
Sparse Message Passing Algorithms for Weighted Maximum Satisfiability

Aron Culotta CULOTTA@CS.UMASS.EDU

Andrew McCallum MCCALLUM@CS.UMASS.EDU

Department of Computer Science, University of Massachusetts, Amherst, MA 01003

Bart Selman SELMAN@CS.CORNELL.EDU

Ashish Sabharwal SABHAR@CS.CORNELL.EDU

Department of Computer Science, Cornell University, Ithaca, NY 14853

Abstract

Weighted maximum satisfiability is a well-

studied problem that has important applicability

to artificial intelligence (for instance, MAP in-

ference in Bayesian networks). General-purpose

stochastic search algorithms have proven to be

accurate and efficient for large problem in-

stances; however, these algorithms largely ignore

structural properties of the input. For example,

many problems are highly clustered, in that they

contain a collection of loosely coupled subprob-

lems (e.g. pipelines of NLP tasks). In this pa-

per, we propose a message passing algorithm to

solve weighted maximum satisfiability problems

that exhibit this clustering property. Our algo-

rithm fuses local solutions to each subproblem

into a global solution by iteratively passing sum-

mary information between clusters and recom-

puting local solutions. Because the size of these

messages can become unwieldy for large prob-

lems, we explore several message compression

techniques to transmit the most valuable infor-

mation as compactly as possible. We empirically

compare our algorithm against a state-of-the-art

stochastic solver and show that for certain classes

of problems our message passing algorithm finds

significantly better solutions.

Presented at North East Student Colloquium on Artificial Intelli-
gence (NESCAI), 2007. Copyright the authors.

1. Introduction

A weighted maximum satisfiability problem (WMAX-

SAT) has as input a Boolean formula in conjunctive normal

form, where each clause has a corresponding weight. A so-

lution is a truth assignment that maximizes the sum of the

weights of the satisfied clauses.

Many important problems in artificial intelligence can be

reduced to instances of WMAX-SAT. For example, Park

(2002) has shown that finding the most probable vari-

able assignment in a Bayesian network can be solved effi-

ciently through a reduction to WMAX-SAT. More recently,

Richardson and Domingos (2006) have used WMAX-SAT

solvers to find the most probable variable assignment in

weighted logics.

Stochastic WMAX-SAT solvers such as Walksat (Sel-

man et al., 1993) are efficient, scalable, and domain-

independent. However, because of their generality, they

ignore structural properties of the problem. For instance,

many problems in artificial intelligence decompose into

loosely-coupled subproblems, in which densely connected

clusters of variables are connected to adjacent clusters by a

relatively small number of clauses. In many cases, each of

these subproblems can be solved with an efficient special-

ized algorithm (e.g., a dynamic program); the difficulty is

in communicating solutions among subproblems.

In this paper, we propose a search algorithm for WMAX-

SAT that is designed specifically for problems that exhibit

this clustering of variables. Inspired by belief propagation

algorithms that have been effective for probabilistic infer-

ence (Yedidia et al., 2000), our algorithm computes solu-

tions to overlapping subproblems of the input, then itera-

tively passes messages between subproblems to converge

upon a global solution. When the subproblems are solved

using a stochastic solver such as Walksat, our algorithm

can be understood as a way to augment stochastic search

with belief propagation. The resulting algorithm provides

a general framework for solving many related maximiza-

tion problems jointly.

As we will show, the size of these messages grows quickly

with the number of variables shared among clusters. We

therefore introduce and compare several sparse representa-

tions of messages that allow us to compactly transmit sum-

mary information from one cluster to the next.

We empirically validate our approach on synthetic and real-

world WMAX-SAT problems and demonstrate significant

improvements in solution quality. We hypothesize two rea-

sons for this improvement: First, by computing solutions to

subproblems, we effectively “cache” partial solutions to the

original problem. Thus, when the assignment to a variable

in one subproblem is changed, we can quickly look-up the

best compatible solution to a related subproblem. Second,

the subproblems are often easier to solve than the original

problem because they are less constrained (i.e. have a lower

clause-to-variable ratio). We perform several experiments

to support these claims.

