts would be generated in the

following way:

152

PH,Λ(e|Q) ∝∑D∈RQ
exp

[

λTD

∑

(qi,D)∈TQD

log
tfqi,D + µt cfqi

|C|

|D|+ µt
+

λOD

∑

(q1,q2,D)∈OQD

log
tf#1(q1q2),D + µw cf#1(q1q2)

|C|

|D|+ µw
+

λUD

∑

(q1,q2,D)∈UQD

log
tf#uw8(q1q2),D + µw cf#uw8(q1q2)

|C|

|D|+ µw
+

λ′TD
log

tfe,D + µt cfqi

|C|

|D|+ µt
+

λ′TQ
log
|C|
cfe

]

(7.4)

As we see, the likelihood contribution for each document in RQ is a combination

of the original query’s score for the document (first 3 components, refer to Equa-

tion 5.4), concept E’s score for the document (fourth component), and E’s document-

independent score (fifth component). Therefore, this equation can be interpreted as

measuring how well Q and E account for the top ranked documents and the “good-

ness” of E, independent of the documents. For maximum flexibility, we introduce a

new set of parameters for the expansion concept (i.e., λ′TD
and λ′TQ

), which allows us

to weight the expansion features differently than those in the original query.

For the sake of completeness, we show a more complex example, where the orig-

inal query uses the MRF-FD model and the expansion concept, which consists of

two terms, uses the MRF-SD model. Under this model, concept probabilities are

computed according to:

153

PH,Λ(e1, e2|Q) ∝∑D∈RQ
exp

[

λTD

∑

(qi,D)∈TQD

log
tfqi,D + µt cfqi

|C|

|D|+ µt
+

λOD

∑

(q1,...,qk,D)∈OQD

log
tf#1(q1...qk),D + µw cf#1(q1...qk)

|C|

|D|+ µw
+

λUD

∑

(q1,...,qk,D)∈OQD∪UQD

log
tf#uw8(q1...qk),D + µw cf#uw8(q1...qk)

|C|

|D|+ µw
+

λ′TD

2∑

i=1

log
tfei,D + µt cfei

|C|

|D|+ µt
+

λ′OD
log

tf#1(e1e2),D + µw cf#1(e1e2)

|C|

|D|+ µw
+

λ′UD
log

tf#uw8(e1e2),D + µw cf#uw8(e1e2)

|C|

|D|+ µw
+

λ′TQ

2∑

i=1

log
|C|
cfei

+

λ′OQ
log

|C|
cf#1(e1e2)

+

λ′UQ
log

|C|
cf#uw8(e1e2)

]

(7.5)

where the first three components compute the MRF-FD score of the original query,

the next three components compute the MRF-SD score of the expansion concept, and

the last three components compute an IDF-based “goodness” score of the concept.

7.2.1 Query Expansion

To use this framework for query expansion, we first choose an expansion graph H

that encodes the latent concept structure we are interested in expanding the query

using. We then select the k latent concepts with the highest likelihood given by

Equation 7.3. A new graph G′ is constructed by augmenting the original graph G

with the k expansion concepts e1, . . . , ek. Finally, documents are ranked according to

PG′,Λ(D|Q, e1, . . . , ek).

154

7.2.2 Comparison to Relevance Models

Inspecting Equations 7.1 and 7.3 reveals the close connection that exists between

LCE and relevance models. Both models essentially compute the likelihood of a term

(or concept) in the same manner. It is easy to see that just as the MRF model can

be viewed as a generalization of language modeling, so too can LCE be viewed as a

generalization of relevance models. In fact, by setting λTD
= λ′TD

= 1 and all other

parameters to 0 in Equation 7.4, we derive the relevance model formula.

There are important differences between MRFs/LCE and unigram language mod-

els/relevance models. See Figure 7.1 for graphical model representations of both

models. Unigram language models and relevance models are based on the multi-

nomial distribution. This distributional assumption locks the model into the bag

of words representation and the implicit use of term occurrence features. However,

the distribution underlying the MRF model allows us to move beyond both of these

assumptions, by modeling both dependencies between query terms and allowing ar-

bitrary features to be explicitly used.

Moving beyond the simplistic bag of words assumption in this way results in a

general, robust model and, as we show in the next section, translates into significant

improvements in retrieval effectiveness.

7.3 Experimental Results

In order to better understand the strengths and weaknesses of our technique, we

evaluate it on a wide range of data sets. Appendix A provides a summary of the

TREC data sets considered. For each data set, we split the available topics into a

training and test set, where the training set is used solely for parameter estimation

and the test set is used for evaluation purposes.

In all cases, only the title portion of the TREC topics are used to construct queries.

We construct G using the sequential dependence assumption for all data sets [65].

155

MRF-FI MRF-SD RM3 LCE
AP .2077 .2147α .2518αβ .2692αβγ

WSJ .3258 .3425α .3493α .3943αβγ

ROBUST04 .2920 .3096α .3382αβ .3601αβγ

WT10g .1861 .2053α .1944α .2269αβγ

GOV2 .3234 .3520α .3656α .3924αβγ

Table 7.1. Test set mean average precision for MRF-FI, MRF-SD, relevance models
(RM3), and latent concept expansion (LCE). The superscripts α, β, and γ indicate
statistically significant improvements over MRF-FI, MRF-SD, and RM3, respectively.

7.3.1 Ad Hoc Retrieval Results

We now investigate how well our model performs in practice in a pseudo-relevance

feedback setting. We compare the MRF-FI model, the MRF-SD model (without ex-

pansion), relevance models, and LCE to better understand how each model performs

across the various data sets.

For the MRF models, we train the model parameters (i.e., Λ) and model hyperpa-

rameters (i.e., µt, µw). For RM3 and LCE, we also train the number of pseudo-relevant

feedback documents used and the number of expansion terms.

7.3.1.1 Expansion with Single Term Concepts

We begin by evaluating how well our model performs when expanding using only

single terms. The expansion term likelihoods are computed according to Equation 7.4.

The equation clearly shows how LCE differs from relevance models. As we stated

before, when we set λTD
= λ′TD

= 1 and all other parameters to 0, we obtain the

exact formula that is used to compute term likelihoods in the relevance modeling

framework. Therefore, LCE adds two very important factors to the equation. First,

it adds the ordered and unordered window features that are applied to the original

query. Second, it applies an intuitive tf.idf -like form to the candidate expansion term

w. The idf factor, which is not present in relevance models, plays an important role

in expansion term selection.

156

MRF-FI MRF-SD RM3 LCE
AP .3460 .3340 .3640β .3720β

WSJ .4860 .5080 .4980 .5400αβγ

ROBUST04 .4293 .4566α .4576α .4798αγ

WT10g .3204 .3245 .3265 .3633αβγ

GOV2 .5180 .5680α .6160α .6060α

Table 7.2. Test set precision at 10 for MRF-FI, MRF-SD, relevance models (RM3),
and latent concept expansion (LCE). The superscripts α, β, and γ indicate statisti-
cally significant improvements over MRF-FI, MRF-SD, and RM3, respectively.

The results, evaluated using mean average precision, are given in Table 7.1. As we

see, the MRF-SD model, relevance models, and LCE always significantly outperform

the bag of words MRF-FI model. In addition, LCE shows significant improvements

over relevance models across all data sets. The relative improvements over relevance

models is 6.9% for AP, 12.9% for WSJ, 6.5% for ROBUST04, 16.7% for WT10G, and

7.3% for GOV2.

We also note the interesting result that the MRF-SD model is statistically equiv-

alent to relevance models on the two web data sets. In fact, the MRF-SD model

outperforms relevance models on the WT10g data set. This reiterates the importance

of non-unigram, proximity-based features for content-based web search observed pre-

viously [65, 72].

