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ABSTRACT

Low-cost methods for acquiring relevance judgments can be
a boon to researchers who need to evaluate new retrieval
tasks or topics but do not have the resources to make thou-
sands of judgments. While these judgments are very use-
ful for a one-time evaluation, it is not clear that they can
be trusted when re-used to evaluate new systems. In this
work, we formally define what it means for judgments to be
reusable: the confidence in an evaluation of new systems can
be accurately assessed from an existing set of relevance judg-
ments. We then present a method for augmenting a set of
relevance judgments with relevance estimates that requires
no additional assessor effort. Using this method practically
guarantees reusability: with as few as five judgments per
topic taken from only two systems, we can reliably evaluate
a larger set of ten systems. This makes even the smallest
sets of judgments useful for evaluation of new systems.

Categories and Subject Descriptors: H.3 Information
Storage and Retrieval; H.3.4 Systems and Software: Perfor-
mance Evaluation

General Terms: Experimentation, Measurement

Keywords: information retrieval, evaluation, test collec-
tions, reusability

1. INTRODUCTION
Consider an information retrieval researcher who has in-

vented a new retrieval task. She has built a system to per-
form the task and wants to evaluate it. Since the task is
new, it is unlikely that there are any extant relevance judg-
ments. She does not have the time or resources to judge
every document, or even every retrieved document. She can
only judge the documents that seem to be the most informa-
tive and stop when she has a reasonable degree of confidence
in her conclusions. But what happens when she develops a
new system and needs to evaluate it? Or another research
group decides to implement a system to perform the task?
Can they reliably reuse the judgments she originally made?
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Can they evaluate without more relevance judgments?
Evaluation is an important aspect of information retrieval

research, but it is only a semi-solved problem: for most
retrieval tasks, it is impossible to judge the relevance of every
document; there are simply too many of them. The solution
used by NIST at TREC (Text REtrieval Conference) is the
pooling method [19, 20]: all competing systems contribute
N documents to a pool, and every document in that pool
is judged. This method creates large sets of judgments that
are reusable for training or evaluating new systems that did
not contribute to the pool [21].

This solution is not adequate for our hypothetical re-
searcher. The pooling method gives thousands of relevance
judgments, but it requires many hours of (paid) annotator
time. As a result, there have been a slew of recent papers
on reducing annotator effort in producing test collections:
Cormack et al. [11], Zobel [21], Sanderson and Joho [17],
Carterette et al. [8], and Aslam et al. [4], among others.
As we will see, the judgments these methods produce can
significantly bias the evaluation of a new set of systems.

So can she reuse her relevance judgments? First we must
formally define what it means to be “reusable”. In previous
work, reusability has been tested by simply assessing the
accuracy of a set of relevance judgments at evaluating unseen
systems. While we can say that it was right 75% of the time,
or that it had a rank correlation of 0.8, these numbers do not
have any predictive power: they do not tell us which systems
are likely to be wrong or how confident we should be in any
one. We need a more careful definition of reusability.

Specifically, the question of reusability is not how accu-
rately we can evaluate new systems. A “malicious adver-
sary” can always produce a new ranked list that has not
retrieved any of the judged documents. The real question
is how much confidence we have in our evaluations, and,
more importantly, whether we can trust our estimates of
confidence. Even if confidence is not high, as long as we
can trust it, we can identify which systems need more judg-
ments in order to increase confidence. Any set of judgments,
no matter how small, becomes reusable to some degree.

Small, reusable test collections could have a huge impact
on information retrieval research. Research groups would
be able to share the relevance judgments they have done
“in-house” for pilot studies, new tasks, or new topics. The
amount of data available to researchers would grow expo-
nentially over time.



2. ROBUST EVALUATION
Above we gave an intuitive definition of reusability: a

collection is reusable if we can “trust” our estimates of con-
fidence in an evaluation. By that we mean that if we have
done some relevance judgments and have, for example, 75%
confidence that system A is better than system B, we would
like there to be no more than 25% chance that our assess-
ment of the relative quality of the systems will change as
we continue to judge documents. Our evaluation should be
robust to missing judgments.

In our previous work, we defined confidence as the proba-
bility that the difference in an evaluation measure calculated
for two systems is less than zero [8]. This notion of confi-
dence is defined in the context of a particular evaluation
task that we call comparative evaluation: determining the
sign of the difference in an evaluation measure. Other tasks
having different notions of confidence could be defined; esti-
mating the magnitude of the difference or the values of the
measures themselves are examples.