In the following sections, we first formally define WMAX-

SAT, then describe solutions based on max-product and

generalized max-product algorithms. We then propose an

algorithm we call sparse generalized max-product, present

several experiments validating our approach, and conclude

with a discussion of related work.

2. Weighted Maximum Satisfiability

Let X be a set of n boolean variables {X1 . . . Xn}, and

let c be a set of m clause functions {c1 . . . cm}, where

ci(Xs ⊆ X) maps a set of variables to a real number. Let

δ(Xs) ∈ {0, 1} be an indicator function that is 1 if and only

if there exists Xi ∈ Xs such that Xi = 1; that is, δ(Xs)
indicates if the disjunction of the variables in Xs evaluates

to true. Clause ci(Xs) is said to be satisfied if δ(Xs) = 1.

The value of a clause is defined as ci(Xs) = wiδ(Xs),
where wi is the weight for clause ci.

Let x ∈ {0, 1}n be an assignment to X. The score of an as-

signment is the sum of the weights of the satisfied clauses:

s(X = x) =
∑

ci∈c
ci(Xs = xs). Weighted maximum

satisfiability (WMAX-SAT) is the problem of finding the

assignment with the highest score:

x
∗ = argmax

x

s(X = x) (1)

Many efficient algorithms have been proposed to solve

WMAX-SAT. (Stützle et al. (2002) provide an overview.)

Given the efficiency and generality of these techniques, it

is reasonable to encode many difficult optimization prob-

lems as WMAX-SAT instances and solve them with an off-

the-shelf solver. Indeed, this approach has been taken in

probabilistic reasoning to find the most likely assignment

to variables in a graphical model in cases where the exact

dynamic programming solution is intractable (Park, 2002;

Richardson & Domingos, 2006).

However, this “reduce to SAT” approach ignores structural

properties of the original problem. In this paper, we con-

sider an important class of problems that can be viewed as

a combination of subproblems. Each subproblem is repre-

sented by a set of clauses over a subset of X, and two sub-

problems interact via the variables they share. We refer to

this class of problems as clustered WMAX-SAT instances.

Solving clustered WMAX-SAT instances with a standard

solver fails to take advantage of this structure. This is espe-

cially problematic if there exist efficient, exact solutions to

subproblems, as these exact solutions will only be approx-

imated with a general WMAX-SAT solver. For example, if

parsing is one subproblem of a larger NLP task, it would be

preferable to use the exact dynamic programming solution

to perform parsing, rather than approximate search. In the

following section, we describe message passing algorithms

for WMAX-SAT, and then propose an algorithm that is par-

ticularly suited to clustered WMAX-SAT problems.

3. A Graphical Model for WMAX-SAT

We will use the language of graphical models to represent

WMAX-SAT problems. A graphical model represents a

probability distribution over random variables X with a set

of functions called factors (or compatibility functions) over

subsets of X. Let f = {f1 . . . fm} be the set of factors,

where fi : X → R+. A graphical model defines a distri-

bution over X as p(X) ∝
∏

i fi(Xs). A common inference

task is to find the most probable assignment to X:

x
∗ = argmax

x

p(X = x) (2)

= argmax
x

∑

i

log fi(Xs = xs) (3)

Substituting log fi(Xs = xs) = ci(Xs = xx) in Equa-

tion 3 results in an optimization problem equivalent to the

WMAX-SAT problem given in Equation 1, where factors

represent clauses, and the probability of an assignment is

proportional to its score.

A distribution can be represented by a factor graph G =
(X, f ,E), a bipartite graph where vertex set X is a set

of random variables, f is the set of factors, and edges E

connect factors to their arguments (see Figure 1(a)). If

G is acyclic, then the well-known max-product message

passing algorithm can exactly compute the most probable

assignment to X in polynomial time (Weiss & Freeman,

(x1∨x2)∧(¬x1∨x3)∧(x2∨¬x3)∧(x3∨¬x4)∧(¬x3∨x4)∧(¬x4∨x5)∧(x5∨¬x6)

X3 X4G1 G2

f
5

f
6

f
3

x
4

x
5

x
6

f
7

f
1

f
2

x
1

x
2

x
3

f
4f

5
f
6

f
3

x
4

x
5

x
6

f
7

f
1

f
2

x
1

x
2

x
3

f
4

(a) (b)

 12 9 44 100 2 10 22

clauses

weights

Figure 1. (a) A factor graph for a WMAX-SAT instance with 7 clauses and 6 variables. (b) A cluster graph for the same instance

containing two clusters, G
1 and G

2.

