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Abstract. We adapt the cluster hypothesis for score-based information retrieval
by claiming that closely related documents should have similar scores. Given a
retrieval from an arbitrary system, we describe an algorithm which directly optimizes
this objective by adjusting retrieval scores so that topically related documents
receive similar scores. We refer to this process as score regularization. Because score
regularization operates on retrieval scores, regardless of their origin, we can apply
the technique to arbitrary initial retrieval rankings. Document rankings derived
from regularized scores, when compared to rankings derived from un-regularized
scores, consistently and significantly result in improved performance given a variety

of baseline retrieval algorithms. We also present several proofs demonstrating that
regularization generalizes methods such as pseudo-relevance feedback, document
expansion, and cluster-based retrieval. Because of these strong empirical and theo-
retical results, we argue for the adoption of score regularization as general design
principle or post-processing step for information retrieval systems.

Keywords: regularization, cluster hypothesis, cluster-based retrieval, pseudo-relevance
feedback, query expansion, document expansion

1. Introduction

In information retrieval, a user presents a query to a computer; the
computer then returns documents in a corpus relevant to the user’s
query. A user familiar with the topic may be able to supply example
relevant and non-relevant documents. More often, a user is unfamiliar
with the topic and possesses no example documents. In this situation,
the user provides a short, natural language query to the computer. We
refer to this situation as query-based information retrieval.

A set retrieval model assigns a binary prediction of relevance to
each document in the collection. The user then scans those documents
predicted to be relevant. We can see this as a mapping or function from
documents in the collection to a binary value. Mathematically, given a
query, q, a set retrieval model provides a function, fq : D → {0, 1}, from
documents to labels; we refer to fq as the initial score function for a
particular query. The argument of this function is the retrieval system’s
representation of a document. The values of the function provide the
system’s labeling of the documents. Notice that we index functions
by the query. We note this to emphasize the fact that, in information
retrieval, the score function over all documents will be different for
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Figure 1. Functions in one dimension. Each value on the horizontal axis may, for
example, represent a one-dimensional classification code such as a linear library
ordering of books. The functions in these figures assign a value to each point on the
real line and may represent relevance. If a set of functions are intended to describe

the same phenomenon or signal, we can develop criteria for preferring one function
over another. If we prefer smoother function, we would dismiss the function in a
in favor of the function in b. The process of smoothing the function in a into the
function in b is a type of regularization.

each query. Although we drop the index for notational convenience, the
reader should keep in mind that this is a function for a particular query.

A ranked retrieval model assigns some rank or score to each document
in the collection and ranks documents according to the score. The user
then scans the documents according to the ranking. The score function
for a ranked retrieval model maps documents to real values. Given a
query, q, the model provides a function, fq : D → ℜ, from documents
to scores. The values of the function provide the desired ranking of the
documents. There exist many ranked retrieval models based on geometry
(eg, the vector space model (Salton et al., 1975)) and probability (eg,
the probabilistic model (Robertson et al., 1981), inference networks
(Turtle and Croft, 1990), and language modeling (Croft and Lafferty,
2003)). This paper examines the behavior of score functions for ranked
retrieval models with respect to the geometry of the underlying domain,
D.

One way to describe a function, regardless of its domain, is by
its smoothness. The smoothness of a function might be measured, for
example, by its continuity, as in Lipschitz continuity. In many situations,
we prefer functions which exhibit smoothness. For example, consider
the one-dimensional functions in Figure 1. If we assume that local
consistency or continuity in the function is desirable, then the function
depicted in the Figure 1b is preferable because it is smoother.

If only presented with the function in Figure 1a, then we can proce-
durally modify the function to better satisfy our preference for smooth
functions. The result may be the function in Figure 1b. Post-processing

root.tex; 9/07/2007; 16:09; p.2



3

6

25

6
4

2
1

3
1

1

2

0

00

0
0

0

0

0

0

0

5

44

4
4

3
1

2
1

1

2

0

00

0
0

0

0

0

0

0

a. Collection b. Scored Collection c. Regularized

Figure 2. Regularizing retrieval scores. Documents in a collection can often be
embedded in a vector space as shown in a. When presented with a query, a retrieval
system provides scores for all of the documents in the collection b. Score regularization
refers to the process of smoothing out the retrieval function such that neighboring
documents receive similar scores (c).

a function is one way to perform regularization (Chen and Haykin, 2002).
In our work, we regularize initial score functions. Because our analysis
and regularization is local to the highest scored documents, we refer to
this process as local score regularization.

When our domain was the real line, we wanted the value of the
function at two points, f(x1) and f(x2), to be similar if the distance
between the two points, |x1 − x2|, was small. In information retrieval,
our domain is the set of documents and we want the value of the
function for two documents to be similar if the “distance between two
documents” is small. We adopt a topic-based distance and consider
two documents close if they share the same or similar topics. We will
refer to topical closeness as topical affinity. Affinity between documents
can be measured using, for example, inter-document cosine similarity.
We would like two documents which share the same topic to receive
similar scores. We depict this graphically in Figure 2a for documents
in a two-dimensional embedding space. When presented with a query,
the retrieval system computes scores for each document in this space
(Figure 2b); this is our initial score function. We regularize a function
into order to improve the consistency of scores between neighboring
documents. This is depicted graphically in Figure 2c where the value
of the function is smoother in the document space. Of course, realistic
collections often cannot be visualized like this two-dimensional example.
Nevertheless, the fundamental regularization process remains roughly
the same.

There is an interesting connection here to the cluster hypothesis. The
cluster hypothesis states: closely related documents tend to be relevant to

the same request (Jardine and van Rijsbergen, 1971). In regularization,
we extend this hypothesis to score-based retrieval: given a query, closely
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related documents should have similar scores.1 In this paper, we present
theoretical and empirical arguments for why score regularity should be
adopted as a design principal for information retrieval systems. Because
we formally define this objective and optimize it directly, we view score
regularization as being in the spirit of axiomatic retrieval (Fang and
Zhai, 2005).

Why might systems produce scores which fail to conform to the
cluster hypothesis? Query-based information retrieval systems often
score documents independently. The score of document a may be
computed by examining query term matches, document length, and
global collection statistics. Many initial retrieval functions operate this
way (Fang et al., 2004). Once computed, a system rarely compares the
score of a to the score of a topically-related document b. With some
exceptions, the correlation of document scores is largely been ignored,
leaving room for improvement through regularization.

Broadly, this paper contributes the following results,

1. an algorithm, local score regularization, designed to adjust retrieval
scores to respect inter-document consistency (Section 4)

2. a reduction of several well-known retrieval methods to score regu-
larization (Section 5)

3. experiments demonstrating strong and consistent performance im-
provements when score regularization is applied to arbitrary retrieval
methods (Section 7)

This paper can be broken into three parts: a description of score
regularization, a discussion of relationships to other techniques, and
experimental results. In the first part, we will describe the score regular-
ization algorithm. Because we use a variety of mathematical conventions,
we review these conventions and formally state our problem in Section
2. Document affinity and relatedness are critical to regularization. We
present a graph-based approach to regularization in Section 3. We
then describe the general regularization framework in Section 4. In
the second part of our paper, we place regularization in the context of
previous work. Because regularization has an interesting relationship to
several classic information retrieval techniques, we devote Section 5 to
reductions of several well-known techniques to score regularization. In
the third part of our paper, we present experimental arguments for score
regularization. We describe our experimental setup in Section 6. The

1 Baliński and Dani lowicz recently proposed a similar score-based objective
(Baliński and Dani lowicz, 2005). Though a solution is presented, we are not aware of
any experimental results or connections to previous models we describe here.
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results of these experiments are presented in Section 7 and discussed in
Section 8. We conclude in Section 9.