Confidence, therefore, is a probability estimate. One of
the questions we must ask about a probability estimate is
what it means. What does it mean to have 75% confidence
that system A is better than system B? As described above,
we want it to mean that if we continue to judge documents,
there will only be a 25% chance that our assessment will
change. If this is what it means, we can “trust” the confi-
dence estimates. But do we know it has that meaning?

Our calculation of confidence rests on an assumption about
the probability of relevance of unjudged documents, specif-
ically that each unjudged document was equally likely to
be relevant or nonrelevant. This assumption is almost cer-
tainly not realistic in most IR applications. As it turns out,
it is this assumption that determines whether we can trust
the confidence estimates. Before elaborating on this, we will
stop to define confidence.

2.1 Estimating Confidence
Average precision (AP) is a standard evaluation metric

that captures both the ability of a system to rank relevant
documents highly (precision) and its ability to retrieve rele-
vant documents (recall). It is typically written as the mean
precision at the ranks of relevant documents:

AP =
1

|R|

∑

i∈R

prec@r(i)

where R is the set of relevant documents, and r(i) is the
rank of document i. Let Xi be a random variable indicating
the relevance of document i. If documents are ordered by
rank, we can express precision as prec@i = 1/i

∑i

j=1 Xj .
Average precision becomes the quadratic equation
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where aij = 1/ max{r(i), r(j)}. Using aij instead of 1/i al-
lows us to number the documents arbitrarily. To see why
this is true, consider a toy example: a list of 3 documents
with relevant documents B, C at ranks 1 and 3 and non-
relevant document A at rank 2. Average precision will be
1
2
( 1
1
x2

B+ 1
2
xBxA+ 1

3
xBxC+ 1

2
x2

A+ 1
3
xAxC+ 1

3
x2

C) = 1
2

(

1 + 2
3

)

because xA = 0, xB = 1, xC = 1. Though the ordering
B, A, C is different from the labeling A, B, C, it does not
affect the computation.

We can now see average precision itself is a random vari-
able with a distribution over all possible assignments of rele-
vance to all documents. This random variable has an expec-
tation, a variance, confidence intervals, and a certain prob-
ability of being less than or equal to a given value. All of
these are dependent on the probability that document i is
relevant: pi = p(Xi = 1).

Suppose in our previous example we do not know the rel-
evance judgments, but we believe pA = 0.4, pB = 0.8, pC =
0.7. We can then compute e.g. P (AP = 0) = 0.2 · 0.6 · 0.3 =
0.036, or P (AP = 1

2
) = 0.2 · 0.4 · 0.7 = 0.056.

The expectation and variance of AP are:
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AP asymptotically converges to a normal distribution with
expectation and variance as defined above.1

For our comparative evaluation task we are interested in
the sign of the difference in two average precisions: ∆AP =
AP1 − AP2. As we showed in our previous work, ∆AP has
a closed form when documents are ordered arbitrarily:

∆AP =
1

∑

Xi

n
∑

i=1

∑

j≥i

cijXiXj

cij = aij − bij

where bij is defined analogously to aij for the second rank-
ing. Since AP is normal, ∆AP is normal as well, meaning
we can use the normal cumulative density function to de-
termine the confidence that a difference in AP is less than
zero.

Since topics are independent, we can easily extend this
to mean average precision (MAP). MAP is also normally
distributed with expectation and variance:

EMAP =
1

T

∑

t∈T

E[APt] (1)

VMAP =
1

T 2

∑

t∈T

V ar[APt]

∆MAP = MAP1 −MAP2

Confidence can then be estimated by calculating the expec-
tation and variance and using the normal density function
to find P (∆MAP < 0).

As we discussed earlier, whether the confidence estimates
are trustworthy depends on our estimates of pi.

2.2 Confidence and Robustness
Having defined confidence, we turn back to the issue of

trust in confidence estimates, and show how it ties into the
robustness of the collection to missing judgments.
1These are actually approximations to the true expectation
and variance, but the error is a negligible O(n2−n).



Let Z be the set of all pairs of ranked lists. Suppose we
have a set of m relevance judgments xm = {x1, x2, ..., xm}
(using small x rather than capital X to distinguish between
judged and unjudged documents); these are the judgments
against which we compute confidence. Let Zα be the subset
of pairs in Z for which we predict that ∆MAP = −1 with
confidence α given the judgments xm. For the confidence es-
timates to be accurate, we need at least α·|Zα| of these pairs
to actually have ∆MAP = −1 after we have judged every

document. If they do, we can trust the confidence estimates;
our evaluation will be robust to missing judgments.

If our confidence estimates are based on unrealistic as-
sumptions, we cannot expect them to be accurate. The
assumptions they are based on are the probabilities of rele-
vance pi. We need these to be “realistic”.

