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ABSTRACT

One aspect in which retrieving named entities is different
from retrieving documents is that the items to be retrieved
– persons, locations, organizations – are only indirectly de-
scribed by documents throughout the collection. Much work
has been dedicated to finding references to named entities, in
particular to the problems of named entity extraction and
disambiguation. However, just as important for retrieval
performance is how these snippets of text are combined to
build named entity representations.

We focus on the TREC expert search task where the goal
is to identify people who are knowledgeable on a specific
topic. Existing language modeling techniques for expert
finding assume that terms and person entities are condition-
ally independent given a document. We present theoretical
and experimental evidence that this simplifying assumption
ignores information on how named entities relate to doc-
ument content. To address this issue, we propose a new
document representation which emphasizes text in proxim-
ity to entities and thus incorporates sequential information
implicit in text. Our experiments demonstrate that the pro-
posed model significantly improves retrieval performance.
The main contribution of this work is an effective formal
method for explicitly modeling the dependency between the
named entities and terms which appear in a document.

Categories and Subject Descriptors: H.3 [Information
Storage and Retrieval]: H.3.1 Content analysis and Index-
ing; H.3.3 Information Search and Retrieval

General Terms: Algorithms, Performance

Keywords: NE (named entity) retrieval, expert finding,
language models, proximity kernels

1. INTRODUCTION
A named entity is a semantic category, a pointer to a

real world entity such as a city, an organization, a movie,
a book, or a historical event. Named entities are complex
language features that are much richer in semantic content
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than most vocabulary words; they occur often in documents,
particularly in news. Named entities have been shown useful
for improving retrieval performance in a variety of tasks such
as new event detection [9] and cross-language retrieval [11].

Named entities of particular interest are those referring
to individuals – person entities. Recent work in retrieving
people was motivated both by its practical importance and
by the introduction of the Enterprise track in the Text RE-
trieval Conference [4]. The track provides a common plat-
form for empirically comparing entity modeling techniques
on expert search, i.e. the task of finding people who have
skills and experience on a given topic. For example, given
the query “privacy on the web” a relevant entity is someone
who works on policies or technologies related to internet
privacy. More specifically, the task involves finding evidence
(documents or snippets of text) to support the claim of ex-
pertise as well as combining the evidence to estimate the
probability of a person being expert given the text.

Automatic methods to rank person entities according to
expertise can be applied for a variety of tasks: to help the
user identify the most qualified person to contact, or find
prospective collaborators for a project. Promising applica-
tions include an expert recommender system for enterprise
search [17], automatically assigning conference submissions
to reviewers according to their research interests [6] and
matching job applications to potential employers [8].

We present a generative language modeling approach for
entity finding that is based on estimating the joint distribu-
tion of words and entities. In particular, we focus on the
dependency between the two (random) variables. Such de-
pendency naturally exists in text because the words directly
or indirectly describe the entities. Our contributions include

• Kernel-based document representation to incorporate
positional information by fitting a multinomial den-
sity around named entity occurrences in a document
(Section 3.1).

• Investigation of several aspects of named entity re-
trieval, including the assumption of query term inde-
pendence, the effect of named entity extraction on re-
trieval effectiveness, and Dirichlet smoothing for entity
representations (Sections 3.2, 3.3 and 3.4).

We evaluate the proposed model on the task of finding ex-
perts but the model is completely unstructured and domain-
independent in that the knowledge, interests and expertise
of candidate experts are not explicitly represented. Instead
we estimate a probability distribution over vocabulary terms
to describe the context in which a named entity appears.



2. BACKGROUND AND RELATED WORK
Named entity retrieval is based on the assumption that

terms co-occurring with a named entity in the same context
describe it in a useful way.

Conrad et al. [3] used fixed-size window around proper
names to automatically construct representations of people
for retrieval as well as for finding statistically significant as-
sociations between entities. Raghavan et al. [14] formally
stated this approach in the language modeling framework
for retrieval and successfully applied this approach to a va-
riety of tasks: fact-based question answering, classification
into predefined categories, clustering and selecting keywords
to describe the relationship between similar entities.

These studies are based on creating a pseudo-document
(often called profile) by concatenating associated text seg-
ments. These virtual ‘entity documents’ can then be in-
dexed and ranked directly given a query. Profiles can be
significantly smaller in size than the original corpus, mak-
ing this technique very efficient. Computationally, building
profiles can be viewed as a form of clustering to reduce the
dimensionality of the data and to produce compact entity
representations. However, better space management comes
at the price of losing information contained in individual
documents such as document structure.

Recently, a family of probabilistic methods have been pro-
posed which represent entities indirectly as a weighted mix-
ture of documents from the collection [2, 1, 7]. These models
use document retrieval techniques to estimate components
of the entity models, in particular to weight the evidence us-
ing p(t|d) and to assign the mixture parameters using p(c|d)
where t is a query, c is a candidate and d is a document. In
contrast to the profile-based approach, the document-based
approach preserves all information contained in the collec-
tion. When entities are modeled through a set of associated
documents, their structure and high-level language features
can be successfully used to improve performance [13].