2. Preliminaries

2.1. Notation

We adopt vector and matrix notational convention from previous work
(Petersen and Pedersen, 2005). These conventions are reviewed in Table
I.

2.2. Definitions

A collection is a set of n documents which exist in an m-dimensional
vector space where m is the size of the vocabulary and elements of the
vectors represent the frequency of the term in the document. We define
for each document 1 ≤ i ≤ n a column vector, di, where each element
of the vector represents the frequency of the term in document i; we
refer to this as the document vector. These document vectors may be
normalized by their L1 or L2 norm. We will attempt to make norms,
if any, clear in context. Transposing and stacking up the n document
vectors defines the n × m collection matrix C.

We define other symbols in Table I. Elaborations of definitions will
occur when notation is introduced.

2.3. Problem Statement

We now formally define the regularization task. The input is a vector
of document scores. Although the system usually scores all n documents
in the collection, we consider only the top ñ scores. The ñ × 1 vector,
y, represents these scores. This vector may be normalized if desired.
For example, we normalize this vector to have zero-mean and unit
variance. The output is the vector of regularized scores represented by
the ñ × 1 vector f . The objective is to define a regularization process
which results in a superior ranking of the documents represented in
y, given some evaluation measure. In our work, we use mean average
precision (MAP) as the evaluation metric. MAP provides a standard
and stable evaluation metric (Buckley and Voorhees, 2000).
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Table I. Definition of Symbols.

A matrix

Ai the ith matrix

Aij element (i, j) of matrix A

a vector

ai the ith vector

ai element i of vector a

a scalar

f(A) element-wise function of A

A1/2 element-wise square root

A−1 matrix inverse

AT matrix transpose

‖a‖p (
∑n

i=1
|ai|

p)
1/p

; Lp norm of the vector a

n number of documents

ñ number of documents to regularize

m number of terms

C n × m collection matrix; elements are the model-specific term weights

di row i of C as a m × 1 column vector

wi column i of C

l n × 1 vector of document lengths

c m × 1 vector of term document frequencies

A n × n document affinity matrix

W nearest neighbor graph based on A

y n × 1 initial score vector

f n × 1 regularized score vector

U m × k matrix of cluster vectors

V k × n matrix of documents embedded into k dimensions

yc k × 1 cluster score vector

We n × n graph based on expanded documents

ye n × 1 vector of scores for expanded documents

∆ n × n Laplacian on W

Ek n × k matrix of top k eigenvectors of W

e column vector of all 1’s

I identity matrix
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3. Computing Inter-Document Affinity

In Figure 2, we depicted documents existing in some space where
proximity related to topical affinity. Our representations will never
be as simple as those in our toy example. We now turn to describing
one method for describing the relationship between documents. Our
approach will be to construct a content-based graph of the corpus. In
this graph, nodes represent documents and edges represent the similarity
between document vectors. We will build this graph in two steps: (1)
compute the similarity between all pairs of documents using a standard
text-based method and (2) add edges to the graph using the k-nearest
neighbors of each document. In Sections 3.1 and 3.2, we describe two
measures of similarity between document vectors. The similarity between
all pairs of ñ documents can be represented by ñ × ñ matrix A. In
Section 3.3, we construct a nearest neighbor graph using the similarity
information.

3.1. Cosine Similarity

If we assume that each document vector, di, is normalized by its L2 norm,
then each document can be placed on an m-dimensional hypersphere
(Salton, 1968). The inner product between document vectors determines
affinity,

Aij = 〈di,dj〉

= dT

i dj (1)

which is equivalent to the standard cosine similarity measure. The ñ× ñ

affinity matrix is defined by,

A = CCT (2)

where each element of the matrix defines the symmetric affinity between
two documents.

3.2. Language Model Similarity

The language modeling perspective of information retrieval treats the
text occurring in a document as having been generated by an unknown
probabilistic model (Croft and Lafferty, 2003). If we constrain this model
to have a certain form, then we can then apply statistical methods for
estimating the parameters of the model given the text occurring in
a document. Although many different models have been proposed,
practitioners often assume that each document is generated by a unique
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multinomial over terms. The parameters of these n multinomials can
be estimated in a number of ways but in this section we will focus on
the maximum likelihood estimate. If we let P (w|θd) be a multinomial
distribution over m terms, then the maximum likelihood estimate is
defined as

P (wi|θd) =
di

‖d‖1
(3)

Therefore, in this section, we consider d to be an L1-normalized vector
of term frequencies which is equivalent to the maximum likelihood
estimate.

For language models, we can adopt a measure of similarity between
multinomials. One popular distributional affinity measure in the infor-
mation retrieval community is the Kullback-Leibler divergence. However,
this measure is asymmetric and has demonstrated mixed results when
made symmetric. Therefore, we use the multinomial diffusion kernel
(Lafferty and Lebanon, 2005). We adopt this measure because it is
symmetric (allowing closed form solutions in Section 4.3) and has been
used successfully for text clustering and classification tasks. This affinity
measure between two distributions, di and dj , is motivated by Fisher
information metric and defined as,

Aij = K(di,dj)

= exp
(

−t−1 arccos2
〈

d
1/2
i ,d

1/2
j

〉)

(4)

where t is a parameter controlling the decay of the affinity. The selection
of a value for t will be clarified in Section 6.2.5. In fact, when two multi-
nomials are very similar, the value of the diffusion kernel approximates
that of the Kullback-Leibler divergence.

The ñ × ñ affinity matrix is defined by,

A = exp(−t−1 arccos2(CCT)) (5)

Notice that, besides the normalization of the vectors, this is equivalent
to applying a soft threshold to Equation 2.

3.3. Graph Construction

For the top ñ documents, we compute the complete ñ × ñ affinity
matrix, A; however, there are several reasons to consider a sparse
affinity matrix instead. For example, we may be more confident about
the affinity between very related documents than distant documents. In
this situation, the space is often better approximated by the geodesic
distances between documents. Consider the clusters of points in Figure 3.
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a. Ambient Distance b. Geodesic Distance

Figure 3. Ambient versus geodesic distance. The data naturally form two clusters.
We would like the distances between points in the same cluster to be smaller than
distances between points in different clusters. Points from a foreign cluster appear
closer than points in the same cluster when using the ambient distance (Figure a).
This problem is mitigated when using the geodesic distance (Figure b).