We argue that the best possible distribution of relevance
p(Xi) is the one that explains all of the data (all of the
observations made about the retrieval systems) while at the
same time making no unwarranted assumptions. This is
known as the principle of maximum entropy [13].

The entropy of a random variable X with distribution
p(X) is defined as H(p) = −

∑

i p(X = i) log p(X = i). This
has found a wide spectrum of uses in computer science and
information retrieval. The maximum entropy distribution
is the one that maximizes H. This distribution is unique
and has an exponential form. The following theorem shows
the utility of a maximum entropy distribution for relevance
when estimating confidence.

Theorem 1. If p(Xn|I, xm) = argmaxpH(p), confidence

estimates will be accurate.

where xm is the set of relevance judgments defined above,
Xn is the full set of documents that we wish to estimate the
relevance of, and I is some information about the documents
(unspecified as of now). We forgo the proof for the time
being, but it is quite simple.

This says that the better the estimates of relevance, the

more accurate the evaluation. The task of creating a reusable
test collection thus becomes the task of estimating the rele-
vance of unjudged documents.

The theorem and its proof say nothing whatsoever about
the evaluation metric. The probability estimates are entirely
indepedent of the measure we are interested in. This means
the same probability estimates can tell us about average
precision as well as precision, recall, bpref, etc.

Furthermore, we could assume that the relevance of doc-
uments i and j is independent and achieve the same result,
which we state as a corollary:

Corollary 1. If p(Xi|I, xm) = argmaxpH(p), confidence

estimates will be accurate.

The task therefore becomes the imputation of the missing
values of relevance. The theorem implies that the closer we
get to the maximum entropy distribution of relevance, the
closer we get to robustness.

3. PREDICTING RELEVANCE
In our statement of Theorem 1, we left the nature of the

information I unspecified. One of the advantages of our con-
fidence estimates is that they admit information from a wide
variety of sources; essentially anything that can be mod-
eled can be used as information for predicting relevance. A

natural source of information is the retrieval systems them-
selves: how they ranked the judged documents, how often
they failed to rank relevant documents, how they perform
across topics, and so on. If we treat each system as an in-
formation retrieval “expert” providing an opinion about the
relevance of each document, the problem becomes one of
expert opinion aggregation.

This is similar to the metasearch or data fusion problem
in which the task is to take k input systems and merge them
into a single ranking. Aslam et al. [3] previously identified a
connection between evaluation and metasearch. Our prob-
lem has two key differences:

1. We explicitly need probabilities of relevance that we
can plug into Eq. 1; metasearch algorithms have no
such requirement.

2. We are accumulating relevance judgments as we pro-
ceed with the evaluation and are able to re-estimate
relevance given each new judgment.

In light of (1) above, we introduce a probabilistic model for
expert combination.

3.1 A Model for Expert Opinion Aggregation
Suppose that each expert j provides a probability of rel-

evance qij = pj(Xi = 1). The information about the rele-
vance of document i will then be the set of k expert opinions
I = qi = (qi1, qi2, · · · , qik). The probability distribution
we wish to find is the one that maximizes the entropy of
pi = p(Xi = 1|qi).

As it turns out, finding the maximum entropy model is
equivalent to finding the parameters that maximize the like-
lihood [5]. Blower [6] explicitly shows that finding the max-
imum entropy model for a binary variable is equivalent to
solving a logistic regression. Then

pi = p(Xi = 1|qi) =
exp

(

∑k

j=1 λjqij

)

1 + exp
(

∑k

j=1 λjqij

) (2)

where λ1, · · · , λk are the regression parameters. We include
a beta prior for p(λj) with parameters α, β. This can be
seen as a type of smoothing to account for the fact that the
training data is highly biased.

This model has the advantage of including the statisti-
cal dependence between the experts. A model of the same
form was shown by Clemen & Winkler to be the best for
aggregating expert probabilities [10]. A similar maximum-
entropy-motivated approach has been used for expert aggre-
gation [15]. Aslam & Montague [1] used a similar model for
metasearch, but assumed independence among experts.

Where do the qijs come from? Using raw, uncalibrated
scores as predictors will not work because score distributions
vary too much between topics. A language modeling ranker,
for instance, will typically give a much higher score to the
top retrieved document for a short query than to the top
retrieved document for a long query.