2001). When G contains cycles, max-product provides an

approximate solution; however, not only is there no guar-

antee that this approximation will return the optimal solu-

tion, but there is also no guarantee that the algorithm will

converge. There are two additional difficulties of using

max-product to solve WMAX-SAT. First, it is non-trivial

to convert the output of max-product into an optimal as-

signment to X because max-product provides a distribu-

tion over assignments to single variable, not a joint distri-

bution over all variables. Second, much like approximate

solvers for WMAX-SAT, max-product ignores any struc-

ture in the connectivity of the variables. Thus, max-product

is not well-suited to clustered WMAX-SAT instances.

4. Sparse Generalized Max-Product for

WMAX-SAT

Yedidia et al. (2000) introduced generalized belief prop-

agation to perform inference in graphical models that con-

tain clusters of variables. We refer to the maximization ver-

sion of generalized belief propagation as generalized max-

product. In this section, we first describe how to apply

generalized max-product to WMAX-SAT and discuss the

difficulties involved. We then propose ways to overcome

these difficulties by extending generalized max-product to

operate with sparse messages and stochastic WMAX-SAT

solvers.

Let the original factor graph G = (X,E, f) be partitioned

into a cluster graph Gc containing t overlapping subgraphs

{G1 . . . Gt} called clusters, where Gk = (Xk,Ek, fk),
X

k ⊆ X and f
k ⊆ f (Figure 1(b)). Note that each fac-

tor appears in exactly one cluster, but variables may appear

in more than one cluster.

X
k contains all variables that are arguments to factors in

f
k. Let Xij be the variables shared between cluster Gi and

Gj . Gc contains an edge between two clusters Gi and Gj

if they share variables, i.e., X
ij 6= ∅. Each edge in Gc is

labeled with X
ij .

The product of the factors in each of the subgraphs is

equal to the product of the factors in the original graph,

that is
∏

fi∈f
fi(xs) =

∏
Gi∈Gc

∏
fi∈f i fi(xs). We define

si(xi) =
∏

fi∈f i fi(xs) as the local score of Gi.

Generalized max-product can be understood as the max-

product algorithm applied to Gc. Rather than computing

distributions over single variables, the algorithm returns a

distribution over the joint assignment to variables in each

cluster. When clusters correspond to subproblems of the

original input, this can be understood as computing a dis-

tribution over solutions to each subproblem, then iteratively

modifying the solutions of each subproblem to reflect their

viability as part of a global solution. The message trans-

mitted from cluster i to cluster j is

mi→j(X
ij = x

ij) = max
xi:Xij=xij

si(xi)
∏

k 6=j

mk→i(x
ik)

(4)

When Gc contains cycles, these messages are iteratively

computed until convergence, at which point the belief of

cluster Gi is defined as

bi(X
i = x

i) = si(xi)
∏

j

mj→i(x
ij) (5)

Thus, mi→j(X
ij) is a vector representing a distribution

over scores for assignments of X
ij , and bi(X

i) is a vec-

tor representing a distribution over scores for X
i.

When Gc is acyclic, the resulting beliefs are exact; other-

wise, generalized max-product offers no better theoretical

x1 x2 x3 m(x)

0 0 0 9

0 0 1 10

0 1 0 8

0 1 1 4

1 0 0 7

1 0 1 9

1 1 0 15

1 1 1 6

(a)

x1 m(x1) x2 m(x2) x3 m(x3)
0 7 0 3 0 2

1 8 1 9 1 7

(b)

x1 x2 x3 m(x)

1 1 0 15

0 0 1 10

0 0 0 9

1 0 1 9

(c)

Table 1. Three message representations: (a) complete table, (b) univariate table, (c) n-best list.

guarantees than traditional max-product. However, gener-

alized belief propagation has been shown to often have bet-

ter empirical convergence rates than traditional belief prop-

agation (Yedidia et al., 2000). More importantly, general-

ized max-product is appealing for clustered WMAX-SAT

instances because it directly accounts for problem struc-

ture. It also allows us to substitute specialized inference al-

gorithms (when they exist) to efficiently compute solutions

to subproblems.