We would like the distances to respect the clustering; documents in the
same cluster should have smaller distances to each other than documents
in different clusters. The ambient distance (Figure 3a) clearly does not
satisfy this property. Using the geodesic distance (Figure 3b) seems more
appropriate. A nearest neighbor graph preserves the type of geodesic
distances we desire in here. For example, an ñ× ñ matrix, W, may only
include the affinities to the k-nearest neighbors for each document from
the affinity matrix, A, and zero otherwise. Constructing a document
affinity graph captures the lower-dimensional document manifold and
has demonstrated usefulness for text classification tasks (Belkin and
Niyogi, 2004). We explore the appropriateness of this assumption in our
experiments.

A retrieval system theoretically provides scores for all n documents
in the collection. To perform global analysis, our method would need to
construct a graph including all n documents. Computational constraints
prevent building the complete affinity matrix. We therefore builds graphs
considering the top ñ documents from the initial retrieval. This query-

biased graph-construction procedure is depicted in Figure 4. We justify
this methodology by noting that the score function will be flat for
the majority of the collection since the majority of the collection is
non-relevant. Query-biased graphs focus regularization on the portion
of the document graph most likely to contain relevant documents.

By using a graph, we assume the presence of a lower-dimensional
manifold underlying the documents in the space; however, we should, at
this point, stress a few problems with this assumption. First, there is no
explicit evidence that the documents from the initial retrieval lie on a
lower-dimensional manifold. We cannot visualize the documents in their
ambient space and observe some lower-dimensional structure. Implicitly,
though, the success of cluster-based retrieval methods suggests that there
probably exists some topical substructure (Liu and Croft, 2004; Xu
and Croft, 1999). From a theoretical perspective, methods such as
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a. Smoothness Constraint b. Error Constraint

Figure 5. Smoothness and error constraints for a function on a linear graph. In
Figure a, the smoothness constraint penalizes functions where neighboring nodes in

f receive different values. In Figure b, the error constraint penalizes functions where
nodes in f receive values different from the corresponding values in y.

where µ is a regularization parameter allowing us to control how much
weight to place on inter-document smoothing versus consistency with
the original score.2

4.1. Measuring Inter-Document Consistency

Inter-document relatedness is represented by the graph, W, defined
in Section 3.3 where Wij represents the affinity between documents i

and j. We define our graph so that there are no self-loops (Wii = 0).
A set of scores is considered smooth if related documents have similar
scores. In order to quantify smoothness, we define the cost function,
S(f), which penalizes inconsistency between related documents,

S(f) =
ñ

∑

i,j=1

Wij (fi − fj)
2 (7)

We measure inconsistency using the weighted difference between scores
of neighboring documents.3

In spectral graph theory, Equation 7 is known as the Dirichlet sum
(Chung, 1997). We can rewrite the Dirichlet sum in matrix notation,

ñ
∑

i,j=1

Wij (fi − fj)
2 = fT(D − W)f (8)

where D is the diagonal matrix defined as Dii =
∑ñ

j=1 Wij . The matrix
(D−W) is known as the combinatorial Laplacian which we represent

2 These functions operate on the entire vector f as opposed to element-wise.
3 The local, discrete Lipschitz constant for a document, i, can be thought of

as maxj (Wij‖fi − fj‖). Although similar, the local Lipschitz measure is much less

forgiving to discontinuities in a function. Because our retrieval function can be thought
of as a very peaked or spiky function due to the paucity of relevant documents, we

adopt the Laplacian-based measure.
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by ∆C . The graph Laplacian can be viewed as the discrete analog of
the Laplace-Beltrami operator. Because the Laplacian can be used to
compute the smoothness of a function, we may abstract ∆C and replace
it with alternative formulations of the Laplacian which offer alternative
measures of smoothness. For example, the normalized Laplacian is
defined as,

∆N = D−1/2∆CD−1/2 (9)

= I − D−1/2WD−1/2

measures the degree-normalized smoothness as,

fT∆N fT =
ñ

∑

i,j=1

Wij

DiiDjj
(fi − fj)

2 (10)

The approximate Laplace-Beltrami operator is a variation of the normal-
ized Laplacian which uses a modified affinity matrix (Lafon, 2004). The
approximate Laplace-Beltrami operator is defined as,

∆A = I − D̂−1/2ŴD̂−1/2 (11)

where we use the adjusted affinity matrix Ŵ = D−1WD−1 with
D̂ii =

∑ñ
j=1 Ŵij . The approximate Laplace-Beltrami operator theoreti-

cally addresses violations of the uniform sampling assumption. Because
we were concerned with the violation of this assumption at the end
of Section 3.3, we adopt the approximate Laplace-Beltrami operator
(Equation 11) in our work. We examine the effect of this choice on the
regularization performance in Section 7.1.

The value of the objective, S(f) is small for smooth functions and
large for non-smooth function. Unconstrained, however, the function
minimizing this objective is the constant function

argminfS(f) = e

In the next section, we will define a second objective which penalizes
regularized scores inordinately inconsistent with the initial retrieval.

4.2. Measuring Consistency with Initial Scores

We define a second objective, E(f ,y), which penalizes inconsistencies
between the initial retrieval scores, y, and the regularized scores, f ,

E(f ,y) =
ñ

∑

i=1

(fi − yi)
2 (12)
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The regularized scores, f , minimizing this function would be completely
consistent with the original scores, y; that is, if we only minimize this
objective, then the solution is f = y.

4.3. Minimizing the Objective Function

In the previous two sections, we defined two constraints, S(f) and
E(f ,y), which can be combined as a single objective, f . Formally, we
would like to find the optimal set of regularized scores, f∗, such that,

f∗ = argminf∈ℜñQ(f ,y) (13)

In this section, we will describe two solutions, one iterative and one
closed-form, to compute the regularized scores f∗.

Our iterative solution to this optimization interpolates the score
of a document with the scores of its neighbors. Metaphorically, this
process, at each iteration, diffuses scores on the document graph. This
is accomplished mathematically by defining a diffusion operator, S, for
each Laplacian.

S

∆C W

∆N D−1/2WD−1/2

∆A D̂−1/2ŴD̂−1/2

Given this operator, the score diffusion process can be formulated as,

f t+1 = (1 − α)y + αSf t (14)

where α = 1
1+µ (Zhou et al., 2004). We can initialize the regularized

scores such that f0 = y. As t approaches ∞, the regularized scores, f t,
converge on the optimal scores, f∗. The iterative diffusion in Equation
14 provides an intuitive flavor for the solution to our optimization.

In our work, we use the closed form solution to Equation 13. The
optimal regularized scores can be formulated as the solution of matrix
operations,

f∗ = (1 − α) (α∆ + (1 − α)I)−1
y (15)

where α is defined above.
Our final score regularization algorithm is presented in Figure 6.

Note that the affinity matrix computed in Step 1 is used for adding
elements to W in Step 2 and does not define W itself unless k = ñ.
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14

1. compute ñ × ñ affinity matrix

2. add the k nearest neighbors for each document to W

3. compute Laplacian, ∆

4. f∗ = (1 − α) (α∆ + (1 − α)I)−1
y

ñ number of document scores to regularize

y top ñ initial retrieval scores

k number of neighbors to consider

α parameter favoring inter-document consistency

f∗ regularized scores

Figure 6. Local Score Regularization Algorithm. Inputs are ñ, y, k, and α. The
output is the a length ñ vector of regularized scores, f∗.