We could learn a separate predicting model for each topic,
but that does not take advantage of all of the information we
have: we may only have a handful of judgments for a topic,
not enough to train a model to any confidence. Furthermore,
it seems reasonable to assume that if an expert makes good
predictions for one topic, it will make good predictions for
other topics as well. We could use a hierarchical model [12],
but that will not generalize to unseen topics. Instead, we



will calibrate the scores of each expert individually so that
scores can be compared both within topic and between topic.
Thus our model takes into account not only the dependence
between experts, but also the dependence between experts’
performances on different tasks (topics).

3.2 Calibrating Experts
Each expert gives us a score and a rank for each document.

We need to convert these to probabilities. A method such
as the one used by Manmatha et al. [14] could be used to
convert scores into probabilities of relevance. The “pairwise
preference” method of Carterette & Petkova [9] could also be
used, interpeting the ranking of one document over another
as an expression of preference.

Let q∗ij be expert j’s self-reported probability that docu-
ment i is relevant. Intuitively it seems clear that q∗ij should
decrease with rank, and it should be zero if document i
is unranked (the expert did not believe it to be relevant).
The pairwise preference model can handle these two require-
ments easily, so we will use it. Let θrj(i) be the “relevance
coefficient” of the document at rank rj(i). We want to find
the θs that maximize the likelihood function:

Ljt(Θ) =
∏

rj(i)<rj(k)

exp(θrj(i) − θrj(k))

1 + exp(θrj(i) − θrj(k))

We again include a beta prior on p(θrj(i)) with parameters
|Rt| + 1 and |Nt| + 1, the size of the sets of judged rele-
vant and nonrelevant documents respectively. Using these
as prior parameters ensures that the resulting probabilities
will be concentrated around the ratio of relevant documents
that have been discovered for topic t. This means that the
probability estimates decrease by rank and are higher for
topics that have more relevant documents.

After finding the Θ that maximizes the likelihood, we have

q∗ij =
exp(θrj(i))

1+exp(θrj(i))
. We define θ∞ = −∞, so that the proba-

bility that an unranked document is relevant is 0.
Since q∗ij is based on the rank at which a document is

retrieved rather than the identity of the document itself,
the probabilities are identical from expert to expert, e.g.
if expert E put document A at rank 1, and expert D put
document B at rank 1, we will have q∗AE = q∗BD. Therefore
we only have to solve this once for each topic.

The above model gives topic-independent probabilities for
each document. But suppose an expert who reports 90%
probability is only right 50% of the time. Its opinion should
be discounted based on its observed performance. Specifi-
cally, we want to learn a calibration function qij = Cj(q

∗
ij)

that will ensure that the predicted probabilities are tuned
to the expert’s ability to retrieve relevant documents given
the judgments that have been made to this point.

Platt’s SVM calibration method [16] fits a sigmoid func-
tion between q∗ij and the relevance judgments to obtain qij =

Cj(q
∗
ij) =

exp(Aj+Bjq∗

ij)

1+exp(Aj+Bjq∗

ij
)
. Since q∗ij is topic-independent,

we only need to learn one calibration function for each ex-
pert.

Once we have the calibration function, it is applied to
adjust the experts’ predictions to their actual performance.
The calibrated probabilities are plugged into model (2) to
find the document probabilities.

Figure 1: Conceptual diagram of our aggregation
model. Experts E1, E2 have ranked documents
A, B, C for topic T1 and documents D, E, F for topic
T2. The first step is to obtain q∗ij. Next is calibration
to true performance to find qij. Finally we obtain
pi = p(Xi = 1|qi1, qi2), · · · .

3.3 Model Summary
Our model has three components that differ by the data

they take as input and what they produce as output. A
conceptual diagram is shown in Figure 1.

1. ranks → probabilities (per system per topic). This
gives us q∗ij , expert j’s self-reported probability of the
relevance of document i. This is unsupervised; it re-
quires no labeled data (though if we have some, we use
it to set prior parameters).

2. probabilities → calibrated probabilities (per system).
This gives us qij = Cj(q

∗
ij), expert j’s calibrated prob-

ability of the relevance of document i. This is semi-
supervised; we have relevance judgments at some ranks
which we use to impute the probability of relevance at
other ranks.

3. calibrated probabilities→ document probabilities. This
gives us pi = p(Xi = 1|qi), the probability of relevance
of document i given calibrated expert probabilities qij .
This is supervised; we learn coefficients from a set of
judged documents and use those to estimate the rele-
vance of the unjudged documents.

Although the model appears rather complex, it is really
just three successive applications of logistic regression. As
such, it can be implemented in a statistical programming
language such as R in a few lines of code. The use of beta
(conjugate) priors ensures that no expensive computational
methods such as MCMC are necessary [12], so the model is
trained and applied fast enough to be used on-line. Our code
is available at http://ciir.cs.umass.edu/~carteret/.