We also evaluate the methods according to precision at 10 in Table 7.2. Not

surprisingly, the precision at 10 improvements achieved using LCE were not as signif-

icant as those observed when using mean average precision. It is well understood that

expansion is recall enhancing, rather than precision enhancing. The MRF model sig-

nificantly improves upon the unigram language model on every data set, but only in

a few cases do relevance models or LCE significantly improve upon the MRF model.

It should also be noted that, despite the fact that our model has more free param-

eters than relevance models, there is surprisingly little overfitting. Instead, it exhibits

good generalization properties.

157

One Term One + Two Term
AP 0.2692 0.2648
WSJ 0.3943 0.3945

ROBUST04 0.3601 0.3464
WT10G 0.2269 0.2187
GOV2 0.3924 0.3900

Table 7.3. Test set mean average precision values for multi-term concept LCE
experiments.

price fixing tax evasion indicted
price fixed pricing evasion tax evasion
fixed price fixing tax income tax

market control control indicted tax charges
report market price federal los angeles
vote united states charges san diego

Table 7.4. One and two term expansion concepts for the query price fixing (RO-
BUST04 topic 622) and tax evasion indicted (ROBUST04 topic 650). Concepts are
listed in descending order of P (e|Q) and P (e1, e2|Q), respectively.

7.3.1.2 Expansion with Multi-Term Concepts

We also investigated expanding using both single and two word concepts. For

each query, we expanded using a set of single term concepts, as well as a set of two

term concepts. The sets were chosen independently. The results of the experiments

are shown in Table 7.3. As the results show, there is little or no improvement when

including two term concepts. In fact, the results are statistically indistinguishable for

all data sets.

This unexpected result may be due to the fact that strong correlations exist be-

tween the single term expansion concepts. We found that the two word concepts

chosen often consisted of two highly correlated terms that are also chosen as single

term concepts. For example, for the query price fixing, there was a great deal of

redundancy. Table 7.4 shows the single and two term concepts that were selected for

expansion. We see “fixed pricing” and “price fixing”, “price”, and “fixed” all occur in

the list. While these are excellent expansion terms, the fact that they appear so many

158

times likely results in terms “price” and “fixing” being overemphasized. Addition-

ally, this query adds “control control” and “united states”, which are poor expansion

concepts. These two concepts are given high probability because of the features used

within the model. A similar analysis holds for the query tax evasion indicted. There-

fore, other feature sets may ultimately yield different results, especially if they reduce

the correlation among the expansion concepts. While the IDF-like feature may be

appropriate for choosing single terms, it may be better to apply some other type of

feature to the ordered and unordered cliques within the graph. A better understand-

ing of phrases and named entities (e.g., San Diego, Los Angeles, United States in

Table 7.4), and their effect on query expansion is still needed.

Furthermore, due to the computational complexity involved in computing multi-

term expansion, we had to limit limit the number of multi-term expansion concepts

that we used. We were unable to perform a full sweep over all such values. However,

we made sure to focus on the most promising values, and, based on previous experi-

ence, it is unlikely that the results would have been significantly better than the one

term expansion concepts, but perhaps would have been slightly improved over their

current value.

Therefore, our experiments yield no conclusive results with regard to expansion

using multi-term concepts. Instead, the results introduce interesting open questions

and directions for future exploration.

7.3.2 Robustness

As we have shown, relevance models and latent concept expansion can significantly

improve retrieval effectiveness over the baseline MRF-FI model. In this section we

analyze the robustness of these two methods.

Figure 7.2 provides an analysis of the robustness of relevance modeling and la-

tent concept expansion for the AP, WSJ, ROBUST04, and WT10G data sets. The

159

15

20

25

AP

RM3

0

5

10

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

RM3

LCE

15

20

25

30

WSJ

RM3

0

5

10

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

RM3

LCE

20

25

30

35

40

ROBUST04

RM3

0

5

10

15

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

RM3

LCE

15

20

25

30

WT10G

RM3

0

5

10

< -100% [-100%,

-75%]

[-75%,

-50%]

[-50%,

-25%]

[-25%,

0%]

[0%,

25%]

[25%,

50%]

[50%,

75%]

[75%,

100%]

> 100%

RM3

LCE

Figure 7.2. Histograms that demonstrate and compare the robustness of relevance
models (RM3) and latent concept expansion (LCE) with respect to the MRF-FI model
for the AP, WSJ, ROBUST04, and WT10G data sets.

160

analysis for GOV2 is similar. The histograms provide, for various ranges of rela-

tive decreases/increases in mean average precision, the number of queries that were

hurt/improved with respect to the MRF-FI baseline.

As the results show, LCE exhibits strong robustness for each data set. For AP,

relevance models improve 38 queries and hurt 11, whereas LCE improves 35 and

hurts 14. Although relevance models improve the effectiveness of 3 more queries

than LCE, the relative improvement exhibited by LCE is significantly larger. For

the ROBUST04 data set, relevance models improve 67 queries and hurt 32, and

LCE improves 77 and hurts 22. Finally, for the WT10G collection, relevance models

improve 32 queries and hurt 16, and LCE improves 35 and hurts 14. As with AP, the

amount of improvement exhibited by the LCE versus relevance models is significantly

larger for both the ROBUST04 and WT10G data sets. In addition, when LCE does

hurt performance, it is less likely to hurt as much as relevance modeling, which is a

desirable property.

Overall, LCE improves effectiveness for 65%-80% of queries, depending on the

data set. When used in combination with a highly accurate query performance pre-

diction system, it may be possible to selectively expand queries and minimize the loss

associated with sub-baseline performance.

7.3.3 Multi-Term Concept Generation

Although we found that expansion using multi-term concepts failed to produce

conclusive improvements in effectiveness, there are other potential tasks that these

concepts may be useful for, such as query suggestion/reformulation, summarization,

and concept mining. For example, for a query suggestion task, the original query can

be used to generate a set of latent concepts which correspond to alternative query

formulations.

161

1 word concepts 2 word concepts 3 word concepts
telescope hubble telescope hubble space telescope
hubble space telescope hubble telescope space
space hubble space space telescope hubble
mirror telescope mirror space telescope NASA
NASA telescope hubble hubble telescope astronomy
launch mirror telescope NASA hubble space

astronomy telescope NASA space telescope mirror
shuttle telescope space telescope space NASA

test hubble mirror hubble telescope mission
new NASA hubble mirror mirror mirror

discovery telescope astronomy space telescope launch
time telescope optical space telescope discovery

universe hubble optical shuttle space telescope
optical telescope discovery hubble telescope flaw
light telescope shuttle two hubble space

Table 7.5. Fifteen most likely one, two, and three word concepts constructed using
the top 25 documents retrieved for the query hubble telescope achievements on the
ROBUST04 collection.

Although evaluating our model on these tasks is beyond the scope of this work,

we wish to show an illustrative example of the types of concepts generated using our

model. In Table 7.5, we present the most likely one, two, and three term concepts

generated using LCE for the query hubble telescope achievements using the top 25

ranked documents from the ROBUST04 collection.

It is well known that generating multi-term concepts using a unigram-based model

produces unsatisfactory results, since it fails to consider term dependencies. This

is not the case when generating multi-term concepts using our model. Instead, a

majority of the concepts generated are well-formed and meaningful. There are several

cases where the concepts are less coherent, such as mirror mirror mirror. In this case,

the likelihood of the term mirror appearing in a pseudo-relevant document outweighs

the ICF features, which causes this non-coherent concept to have a high likelihood.

Such examples are in the minority, however.

162

Not only are the concepts generated well-formed and meaningful, but they are also

topically relevant to the original query. As we see, all of the concepts generated are

on topic and in some way related to the Hubble telescope. It is interesting to see that

the concept hubble telescope flaw is one of the most likely three term concepts, given

that it is somewhat contradictory to the original query. Despite this contradiction,

documents that discuss the telescope flaws are also likely to describe the successes,

as well, and therefore this is likely to be a meaningful concept.