Three models that have recently been successfully applied
in the expert search task of the TREC Enterprise track: Cao
et al. [2] propose a two-stage language model which com-
bines a co-occurrence model to retrieve documents given a
query, and a relevance model to find experts in those doc-
uments. Balog et al. [1] describe “Model 1” which directly
represents the knowledge of an expert from associated doc-
uments, and “Model 2” which first locates documents on the
topic and then finds the associated experts. Fang et al. [7]
derive a generative probabilistic model from the probabilis-
tic ranking principle and extend it with query expansion and
nonuniform candidate priors.

3. MODELING NAMED ENTITIES
These models are instances of a document-driven gener-

ative language-modeling approach to rank named entities.
Formally, given a set of documents S = {d} and a query
topic t ∈ V∗, we can rank candidate entities c ∈ E by the
joint distribution p(c, t) of candidates and terms. To achieve
this, we treat the documents as independent random sam-
ples drawn from p(c, t) and represent the joint as a weighted
average of the document models.

p(c, t) =
X

d∈S

p(c, t|d)p(d) (1)

This general formulation can be factorized further to derive
the expert finding models described above, as we show in
Section 4. In this work, we focus on estimating p(c, t|d),
and in particular, representing the conditional dependence
between the named entities and terms in a document. For
simplicity we assume that p(d) is uniform and thus can be
ignored for the purpose of ranking entities. Alternatively,
static (query-independent) ordering of the documents can
be computed using a variety of techniques [15].

Next, without loss of generality, let

p(c, t|d) = p(t|c, d)p(c|d) (2)

Thus we decompose the problem of named entity retrieval
into two subproblems: named entity extraction to find sup-
port documents about a candidate – this corresponds to
p(c|d), and named entity ranking to model the distribution
of terms in support documents – this corresponds to p(t|c, d).

Finally, we point out that the document-based density es-
timation is based on the Relevance Model by Lavrenko et al.
[10] for approximating the probability distribution of terms
in the relevant class of information need I . The informa-
tion need is represented by the set of query terms which
are randomly sampled from the relevance model p(·|I). As-
suming i.i.d. (independent and identically distributed) sam-
pling, the joint distribution p(w, I) for some vocabulary term
w ∈ V is estimated from a finite set of document models M :

p(w, I) =
X

M∈M

p(w, t1, . . . , tk|M)p(M)

=
1

|M|
X

M∈M

p(w|M)p(t1, . . . , tk|M)

In expert finding, the information need is a candidate expert
c and the sampling space is the subset of documents in which
a reference to c occurs, which we call a support set.

The essence of named entity modeling as defined in Eq.
(1) is estimating the probability p(c, t|d). If we make the
simplifying assumption that words and candidates are inde-
pendent given a document, then p(c, t|d) = p(c|d)p(t|d) and
the two components can be computed separately by treat-
ing c and t as queries and using a probabilistic retrieval
method. However, conditional independence between c and
t is a very strong assumption. Intuitively it ignores the re-
lationship between words and named entities that appear in
the same document.

Theoretically this assumption implies that a candidate is
equally associated with all the topics discussed in a docu-
ment. This certainly holds when the person is the author
of the text but otherwise this might not hold, especially for
long documents which are more susceptible to topic drift. A
common example is a technical report written by a group of
colleagues where each team member writes a section about
her own work. Moreover, in the general case of retrieving
named entities of arbitrary type, the notion of authorship
is meaningless; therefore looking for author-document rela-
tionships would be a domain-specific solution.

However, estimating p(t|c, d) poses a challenge: depen-
dence between the terms and entities in a document vio-
lates the bag-of-words assumption. Therefore, a new docu-
ment representation is required to capture this dependency
explicitly. Motivated by previous work on leveraging posi-
tional information to improve retrieval performance [5, 12],



we propose such a document representation which is based
on the proximity between occurrences of entities and terms.

3.1 Proximity kernels
First we consider the simplest case when the query is made

up of a single term t. Bag-of-words is the document repre-
sentation most often used in language modeling:

p(t|d) =
1

N

N
X

i=1

δd(i, t)

where δd : N×V → {0, 1} is an indicator function such that

δd(i, t) =

(

1 if the term at position i in d is t

0 otherwise

The constant N is the length of document d and it ensures
normalization.

We propose document representation which uses positional
information – the distance between query terms and candi-
date names – to weight the dependency between t and c. Our
hypothesis is that the proximity of co-occurrence is helpful
for estimating the strength of association between the c and t
random variables. This is simpler than describing the nature
of the relationship. But since the task is to find experts we
implicitly label the relationship as c is an expert on t and
we assume that the support is positive.