4. EXPERIMENTS
Three hypotheses are under consideration. The first, and

most important, is that using our expert aggregation model
to predict relevance produces test collections that are robust
enough to be reusable; that is, we can trust the estimates of
confidence when we evaluate systems that did not contribute
any judgments to the pool.

The other two hypotheses relate to the improvement we
see by using better estimates of relevance than we did in our
previous work [8]. These are that (a) it takes fewer relevance



track no. topics no. runs no. judged no. rel
ad hoc 94 50 40 97,319 9,805
ad hoc 95 49 33 87,069 6,503
ad hoc 96 50 61 133,681 5,524
ad hoc 97 50 74 72,270 4,611
ad hoc 98 50 103 80,345 4,674
ad hoc 99 50 129 86,830 4,728
web 04 225 74 88,566 1,763

robust 05 50 74 37,798 6,561
terabyte 05 50 58 45,291 10,407

Table 1: Number of topics, number of runs, number
of documents judged, and number found relevant for
each of our data sets.

judgments to reach 95% confidence and (b) the accuracy of
the predictions is higher than if we were to simply assume
pi = 0.5 for all unjudged documents.

4.1 Data
We obtained full ad hoc runs submitted to TRECs 3

through 8. Each run ranks at most 1000 documents for 50
topics (49 topics for TREC 4). Additionally, we obtained
all runs from the Web track of TREC 13, the Robust2 track
of TREC 14, and the Terabyte (ad hoc) track of TREC 14.
These are the tracks that have “replaced” the ad hoc track
since its end in 1999. Statistics are shown in Table 1.

We set aside the TREC 4 (ad hoc 95) set for training,
TRECs 3 and 5–8 (ad hoc 94 and 96–99) for primary testing,
and the remaining sets for additional testing.

We use the qrels files assembled by NIST as “truth”. The
number of relevance judgments made and relevant docu-
ments found for each track are listed in Table 1.

For computational reasons, we truncate ranked lists at
100 documents. There is no reason that we could not go
deeper, but calculating variance isO(n3) and thus very time-
consuming. Because of the reciprocal rank nature of AP, we
do not lose much information by truncating at rank 100.

4.2 Algorithms
We will compare three algorithms for acquiring relevance

judgments. The baseline is a variation of TREC pooling that
we will call incremental pooling (IP). This algorithm takes
a number k as input and presents the first k documents in
rank order (without regard to topic) to be judged. It does
not estimate the relevance of unjudged documents; it simply
assumes any unjudged document is nonrelevant.

The second algorithm is that presented in Carterette et
al. [8] (Algorithm 1). Documents are selected based on how
“interesting” they are in determining whether a difference
in mean average precision exists. For this approach pi = 0.5
for all i; there is no estimation of probabilities. We will call
this MTC for minimal test collection.

The third algorithm augments MTC with updated esti-
mates of probabilities of relevance. We will call this RTC
for robust test collection. It is identical to Algorithm 1, ex-
cept that every 10th iteration we estimate pi for all unjudged
documents i using the expert aggregation model of Section 3.

RTC has smoothing (prior distribution) parameters that
must be set. We trained using the ad hoc 95 set. We limited

2“Robust” here means robust retrieval; this is different from
our goal of robust evaluation.

Algorithm 1 (MTC) Given two ranked lists and confidence
level α, predict the sign of ∆MAP .

1: pi ← 0.5 for all documents i
2: while P (∆MAP < 0) < α do
3: calculate weight wi for all unjudged documents i

(see Carterette et al. [8] for details)
4: j ← argmaxiwi

5: xj ← 1 if document j is relevant, 0 otherwise
6: pj ← xj

7: end while

the search to uniform priors with relatively high variance.
For expert aggregation, the prior parameters are α = β = 1.

4.3 Experimental Design
First, we want to know whether we can augment a set

of relevance judgments with a set of relevance probabilities
in order to reuse the judgments to evaluate a new set of
systems. For each experimental trial:

1. Pick a random subset of k runs.

2. From those k, pick an initial c < k to evaluate.

3. Run RTC to 95% confidence on the initial c.

4. Using the model from Section 3, estimate the proba-
bilities of relevance for all documents retrieved by all
k runs.

5. Calculate EMAP for all k runs, and P (∆MAP < 0)
for all pairs of runs.

We do the same for MTC, but omit step 4. Note that af-
ter evaluating the first c systems, we make no additional
relevance judgments.

To put our method to the test, we selected c = 2: we will
build a set of judgments from evaluating only two initial
systems. We will then generalize to a set of k = 10 (of
which those two are a subset).