5. Corpus-Aware Retrieval Methods Which Reduce to

Instances of Iterative Score Regularization

Several classic retrieval methods can be posed as instances of score
regularization. We will be focusing on the relationship between these
methods and a single iteration of score regularization (Equation 14). In
previous sections, we considered only the top ñ ≪ n documents from
some initial retrieval. In this section, we may at times consider every
document in the collection (ie, ñ = n).

For each of the methods in this section, we will be asking ourselves
the following question: can the final retrieval scores be computed as a
function of the initial retrieval scores and a similarity-based adjacency
matrix? If the answer to this question is “yes”, then we can state that
this method is an instance of score regularization. We present a summary
of these results in Table II.

5.1. Vector Space Model Retrieval

In Section 3.1, we represented each document as a L2 normalized, length-
m vector, d. A query can also be represented by a normalized, length-m
vector, q. A document’s score is the inner product between its vector
and the query vector (ie, yi = 〈di,q〉).

Pseudo-relevance feedback or query expansion refers to the technique
of building a model out of the top r documents retrieved by the original
query. The system then performs a second retrieval using combination
of this model and the original query. In the vector space model, the
classic Rocchio pseudo-relevance feedback algorithm assumes that the
top r documents from the initial retrieval are relevant (Rocchio, 1971).
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Let this pseudo-relevant set be R and r = |R|. In Rocchio, we linearly
combine the vectors of documents in R with the original query vector,
q. The modified query, q̃, is defined as,

q̃ = q +
α

r

∑

j∈R

dj (16)

where α is the weight placed on the pseudo-relevant documents. We can
then use this new representation to score documents by their similarity
to q̃.

THEOREM 1. Pseudo-relevance feedback in the vector space model is

a form of regularization.

Proof. First, we note that the similarity between a document and the
new query can be written as the combination of the original document
score and the sum of similarities to the pseudo-relevant set,

〈di, q̃〉 =

〈

di,q +
α

r

∑

j∈R

dj

〉

= 〈di,q〉 +
α

r

〈

di,
∑

j∈R

dj

〉

= 〈di,q〉 +
α

r

∑

j∈R

〈di,dj〉 (17)

Notice here that the first factor in the sum is yi and the second factor
in the sum represents the similarity to the pseudo-relevant documents,
∑

j∈R Aij . We can rewrite Equation 17 in terms of matrix operators
to compute the new scores for all documents in the collection. This
computation is a function of the initial scores and the inner product
affinity matrix,

f = y +
α

||σ(y)||1
Aσ(y) (18)

where σ(y) : ℜn → ℜn is defined as,

σ(y)i =

{

1 if i ∈ R

0 otherwise
(19)

We compare σ(y) to y in Figure 7. The σ function maps high-ranked
documents to pseudo-scores of 1. This behavior replicates the judgment
of documents as relevant. From our perspective of score functions, we
see that σ acts as a hard filter on the signal y. This demonstrates that
Rocchio is an instance of score regularization. 2
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+1

0

σ(y)

y

Figure 7. Hard weighting function for pseudo-relevance feedback. The horizontal axis
represents the documents in decreasing order of y. The function σ(y) acts as a filter
for pseudo-relevant documents. It sets the score of each of the top r documents to 1.

Whereas query expansion incorporates into a query terms from r

pseudo-relevant documents, document expansion incorporates into a
document the terms from its k most similar neighbors (Singhal and
Pereira, 1999). The modified document, d̃, is defined as,

d̃i = αDdi +
1

k

∑

j∈N(i)

dj (20)

where αD is the weight placed on the original document vector. N is
the set of k documents most similar to document i.

THEOREM 2. Document expansion in the vector space model is a form

of regularization.

Proof. Define the binary matrix W so that each row i contains k

non-zero entries for each of the indices in N(i). We can expand all
documents in the collection,

C̃ = αDC +
1

k
WC (21)

Given a query vector, we can score the entire collection,

f = C̃q

= (αDC +
1

k
WC)q

= αDCq +
1

k
WCq

= αDy +
1

k
Wy (22)

The implication here is that the score of an expanded document (fi) is
the linear combination of the original score (yi) and the scores of its k

neighbors ( 1
k

∑

j∈N(i) yi). This demonstrates that document expansion
is a form of regularization. 2
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We now turn to the dimensionality reduction school of cluster-
based retrieval algorithms. In the previous proof, we expanded the
entire collection using the matrix W. Clustering techniques such as
Latent Semantic Indexing (LSI) can also be used to expand documents
(Deerwester et al., 1990). LSI-style techniques use two auxiliary matrices:
V is the k×n matrix embedding documents in the k-dimensional space
and U is m × k representations of the dimensions in the ambient
space. Oftentimes, queries are processed by projecting them into the
k-dimensional space (ie, q̃ = UTq). We use an equivalent formula where
we expand documents by their LSI-based dimensions,

C̃ = λC + (1 − λ)VTUT

We then score a document by its cluster-expanded representation.4

THEOREM 3. Cluster-based retrieval in the vector space model is a

form of regularization.

Proof. Our proof is similar to the proof for document expansion.

f = C̃q

= (λC + (1 − λ)VTUT)q

= λy + (1 − λ)VT[UTq]

= λy + (1 − λ)VTyc (23)

Because the dimensions (clusters) are representable in the ambient
space, we can score them as we do documents; here, we use the k × 1
vector, yc to represent these scores. Essentially, the document scores
are interpolated with the scores of the clusters. 2

5.2. Language Modeling Retrieval

Recall that in Section 3.2 we used L1 normalized document vectors
to compute similarity. The elements of these vectors are estimates
of a term’s probability given its frequency in the document and the
collection. We refer to the L1 normalized document vector as the
document language model, P (w|θd). When treated as a very short
document, a query can be also represented as m-dimensional language
model, P (w|θQ). We can rank documents by the similarity of their
models to the query model using a multinomial similarity measure such
as cross entropy,

y = (log C)q (24)

4 In practice, the document representations are only based on the cluster infor-
mation (ie, λ = 0). Our ranking function generalizes classic cluster-based retrieval
functions.
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where q is our initial query model and the log is applied to elements of
C (Rölleke et al., 2006). This is rank equivalent to the likelihood of a
document generating the sequence of query terms, P (Q|θd).

In the language modeling framework, pseudo-relevance feedback can
be defined in several ways. We focus on the “relevance model” technique
(Lavrenko, 2004). In this case, the original scores are used to weight
each document’s contribution to the feedback model, referred to as the
“relevance model”. The relevance model, P (w|θR), is formally constructed
by interpolating the maximum likelihood query model, P (w|θQ), and
document models, P (w|θd), weighted by their scores

P (w|θR) = λP (w|θQ) + (1 − λ)





∑

d∈R

P (Q|θd)

Z
P (w|θd)



 (25)

where, as before, R is the set of top r documents, Z =
∑

d∈R P (Q|θd),
and λ is a weight between the original query model and the expanded
model. In terms of Figure 7, this means using an L1 normalized version
of y. In matrix notation,

q̃ = λq +
(1 − λ)

||y||1
CTy (26)

We then score documents according to Equation 24.