We formulate a candidate-centered document representa-
tion which considers the distance |t−c| between the positions
at which the term and the candidate occur:

pk(t|c, d) =
1

Z

N
X

i=1

δd(i, t)k(t, c), Z =
N

X

i=1

k(t, c)

where k is a proximity-kernel function and Z is a normalizing
constant which guarantees that pk is a distribution.

Any non-uniform, non-increasing function can be converted
into a proximity-based kernel. The simplest kernel is a con-
stant function which assigns the same probability to each
term in the document, thus ignoring any positional informa-
tion. This degenerate case corresponds to the bag-of-words
representation:

k(t, c) =
1

N

Next we define three non-uniform kernel functions. They
are presented graphically in Fig. 1.

1. Triangle kernel:

k(t, c) = 1 − tan(γ) · |t − c|
where γ is the angle between the leg of the triangle and the
x-axis. Points outside this range are assigned zero probabil-
ity. By increasing the angle we decrease the spread of the
distribution.

2. Gaussian kernel:

k(t, c) = N (t, c, σ) =
1√

2πσ2
exp

»−(t − c)2

2σ2

–

where the variance σ controls how quickly the curve tails
off. All positions are assigned nonzero probability but we
can vary the interval in which most of the probability mass
is concentrated by tuning σ. Thus the variance can be inter-
preted as the distance within which we expect to find text
that describes the entity in a useful and reliable way.

3. Step function:

k(t, c) =
m

X

j=1

αj İAj
(|t − c|), IA(x) =

(

1 if x ∈ A

0 otherwise

where A is a sequence of m intervals with weight α and
IA is an indicator function. A step function is difficult to
optimize because we need to specify the length and weight
of each interval. In our experiments we keep the intervals
fixed (their length increases in increments of fixed size) and
we set the weight as a function of a Gaussian variable whose
variance σ we vary to optimize the step function.

1 50 100 150 200 250 300 350 400 450 500

0.000

0.001

0.002

0.003

0.004

0.005

term positions

p
ro

b
a

b
ili

ty

Constant

Linear

Gaussian

Step f−n

Figure 1: Proximity kernels. The constant function
distributes probability mass uniformly across posi-
tions. The other three kernels “lift” the probability
around the candidate occurrence, so that adjacent
terms are assigned higher probability.

3.2 Term independence in entity models
Most queries contain multiple terms. In this case, the in-

tuitive dependence between terms that exists in natural text
is usually relaxed to make computation tractable. In Eq.
(2) we estimate two types of models: c for candidates and
d for documents, therefore we can make two independence
assumptions leading to different sampling methods.

We can assume that terms are independent in c; then

p(c, t)
rank

=
Y

ti∈t

(

X

d∈S

p(ti|c, d)p(d|c)
)

(3)

Model 1 by Balog at al. [1] makes this independence assump-
tion. The model is also referred to as the topic generation
model with profile-based estimation by Fang et al. [7].

Alternatively, we can assume that terms are independent
in d. In this case terms are exchangeable but not indepen-
dent in c; then

p(c, t)
rank

=
X

d∈S

(

Y

ti∈t

p(ti|c, d)

)

p(d|c) (4)

Model 2 by Balog et al. and the candidate generation model
by Fang et al. fall into this category.

It is obvious that the these two expressions are not equiv-
alent mathematically since the product and the sum cannot
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Table 1: Term independence matters when the doc-
ument partially matches the query. Topic EX52
is “ontology engineering”. The first segment incor-
rectly provides support under the independence in
c assumption because it matches “engineering”. The
second segment incorrectly provides no support un-
der the independence in d assumption because it
does not match both “ontology” and “engineering”.

be interchanged. To give a probabilistic interpretation, we
can regard p(t|c, d) as a measure of how well document d
supports the claim that c is an expert on t. If t is the entire
query, then we expect to find all query terms in a support
document, though not necessarily as a phrase. If t is a single
query term, then we expect to find at least one query term
in a support document. Table 1 illustrates the difference
with a small example. It is important to note that both
assumptions are easily violated.

The two independence assumptions imply different sam-
pling frameworks as depicted in Fig. 2. The independence
in d assumption implies the following: sample a document,
then sample all query terms from the document model. To
an extent this captures dependencies between query terms
implicitly because a candidate is considered expert if we find
many pieces of evidence which independently prove exper-
tise. But this method is less flexible: only documents that
match the whole query are considered to provide support.

The independence in c assumption implies the following
sampling framework: for each query term sample a docu-
ment, then sample the term from the document model. This
method is less effective in capturing dependencies between
terms because documents are not expected to be evidence for
expertise on their own. Thus candidates are not penalized
if the query terms never appear together in the same sup-
port document, although they might appear in many sup-
port documents. But this sampling is more flexible: it is
less likely to overlook good documents which otherwise will
be ignored because information is not always described in
exactly the same terms (the problem of synonymy).