As we run more trials, we obtain the data we need to test
all three of our hypotheses.

4.4 Experimental Evaluation
Recall that a set of judgments is robust if the accuracy of

the predictions it makes is at least its estimated confidence.
One way to evaluate robustness is to bin pairs by their confi-
dence, then calculate the accuracy over all the pairs in each
bin. We would like the accuracy to be no less than the lowest
confidence score in the bin, but preferably higher.

Since summary statistics are useful, we devised the fol-
lowing metric. Suppose we are a bookmaker taking bets
on whether ∆MAP < 0. We use RTC or MTC to set the
odds O = P (∆MAP<0)

1−P (∆MAP<0)
. Suppose a bettor wagers $1 on

∆MAP ≥ 0. If it turns out that ∆MAP < 0, we win the
dollar. Otherwise, we pay out O. If our confidence esti-
mates are perfectly accurate, we break even. If confidence
is greater than accuracy, we lose money; we win if accuracy
is greater than confidence.

Counterintuitively, the most desirable outcome is break-
ing even: if we lose money, we cannot trust the confidence
estimates, but if we win money, we have either underesti-
mated confidence or judged more documents than necessary.
However, the cost of not being able to trust the confidence
estimates is much higher than the cost of extra relevance
judgments, so we will treat positive outcomes as “good”.



The amount we win on each pairwise comparison i is:

Wi = yi − (1− yi)
Pi

1− Pi

=
yi − Pi

1− Pi

yi = 1 if ∆MAP < 0 and 0 otherwise, and Pi = P (∆MAP <
0). The summary statistic is W , the mean of Wi.

Note that as Pi increases, the more we lose for being
wrong. This is as it should be: the penalty should be great
for missing the high probability predictions. However, since
our losses grow without bound as probabilities approach 1,
we cap −Wi at 100.

For our hypothesis that RTC requires fewer judgments
than MTC, we are interested in the number of judgments
needed to reach 95% confidence on the first pair of systems.
The median is more interesting than the mean: most pairs
require a few hundred judgments, but a few pairs require sev-
eral thousand. The distribution is therefore highly skewed,
and the mean strongly affected by those outliers.

Finally, for our hypothesis that RTC is more accurate
than MTC, we will look at Kendall’s τ correlation between
a ranking of k systems by a small set of judgments and the
true ranking using the full set of judgments. Kendall’s τ ,
a nonparametric statistic based on pairwise swaps between
two lists, is a standard evaluation for this type of study.
It ranges from −1 (perfectly anti-correlated) to 1 (rankings
identical), with 0 meaning that half of the pairs are swapped.
As we touched on in the introduction, though, an accuracy
measure like rank correlation is not a good evaluation of
reusability. We include it for completeness.

4.4.1 Hypothesis Testing

Running multiple trials allows the use of statistical hy-
pothesis testing to compare algorithms. Using the same sets
of systems allows the use of paired tests.

As we stated above, we are more interested in the median
number of judgments than the mean. A test for difference
in median is the Wilcoxon sign rank test. We can also use
a paired t-test to test for a difference in mean.

For rank correlation, we can use a paired t-test to test for
a difference in τ .

5. RESULTS AND ANALYSIS
The comparison between MTC and RTC is shown in Ta-

ble 2. With MTC and uniform probabilities of relevance, the
results are far from robust. We cannot reuse the relevance
judgments with much confidence. But with RTC, the re-
sults are very robust. There is a slight dip in accuracy when
confidence gets above 0.95; nonetheless, the confidence pre-
dictions are trustworthy. Mean Wi shows that RTC is much
closer to 0 than MTC. The distribution of confidence scores
shows that at least 80% confidence is achieved more than
35% of the time, indicating that neither algorithm is being
too conservative in its confidence estimates. The confidence
estimates are rather low overall; that is because we have
built a test collection from only two initial systems. Re-
call from Section 1 that we cannot require (or even expect)
a minimum level of confidence when we generalize to new
systems.