One important thing to note is that the concepts LCE generates are of a different

nature than those that would be generated using a bigram relevance model. For

example, a bigram model would be unlikely to generate the concept telescope space

NASA, since none of the bigrams that make up the concept have high likelihood.

However, since our model is based on a number of different features over various

types of cliques, it is more general and robust than a bigram model.

Although we only provided the concepts generated for a single query, we note that

the same analysis and conclusions generalize across other data sets, with coherent,

topically related concepts being consistently generated using LCE.

7.4 Discussion

We conclude this chapter by discussing several theoretical issues involved with

regard to query expansion.

7.4.1 Relevance vs. Relevant Documents

There are other reasonable ways of using the MRF model for query expansion be-

yond using Equation 7.3. For example, given a set of relevant or pseudo-relevant docu-

mentsD1, . . . , Dn, we could generate expansion concepts by computing P (E|D1, . . . , Dn).

The concepts generated in this way tend to show excellent effectiveness on the

training set. However, they fail to yield significant improvements in retrieval ef-

163

fectiveness on the test set. In fact, using this expansion model shows little-to-no

improvements over relevance models. It is somewhat surprising that this formulation

performs so much worse on the test set. Buckley and Salton noted a similar observa-

tion when optimizing term weights using a Rocchio-based expansion technique [14].

They argued that there is a subtle, yet important difference between modeling rele-

vance and modeling relevant documents.

Under this alternative formulation, we are directly modeling relevant documents.

By doing so, we are overfitting the model. This explains the poor generalization

behavior exhibited using this alternative formulation. This, however, is not an is-

sue when using the original formulation. Using that formulation, PH,Λ(E|Q) can be

thought of as a model of relevance, since it generates terms that are highly likely

given the query, which is our best evidence of relevance. This avoids the problem

of overfitting the model to the relevant documents by modeling a more generalized

notion of relevance.

Therefore, the results obtained by Salton and Buckley using the Rocchio-based

expansion technique apply to statistical query expansion techniques, as well. Thus,

future query expansion models, to avoid overfitting, should focus on modeling more

generalized notions of relevance, rather than the relevant documents themselves.

7.4.2 The Role of Dependence

Our latent concept expansion technique captures two semi-orthogonal types of

dependence. In information retrieval, there has been a long-term interest in un-

derstanding the role of term dependence. Out of this research, two broad types of

dependencies have been identified.

The first type of dependence is syntactic dependence. This type of dependence

covers phrases, term proximity, and term co-occurrence [22, 27, 29, 35, 110]. These

164

methods capture the fact that queries implicitly or explicitly impose a certain set of

positional dependencies.

The second type is semantic dependence. Examples of semantic dependence are

relevance feedback, pseudo-relevance feedback, synonyms, and to some extent stem-

ming [23]. These techniques have been explored on both the query and document

side. On the query side, this is typically done using some form of query expansion,

such as relevance models or LCE. On the document side, this is done as document

expansion or document smoothing [55, 61, 108].

Although there may be some overlap between syntactic and semantic dependen-

cies, they are mostly orthogonal. Our model uses both types of dependencies. The

use of phrase and proximity features within the model captures syntactic dependen-

cies, whereas LCE captures query-side semantic dependence. This explains why the

initial improvement in effectiveness achieved by using the MRF model is not lost after

query expansion. If the same types of dependencies were captured by both syntactic

and semantic dependencies, LCE would be expected to perform about equally as well

as relevance models. Therefore, by modeling both types of dependencies we see an

additive effect, rather than an absorbing effect.

An interesting area of future work is to determine whether or not modeling

document-side semantic dependencies can add anything to the model. Previous

results that have combined query- and document-side semantic dependencies have

shown mixed results [61, 115].

165

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This chapter provides a broad summary of our work. We begin by summarizing

how to use the MRF model. We then present a comprehensive summary of results

and reiterate our primary contributions. Finally, we conclude by proposing several

potential directions of future work.

8.1 Using the MRF Model

To utilize the Markov random field model in a general retrieval setting, the fol-

lowing steps should be carried out:

1. Construct graph The graph G should be constructed in a manner that cap-

tures dependencies between query terms. We proposed the full independence,

sequential dependence, and full dependence as three generalized dependency

constructs that are meaningful to information retrieval.

2. Select features A set of potential functions over the cliques of G must be

defined. We proposed using clique sets to reduce the number of potential func-

tions and parameters within the model. The clique sets defined are based on

cliques containing single query terms, ordered query terms, and unordered sets

of query terms. We also proposed a set of primitive and high-level features to

be used with these clique sets. These features can either be manually chosen or

automatically chosen using the method we proposed in Section 6

166

3. Parameter estimation We must estimate the model parameters in some way.

This can be done completely unsupervised, semi-supervised, or completely su-

pervised. In Section 4.4, we proposed a coordinate-ascent based method that

directly maximizes the metric under consideration and described other related

methods for learning to rank.

4. For each query Q,

• Rank documents Rank documents in descending order of PG,Λ(D|Q),

which can be computed efficiently using Equation 3.19.

• Expand query (optional) Use the method proposed in Section 7 to ex-

pand the original query using either true or blind feedback based on the

top ranked documents.

8.2 Summary of Ad Hoc Retrieval Results

Ad hoc retrieval was the primary task that we used to evaluate the effectiveness

of various retrieval models. Hence, we now summarize all of our key ad hoc retrieval

results. The results, which are in Tables 8.1, 8.2, 8.3, and 8.4, include MAP, GMAP,

P@10, and R-Prec results for language modeling, BM25, bigram language modeling,

MRF-SD, MRF-FD, MRF-BM25, MRF-FS, RM3, and LCE. The bold value in each

column represents the best effectiveness achieved using a model that does not use

pseudo-relevance feedback. In every case, the best effectiveness is achieved by a non-

bag of words model. Furthermore, in every case but one, the model with the best

effectiveness is a model based on our MRF framework. This nicely summarizes the

superior effectiveness possible when using these types of models.

8.3 Contributions

We now summarize the major contributions developed throughout this work:

167

AP WSJ ROBUST04 WT10G GOV2
LM 0.2077 0.3258 0.2920 0.1861 0.2984

BM25 0.2149 0.3332 0.2892 0.1948 0.2971
BIGRAM 0.2116 0.3319 0.3012 0.2165 0.3371
MRF-SD 0.2147 0.3425 0.3096 0.2053 0.3325
MRF-FD 0.2128 0.3429 0.3092 0.2140 0.3360

MRF-BM25 0.2210 0.3512 0.3101 0.2129 0.3476
MRF-FS 0.2264 0.3595 0.3079 0.2077 0.3398

RM3 0.2518 0.3493 0.3382 0.1944 0.3656
LCE 0.2692 0.3943 0.3601 0.2269 0.3924

Table 8.1. Test set mean average precision across a range of retrieval models. The
model parameters were trained to maximize mean average precision. Bold value
indicates the best technique that does not make use of pseudo-relevance feedback.

AP WSJ ROBUST04 WT10G GOV2
LM 0.1219 0.2267 0.1970 0.1176 0.1891

BM25 0.1342 0.2344 0.1937 0.1055 0.1926
BIGRAM 0.1229 0.2313 0.2076 0.1347 0.2137
MRF-SD 0.1268 0.2399 0.2196 0.1284 0.2448
MRF-FD 0.1255 0.2405 0.2196 0.1361 0.2424

MRF-BM25 0.1366 0.2471 0.2199 0.1181 0.2817
MRF-FS 0.1411 0.2565 0.2108 0.1132 0.2526

RM3 0.1436 0.2392 0.2235 0.1204 0.2612
LCE 0.1420 0.2728 0.2516 0.1450 0.2842

Table 8.2. Test set geometric mean average precision for across a range of retrieval
models. The model parameters were trained to maximize mean average precision.
Bold value indicates the best technique that does not make use of pseudo-relevance
feedback.