There are two primary difficulties with applying general-

ized max-product to WMAX-SAT. First, the size of mes-

sage mi→j(X
ij) grows exponentially with |Xij |. Second,

the maximization over x
i in Equation 4 naively requires

an exponential search over assignments to X
i. As it is not

uncommon for |Xi| to be on the order of thousands of vari-

ables, we must consider alternatives to brute-force enumer-

ation. The following sections address these issues in turn.

4.1. Representing sparse beliefs and messages

Ordinarily, mi→j(X
ij) and bi(X

i) are represented by a ta-

ble with one entry per complete assignment to X
ij or X

i.

We refer to these as complete messages and complete be-

liefs (Table 1(a)).

When the complete messages grow too large, a simple ap-

proximation is to store a fully-factored message containing

one score distribution per variable. Each table entry is the

score of the best complete assignment containing the spec-

ified variable assignment. We refer to these as univariate

messages and univariate beliefs (Table 1(b)). This is similar

to the messages advocated recently in Duchi et al. (2007).

While univariate messages are compact, they do not rep-

resent interactions among variables, especially when they

must be approximated with message passing. For example

in Table 1(b), although each individual variable has a high

score for assignment 1, the joint assignment 111 has one of

the lowest scores in the complete message in 1(a).

A compromise between these two extremes is a particle-

based message. In this case, a particle is simply a row of

the complete table, and a message is approximated by a

collection of particles. A simple special case of a particle

message is an n-best list (Table 1(c)). An n-best list stores

scores for joint assignments as in complete messages, but

the low scores are simply truncated from the table. This

representation allows the messages to be sensitive to vari-

able interactions while limiting memory requirements. We

refer to these as n-best messages and n-best beliefs.

4.2. Computing sparse beliefs and messages

In this section we present an algorithm to pass sparse mes-

sages within generalized max-product. The first step is

to initialize the sparse belief bi(X
i) for each cluster. If

a cluster has a specialized maximization algorithm such

as a dynamic program, we can modify this algorithm to

return the desired sparse representation. For example, to

compute an n-best belief, we can simply compute the top

n solutions using the maximization algorithm. If no spe-

cialized algorithm exists, we can treat this computation as

a generic WMAX-SAT problem and use any off-the-shelf

solver. In our experiments, we use Walksat (Jiang et al.,

1995), a highly-scalable stochastic solver. We refer to the

method that computes these initial beliefs as ComputeUn-

constrainedBeliefs.

Given this initial assignment, the next step is to update each

cluster’s sparse beliefs given the sparse beliefs of its neigh-

boring clusters. Let X
i \ X

ik be the set of variables con-

tained in cluster Gi but not in Gk. As shown in Equation

4, to compute message mi→j(X
ij), we must find the max-

imum setting of X
i \ X

ik given each assignment to X
ik

stored in the incoming message from Gk.

We view this as a set of constrained maximization prob-

lems. For each incoming assignment to X
ik, we must

find the best setting(s) of X
i \ X

ik constrained such that

X
ik = x

ik. The local score of this best assignment is com-

bined with the score of the incoming message to update

bi(X
i).

If a cluster has a specialized maximization algorithm, we

can modify it to return constrained solutions, e.g. by con-

strained dynamic programming. Otherwise, we can treat

this constrained maximization problem as a WMAX-SAT

instance. Given an assignment xik, we can simplify the fac-

tors in Gi (i.e. by removing clauses in Gi satisfied by x
ik

and removing variables in X
ik from unsatisfied clauses).