More detailed results for both algorithms are shown in
Figure 2. The solid line is the ideal result that would give
W = 0. RTC is on or above this line at all points until
confidence reaches about 0.97. After that there is a slight
dip in accuracy which we discuss below. Note that both

MTC RTC
confidence % in bin accuracy % in bin accuracy
0.5− 0.6 33.7% 61.7% 28.6% 61.9%
0.6− 0.7 18.1% 73.1% 20.1% 76.3%
0.7− 0.8 10.4% 70.1% 15.5% 78.0%
0.8− 0.9 9.4% 69.0% 12.1% 84.9%
0.9− 0.95 7.3% 78.0% 6.6% 93.1%
0.95− 0.99 17.9% 70.4% 12.4% 93.4%

1.0 3.3% 68.3% 4.7% 98.9%

W −5.34 −0.39
median judged 251 235

mean τ 0.393 0.555

Table 2: Confidence that P (∆MAP < 0) and accu-
racy of prediction when generalizing a set of rel-
evance judgments acquired using MTC and RTC.
Each bin contains over 1,000 trials from the adhoc
3, 5–8 sets. RTC is much more robust than MTC.
W is defined in Section 4.4; closer to 0 is better.
Median judged is the number of judgments to reach
95% confidence on the first two systems. Mean τ is
the average rank correlation for all 10 systems.
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Figure 2: Confidence vs. accuracy of MTC and
RTC. The solid line is the perfect result that would
give W = 0; performance should be on or above this
line. Each point represents at least 500 pairwise
comparisons.

algorithms are well above the line up to around confidence
0.7. This is because the baseline performance on these data
sets is high; it is quite easy to achieve 75% accuracy doing
very little work [7].

Number of Judgments: The median number of judg-
ments required by MTC to reach 95% confidence on the first
two systems is 251, an average of 5 per topic. The median
required by RTC is 235, about 4.7 per topic. Although the
numbers are close, RTC’s median is significantly lower by a
paired Wilcoxon test (p < 0.0001). For comparison, a pool
of depth 100 would result in a minimum of 5,000 judgments
for each pair.

The difference in means is much greater. MTC required a
mean of 823 judgments, 16 per topic, while RTC required a
mean of 502, 10 per topic. (Recall that means are strongly
skewed by a few pairs that take thousands of judgments.)
This difference is significant by a paired t-test (p < 0.0001).



Ten percent of the sets resulted in 100 or fewer judgments
(less than two per topic). Performance on these is very high:
W = 0.41, and 99.7% accuracy when confidence is at least
0.9. This shows that even tiny collections can be reusable.
For the 50% of sets with more than 235 judgments, accuracy
is 93% when confidence is at least 0.9.

Rank Correlation: MTC and RTC both rank the 10
systems by EMAP (Eq. (1)) calculated using their respective
probability estimates. The mean τ rank correlation between
true MAP and EMAP is 0.393 for MTC and 0.555 for RTC.
This difference is significant by a paired t-test (p < 0.0001).
Note that we do not expect the τ correlations to be high,
since we are ranking the systems with so few relevance judg-
ments. It is more important that we estimate confidence in
each pairwise comparison correctly.

We ran IP for the same number of judgments that MTC
took for each pair, then ranked the systems by MAP us-
ing only those judgments (all unjudged documents assumed
nonrelevant). We calculated the τ correlation to the true
ranking. The mean τ correlation is 0.398, which is not sig-
nificantly different from MTC, but is significantly lower than
RTC. Using uniform estimates of probability is indistin-
guishable from the baseline, whereas estimating relevance by
expert aggregation boosts performance a great deal: nearly
40% over both MTC and IP.

Overfitting: It is possible to “overfit”: if too many judg-
ments come from the first two systems, the variance is re-
duced too much, and the confidence estimates become un-
reliable. We saw this in Table 2 and Figure 2 where RTC
exhibits a dip in accuracy when confidence is around 97%.
In fact, the number of judgments made prior to a wrong
prediction is over 50% greater than the number made prior
to a correct prediction.

Overfitting is difficult to quantify exactly, because mak-
ing more relevance judgments does not always cause it: at
higher confidence levels, more relevance judgments are made,
and as Table 2 shows, accuracy is greater at those higher
confidences. Obviously having more relevance judgments
should increase both confidence and accuracy; the differ-
ence seems to be when one system has a great deal more
judgments than the other.

Pairwise Comparisons: Our pairwise comparisons fall
into one of three groups:

1. the two original runs from which relevance judgments
are acquired;

2. one of the original runs vs. one of the new runs;

3. two new runs.

Table 3 shows confidence vs. accuracy results for each of
these three groups. Interestingly, performance is worst when
comparing one of the original runs to one of the additional
runs. This is most likely due to a large difference in the
number of judgments affecting the variance of ∆MAP . Nev-
ertheless, performance is quite good on all three subsets.

Worst Case: The case intuitively most likely to pro-
duce an error is when the two systems being compared have
retrieved very few documents in common. If we want the
judgments to be reusable, we should to be able to generalize
even to runs that are very different from the ones used to
acquire the relevance judgments.