168

AP WSJ ROBUST04 WT10G GOV2
LM 0.3460 0.4860 0.4293 0.3204 0.5180

BM25 0.3200 0.5020 0.4354 0.3224 0.5440
BIGRAM 0.3420 0.4880 0.4343 0.3061 0.5500
MRF-SD 0.3340 0.5080 0.4566 0.3245 0.5680
MRF-FD 0.3540 0.5080 0.4505 0.3469 0.5720

MRF-BM25 0.3140 0.5140 0.4525 0.3388 0.6100
MRF-FS 0.3340 0.5200 0.4455 0.3347 0.6140

RM3 0.3640 0.4980 0.4576 0.3265 0.6160
LCE 0.3720 0.5400 0.4798 0.3633 0.6060

Table 8.3. Test set precision at 10 across a range of retrieval models. The model
parameters were trained to maximize mean average precision. Bold value indicates
the best technique that does not make use of pseudo-relevance feedback.

AP WSJ ROBUST04 WT10G GOV2
LM 0.2448 0.3558 0.3291 0.2199 0.3515

BM25 0.2632 0.3640 0.3226 0.2324 0.3437
BIGRAM 0.2537 0.3561 0.3339 0.2499 0.3744
MRF-SD 0.2580 0.3633 0.3362 0.2374 0.3716
MRF-FD 0.2543 0.3694 0.3394 0.2417 0.3763

MRF-BM25 0.2666 0.3698 0.3366 0.2508 0.3834
MRF-FS 0.2753 0.3825 0.3324 0.2448 0.3740

RM3 0.2846 0.3730 0.3589 0.2291 0.3753
LCE 0.2969 0.4066 0.3769 0.2548 0.4010

Table 8.4. Test set precision at R (R-prec) across a range of retrieval models. The
model parameters were trained to maximize mean average precision. Bold value
indicates the best technique that does not make use of pseudo-relevance feedback.

169

1. Robust retrieval model. We develop a new, formally motivated, statistical

retrieval model based on Markov random fields that robustly and effectively

handles term dependencies and the combination of arbitrary features.

2. Better understanding of features for information retrieval. By modeling

dependencies between terms and encoding rich features, such as those based on

phrases and term proximity, we are able to better understand how and when

such features can improve retrieval effectiveness.

3. Novel parameter estimation technique. Our technique exploits the nature

of rank-equivalence and works to directly maximize the underlying retrieval

metric, which leads to better performance than maximizing the data likelihood

or margin. This avoids the problem of metric divergence.

4. Automatic model learning. We propose a supervised feature selection al-

gorithm that can be used to automatically learn highly effective models. This

eliminates the need for human experts to manually select model features on a

per-task basis.

5. Concept-based query expansion. Our retrieval model provides an elegant

mechanism for expanding queries using multi-term concepts in the context of

relevance or pseudo-relevance feedback.

6. State of the art retrieval effectiveness. Our model shows consistent and

significant improvements in retrieval effectiveness over current state of the art

retrieval models on ad hoc retrieval and web search tasks.

170

8.4 Future Work

In this work, we laid out the basic foundations of the MRF model for information

retrieval. Although we tackled many critical issues, several challenges remain. We

now briefly describe some of these challenges.

• Feature engineering - We presented a flexible framework for constructing

MRFs for information retrieval tasks. However, for the ad hoc task, we focused

on a very specific set of features/weighting functions based on term proximity

features using both language modeling and BM25 weighting schemes. For the

web search task, we used similar features plus priors based on inlink count and

PageRank-based priors. Since the effectiveness of the MRF model depends so

heavily on the features used within the model, it is important to engineer better

features that can be applied across various tasks. Such feature engineering

should, of course, not be done in a heuristic, uninformed manner. Instead, we

advocate that a formal framework be developed for discovering new features

and analyzing their usefulness.

• Better understanding of multi-term concept expansion - In Chapter 7,

we presented LCE, our general query expansion framework for the MRF model.

The framework is unique in that it allows term dependence and arbitrary fea-

tures to be used. Another appealing characteristic of the framework is that it

allows queries to be expanded with multi-term concepts. However, our prelim-

inary results showed there was no benefit of including such concepts and that

single term concepts remained the best option. We believe that it should be

possible to use multi-term concepts in order to improve effectiveness. How-

ever, a deeper understanding of multi-term concepts and their role in expansion

must first be developed. There are a number of ways to tackle such a problem,

but one of the most straightforward approaches is to develop a better set of

query-dependent features to be used with LCE. We believe that such features

171

should somehow take IDF into account, some notion of lexical cohesion, and

some measure of redundancy.

• Unified learning to rank framework - The importance of careful tuning

and parameter estimation cannot be stressed enough. If a good model is poorly

trained, there is little hope of achieving good effectiveness. As models begin

to incorporate more features, the need to develop robust learning to rank tech-

niques grows. As we described in Chapter 4, there have been a number of

approaches proposed to solve the learning to rank problem. The coordinate as-

cent approach that we proposed is able to handle arbitrary evaluation metrics,

but is not guaranteed to find a global maxima and may not scale well when

there are hundreds or thousands of features. Many of the machine learning

approaches maximize some surrogate function that may or may not be related

to some evaluation metric. While these approaches often are guaranteed to find

a global maxima and scale well, they typically can not be applied to different

evaluation metrics easily. Therefore, there is a need to combine the pros and the

cons from both types of approaches into a powerful, flexible, efficient framework

for learning to rank.

• Efficient indexing architectures - In order to support efficient query eval-

uation of MRF model queries, there is a need to develop efficient indexing

architectures. Such indexing architectures must be able to index arbitrary fea-

tures in a compact, efficient manner. Furthermore, query evaluation strategies

must be developed to be used with such indexing architectures. We believe this

is a critical component to the wide spread adoption of such models.

172

APPENDIX A

DATA SETS

In order to properly analyze the various dimensions of retrieval effectiveness, it

is important to evaluate new models and techniques against a diverse set of data

sets. We make use of TREC collections in all of our experiments, Therefore, we begin

this Appendix by describing the anatomy of a TREC data set. We then provide the

specific details of the data sets used in the experiments throughout this work.

A.1 Anatomy of a TREC Data Set

Every TREC data set consists of a set of documents, topics, and relevance judg-

ments. We now provide an overview of each.

TREC documents, which are in SGML format, contain a number of metadata

fields, as well as content. See Figure A.1 for an example TREC document. Examples

of metadata fields include DOCNO, which is a unique document identifier and HEAD,

which is the headline of the news article. The document’s textual content is contained

within the TEXT field. In our experiments, we throw away all of the metadata, except

for the document identifier, and index the content contained in the TEXT field1.

A TREC topic typically consists of a title, description, and a narrative,

although some topics may contain other fields. See Figure A.2 for an example TREC

topic. It is important to note that a topic represents an information need and is not

a query itself. Instead, researchers must distill a query from a topic. There are a

1TREC web documents do not have a TEXT field. For these document, we index all of the text,
except that contained in the DOCHDR field.

173

<DOC>

<DOCNO> AP890101-0010 </DOCNO>

<FILEID>AP-NR-01-01-89 1123EST</FILEID>
<FIRST>r i AM-Thatcher-Women 01-01 0287</FIRST>
<SECOND>AM-Thatcher-Women,0295</SECOND>
<HEAD>Thatcher Says Male Prime Ministers May Eventually Be Fashionable
Again</HEAD>
<DATELINE>LONDON (AP) </DATELINE>
<TEXT>

Prime Minister Margaret Thatcher, who made history
in 1979 when she became Europe’s first woman prime minister, noted
Sunday she is not alone and joked that male politicians may one day
come back into fashion.
“We’re getting more women prime ministers,” she said in a
television interview, referring to the recent election of Benazir
Bhutto as prime minister of Pakistan.
“And don’t forget ... Mrs. Gandhi was a very able, charming,
formidable prime minister of India.”
Mrs. Thatcher now is the longest serving leader in the West.
Before she came to power, women had governed in Sri Lanka and
Israel. Part of the British leader’s tenure in office coincided with
that of Mrs. Gandhi, who was assassinated in 1984.
“I think male prime ministers one day will come back into
fashion,” she joked with interviewer David Frost on Britain’s
commercial TV-am channel.
Asked about combining her job and her domestic life with her
husband, Denis, a retired oil executive, she said “women have run
both the home and work for a very long time.”
“I mean, every working wife knows that if you decide to have
steak and kidney pie for supper, it’s no better if you took 20
minutes thinking about it than if you took 20 seconds.”
Frost recalled Mrs. Thatcher’s comment “I never did understand
men,” during an acrimonious meeting last year with fellow leaders
of the European Economic Community. Asked if she understood men
better now, Mrs. Thatcher replied:
“It may not be understanding of the deepest kind, but I do know
what they’re likely to do and say. So, one has a certain
predictability about it.”
</TEXT>

</DOC>

Figure A.1. Example TREC document.