3.3 Finding entities in text
In Eq. (3) and (4) the conditional probability p(d|c) can

be viewed as a weight function which indicates how well
a particular document describes a candidate since d con-
tributes to the final estimate of c in proportion to p(d|c).
How well this function is estimated can have significant ef-
fect on performance as it determines how successfully we
retrieve information about the candidates.

c

d1 d2 dk

t1 t2 tk

c

d

t1 t2 tk

Figure 2: Under independence in c, a different doc-
ument di is sampled for each query term ti (left).
Under independence in d, first a document d is sam-
pled and then all query terms are sampled from the
same document (right).

candidate-0001 dan brickley; brickley, dan
Dan d. brickley ; brickley, d.

Brickley daniel brickley
danbriw3.org danbri@w3.org; danbri

daniel.brickley@bristol.ac.uk
candidate-0070 bjorn hohrmann

Björn bjoern hoehrmann
Höhrmann bjrn hhrmann

derhoermi@gmx.net derhoermi@gmx.net

Table 2: TREC provides a short description of each
candidate expert (left column). Actual references
are often not consistent with that description. Ex-
amples include combinations of names and initials,
alternative emails and spelling errors due to differ-
ent character encodings (right column).

Balog et al. [1] used several rules to match proper names
to candidate IDs. Document weights can also be estimated
by treating c as a query and using a query-likelihood re-
trieval method to score documents; then p(d|c) can be com-
puted by normalizing p(c|d) over d ∈ S . Formulating this
candidate query poses challenges of its own because of the
named entity disambiguation problem: people are not al-
ways referred to with their exact full name (Table 2).

We emphasize that even though p(c|d) is a probability
distribution, it should not be viewed as a statistical approach
for extracting named entities. It is still a rule-based method
because we need to specify what constitutes a candidate
occurrence (e.g. full name or last name) so that the term
frequency function can be computed. Using the Indri search
engine [16] which provides a variety of positional and logical
operators we can devise some quite complicated matching
rules for detecting entity occurrences (Table 3).

3.4 Smoothing entity models
When building a document model in the language mod-

eling framework for IR, we have a finite sample to estimate
the density. In many cases, particularly for short documents,
maximum likelihood estimation can lead to poor results by
assigning zero probability to terms that do not appear in
the document. Entity modeling also faces the problem of
underestimating the probability of non-occurring terms.

The goal of smoothing is to add a small background prob-
ability, so that the mass is redistributed and any event has a
nonzero probability to occur [18]. Certainly smoothing the



MATCH1 #1( danbri w3org )
Matches email as an ex-
act phrase

MATCH2 #od( dan brickley )

Matches first or last
name; both names must
appear in the document

MATCH3 #1( dan brickley )
Matches full name as an
exact phrase

MATCH4 #od2( dan brickley )

Matches full name as an
ordered bigram; first and
last names can be sep-
arated by at most one
term, e.g. middle initial

MATCH5

#weight( 0.8 #uw2(

dan brickley ) 0.2

#1( danbri w3org ) )

Mixture of full name and
email address

Table 3: Rules for matching candidate occurrences
(here defined using Indri proximity operators) have
limited descriptive power. For example, neither rule
will detect all occurrences of candidate 0001 because
it is not apparent from the specifications that “Dan”
is short for “Daniel”.

document models before combining them to represent enti-
ties will have the effect of assigning nonzero probability to
any vocabulary term t ∈ V. But this can introduce noise
from incorrect associations. Since the sample space is the
entire collection S – much larger than an average document,
though still finite – we could expect that the observed joint
distribution is very close to the true distribution p(c, t).

Consider the following example: Query EX62 is “mereol-
ogy”. Candidate 0002 is not an expert on this topic but is
the most frequent candidate appearing in 10567 documents.
There are 18 documents which contain the term mereology
but candidate 0002 does not occur in any of these. How-
ever, if the document models are smoothed the combined
set of 10585 documents would be considered to provide sup-
port, however small, to the claim that 0002 is an expert.
Although the background probabilities are small, they accu-
mulate in the final estimate when summing over a large set
of smoothed documents.

To avoid over-smoothing we formulate Dirichlet smooth-
ing for entity representations as follows:

p(t|c) =
lc

lc + µ
pml(t|c) +

„

1 − lc
lc + µ

«

p(t|E) (5)

where E = {c} is the set of candidate experts and lc is
the number of documents which are associated with candi-
date c and thus contribute positively to the corresponding
representation. Smoothing can be viewed as profile-length
normalization to prevent favoring candidates who occur in
many documents and therefore have more chances to co-
occur with query terms.

4. COMPARISON OF LANGUAGE MODELS

FOR FINDING EXPERTS
In this section, we derive several language models pro-

posed for expert finding from the general document-driven
framework as given by Eq. (1). Our analysis shows that
the models are similar – in fact, probabilistically equivalent
– since they try to estimate the same underlying probabil-
ity distribution. We highlight the simplifying assumptions

that each model makes in order to give a theoretical expla-
nation for the differences in performance. As stated in Eq.
(1), the goal is to estimate the joint distribution p(c, t). The
joint can be factored in two equivalent ways using Bayes rule
which states Pr(a, b) = Pr(b|a)Pr(a) = Pr(a|b) Pr(b) for two
stochastic events a and b.