Algorithm 1 Sparse Generalized Max-Product

1: // Initialize beliefs

2: for all Gi ∈ Gc do

3: bi(X
i) ⇐ ComputeUnconstrainedBelief(Gi)

4: end for

5: while Not Converged do

6: for all Gi ∈ Gc do

7: // for each neighboring cluster

8: for all Gj s.t. X
ij 6= ∅ do

9: // for each incoming assignment

10: for all xij s.t. mj→i(X
ij = x

ij) 6= 0 do

11: ComputeConstrainedBelief(Gi,xij)
12: end for

13: end for

14: end for

15: end while

We can now again use any off-the-shelf solver to com-

pute constrained solutions (e.g. Walksat). We refer to the

method that solves this constrained maximization problem

as ComputeConstrainedBelief.

There are two additional details about ComputeCon-

strainedBelief. First, very often we can simply lookup the

best assignment to X
i \ X

ik given x
ik because a compati-

ble solution may already exist in bi(X
i). Second, because

each round of message passing may increase the size of

bi(X
i), we may need to re-compress the belief, for exam-

ple, by storing only the n-best assignments or recomputing

the univariate values.

Message passing proceeds until either a specified number

of iterations is reached or the difference in beliefs between

iterations falls below a threshold. If the top beliefs of each

cluster are incompatible at the end of message passing,

we can use a decimation procedure similar to that used in

Braunstein et al. (2005), although here we can decimate us-

ing clusters, rather than individual variables. Pseudo-code

for the final algorithm is presented in Algorithm 1.

5. Experiments

The goal of these experiments is to understand under

what conditions augmenting an off-the-shelf WMAX-SAT

solver with a message passing protocol can improve per-

formance. We vary both the characteristics of the problems

as well as the type of message representation. In all experi-

ments, we use the weighted version of Walksat (Jiang et al.,

1995), which we ported to Java from the original C imple-

mentation1. Note that Walksat is used both for comparison

and as a subroutine to compute messages.

For the first set of experiments, we randomly generate

1www.cs.rochester.edu/u/kautz/walksat/

-6

-4

-2

 0

 2

 4

 6

 8

 10 20 30 40 50 60 70

%
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

W
a
lk

s
a
t

number clauses in overlap

nbest

univariate

Figure 2. Comparison of n-best and marginal messages as the

number of clauses containing shared variables increases.

WMAX-SAT instances that exhibit a clustering of vari-

ables. We implement a variant of the Cluster3-SAT prob-

lem generator given in Frank et al. (1997). We first gen-

erate k 3-SAT subproblems uniformly at random, then ran-

domly link the problems together by generating clauses that

contain variables from each subproblem. Weights for each

clause are sampled from a Gaussian distribution. For these

experiments, n = 50.

To compare our message passing algorithms with Walksat,

we first run the message passing algorithm and record the

score of the best assignment and the total number of Walk-

sat iterations it required. We then run traditional Walksat on

the original problem for the same number of iterations and

record the score of the best assignment. This allows us to

measure the efficiency of each search algorithm. For each

setting of the problem generator, we generate 100 samples

and average the results. In the following experiments, we

compare performance across different message types, and

across different numbers of variables, clauses, and clusters.

Figure 2 compares univariate and n-best messages on 700

instances with 100 variables, 400 clauses, and 2 clusters.

The x-axis is the number of clauses containing variables

that are shared between the two clusters. This figure sup-

ports our intuition that as the overlapping variables become

more constrained, representing their distribution with a uni-

variate message fails to capture the compatibilities among

variables. We do not have a full explanation for the drop in

performance for 20 clauses, although it may be related to

the phase transition phenomenon that has been observed in

unweighted satisfiability problems as the relative number

of constraints increases.

In Figure 3, we test the hypothesis that message passing

 4

 6

 8

 10

 12

 14

 16

 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

%
 i
m

p
ro

v
e

m
e

n
t
o

v
e

r
W

a
lk

s
a

t

% reduction in clause/variable ratio

nbest

Figure 3. Correlation between reduction in clause-variable ratio

and score improvement for n-best messages.

outperforms Walksat because of a reduction in the clause-

variable ratio. Recall that the cluster graph is constructed

such that two clusters may share variables but not factors.