174

<top>

<num> Number: 763

<title> Hunting deaths

<desc> Description:
Give information on human deaths associated with hunting for game.

<narr> Narrative:
Accidental deaths, murders, and suicides are relevant. Deaths can be
from any cause. Fatalities of people not in the hunting party are
relevant, but the deaths must be connected with hunting. Relevant
hunting must be for live prey. Deaths related to submarine hunting
are not relevant.

</top>

Figure A.2. Example TREC topic.

number of ways of doing this, but the most common way is to use one of the fields as

the query. In most of the experiments done throughout this work, we distill a query

by using only the text that appears in the title field.

Finally, relevance judgments are provided. For each topic, a set of documents are

manually judged for relevance. Different definitions and scales of relevance are used

for different tasks. Please refer to Sections 5.1 and 5.2 for examples. Furthermore, due

to limited resources, not all documents are judged for every topic. Instead, TREC

uses a number of techniques, including document pooling, in order to reduce the

number of documents judged, while ensuring the test collection is reusable [45, 104].

Figure A.3 shows an excerpt from a TREC relevance judgment file. These judgments

are used as the “ground truth” for the purposes of evaluation, which we cover in

Appendix B.

175

763 0 GX018-79-11508357 2
763 0 GX018-79-15198972 0
763 0 GX019-18-8997173 0
763 0 GX019-40-2241667 0
763 0 GX019-56-11902532 1
763 0 GX019-97-10746106 0
763 0 GX020-45-4344240 0
763 0 GX020-99-3364231 0
763 0 GX021-19-6737921 0
763 0 GX021-41-4253461 0

Figure A.3. Portion of a TREC relevance judgment file. The format of each line
is: query-id 0 doc-id judgment. Judgments of 0, 1, and 2 refer to non-relevant,
relevant, and highly relevant, respectively.

Name Description # Docs Train Topics Test Topics
WSJ Wall St. Journal ’87-’92 173,252 51–150 151–200
AP Associated Press ’88-’90 242,918 51–150 151–200

ROBUST04 Newswire articles 528,155 301–450 601–700
WT10g Small web crawl 1,692,096 451–500 501–550
GOV2 2004 crawl of .gov domain 25,205,179 701–750 751–800

Table A.1. Overview of TREC collections and topics used in most of our experi-
ments.

176

Disks 1,2 Disk 3 Disks 4,5
Num. Docs 741,856 336,310 556,077

Training topics 101-150 51-100 301-350
Test topics 151-200 101-150 401-450

Table A.2. TREC data sets used in Chapter 4. The disk numbers refer to the TREC
volumes used to construct the index.

A.2 Summary of Data Sets

Now that we have explained the composition of a TREC data set, we summarize

the details of the data sets considered in this work. First, Table A.1 gives an overview

of five primary data sets used in our experiments. The table includes the data set

name, a short description, the number of documents in the data set, the topics used

for training and the topics used for testing. As we see, these data sets vary in size,

homogeneity, and noisiness. The AP and WSJ data sets are small collections of

newswire articles from a single source. Therefore, they are homogeneous and contain

very little noise. The ROBUST04 data set is medium sized and consists of news

stories from a number of sources, thus making it less homogeneous, and not very

noisy. Finally, the WT10G and GOV2 data sets are (very) large web crawls, thus

making them both heterogeneous and noisy. Hence, the data sets are diverse across

a number of characteristics, making this a suitable evaluation testbed. Nearly all of

the experiments done throughout this work use the data sets listed in this table.

Another set of data sets is also considered, but only used for one experiment. The

data sets shown in Table A.2 are used in the experiments described in Chapter 4.

All of these data sets consist primarily of news articles, are somewhat heterogeneous,

and contain very little noise. The collections are also relatively small, as well. The

table also lists the TREC topics used for training and testing purposes.

177

APPENDIX B

EVALUATION METRICS

This appendix provides a brief summary of metrics that are commonly used to

evaluate the effectiveness of information retrieval systems. Each of these evaluation

measures are rank-based. That is, they depend exclusively on the ranking of doc-

uments produced by a system. The scores of the documents do not influence the

metrics in any way. In addition, a binary model of relevance is assumed, which states

that an item is either relevant to a request or it is not relevant.

Given a ranked list of documents in response to a query, we define the function R

such that R(i) = 1 if the document at rank i is relevant and R(i) = 0 if the document

at rank i is not relevant. Furthermore, as a matter of convenience, we define the

function R(1,k) that counts the number of relevant documents between rank 1 and k

(inclusive) as

R(1,k) =
k∑

i=1

R(i) (B.1)

In Table B.1 the functional forms for precision at rank k, R-Prec, success at rank

k, average precision, and reciprocal rank are given.

Precision at rank k measures the proportion of relevant documents that are ranked

in the top k, whereas success at rank k is 1 if any relevant documents appear in the

top k and 0 otherwise. Typical values of k range from 5 to 100. Precision at rank 5

or 10, for example, is typically used to evaluate a system’s ability to return relevant

documents at the top of the ranked list, which is important for many applications,

including web search.

178

Metric Name Functional Form

Precision at rank k P@k= R(1,k)
k

Success at rank k S@k = δ(R(1, k) ≥ 1)

R-Prec R-Prec = R(1,|R|)
|R|

Average Precision AvgP = 1
|R|

∑

i:R(i)=1
R(1,i)

i

Reciprocal Rank RR = max
{

1
i

: R(i) = 1
}

Table B.1. Summary of common information retrieval evaluation metrics, where
R(1, k) is defined in Equation B.1 and |R| is the total number of judged relevant
documents.

R-prec is a a special case of precision at rank k. R-Prec computes the precision at

rank |R|, where |R| is the total number of judged relevant documents. This measure

is more adaptive, as it computes precision to a different depth for every query.

Average precision can be thought of as a weighted precision measure that gives

higher weight to relevant documents that appear near the top of the ranked list.

The measure is computed by averaging the precision at k for every k such that the

document at rank k is relevant. Average precision is standardly computed to a depth

of 1000 documents1. Any relevant documents that do no appear in the ranked list

are assumed to be at rank “infinity”, and therefore contribute nothing to the average.

Therefore, the measure rewards systems that rank relevant documents high in the

ranked list and those that return more relevant documents. In this way, the measure

implicitly accounts for both precision and recall (coverage of relevant documents).

Average precision is typically used to evaluate ad hoc retrieval tasks and other tasks

where both precision and recall are important factors.

The last measure, reciprocal rank, is computed according to the reciprocal of the

highest ranked relevant document. Note that the measure quickly decays as the rank

of the first relevant document increases (e.g., 1, 0.5, 0.33, 0.25, 0.2, etc.). We note

1Throughout this work, all evaluation metrics are computed to a depth of 1000.