Using Bayes rule we can condition c on t and d:
X

d

p(c, t|d)p(d) =
X

d

p(c|t, d)p(t|d)p(d)

=
X

d

p(c|t, d)p(d|t)p(t)

rank

=
X

d

p(c|t, d)p(d|t) (6)

rank

=
X

d

p(c|d)p(d|t) (7)

To derive Eq. (6) we assume that the prior distribution over
t is uniform. This gives the two-stage model proposed by
Cao et al. If we also assume that c and t are conditionally
independent given d, we get Eq. (7) which is the candidate
generation model proposed by Fang et al. [7]. Note that
while p(t) is assumed uniform, the distribution over candi-
dates p(c) is implicitly nonuniform.

Alternatively, we can condition t on c and d:
X

d

p(c, t|d)p(d) =
X

d

p(t|c, d)p(c|d)p(d)

=
X

d

p(t|c, d)p(d|c)p(c)

rank

=
X

d

p(t|c, d)p(d|c) (8)

rank

=
X

d

p(t|d)p(d|c) (9)

To derive Eq. (8) we assume that the prior distribution over
c is uniform. If we also assume that c and t are condition-
ally independent given d, we get Eq. (9) which is Model 2
proposed by Balog et al. [1]. In contrast to the previous
derivation, p(c) is assumed uniform while the distribution
over topics is implicitly nonuniform. However, the latter
condition is irrelevant because each topic is evaluated inde-
pendently of the others.

The above derivations show that the models are proba-
bilistically equivalent because they estimate the joint dis-
tribution p(c, t) as the sum

P

d
p(c, t|d) over the sample of

collection documents. However, the models do not have the
same performance in practice because they make different
assumptions about the prior distribution over candidates
and the term independence in candidate representations.

On one hand, we can choose p(t) or p(c) to be uniform.
Assuming that p(t) is uniform does not affect the ranking
since this distribution does not depend on the candidates.
But the candidate prior p(c) can significantly influence per-
formance. If a particular topic is difficult and the system
cannot find enough evidence to decide who is an expert, it
can use prior knowledge to rank the candidates.

On the other hand, we can assume conditional indepen-
dence between c and d. As we already discussed in Section
3.1, intuitively this assumption is wrong because it ignores
the relationship between the words and named entities which
appear in a particular document. Therefore we expect that



both Model 2 and the candidate generation model to per-
form worse than our kernel-based entity retrieval model:

p(t, c) =
Y

ti∈t

(

lc
lc + µ

X

d∈S

pk(ti|c, d)p(d|c) +

„

1 − lc
lc + µ

«

p(ti|E)

ffw(ti)

where w(ti) is the relative weight of term ti in the query
model t. We make the independence in c assumption and
we estimate p(ti|c, d) for each term ti independently of other
query terms and their occurrences (or lack thereof) in docu-
ment d. We compute the proximity of a term and a named
entity according to kernel k.

5. EXPERIMENTS
We run experiments on the dataset used in the expert

search task of the TREC 2006 Enterprise track. It includes
the W3C corpus, a list of 1092 candidate experts, and a set
of 49 queries. The W3C collection is crawled from the World
Wide Web Consortium web site and is quite heterogeneous
in document types. In our experiments we use only the
emails and web pages, 244369 documents in total.

We design our experiments to supplement the theoretical
discussions. (Corresponding theoretical sections are refer-
ences in parentheses.)

1. Named entity extraction component: We look at how
the accuracy of named entity extraction – estimating
p(c|d) – affects retrieval effectiveness.

2. Query term independence: We compare two term in-
dependence assumptions with respect to their ability
to find support documents (Section 3.2).

3. Smoothing: We compare smoothing document models
individually vs. smoothing candidate representations
after combining maximum likelihood models of docu-
ments (Section 3.4).

4. Proximity-kernel document representation: We test our
hypothesis that directly modeling the conditional de-
pendency between terms and entities can improve named
entity retrieval (Section 3.1).

5. Uniformity of p(c): We investigate whether the impor-
tance of prior knowledge about the entities changes as
the entity representations improve (Section 3.3).

Implementation is based on the Indri search engine in the
Lemur toolkit.1 Indri integrates Bayes net retrieval model
with formal statistical techniques for modeling relevance [16].
The Bayes net representation of an information need allows
us to formulate richly structured queries, including phrase
matching which we use to find occurrences of proper names.
This functionality is combined with relevance estimation
based on smoothed language models.

5.1 Finding entities in text
We are given a list of candidate experts with full name

and an email address as input, and we assume that the list
contains accurate and complete information. This simplifies

1http://lemurproject.org/

the problem of identifying person entities in the text. Al-
though designing better named entity extraction techniques
is not the focus of this work, we believe that the quality
of named entity extraction influences the performance of a
named entity retrieval system.