THEOREM 4. Relevance models are a form of regularization.

Proof. Our proof is based on a similar derivation used in the context
of efficient pseudo-relevance feedback (Lavrenko and Allan, 2006). Recall
that we use (log C)q̃ to rank the collection. By rearranging some terms,
we can view relevance models from a different perspective,

f = (log C)q̃

= (log C)

(

λq +
(1 − λ)

||y||1
CTy

)

= λ(log C)q +
(1 − λ)

||y||1
(log C)CTy

= λy +
(1 − λ)

||y||1
Ay (27)

where A is an n × n affinity matrix based on inter-document cross-
entropy. Since the relevance model scores can be computed as a function
of inter-document affinity and the initial scores, this is an instance of
score regularization. In fact, iterating the process in Equation 26 has
been shown to improve performance of relevance models and provides
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an argument for considering the closed form solution in Equation 15
(Kurland et al., 2005).5 2

Unfortunately, we cannot reduce document expansion in the language
modeling framework to regularization. Document expansion in language
modeling refers to adjusting the document language models P (w|θd)
given information about neighboring documents (Tao et al., 2006). In
this situation, the score function can be written as,

f = log (λC + (1 − λ)AC)q (28)

Because the logarithm effectively decouples the document expansion
from the document scoring, the approach used in the vector space model
proof cannot be used here.

The language modeling approach to cluster-based retrieval is concep-
tually very similar to document expansion (Liu and Croft, 2004; Wei
and Croft, 2006). The distribution P (z|D) represents the distribution
of subtopics or aspects in a document; we also have P (w|z) representing
language models for each of our subtopics. When we interpolate these
models with the maximum likelihood document models, we get a score
function similar to Equation 23,

f = log
(

λC + (1 − λ)VTUT
)

q (29)

where V is the k × n distribution P (z|D) and U is the m × k distribu-
tion P (w|z). Like document expansion scores, the logarithm prevents
converting cluster-based expansion into a regularization form.

It is worth devoting some time to Kurland and Lee’s cluster-based
retrieval model (Kurland and Lee, 2004). The model is used to perform
retrieval in three steps. First, each document is scored according to
an expanded document model. Second, an n × n matrix comparing
unexpanded and expanded models is constructed. Finally, each document
is scored by the linear interpolation of its original (unexpanded) score
and the scores of the nearest expanded documents. To this extent, the
model combines regularization and document-expansion retrieval in a
language modeling framework. Unfortunately, there do not appear to
be experiments demonstrating the effectiveness of each of these steps. Is
this model an instance of score regularization? Yes and no. The second

5 In Section 3.2, we adopted the symmetric diffusion kernel to compare distribu-
tions. The cross-entropy measure here is asymmetric and therefore cannot be used

in our closed form solution. Nevertheless, our iterative solution is not constrained
by the symmetry requirement. Furthermore, theoretical results for Laplacians of
directed graphs exist and can be applied in our framework (Chung, 2004; Zhou et al.,
2005).
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interpolation process clearly is an iteration of score regularization. The
first score is language model document expansion and therefore not
regularization.

Recall that the vector space model allowed fluid mathematical move-
ment from query expansion to regularization to document expansion
and finally to cluster-based retrieval. This is not the case for language
modeling. Language models have a set of rank-equivalent score functions;
we adopt cross entropy in our work. The problem, however, is that
measures such as the Kullback-Leibler divergence, cross entropy, and
query likelihood all are non-symmetric and therefore not valid inner
products. This disrupts the comparison to the vector space model
derivations because a smooth transition from regularization (Equation
27) to document expansion is impossible.

5.3. Laplacian Eigenmaps

Score regularization can be viewed as nonparametric function approxi-
mation. An alternative method of approximation reconstructs y with
smooth basis functions. When put in this perspective, reconstructing the
original function, y, using smooth basis functions indirectly introduces
the desired inter-document consistency (Belkin and Niyogi, 2003). When
Fourier analysis is generalized to the discrete situation of graphs, the
eigenvectors of ∆ provide a set of orthonormal basis functions. We can
then construct a smooth approximation of y using these basis functions.
In this situation, our solution is,

f∗ = E
(

ETE
)−1

ETy (30)

where E is a matrix consisting of the k eigenvectors of ∆ associated
with the smallest k eigenvalues. These eigenvectors represent the low
frequency harmonics on the graph and therefore result in smooth
reconstruction.

THEOREM 5. Function approximation using harmonic functions of

the document graph is a form of regularization.

Proof. We can view this process from the perspective of cluster-based
retrieval. In the vector space model, Equation 30 can be rewritten as,

f∗ = E
(

ETE
)−1

ECq

=

[

E
(

ETE
)−1

]

[

ETC
]

q

= VTUTq (31)

where the k ×m matrix UT represents the basis as linear combinations
of document vectors and the n × k matrix VT projects documents into
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the lower dimensional space. In language model retrieval, Equation 30
can be rewritten as,

f∗ = E
(

ETE
)−1

E log(C)q

=

[

E
(

ETE
)−1

]

[E log(C)]q

= VT log(UT)q (32)

where the k × m matrix UT represents the eigenfunctions as geometric

combinations of document vectors.
In both situations, new scores are computed as functions of cluster

scores and cluster affinities. Therefore, we claim that basis reconstruction
methods are an instance of score regularization. 2

5.4. Link Analysis Algorithms

Graph representations often suggest the use discrete metrics such as
PageRank to re-weight initial retrieval scores (Brin and Page, 1998; Cohn
and Hofmann, 2000; Kleinberg, 1998; Kurland and Lee, 2005). These
metrics can be thought of as functions from a document to a real value,
gW : D → ℜ. The function is indexed by the weight matrix W because
these metrics are often dependent only on the graph structure. Let g

be the length-ñ vector of values of g for our ñ documents. We will refer
to this vector as the graph structure function. The values in g are often
combined with those in y by linear combination (eg, f = y + g) or
geometric combination (eg, f = y ◦ g).

Many of these methods are instances of the spectral techniques
presented in Section 5.3 (Ng et al., 2001); specifically, PageRank is the
special case where only the top eigenvector is considered (ie, g = E1).

We believe it is very important to ask why the graph represented in
W is being used in retrieval. For regularization, the matrix W by design
enforces inter-document score consistency. For hypertext, the matrix
W (by way of g) provides the stationary distribution of the Markov
chain defined by the hypertext graph. This can be a good model of page
popularity in the absence of true user visitation data. When better user
visitation information is available, though, the model provided by g

is less useful (Richardson et al., 2006). When the graph W is derived
from content-based similarities, what does g mean? It is unclear that
content-derived links can be navigational surrogates; the hypothesis has
never been tested. Therefore, applications of graph structure functions
to content-based graphs seem weakly justified. We believe that the
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incorporation of graph structure through regularization, by contrast,
has a more solid theoretical motivation.