Thus, the average clause-variable ratio per cluster is less

than that of the original problem. Figure 3 plots the percent

improvement of n-best message passing over Walksat as

the reduction in the clause-variable ratio increases. These

experiments sample 175,000 different instances containing

80 to 180 variables, 300 to 600 clauses, and 2 clusters. The

results provide strong correlational evidence in support of

our hypothesis. Note, however, that the downward slope

when x > 4.4 may indicate a ceiling to this trend.

Figure 4 plots performance as the number of clusters in-

creases. We generate 300 instances with 400 variables,

1600 clauses, and the number of clusters varying from 2 to

8. In each case, the clusters are fully connected, with each

pair of clusters sharing two variables. Figure 4 shows a

significant increase in performance as the divisibility of the

problem increases. Note that this improvement is amplified

by the relatively small number of shared variables, which

reduces the chances of a good solution being excluded by

message compression.

Figure 5 plots performance as the number of variables

shared between clusters increases. We generate 700 in-

stances with 1000 variables, 4000 clauses, and 2 regions,

and vary the number of shared variables from 5 to 100. This

figure indicates that performance is best with few shared

variables, but message passing still outperforms Walksat

even as the potential message size increases to 2100.

Finally, we test our algorithm on a real-world WMAX-SAT

instance that is part of the benchmarks used in the MaxSAT-

 0

 5

 10

 15

 20

 25

 30

 35

 2 3 4 5 6 7 8

%
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

W
a
lk

s
a
t

number of clusters

nbest

Figure 4. Comparison of improvement of n-best over Walksat as

the number of clusters increases.

2006 competition.2 In particular, we sample a problem

from the SPOT5 corpus, which was generated from a satel-

lite scheduling domain (Bensana et al., 1999). To parti-

tion the problem into clusters, we use a well-know graph-

theoretic technique based on betweenness-centrality (Tyler

et al., 2003).

Figure 6 shows results averaged over 100 trials for an in-

stance with 129 variables and 1037 clauses. We set n =
100. We can see that univariate message passing improves

slightly over Walksat when the problem is split into 2 clus-

ters, but performs worse with larger clusters. On the other

hand, n-best message passing outperforms Walksat when

there are 3 and 4 clusters. This is appealing, because an

examination of the factor graph for this problem reveals 4

well-defined clusters.

6. Conclusions and Related Work

We have presented a new message passing algorithm to

solve maximization problems that consist of multiple over-

lapping subproblems. We have empirically demonstrated

the validity of this approach on synthetic and real-world

data, and have evaluated hypotheses to explain its perfor-

mance.

In the future, we plan to explore more sophisticated

sparse message representations (e.g., Drechsler and Siel-

ing (2001)) and to apply our algorithms to real-world NLP

problems.

Related work on decomposing maximization problems in-

clude Dechter and Pearl (1989), who propose tree-based

2www.iiia.csic.es/∼maxsat06/ms06-bench.

tgz

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 10 20 30 40 50 60 70 80 90 100

%
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

W
a
lk

s
a
t

number of shared variables

nbest

Figure 5. Comparison of improvement of n-best over Walksat as

the number of variables shared between clusters increases.

decompositions for constraint networks; Bjesse et al.

(2003), who propose tree-based decompositions for (un-

weighted) SAT problems; and Amir and McIlraith (2005),

who propose message passing algorithms for first-order

logic. These approaches consider neither weighted maxi-

mization problems nor sparse message computation. Ad-

ditionally, Braunstein et al. (2005) recently proposed an

algorithm for unweighted SAT called survey propagation.

Survey propagation can be understood as a variant of tradi-

tional (non-generalized) belief propagation, and therefore

may not be well-suited for clustered SAT instances.

Sparse message passing has been studied previously,

though mainly for real-valued domains (Koller et al., 1999;

Sudderth et al., 2003). Related work in discrete domains

include Pal et al. (2006), who introduce a learning algo-

rithm for linear-chain models with large state spaces based

on a variant of beam-search; and Duchi et al. (2007), who

propose combining dynamic programming with message

passing using univariate messages.