People are not always referred to by their exact full names,
especially in emails, and this makes identifying occurrences
of person entities very challenging. In our first set of exper-
iments we compare rule-based entity matching with named
entity resolution. For rule-based person matching we use
the Indri operators defined in Table 3. As an instance of a
more advanced named entity extraction technique, we use
annotations of candidate occurrences provided by Jianhan
Zhu to participants in the TREC Enterprise track [19]. In
this preprocessed version of the W3C dataset candidates are
recognized by full name, name variations, email addresses,
user ID, etc., using the Aho-Corasick matching algorithm.

Comparison of rule-based methods and name resolution
shows that while finding candidate occurrences is essential
for good performance, finding all occurrences is not (Table
4). Extraction performance measures are defined as follows:
num occ is total number of occurrences; num ret is number
of candidates with at least one occurrence; top k 50 is the
number of most frequent entities that account for 50% of
all occurrences; mean and median is the average and the
median number of occurrences. Retrieval performance mea-
sures are defined as follows: mAP is mean average preci-
sion; R-prec is precision after all relevant items are retrieved;
MRR is mean reciprocal rank of the top relevant item; P5
and P10 is precision at rank 5 and rank 10.
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Figure 3: Candidate occurrences follow Zipf’s law.
Number of occurrences is plotted as a function of
frequency rank (in loglog scale). The distribution
predicted by Zipf (the straight line) is not a good fit
for the tail of the observed distribution, i.e. there is
not enough information about rare candidates.

As expected, name resolution is far more successful in
identifying person entities in text: it finds more than 1,200,000
occurrences, while the matching rules find no more than
400,000. Name resolution also picks up entities that any
matching rule fails to identify. (We do not have “truth”
labels, therefore some of these occurrences might be false
positives.) However, in terms of performance, the improve-
ment is small and not statistically significant compared the
most elaborate matching rule. The results indicate that



Extraction num occ num ret top k 50 mean median mAP R-prec MRR P5 P10
method

MATCH1 60,919 407 19 55.8 0 0.3819 0.4188 0.8605 0.6571 0.5653

MATCH2 329,154 782 39 301.4 14 0.5133 0.5296 0.8503 0.7102 0.6306
(+440%) (+34%) (+26%) (-1.2%) (+8.1%) (+12%)

MATCH3 277,214 690 35 253.8 6 0.5374 0.5471 0.8405 0.7388 0.6490
(-15.8%) (+4.7%) (+3.3%) (-1.2%) (+4.0%) (+2.9%)

MATCH4 299,235 700 35 274.0 7 0.5508 0.5565 0.8656 0.7469 0.6633
(+7.9%) (+2.5%) (+1.7%) (+3.0%) (+1.1%) (+2.2%)

MATCH5 360,154 710 34 329.8 8 0.5598 0.5660 0.8520 0.7388 0.6694
(+20.4%) (+1.6%) (+1.7%) (-1.6%) (-1.1%) (+0.4%)

Name 1,170,258 787 30 1071.7 25 0.5739 0.5595 0.8946 0.7347 0.6694
resolution (+225%) (+2.5%) (-1.1%) (+5.0%) (-0.6%) (0.0%)

Table 4: Improving entity extraction has diminishing returns. A name resolution technique finds three
times as many occurrences as the best matching rule but the improvement in performance is small. Bold
indicates statistical significance (p < 0.05 with Wilcoxon signed rank test) over the previous extraction method.
[Extraction methods are ordered according to implied complexity.]

it is frequent candidates who benefit mostly from apply-
ing increasingly sophisticated entity extraction techniques.
In fact, since employees participate to various degrees in
company interactions, candidate occurrences follow a Zipf
distribution, where a small number of people have a large
number of occurrences and the majority of people have a
small number of occurrences (Fig. 3). Therefore, most new
occurrences belong to candidates for whom many documents
have already been found.

Another issue to consider is that name resolution intro-
duces noise from incorrect partial matchings. In this re-
spect, advanced named entity extraction techniques such as
co-referencing and name disambiguation can provide more
accurate occurrence information.

5.2 Term independence in entity models
As discussed in Section 3.2, we can make two term inde-

pendence assumptions: independence in c (Eq. 3) or inde-
pendence in d (Eq. 4). They correspond to different sam-
pling methods and induce different support documents. The
set of documents over which the relevance score for a can-
didate expert is computed is always the same: documents
which contain at least one reference to the candidate, de-
noted by Fc. A supporting document d ∈ Fc provides evi-
dence for expertise on a given topic t, i.e. d gives c a high
probability of being an expert on t.

We compare the two sampling methods empirically by re-
peatedly expanding the query. Our goal is to understand
how the retrieval effectiveness improves as we build more
accurate models of the information need. As an example of
a model that makes the independence in d assumption we
take the candidate generation model. As an example of a
model which makes the independence in c assumption we
take our kernel-based model. [We use the constant kernel in
order to make a fair comparison.]