Because the structure information is lost when computing g from
W, we cannot claim that link analysis algorithms are an instance of
regularization.

5.5. Spreading Activation

When viewed as a diffusion algorithm, our work is also related to the
many spreading activation algorithms (Belew, 1989; Kwok, 1989; Salton
and Buckley, 1988; Wilkinson and Hingston, 1991; Croft et al., 1988)
and inference network techniques (Turtle and Croft, 1990; Metzler and
Croft, 2004). In these systems, terms and documents form a bipartite
graph. Usually only direct relationships such as authors or sources
allow inter-document links. These algorithms operate on functions from
nodes to real values, h : {D ∪ V} → ℜ. The domain of the functions
includes both documents and terms. The domain of the functions in
regularization includes only documents. Clearly spreading activation is
not a form of regularization.

However, since regularization is a subset of spreading activation
techniques, why should we study it on its own? First, it is not clear
that the smoothness objective is appropriate for heterogeneous graphs.
Asserting that the scores of a term and a document should be comparable
seems tenuous. Second, we believe that our perspective is theoretically at-
tractive because of its ability to bring together several pseudo-relevance
feedback techniques under a single framework. Nevertheless, the formal
study of heterogeneous nodes in a manner similar to score regularization
is a very interesting area of future work.

5.6. Relevance Propagation

Hypertext collections have inspired several algorithms for spreading
content-based scores over the web graph (Qin et al., 2005). These
algorithms are equivalent to using a hyperlink-based affinity matrix and
iterative regularization. A similar approach for content-based affinity has
also been proposed (Savoy, 1997). The foundation of these algorithms
is at times heuristic, though. We believe that our approach places
regularization—whether based on hyperlinks or content affinity—in the
context of a mathematical formalism.
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5.7. Summary

In this Section 5 , we have studied previous methods exploiting corpus
structure from the perspective of score regularization. We present a
summary of these results in Table II.

In the course of our derivations, we have sought to generalize and
squint when necessary to show similarities between algorithms. In
practice, the implementation of these algorithms differs from what
is presented here. We believe these implementation differences explain
some performance differences and deserve more detailed analysis.

A variety of graph algorithms exist which use links based on content
and hyperlinks. These algorithms often are very subtle variations of
each other when analyzed. We hope that our discussion will provide a
basis for comparing graph-based and corpus structure algorithms for
information retrieval.

Finally, we have restricted our discussion of scoring algorithms to
two popular approaches: vector space retrieval and retrieval of language
models. Certainly other models exist and deserve similar treatment.
This section should provide a perspective not on only analyzing query
expansion, regularization, and document expansion in other frameworks
but also on developing query expansion, regularization, and document
expansion for new frameworks.

6. Experiments

Having presented a theoretical context for score regularization, we
now turn to empirically evaluating the application of regularization to
retrieval scores. We conducted two sets of experiments. The first set
of experiments studies the behavior of regularization in detail for four
retrieval algorithms: one vector space model algorithm (Okapi), two
language modeling algorithms (query likelihood, relevance models),
and one structured query algorithm (dependence models); we will
abbreviate these okapi, QL, RM, and DM. We present detailed results
demonstrating improvements and parameter stability. We will refer to
these as the detailed experiments. The second set of experiments applies
regularization to all automatic runs submitted to the TREC ad hoc
retrieval track. These experiments demonstrate the generalizability of
regularization.

For all experiments, we will be using queries or topics on a fixed col-
lection with pool-based relevance judgments. These judgments come ex-
clusively from previous TREC experiments and allow for reproducibility
of results.
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Table II. Comparison of corpus modeling and graph-based
algorithms. Model-specific constants and parameters have
been omitted for clarity.

score

Vector Space Model

Query Expansion Ay + y

Document Expansion Wy + y

Cluster-based Retrieval VTyc + y

Language Modeling

Query Expansion Ay + y

Document Expansion log(AC + C)q

Cluster-based Retrieval log(VTUT + C)q

Cluster Interpolation Weye + y

Regularization

Iterative Regularization Wy + y

Closed Form Regularization (α∆ + (1 − α)I)−1y

Laplacian Eigenmaps Wcyc

PageRank E1 ◦ y

6.1. Training

Whenever parameters needed tuning, we performed 10-fold cross-validation.
We adopt a Platt’s cross-validation evaluation for training and evaluation
(Platt, 2000). We first randomly partition the queries for a particular
collection. For each partition, i, the algorithm is trained on all but that
partition and is evaluated using that partition, i. For example, if the
training phase considers the topics and judgments in partitions 1-9,
then the testing phase uses the optimal parameters for partitions 1-9 to
perform retrieval using the topics in partition 10. Using each of the ten
possible training sets of size nine, we generate unique evaluation rankings
for each of the topics over all partitions. Evaluation and comparison
was performed using the union of these ranked lists.

6.2. Detailed Experiments

For these detailed experiments, we sought baselines which were strong, in
sense of high performance, and realistic, in the sense of not over-fitting.
Therefore, we first performed cross-validation to construct baseline
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retrieval scores. We report the specifics of these experiments in the
subsequent sections. We describe our experimental data in Section 6.2.1
and baseline algorithms in Section 6.2.2-6.2.4. We present parameters for
our baseline algorithms in Table III. We also present trained parameter
values (or ranges if they were different across partitions). In Section
6.2.5 we discuss the free parameters in regularization and our method
for selecting parameter values.

6.2.1. Topics

We performed experiments on two data sets. The first data set, which
we will call “trec12”, consists of the 150 TREC Ad Hoc topics 51-200.
We used only the news collections on Tipster disks 1 and 2 (Harman,
1993). The second data set, which we will call “robust”, consists of the
250 TREC 2004 Robust topics (Voorhees, 2004). We used only the news
collections on TREC disks 4 and 5. The robust topics are considered to
be difficult and have been constructed to focus on topics which systems
usually perform poorly on. For both data sets, we use only the topic title
field as the query. The topic title is a short, keyword query associated
with each TREC topic. We indexed collections using the Indri retrieval
system, the Rainbow stop word list, and Krovetz stemming (Strohman
et al., 2004; McCallum, 1996; Krovetz, 1993).

6.2.2. Vector Space Model Scores

We conducted experiments studying the regularization of vector space
model scores (Robertson and Walker, 1994). In this approach, documents
are represented using a standard tf.idf formula,

d̃i =
di(k + 1)

di + k
(

(1 − b) + b
(

li
||l||1/n

)) (33)

where d is a length-m document vector where elements contain the raw
term frequency, and the vector l is the length-n vector of document
lengths, li = ||di||1. We then score documents according to the inner
product with the query vector, 〈d̃,q〉.

When computing the similarity between documents, we use an
alternate formulation,

d̃i = di log

(

(n + 0.5) − ci

0.5 + ci

)

(34)

where c is the length-m document frequency vector. We use this weight-
ing scheme due to its success for topical link detection in the context of
Topic Detection and Tracking (TDT) evaluations (Connell et al., 2004).
We use the inner product, 〈d̃i, d̃j〉, to define our affinity matrix.
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6.2.3. Language Model Scores

Language model systems provide strong baselines. We use query-likelihood
retrieval (Croft and Lafferty, 2003) and relevance models (Lavrenko,
2004). Both of these algorithms are implemented in Indri (Strohman
et al., 2004).