179

Name Value

Precision at rank k P@k = 1
N

∑N
i=1 P@k(qi)

Success at rank k S@k = 1
N

∑N
i=1 S@k(qi)

R-Prec R-Prec = 1
N

∑N
i=1 R-Prec(qi)

Mean Average Precision MAP = 1
N

∑N
i=1 AvgP(qi)

Geometric Mean Average Precision GMAP =
∏N

i=1 AvgP’(qi)
1/N

Mean Reciprocal Rank MRR = 1
N

∑N
i=1 RR(qi)

Table B.2. Overview of aggregate measures. For each aggregate measure we show
how it is computed. Here, N refers to the total number of queries being aggre-
gated and qi is the ith query in the set. Notice that GMAP is zero if any query
has an average precision of zero. In order to correct this, AvgP’(qi) is defined to be
max(AvgP(qi), .00001).

that reciprocal rank is a special case of average precision when there is only a single

relevant document for a given request. This measure is commonly used to evaluate

known-item finding queries, where it is critical to return the relevant web page very

high in the ranked list.

Each of these measures we just described are computed on a query-by-query basis.

However, for the sake of comparison, we often need to compute a single measure from

a set of query-by-query measures. Given a set of queries, the arithmetic average or the

geometric average are often used to combine, or aggregate, the measures computed on

a query-by-query basis. Table B.2 summarizes the most common aggregate measures

used in information retrieval. In order to avoid confusion, the most commonly used

names of the evaluation metrics were used. This results in aggregate measures having

the same name as their non-aggregate counterparts (e.g., R-Prec is the name of both

the aggregate and non-aggregate measure). We note, however, that throughout this

work, it should be clear from the context of the discussion whether the measure in

question has been computed for a single query or if it was aggregated over a set of

queries.

180

BIBLIOGRAPHY

[1] Agichtein, E., Brill, E., and Dumais, S. Improving web search ranking by
incorporating user behavior information. In Proc. 29th Ann. Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval (2006), pp. 19–26.

[2] Amati, G., and van Rijsbergen, C. J. Probabilistic models of information re-
trieval based on measuring the divergence from randomness. ACM Transactions
on Information Systems 20, 4 (2002), 357–389.

[3] Anh, V. N., and Moffat, A. Simplified similarity scoring using term ranks.
In Proc 28th Ann. Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (2005), pp. 226–233.

[4] Anh, V. N., and Moffat, A. Pruned query evaluation using pre-computed im-
pacts. In Proc 29th Ann. Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval (2006), pp. 372–379.

[5] Baron, J.R., Lewis, D.D., and Oard, D. TREC 2006 legal track overview. In
Proc. 15th Text REtrieval Conference (2006).

[6] Bartell, B. T., Cottrell, G. W., and Belew, R. K. Automatic combination of
multiple ranked retrieval systems. In Proc. 17th Ann. Intl. ACM SIGIR Conf.
on Research and Development in Information Retrieval (1994), pp. 173–181.

[7] Berger, A., and Lafferty, J. Information retrieval as statistical translation. In
Proc. 22nd Ann. Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (1999), pp. 222–229.

[8] Blei, D., Griffiths, T., Jordan, M., and Tenenbaum, J. Hierarchical topic models
and the nested Chinese restaurant process. In Proc. 16th Proc. of Advances in
Neural Information Processing Systems (2003).

[9] Blei, D., Ng, A., and Jordan, M. Latent dirichlet allocation. Journal of Machine
Learning Research 3 (2003), 993–1022.

[10] Brin, S., and Page, L. The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems 30, 1–7 (1998), 107–117.

[11] Broder, A. A taxonomy of web search. SIGIR Forum 36, 2 (2002), 3–10.

[12] Buckley, C. Why current IR engines fail. In Proc. 27th Ann. Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval (2004), pp. 584–
585.

181

[13] Buckley, C., Dimmick, D., Soboroff, I., and Voorhees, E. Bias and the lim-
its of pooling. In Proc. 29th Ann. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (2006), pp. 619–620.

[14] Buckley, C., and Salton, G. Optimization of relevance feedback weights. In
Proc. 18th Ann. Intl. ACM SIGIR Conf. on Research and Development in In-
formation Retrieval (1995), pp. 351–357.

[15] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and
Hullender, G. Learning to rank using gradient descent. In Proc. 22nd Proc.
Intl. Conference on Machine Learning (2005), pp. 89–96.

[16] Burges, C. J. C. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery 2, 2 (1998), 121–167.

[17] Burges, C. J.C., Ragno, R., and Le, Q. V. Learning to rank with nonsmooth cost
functions. In Proc. 19th Proc. of Advances in Neural Information Processing
Systems (2007), pp. 193–200.

[18] Büttcher, S., Clarke, C. L. A., and Lushman, B. Term proximity scoring for
ad-hoc retrieval on very large text collections. In Proc. 29th Ann. Intl. ACM
SIGIR Conf. on Research and Development in Information Retrieval (2006),
pp. 621–622.

[19] Chow, C., and Liu, C. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory 14, 3 (1968),
462–467.

[20] Clarke, C., Cormack, G., and Burkowski, F. Shortest substring ranking (Multi-
Text experiments for TREC-4). In Proc. 4th Text REtrieval Conference (1995).

[21] Clarke, C., Scholar, F., and Soboroff, I. Overview of the TREC 2005 terabyte
track. In Proc. 14th Text REtrieval Conference (2006).

[22] Clarke, C. L. A., and Cormack, G. V. Shortest-substring retrieval and ranking.
ACM Trans. Inf. Syst. 18, 1 (2000), 44–78.

[23] Collins-Thompson, K., and Callan, J. Query expansion using random walk
models. In Proc. 14th Intl. Conf. on Information and Knowledge Management
(2005), pp. 704–711.

[24] Cooper, W. S. Some inconsistencies and misnomers in probabilistic informa-
tion retrieval. In Proc. 14th Ann. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (1991), pp. 57–61.

[25] Craswell, N., de Vries, A.P., and Soboroff, I. Overview of the TREC 2005
enterprise track. In Proc. 14th Text REtrieval Conference (2005).

182

[26] Craswell, N., Robertson, S., Zaragoza, H., and Taylor, M. Relevance weighting
for query independent evidence. In Proc. 28th Ann. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (2005), pp. 416–423.

[27] Croft, W. B. Boolean queries and term dependencies in probabilistic retrieval
models. Journal of the American Society for Information Science 37, 4 (1986),
71–77.

[28] Croft, W. B., and Harper, D. Using probabilistic models of information retrieval
without relevance information. Journal of Documentation 35, 4 (1979), 285–295.

[29] Croft, W. B., Turtle, H., and Lewis, D. The use of phrases and structured
queries in information retrieval. In Proc. 14th Ann. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (1991), pp. 32–45.

[30] de Kretser, O., and Moffat, A. Effective document presentation with a locality-
based similarity heuristic. In Proc. 22nd Ann. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (1999), pp. 113–120.

[31] Deerwester, S., Dumais, S., Furnas, G. W., Landauer, T. K., and Harshman,
R. Indexing by latent semantic analysis. Journal of the Society for Information
Science 41, 6 (1990), 391–407.

[32] Della Pietra, S., Della Pietra, V., and Lafferty, J. Inducing features of random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 4
(1997), 380–393.

[33] Diaz, F. Regularizing ad hoc retrieval scores. In Proc. 14th Intl. Conf. on
Information and Knowledge Management (2005), pp. 672–679.

[34] Diaz, F., and Metzler, D. Improving the estimation of relevance models using
large external corpora. In Proc. 29th Ann. Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval (2006), pp. 154–161.

[35] Fagan, J. Automatic phrase indexing for document retrieval: An examination
of syntactic and non-syntactic methods. In Proc. tenth Ann. Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval (1987), pp. 91–
101.

[36] Fan, W., Gordon, M. D., and Pathak, P. A generic ranking function discov-
ery framework by genetic programming for information retrieval. Inf. Process.
Manage. 40, 4 (2004), 587–602.