Many techniques have been developed for building com-
plex query models which capture high-level language fea-
tures. Typically they expand the query by adding terms

automatically estimated to be related to the topic. In this
experiment we apply two expansion techniques: the Term
Dependency Model [12] and the Relevance Model [10] for
pseudo relevance feedback. Both assign each new term a
weight w(ti) which indicates its relevance in the expanded
query model t∗.
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Figure 4: The two independence assumptions be-
have differently under query expansion. For Ti we
use the <title> field only; for TmD we add the Term
Dependency model; then we incrementally add 5
terms from pseudo relevance feedback.

We present query-expansion results in Fig. 4. As ex-
pected, the independence in d assumption gives significantly
better performance when only the original keyword query is
used. However, retrieval performance under the indepen-
dence in c assumption consistently improves as the query
model becomes more precise, while performance under the
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Figure 5: Comparison of the two independence assumptions over the TREC 2006 set of 49 queries.

independence in d assumption gets virtually no improvement
from query expansion. With only 25 terms added, indepen-
dence in c has a slight (though not statistically significant)
advantage. Recall that independence in d is the stronger
assumption: all query terms should occur in a support doc-
ument; independence in c is the weaker assumption: at least
one query term should occur in a support document.

Our hypothesis for this behavior is that independence in c
is more flexible in finding support documents. Intuitively, a
support document should provide proof for expertise on its
own. This assumption underlies the independence in d sam-
pling. However, the initial query might fail to capture some
support documents, for example when a document does not
contain a query term and instead contains a different term
with similar meaning (synonym). In this case, query ex-
pansion can help by specifying related terms for the same
information need. But under the assumption that terms are
interchangeable, we want to see all query terms – both initial
and new ones. This requirement is very restrictive. Under
the assumption that terms are independent, we want to see
any query term – initial or new one. Thus we can find new
support documents, as opposed to measure the relevance of
existing support documents better.

A detailed comparison of the two independence assump-
tions in Fig. 5 shows that there are a few queries (topics 1-3,
14, 25-26) for which the independence in d assumption gives
substantially better results. We suspect that the indepen-
dence in c assumption underperforms when query expansion
fails and picks unrelated terms.

5.3 Smoothing entity models
In the language modeling framework, two smoothing tech-

niques are usually compared – Jelinek-Mercer and Dirich-
let. In view of the fact that entities are modeled as subsets
of documents, we believe it is more important to compare
smoothing each document individually versus smoothing the
candidate model after maximum likelihood (not smoothed)
document models are combined.

In Section 3.4 we proposed an entity smoothing technique
similar to Dirichlet document smoothing in order to reduce
noise from incorrect associations. (This occurs when a doc-
ument is estimated to provide support for expertise when
in fact it does not.) To smooth a candidate model, we use

maximum likelihood estimates for documents in the profile
set Fc and then interpolate the document mixture which
represents the candidate with a background model.

Comparison for different values of the Dirichlet parame-
ter µ shows that smoothing the candidate models directly
is significantly more effective than smoothing the document
models (Fig. 6). Essentially this method smooths the can-
didate representations once rather than again and again for
each document in the profile set.

This experiment also shows that although techniques for
ranking documents can be applied to retrieve named entities,
the problem-specific aspects cannot be ignored. For exam-
ple, in document retrieval there is no ambiguity in matching
terms and documents are modeled independently. But in
entity modeling identifying candidates is hard and there is
interaction between documents as the information they con-
tain is combined to produce the entity ranking.
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Figure 6: We can smooth either the document mod-
els or the candidate models. The second approach
is more robust to noise from incorrect associations.



5.4 Proximity kernels
In Section 3.1 we proposed a proximity-based kernel rep-

resentation where a document multinomial is “built around”
candidate occurrences, rather than spread uniformly across
the document as in the bag-of-words representation.

A document can contain multiple references to a particu-
lar candidate. In this case we place a multinomial at each
occurrence. If a candidate appears twice in a document, two
multinomials are estimated but the distributions are differ-
ent since they are centered at different locations. If the two
occurrences are close together the terms that appear in be-
tween are boosted by both multinomials.

Each nonuniform kernel improves performance on all mea-
sures (Table 5). The kernel parameter controls how the
probability mass is distributed across term positions: in-
creasing σ or decreasing γ either have the effect of making
the distribution more uniform. Performance sensitivity ex-
periments are reported in Fig. 7. The Gaussian kernel is
least sensitive to parameter setting and its performance is
near its optimal for a wide parameter range. The shape of
the performance curve for the step function is very similar
to that of the Gaussian kernel. This can be explain by the
fact that we use the Gaussian distribution to automatically
set weights for the intervals of the step function.
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Figure 7: Parameter sweep for the kernel functions.
As the γ and σ parameter increase, the probabil-
ity mass is more evenly spread across the length
of the documents, peaks at candidate occurrences
are smoothed out and performance converges to the
baseline bag of words representation.