In the retrieval phase, we use Dirichlet smoothing of document
vectors,

d̃i =
di + µP (w|θC)

||d||1 + µ

=
di + µ

||wi||1
eTCe

||d||1 + µ
(35)

and maximum likelihood query vectors,

q̃ =
q

||q||1
(36)

We use cross-entropy to rank documents, 〈log(d̃), q̃〉. We optimize the
Dirichlet parameter, µ.

For pseudo-relevance feedback, we take the top r documents from
this initial retrieval and build our relevance model using Equation 25.
In practice, we only use the top m̃ terms in the relevance model. We
optimize the parameters r, m̃, and λ.

When computing the similarity between documents, we use the
diffusion kernel and maximum likelihood document models,

d̃ =
d

||d||1
(37)

which we found to be superior to smoothed versions for this task.

6.2.4. Dependence Model Scores

Our final baseline system uses a structured query model which incorpo-
rates inter-term dependencies (Metzler and Croft, 2005). We present this
baseline to demonstrate the applicability of regularization to non-vector
space methods. We use the Indri query language to implement full de-
pendence models with fixed parameters of (λT , λO, λU ) = {0.8, 0.1, 0.1}
as suggested in the literature.

6.2.5. Regularization Parameters

We performed grid search to train regularization parameters. Parameter
values considered are,
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Table III. Parameter sweep values. Parameter ranges considered in the
cross-validation. For each topic set, we present the optimal parameter values
selected during training. When these values were not stable across partitions,
we present the optimal parameter ranges.

optimal

range trec12 robust

Okapi

b [0.1-1.0; 0.1] 0.3 0.3

k [0.5-2.5; 0.25] 1.5-2.0 0.75

Query Likelihood

µ [500-4000; 500] 2000 1000

Relevance Models

r {5, 25, 50, 100} 25-50 5-25

m̃ {5, 10, 25, 50, 75, 100} 100 75-100

λ [0.1-0.7; 0.1] 0.2 0.1-0.2

Dependence Model

µtext [500-4000; 500] 500-1500 3000-4000

µwindow [500-4000; 500] 500-2000 500

parameter range

α [0.1-0.9; 0.1]

k {5, 10, 25}

t {0.1, 0.25, 0.50, 0.75, 0.90}

where t is only swept for runs using the diffusion kernel.
We normalized all scores to zero mean and unit variance for empirical

and theoretical reasons (Belkin et al., 2004; Montague and Aslam, 2001).
We have found that using alternative score normalization methods
performed slightly worse but we do not present those results here.

6.3. Regularizing TREC Ad Hoc Retrieval Track Scores

In addition to our detailed experiments, we were interested in evaluating
the generalizability of score regularization to arbitrary initial retrieval
algorithms. To this end, we collected the document rankings for all
automatic runs submitted to the Ad Hoc Retrieval track for TRECs
3-8, Robust 2003-2005, Terabyte 2004-2005, TRECs 3-4 Spanish, and
TRECs 5-6 Chinese (Voorhees and Harman, 2001). This constitutes a
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variety of runs and tasks with varying levels of performance. In all cases,
we use the appropriate evaluation corpora, not just the news portions
as in the detailed experiments. We also include results for the TREC
14 Enterprise track Entity Retrieval subtask. This subtask deals with
the modeling and retrieval of entities mentioned in an enterprise corpus
consisting of email and webpages. Although all sites participating in
TREC include a score in run submissions, we cannot be confident about
the accuracy of the scores. Therefore, inconsistent behavior for some
runs may be the result of inaccurate scores.

We ran experiments using the cosine similarity described in Section 3.
Due to the large number of runs, we fix k = 25 and sweep α between 0.05
and 0.95 with a step size of 0.05. Non-English collections received no
linguistic processing: tokens were broken on whitespace for Spanish and
single characters were used for Chinese. Entity similarity is determined
by the cooccurence of entity names in the corpus. The optimal α is
selected using 10-fold cross validation optimizing mean average precision.

7. Results

In this section, we describe results for our two sets of experiments.
Section 7.1 presents a detailed analysis of regularizing several strong
baselines. Section 7.2 presents results demonstrating the generalizability
of regularization to scores from arbitrary initial retrieval systems.

7.1. Detailed Experiments

Our first set of experiments explored the impact of score regularization
on four state-of-the-art baselines. We present results for regularizing
these scores in Table IV. Results show regularization for different baseline
retrievals and different collections. We notice significant improvements
across all four algorithms across all collections. This improvement is
more pronounced for the techniques which do not use pseudo-relevance
feedback (okapi and QL). As noted earlier, our pseudo-relevance feedback
run (RM) bears theoretical similarities to regularization (Section 5.2)
and therefore may not garner rewards seen by other methods. Never-
theless, even this run sees significant gains in mean average precision.
Regularizing the dependence model scores produce rankings which
out-perform baseline relevance model scores for the robust collection.

Next, we examine the impact of our choice of Laplacian. In Section
4.1, we described three alternative definitions of the graph Laplacian.
Because our top ñ documents were likely to be a non-uniform sample
across topics, we adopted the approximate Laplace-Beltrami operator
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Table IV. Effect of regularization on mean average precision. This table compares
the mean average precision of original scores (y) and regularized scores (f∗) for
trec12 and robust collections using several baseline scoring algorithms. Bold
numbers indicate statistically significant improvements in performance using
the Wilcoxon test (p < 0.05).

trec12 robust

y f∗ y f∗

okapi 0.2600 0.2834 +9.02% 0.2652 0.2826 +6.53%

QL 0.2506 0.2778 +10.86% 0.2649 0.2929 +10.58%

RM 0.3154 0.3252 +3.12% 0.2961 0.3068 +3.60%

DM 0.2603 0.2833 +8.84% 0.2769 0.3022 +9.13%

which addresses sampling violations. In order to evaluate this choice
of Laplacian, we compared the improvements in performance (ie, map
of the regularized scores minus map of the original scores) for all
three Laplacians. Our hypothesis was that the approximate Laplace-
Beltrami operator, because it is designed to be robust to sampling
violations, would result in strong improvements in performance. The
results of this comparison are presented in Figure 8. In all cases the
simple combinatorial Laplacian underperforms other Laplacians. Recall
from Equation 7 that, although it weights the comparisons in scores
between documents using Wij , the combinatorial Laplacian does not
normalize this weight by the node degrees (ie, Dii). Both the normalized
Laplacian (Equation 10) and the approximate Laplace-Beltrami operator
(Equation 11) normalize this weight. However, there do not appear to
be significant advantages to using the approximate Laplace-Beltrami
operator over the normalized Laplacian.

Our first set of experiments, described in Table IV, demonstrated
improvements across all four baseline algorithms. The α parameter
controls the degree of regularization. In Figure 9, we plot the effect of
regularization as a function of this parameter. Baseline algorithms which
did not use pseudo-relevance feedback benefited from more aggressive
regularization. The pseudo-relevance feedback baseline peaks when
initial and regularized scores are more equally weighted.