[37] Fang, H., and Zhai, C. An exploration of axiomatic approaches to informa-
tion retrieval. In Proc. 28th Ann. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (2005), pp. 480–487.

183

[38] Fang, H., and Zhai, C. Semantic term matching in axiomatic approaches to
information retrieval. In Proc. 29th Ann. Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval (2006), pp. 115–122.

[39] Fox, E. A., and Shaw, J. A. Combination of multiple searches. In Proc. 2nd
Text REtrieval Conference (1993), pp. 243–252.

[40] Fuhr, N. Probabilistic models in information retrieval. The Computer Journal
35, 3 (1992), 243–255.

[41] Gao, J., Nie, J., Wu, G., and Cao, G. Dependence language model for infor-
mation retrieval. In Proc. 27th Ann. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (2004), pp. 170–177.

[42] Gao, J., Qi, H., Xia, X., and Nie, J. Linear discriminant model for informa-
tion retrieval. In Proc. 28th Ann. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (2005), pp. 290–297.

[43] Gey, F. Inferring probability of relevance using the method of logistic regression.
In Proc. 17th Ann. Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (1994).

[44] Griffiths, T. L., Steyvers, M., Blei, D. M., and Tenenbaum, J. B. Integrating
topics and syntax. In Proc. 17th Proc. of Advances in Neural Information
Processing Systems (2005), pp. 537–544.

[45] Harman, D. Overview of the first TREC conference. In Proc. 16th Ann.
Intl. ACM SIGIR Conf. on Research and Development in Information Retrieval
(1993), pp. 36–47.

[46] Harman, D. Overview of the TREC 2002 novelty track. In Proc. 11th Text
REtrieval Conference (2002).

[47] Harper, D., and van Rijsbergen, C. J. An evaluation of feedback in document
retrieval using co-occurrence data. Journal of Documentation 34, 3 (1978),
189–216.

[48] Harter, S. P. A probabilistic approach to automatic keyword indexing. Journal
of the American Society for Information Science 26, 5 (1975), 197–206 and
280–289.

[49] Hofmann, T. Probabilistic latent semantic indexing. In Proc. 22nd Ann. Intl.
ACM SIGIR Conf. on Research and Development in Information Retrieval
(1999), pp. 50–57.

[50] Joachims, T. Optimizing search engines using clickthrough data. In Proc. 8th
Ann. Intl. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining
(2002), pp. 133–142.

184

[51] Joachims, T. A support vector method for multivariate performance measures.
In Proc. 22nd Proc. Intl. Conference on Machine Learning (2005), pp. 377–384.

[52] Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay, G. Accurately in-
terpreting clickthrough data as implicit feedback. In Proc. 28th Ann. Intl. ACM
SIGIR Conf. on Research and Development in Information Retrieval (2005),
pp. 154–161.

[53] Kleinberg, J. Authoritative sources in a hyperlinked environment. Journal of
the ACM 46, 5 (1999), 604–632.

[54] Kraaij, W., Westerveld, T., and Hiemstra, D. The importance of prior proba-
bilities for entry page search. In Proc. 25th Ann. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (2002), pp. 27–34.

[55] Kurland, O., and Lee, L. Corpus structure, language models, and ad hoc
information retrieval. In Proc. 27th Ann. Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval (2004), pp. 194–201.

[56] Lafferty, J., and Zhai, C. Document language models, query models, and risk
minimization for information retrieval. In Proc. 24th Ann. Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval (2001), pp. 111–
119.

[57] Lavrenko, V. A Generative Theory of Relevance. PhD thesis, University of
Massachusetts, Amherst, MA, 2004.

[58] Lavrenko, V., and Croft, W. B. Relevance-based language models. In Proc. 24th
Ann. Intl. ACM SIGIR Conf. on Research and Development in Information
Retrieval (2001), pp. 120–127.

[59] Le, Q., and Smola, A. Direct optimization of ranking measures.
http://www.citebase.org/abstract?id=oai:arXiv.org:0704.3359, 2007.

[60] Lebanon, G., and Lafferty, J. Hyperplane margin classifiers on the multinomial
manifold. In Proc. 21st Proc. Intl. Conference on Machine Learning (2004),
pp. 66–71.

[61] Liu, X., and Croft, W. B. Cluster-based retrieval using language models. In
Proc. 27th Ann. Intl. ACM SIGIR Conf. on Research and Development in In-
formation Retrieval (2004), pp. 186–193.

[62] Matveeva, I., Burges, C., Burkard, T., Laucius, A., and Wong, L. High accuracy
retrieval with multiple nested ranker. In Proc. 29th Ann. Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval (2006), pp. 437–
444.

[63] McCallum, A. Efficiently inducing features of conditional random fields. In
Proc. 19th Conf. on Uncertainty in Artificial Intelligence (2003).

185

[64] Metzler, D., and Croft, W. B. Combining the language model and inference
network approaches to retrieval. Information Processing and Management 40,
5 (2004), 735–750.

[65] Metzler, D., and Croft, W. B. A markov random field model for term dependen-
cies. In Proc. 28th Ann. Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval (2005), pp. 472–479.

[66] Metzler, D., Diaz, F., Strohman, T., and Croft, W. B. UMass robust 2005:
Using mixtures of relevance models for query expansion. In Proc. 14th Text
REtrieval Conference (2005).

[67] Metzler, D., Dumais, S., and Meek, C. Similarity measures for short segments of
text. In Proc. 29th European Conf. on Information Retrieval (2007), pp. 16–27.

[68] Metzler, D., Lavrenko, V., and Croft, W. B. Formal multiple bernoulli models
for language modeling. In Proc. 27th Ann. Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval (2004), pp. 540–541.

[69] Metzler, D., and Manmatha, R. An inference network approach to image re-
trieval. In Proc. 3rd Intl. Conf. on Image and Video Retrieval (2004), pp. 42–50.

[70] Metzler, D., Strohman, T., and Croft, W. B. Lessons learned from three ter-
abyte tracks. In Proc. 15th Text REtrieval Conference (2006).

[71] Metzler, D., Strohman, T., Turtle, H., and Croft, W. B. Indri at TREC 2004:
Terabyte track. In Proc. 13th Text REtrieval Conference (2004).

[72] Metzler, D., Strohman, T., Zhou, Y., and Croft, W. B. Indri at TREC 2005:
Terabyte track. In Proc. 14th Text REtrieval Conference (2005).

[73] Mishne, G., and de Rijke, M. Boosting web retrieval through query operations.
In Proc. 27th European Conf. on Information Retrieval (2005), pp. 502–516.

[74] Morgan, W., Greiff, W., and Henderson, J. Direct maximization of average
precision by hill-climbing with a comparison to a maximum entropy approach.
Tech. rep., MITRE, 2004.

[75] Morik, K., Brockhausen, P., and Joachims, T. Combining statistical learning
with a knowledge-based approach - a case study in intensive care monitoring.
In Proc. 16th Proc. Intl. Conference on Machine Learning (1999).

[76] Nallapati, R. Discriminative models for information retrieval. In Proc. 27th
Ann. Intl. ACM SIGIR Conf. on Research and Development in Information
Retrieval (2004), pp. 64–71.

[77] Nallapati, R., and Allan, J. Capturing term dependencies using a language
model based on sentence trees. In Proc. 11th Intl. Conf. on Information and
Knowledge Management (2002), pp. 383–390.

186

[78] Ogilvie, P., and Callan, J. Combining document representations for known-
item search. In Proc. 26th Ann. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (2003), pp. 143–150.

[79] Ounis, I., de Rijke, M., MacDonald, C., Mishne, G., and Soboroff, I. Overview
of the TREC-2006 blog track. In Proc. 15th Text REtrieval Conference (2006).

[80] Pang, B., Lee, L., and Vaithyanathan, S. Thumbs up? Sentiment classification
using machine learning techniques. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing (EMNLP) (2002), pp. 79–
86.

[81] Papka, R., and Allan, J. Why bigger windows are better than smaller ones.
Tech. rep., University of Massachusetts, Amherst, 1997.