Our kernel-based approach is similar to the window-based
two-stage model for expert finding [19]. However, window-
based retrieval is heuristic and it involves many parameters:
number of windows, length and weight for each window. Due
to the necessity to tune all these parameters the method is
prone to overfitting. Our formal method includes window-
based estimation as a special case (the step function). More
importantly, two of the kernel functions we define – Gaussian
and Linear – have only one parameter to optimize. Between
those, the Gaussian kernel performs better and it is also
robust with respect to its variance parameter.

Kernel parameter mAP MRR P5 P10

Constant 0.5814 0.9150 0.7633 0.6776

Triangle γ=π/10 0.6111 0.9439 0.8041 0.7102

Gaussian σ=80 0.6193 0.9541 0.8163 0.7041

Step f-n σ=80 0.6230 0.9541 0.8163 0.6980

Table 5: Performance of the kernel-based represen-
tation on the expert finding task. Bold indicates sta-
tistical significance over the baseline (the constant
function). Differences between the three nonuni-
form kernels are not statistically significant.

c and t c and t
independent given d dependent given d

p(c) is Topic generation Two-stage model,
uniform model, Model 2 Kernel-based model

p(c) is Candidate genera-
nonuniform tion model

Table 6: Although the language models estimate
the same joint probability p(c, t), they make different
assumptions, hence the difference in mean average
precision (mAP ).

5.5 Prior distribution over entities
As we noted in Section 4, an important difference between

the different models for expert finding is whether they as-
sume that the distribution p(c) over candidate experts is
uniform or not. Our classification of the models is summa-
rized in Table 6.

In this experiment we evaluate the importance of prior
knowledge about the candidates on retrieval performance.
A variety of techniques for estimating the prior distribution
p(·) can be devised, e.g. PageRank for entities, but we use a
straightforward statistical method to compute p(c) directly
from the data.

p(c) =
X

d

p(c, d) =
1

|Fc|
X

d∈S

p(c|d)

We find that direct evidence from text outperforms heuris-
tic evidence of prior knowledge as the candidate representa-
tions get better (Table 7).

6. CONCLUSION AND FURTHER WORK

Web Emails Gaussian Uniform Nonuniform
pages kernel p(c) p(c)

× 0.2944 0.4084

× × 0.5850 0.5541

× × × 0.6193 0.5976

Table 7: Performance with nonuniform prior on can-
didate expertise.



Expert finding mAP R-prec MRR P5 P10
method

Model 2 0.3571 0.3832 0.5296 0.4327 0.4184

Cand. generation 0.5617 0.5583 0.8929 0.7551 0.6571

Proxim. kernels 0.6193 0.5942 0.9541 0.8163 0.7041
(Gaussian k)

Table 8: Performance of three language modeling
approaches on the expert search task.

We focused on the problem of building language models
of person entities and ranking them in terms of expertise
on a given topic. We found that named entity extraction is
not the primary factor for performance when working with a
large collection and given reasonable identification rules. We
suspect that this is the case because the simple rules match
a sufficient portion of the actual number of occurrences.

We also analyzed the performance of two term indepen-
dence assumptions which correspond to different sampling
methods to aggregate evidence for expertise over many doc-
uments. We formally analyzed the behavior of the two
sampling methods; we hypothesized that assuming terms
are independent rather than dependent but interchangeable
would lead to finding more documents to support exper-
tise. Our hypothesis was confirmed by experimental results
which show that the weaker assumption improves signifi-
cantly when query expansion is applied.

We analyzed how smoothing influences performance, which
motivated us to propose Dirichlet smoothing for entity rep-
resentations. This reduces noise from smoothing each doc-
ument in a potentially huge collection. We also proposed a
proximity-kernel document representation to explicitly model
the dependency between terms and entities. Our language
model, which combines these features, effectively discovers
evidence for expertise in a heterogeneous collection and has
excellent performance on the TREC 2006 expert search task.

Finally, we presented a unified analysis of the probabilis-
tic semantics underlying previous language modeling ap-
proaches for expert finding. We argued that they are equiv-
alent probabilistically as they estimate the joint probability
p(c, t) but different statistically as they factorize the joint in
different ways and make different assumptions.

Our model is very general because it associates named en-
tities with text segments without relying on document struc-
ture or even paragraph or sentence decomposition. However,
in special cases such as emails and scientific papers, knowl-
edge about document structure can be applied to extract
relationships, e.g. who is the author and who is the in-
tended audience. As future work we plan to incorporate
this additional source of information in our model for find-
ing experts. We would also like to apply our kernel-based
model to retrieve named entities other than persons to test
the claim of its generalizability.

Another line of research is to use incrementally constructed
entity representations to guide named entity extraction. We
can simultaneously discover partial name matchings of an
entity and build its representation; new information has to
be consistent with the current incomplete representation be-
fore being added. Significant differences (e.g. in terms of KL
divergence) might indicate the discovery of a new entity.
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