One of the core assumptions behind our technique is the presence
of an underlying manifold or lower-dimensional structure recovered by
the graph. The number of neighbors (k) represents how much we trust
the ambient affinity measure for this set of documents. If performance
improves as we consider more neighbors, manifold methods seem less
justified. In order to test this assumption, we evaluate performance as a
function of the number of neighbors in Figure 10. Across all algorithms
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Figure 8. Performance improvement as a function of Laplacian type. For each
Laplacian described in Section 4.1, we maximized mean average precision using
10-fold cross-validation (left: combinatorial Laplacian, center: normalized Laplacian,
right: approximate Laplace-Beltrami). The different Laplacians represent different
degree normalization techniques.
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Figure 9. Performance as a function of amount of regularization. For each value of

α, we selected the values for k and t maximizing mean average precision. A higher

value for α results in more aggressive regularization. A low value of α recovers the
original scores.

and all distance measures, we notice a degradation in performance as
more neighbors are considered. This occurs even in the presence of a
soft nearest neighbor measure such as the diffusion kernel.

root.tex; 9/07/2007; 16:09; p.30



31

0 200 600 1000

0.260

0.265

0.270

0.275

0.280

0.285

trec12/okapi

0 200 600 1000

0.260

0.265

0.270

0.275

0.280

0.285

robust/okapi

0 200 600 1000

0.260

0.265

0.270

0.275

0.280

0.285

trec12/QL

0 200 600 1000

0.270

0.275

0.280

0.285

0.290

0.295

robust/QL

0 200 600 1000

0.310

0.315

0.320

0.325

0.330

0.335

trec12/RM

0 200 600 1000

0.290

0.295

0.300

0.305

0.310

0.315

robust/RM

0 200 600 1000

0.270

0.275

0.280

0.285

0.290

0.295

trec12/DM

0 200 600 1000

0.285

0.290

0.295

0.300

0.305

0.310

robust/DM

Figure 10. Performance as a function of number of neighbors. For each value of k,
we selected the value for α and t maximizing mean average precision. If we trust
the distance metric, we would expect the performance to increase as we increase the
number of neighbors.

7.2. Regularizing TREC Ad Hoc Retrieval Track Scores

Our detailed experiments demonstrated the improvement of performance
achieved by regularizing three strong baselines. We were also interested
in the performance over a wide variety of initial retrieval algorithms.
We present results for regularizing the TREC Ad Hoc submissions in
Figures 11 and 12 using cosine similarity.6 Although regularization on
average produces improvements, there are a handful of runs for which
performance is significantly degraded. This reduction in performance
may be the result of an unoptimized k parameter. Improvements are
consistent across collections and languages.

8. Discussion

We proposed score regularization as a generic post-processing procedure
for improving the performance of arbitrary score functions. The results
in Figures 11 and 12 provide evidence that existing retrieval algorithms
can benefit from regularization.

We see the benefits in Tables IV when considering several different
baselines. However, we can also inspect the improvement in performance
as a function of the number of documents being regularized (ñ). In

6 We noticed that the cosine similarity in general outperformed the diffusion
kernel.
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Figure 13. Performance as a function of number of documents used for regularization.
For each value of ñ, we selected the values for α, k and t maximizing mean average
precision. A higher value for ñ considers more documents in the regularization.

Figure 13, we notice that performance improves and then plateaus.
Though regularization helps both Okapi and QL, the improvement is
never comparable to performing pseudo-relevance feedback. This means
that despite there being theoretical similarities between regularization
and pseudo-relevance feedback, there is a strength in the second re-
trieval missing in regularization. Nevertheless, our strong single-retrieval
algorithm, dependence models, achieves performance comparable to
relevance models when regularized.

The results in Figures 8 and 10 suggest that the construction of the
diffusion operator is sometimes important for regularization efficacy.
Since there are a variety of methods for constructing affinity and diffusion
geometries, we believe that this should inspire a formal study and
comparison of various proposals.

The results in Figure 10 also allow us to test the manifold properties
of the initial retrieval. The flatness of the curves for the relevance model
run means that the ambient measure behaves well for the documents in
this retrieval. Poorer-performing algorithms, by definition, have a mix of
relevant and non-relevant documents. Including more edges in the graph
by increasing the value of k will be more likely to relate relevant and non-
relevant documents. From the perspective of graph-based methods, the
initial retrieval for poorer-performing algorithms should be aggressively
sparsified with low values for k. On the other hand, better performing
algorithms may benefit less from a graph-based representation allowing
us to let k grow. From a geometric perspective, documents from poorer-
performing algorithms are retrieved from regions of the embedding space
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so disparate that affinity is poorly-approximated by the ambient affinity.
Documents from better performing queries all exist in a region of the
embedding space where affinity is well-approximated by the ambient
affinity.

We have noted that the aggressiveness of regularization (α) is related
to the performance of the initial retrieval. Figure 9 demonstrates that
smaller values for α are more suitable for better-performing algorithms.
This indicates that the use of techniques from precision prediction
may help to automatically adjust the α parameter (Carmel et al.,
2006; Cronen-Townsend et al., 2002; Yom-Tov et al., 2005).

Finally, we should address the question of efficiency. There are
two points of computational overhead in our algorithm. First, the
construction of the ñ × ñ affinity matrix requires O(ñ2) comparisons.
For ñ = 1000, this took approximately 8 seconds. Although most of
our experiments use ñ = 1000, our results in Figure 13 show that ñ

need not be as large as this to achieve improvements. For example,
for ñ = 100, this computation takes less than 0.5 seconds. We should
also point out that we can compute the entire collection affinity matrix
and store it prior to any retrieval. In Figure 10, we showed that only
very few neighbors were required to perform optimal performance. This
implies that the storage cost would be O(nk). The second point of
computational overhead is in the inversion of the matrix in Equation
15. We show running time as a function of ñ in Figure 14. Note that
our experiments, although very expensive when ñ = 1000, can be
computationally improved significantly by reducing ñ to 500 which,
according to Figure 13, would still boost baseline performance. We
could also address the inversion by using the iterative solution. In
related work, using a pre-computed similarity matrix and an iterative
solution allowed the use of theoretical results from Section 5.2 to conduct
real-time pseudo-relevance feedback (Lavrenko and Allan, 2006).

9. Conclusions

We have demonstrated the theoretical as well as the empirical benefits of
score regularization. Theoretically, regularization provides a generaliza-
tion of many classic techniques in information retrieval. By presenting
a model-independent vocabulary for these techniques, we believe that
the disparate areas for information retrieval can be studied holistically.
Empirically, we have shown that regularization can be used as a black
box method for improving arbitrary retrieval algorithms. Because of
the consistent improvements and potential extensions, we believe that
regularization should be applied whenever topical correlation between
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Figure 14. Running time as a function of number of documents used for regularization.
For each value of ñ, we regularized the scores given a pre-computed affinity matrix.

document scores is anticipated. Furthermore, we believe that, if possible,
regularization should be used as a design principle for retrieval models.
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