7. Acknowledgments

The authors thank Carla Gomes, Chris Pal, and Charles

Sutton for helpful discussions. This work was supported in

part by the Center for Intelligent Information Retrieval, in

part by U.S. Government contract #NBCH040171 through

a subcontract with BBNT Solutions LLC, in part by Mi-

crosoft Live Labs, and in part by the Defense Advanced Re-

search Projects Agency (DARPA), through the Department

of the Interior, NBC, Acquisition Services Division, under

contract number NBCHD030010. Any opinions, findings

and conclusions or recommendations expressed in this ma-

terial are the author(s) and do not necessarily reflect those

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 2 2.5 3 3.5 4

%
 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
W

a
lk

s
a

t

number clusters

nbest

univariate

Figure 6. Comparison of Walksat and message passing algorithms

on SPOT5 data.

of the sponsor.

References

Amir, E., & McIlraith, S. (2005). Partition-based logical

reasoning for first-order and propositional theories. Artif.

Intell., 162, 49–88.

Bensana, E., Lemaitre, M., & Verfaillie, G. (1999). Earth

observation satellite management. Constraints, 4, 293–

299.

Bjesse, P., Kukula, J., Damiano, R., Stanion, T., & Zhu,

Y. (2003). Guiding SAT diagnosis with tree decomposi-

tions. SAT 2003.

Braunstein, A., Mézard, M., & Zecchina, R. (2005). Sur-

vey propagation: an algorithm for satisfiability. Random

Structures and Algorithms, 27, 201–226.

Dechter, R., & Pearl, J. (1989). Tree clustering for con-

straint networks. Artificial Intelligence, 38, 353–266.

Drechsler, R., & Sieling, D. (2001). Binary decision dia-

grams in theory and practice. Int J STTT, 3, 112–136.

Duchi, J., Tarlow, D., Elidan, G., & Koller, D. (2007). Us-

ing combinatorial optimization within max-product be-

lief propagation. Advances in Neural Information Pro-

cessing Systems (NIPS 2006).

Frank, J., Cheeseman, P., & Stutz, J. (1997). When gravity

fails: Local search topology. Journal of Artificial Intel-

ligence Research, 7, 249–281.

Jiang, Y., Kautz, H., & Selman, B. (1995). Solving prob-

lems with hard and soft constraints using a stochastic al-

gorithm for max-sat. 1st Workshop on Artificial Intel-

lignce and Operations Research.

Koller, D., Lerner, U., & Angelov, D. (1999). A general

algorithm for approximate inference and its application

to hybrid bayes nets. UAI.

Pal, C., Sutton, C., & McCallum, A. (2006). Sparse

forward-backward using minimum divergence beams for

fast training of conditional random fields. International

Conference on Acoustics, Speech, and Signal Processing

(ICASSP).

Park, J. D. (2002). Using weighted max-sat engines to

solve mpe. AAAI/IAAI (pp. 682–687).

Richardson, M., & Domingos, P. (2006). Markov logic

networks. Machine Learning, 62, 107–136.

Selman, B., Kautz, H. A., & Cohen, B. (1993). Local

search strategies for satisfiability testing. Proceedings

1993 DIMACS Workshop on Maximum Clique, Graph

Coloring, and Satisfiability.

Stützle, T., Hoos, H., & Roli, A. (2002). A review of the lit-

erature on local search algorithms for max-sat (Techni-

cal Report AIDA-01-02). Technische Universität Darm-

stadt.

Sudderth, E., Ihler, A., Freeman, W., & Willsky, A. (2003).

Nonparametric belief propagation. CVPR.

Tyler, J. R., Wilkinson, D. M., & Huberman, B. A. (2003).

Email as spectroscopy: Automated discovery of commu-

nity structure within organizations (Technical Report).

Hewlett-Packard Labs.

Weiss, Y., & Freeman, W. (2001). On the optimality of so-

lutions of the max-product belief-propagation algorithm

in arbitrary graphs. IEEE Transactions on Information

Theory, 47.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2000). Gener-

alized belief propagation. NIPS (pp. 689–695).