[82] Peng, J., Macdonald, C., He, B., Plachouras, V., and Ounis, I. Incorporating
term dependency in the dfr framework. In Proc 30th Ann. Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval (2007), p. To
appear.

[83] Peng, Y., and He, D. Direct comparison of commercial and academic retrieval
system: an initial study. In Proc. 15th Intl. Conf. on Information and Knowl-
edge Management (2006), pp. 806–807.

[84] Ponte, J., and Croft, W. Bruce. A language modeling approach to informa-
tion retrieval. In Proc. 21st Ann. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (1998), pp. 275–281.

[85] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press,
1992.

[86] R. Losee, Jr. Term dependence: Truncating the Bahadur Lazarsfeld expansion.
Information Processing and Management 30, 2 (1994), 293–303.

[87] Robertson, S. The probability ranking principle in IR. Journal of Documenta-
tion 33, 4 (1977), 294–303.

[88] Robertson, S. Understanding inverse document frequency: on theoretical argu-
ments for IDF. Journal of Documentation 60, 5 (2004), 503–520.

[89] Robertson, S., and Walker, S. Some simple effective approximations to the 2-
poisson model for probabilistic weighted retrieval. In Proc. 17th Ann. Intl. ACM
SIGIR Conf. on Research and Development in Information Retrieval (1994),
pp. 232–241.

[90] Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M. M., and Gatford, M.
Okapi at TREC-3. In Proc. 3rd Text REtrieval Conference (1994), pp. 109–126.

187

[91] Robertson, S., Zaragoza, H., and Taylor, M. Simple bm25 extension to mul-
tiple weighted fields. In Proc. 13th Intl. Conf. on Information and Knowledge
Management (2004), pp. 42–49.

[92] Robertson, S. E., and Spärck Jones, K. Relevance weighting of search terms.
Journal of the American Society for Information Science 27, 3 (1976), 129–146.

[93] Robertson, S. E., van Rijsbergen, C. J., and Porter, M. F. Probabilistic mod-
els of indexing and searching. In Proc. 3rd Ann. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (1980), pp. 35–56.

[94] Robertson, S. E., and Walker, S. On relevance weights with little relevance
information. In Proc. 20th Ann. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (1997), pp. 16–24.

[95] Rocchio, J. J. Relevance Feedback in Information Retrieval. Prentice-Hall, 1971,
pp. 313–323.

[96] Rosenfeld, R. Two decades of statistical language modeling: Where do we go
from here? Proceedings of IEEE 88, 8 (2000), 1270–1278.

[97] Salton, G., and Buckley, C. Term-weighting approaches in automatic text re-
trieval. Information Processing and Management 24, 5 (1988), 513–523.

[98] Shen, X., and Zhai, C. Active feedback in ad hoc information retrieval. In Proc.
28th Ann. Intl. ACM SIGIR Conf. on Research and Development in Informa-
tion Retrieval (2005), pp. 59–66.

[99] Si, L., and Callan, J. A statistical model for scientific readability. In Proc. 10th
Intl. Conf. on Information and Knowledge Management (2001), pp. 574–576.

[100] Singhal, A., Buckley, C., and Mitra, M. Pivoted document length normalization.
In Proc. 19th Ann. Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (1996), pp. 21–29.

[101] Song, F., and Croft, W. B. A general language model for information retrieval.
In Proc. 8th Intl. Conf. on Information and Knowledge Management (1999),
pp. 316–321.

[102] Spärck Jones, K. Automatic keyword classification for information retrieval.
Butterworths, 1971.

[103] Spärck Jones, K. Wearing proper combinations. Tech. rep., University of Cam-
bridge, 2005.

[104] Spärck Jones, K., and van Rijsbergen, C. J. Information retrieval test collec-
tions. Journal of Documentation 32, 1 (1976), 59–72.

188

[105] Srikanth, M., and Srihari, R. Biterm language models for document retrieval.
In Proc. 25th Ann. Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (2002), pp. 425–426.

[106] Strohman, T., and Croft, W. B. Efficient document retrieval in main memory.
In Proc 30th Ann. Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (2007), p. To appear.

[107] Strohman, T., Metzler, D., Turtle, H., and Croft, W. B. Indri: A language
model-based serach engine for complex queries. In Proceedings of the Interna-
tional Conference on Intelligence Analysis (2004).

[108] Tao, T., Wang, X., Mei, Q., and Zhai, C. Language model information retrieval
with document expansion. In Proc. of HLT/NAACL (2006), pp. 407–414.

[109] Turtle, H., and Croft, W. B. Evaluation of an inference network-based retrieval
model. ACM Transactions on Information Systems 9, 3 (1991), 187–222.

[110] van Rijsbergen, C. J. A theoretical basis for the use of cooccurrence data in
information retrieval. Journal of Documentation 33, 2 (1977), 106–119.

[111] Vechtomova, O., Karamuftuoglu, M., and Robertson, S. E. On document rel-
evance and lexical cohesion between query terms. Information Processing and
Management 42, 5 (2006), 1230–1247.

[112] Voorhees, E. The TREC-8 question answering track report. In Proc. 8th Text
REtrieval Conference (1999), pp. 77–82.

[113] Voorhees, E. Overview of the TREC 2004 robust retrieval track. In Proc. 13th
Text REtrieval Conference (2004).

[114] Voorhees, E. Overview of the TREC 2005 robust retrieval track. In Proc. 14th
Text REtrieval Conference (2005).

[115] Wei, X., and Croft, W. B. LDA-based document models for ad-hoc retrieval.
In Proc. 29th Ann. Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (2006), pp. 178–185.

[116] Wei, X., and Croft, W. B. Modeling term associations for ad-hoc retrieval
performance within language modeling framework. In Proc. 29th European
Conf. on Information Retrieval (2007), pp. 52–63.

[117] Wong, S. K.M., and Yao, Y. Y. Linear structure in information retrieval. In
Proc. 11th Ann. Intl. ACM SIGIR Conf. on Research and Development in In-
formation Retrieval (1988), pp. 219–232.

[118] Xu, J., and Croft, W. B. Improving the effectiveness of information retrieval
with local context analysis. ACM Trans. Inf. Syst. 18, 1 (2000), 79–112.

189

[119] Yu, C. T., Buckley, C., Lam, K., and Salton, G. A generalized term dependence
model in information retrieval. Tech. rep., Cornell University, 1983.

[120] Yue, Y., Finley, T., Radlinski, F., and Joachims, T. A support vector method
for optimizing average precision. In Proc. 30th Ann. Intl. ACM SIGIR Conf.
on Research and Development in Information Retrieval (2007), p. To appear.

[121] Zhai, C. Risk Minimization and Language Modeling in Information Retrieval.
PhD thesis, Carnegie Mellon University, 2002.

[122] Zhai, C., and Lafferty, J. Model-based feedback in the language modeling
approach to information retrieval. In Proc. 10th Intl. Conf. on Information and
Knowledge Management (2001), pp. 403–410.

[123] Zhai, C., and Lafferty, J. A study of smoothing methods for language models
applied to ad hoc information retrieval. In Proc. 24th Ann. Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval (2001), pp. 334–
342.

[124] Zhai, C., and Lafferty, J. Two-stage language models for information retrieval.
In Proc. 25th Ann. Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (2002), pp. 49–56.

[125] Zhai, C., and Lafferty, J. A study of smoothing methods for language models
applied to information retrieval. ACM Trans. Inf. Syst. 22, 2 (2004), 179–214.

[126] Zhang, D., Chen, X., and Lee, W. S. Text classification with kernels on the
multinomial manifold. In Proc. 28th Ann. Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval (2005), pp. 266–273.

[127] Zhou, Y., and Croft, W. B. Document quality models for web ad hoc retrieval.
In Proc. 14th Intl. Conf. on Information and Knowledge Management (2005),
pp. 331–332.

190