A simple measure of similarity of two runs is the average
percentage of documents they retrieved in common for each
topic [2]. We calculated this for all pairs, then looked at per-
formance on pairs with low similarity. Results are shown in

accuracy
confidence two original one original no original
0.5− 0.6 – 48.1% 62.8%
0.6− 0.7 – 57.1% 79.2%
0.7− 0.8 – 67.9% 81.7%
0.8− 0.9 – 82.2% 86.3%
0.9− 0.95 95.9% 93.7% 92.6%
0.95− 0.99 96.2% 92.5% 93.1%

1.0 100% 98.0% 99.1%

W −1.11 −0.87 −0.27

Table 3: Confidence vs. accuracy of RTC when com-
paring the two original runs, one original run and
one new run, and two new runs. RTC is robust in
all three cases.

accuracy when similar
confidence 0− 0.1 0.1− 0.2 0.2− 0.3
0.5− 0.6 68.4% 63.1% 61.4%
0.6− 0.7 84.2% 78.6% 76.6%
0.7− 0.8 82.0% 79.8% 78.9%
0.8− 0.9 93.6% 83.3% 82.1%
0.9− 0.95 99.3% 92.7% 92.4%
0.95− 0.99 98.7% 93.4% 93.3%

1.0 99.9% 97.9% 98.1%

W 0.44 −0.45 −0.49

Table 4: Confidence vs. accuracy of RTC when a
pair of systems retrieved 0–30% documents in com-
mon (broken out into 0%–10%, 10%–20%, and 20%–
30%). RTC is robust in all three cases.

Table 4. Performance is in fact very robust even when sim-
ilarity is low. When the two runs share very few documents
in common, W is actually positive.

MTC and IP both performed quite poorly in these cases.
When the similarity was between 0 and 10%, both MTC
and IP correctly predicted ∆MAP only 60% of the time,
compared to an 87.6% success rate for RTC.

By Data Set: All the previous results have only been
on the ad hoc collections. We did the same experiments on
our additional data sets, and broke out the results by data
set to see how performance varies. The results in Table 5
show everything about each set, including binned accuracy,
W , mean τ , and median number of judgments to reach 95%
confidence on the first two systems. The results are highly
consistent from collection to collection, suggesting that our
method is not overfitting to any particular data set.

6. CONCLUSIONS AND FUTURE WORK
In this work we have offered the first formal definition of

the common idea of “reusability” of a test collection and
presented a model that is able to achieve reusability with
very small sets of relevance judgments. Table 2 and Figure 2
together show how biased a small set of judgments can be:
MTC is dramatically overestimating confidence and is much
less accurate than RTC, which is able to remove the bias to
give a robust evaluation.

The confidence estimates of RTC, in addition to being ac-
curate, provide a guide for obtaining additional judgments:
focus on judging documents from the lowest-confidence com-
parisons. In the long run, we see small sets of relevance judg-



accuracy
confidence ad hoc 94 ad hoc 96 ad hoc 97 ad hoc 98 ad hoc 99 web 04 robust 05 terabyte 05
0.5− 0.6 64.1% 61.8% 62.2% 62.0% 59.4% 64.3% 61.5% 61.6%
0.6− 0.7 76.1% 77.8% 74.5% 78.2% 74.3% 78.1% 75.9% 75.9%
0.7− 0.8 75.2% 78.9% 77.6% 80.0% 78.6% 82.6% 77.5% 80.4%
0.8− 0.9 83.2% 85.5% 84.6% 84.9% 86.8% 84.5% 86.7% 87.7%
0.9− 0.95 93.0% 93.6% 92.8% 93.7% 92.6% 94.2% 93.9% 94.2%
0.95− 0.99 93.1% 94.3% 93.1% 93.7% 92.8% 95.0% 93.9% 91.6%

1.0 99.2% 96.8% 98.7% 99.5% 99.6% 100% 99.2% 98.3%

W -0.34 -0.34 -0.48 -0.35 -0.44 -0.07 -0.41 -0.67
median judged 235 276 243 213 179 448 310 320

mean τ 0.538 0.573 0.556 0.579 0.532 0.596 0.565 0.574

Table 5: Accuracy, W , mean τ , and median number of judgments for all 8 testing sets. The results are highly
consistent across data sets.

ments being shared by researchers, each group contribut-
ing a few more judgments to gain more confidence about
their particular systems. As time goes on, the number of
judgments grows until there is 100% confidence in every
evaluation—and there is a full test collection for the task.

We see further use for this method in scenarios such as
web retrieval in which the corpus is frequently changing. It
could be applied to evaluation on a dynamic test collection
as defined by Soboroff [18].

The model we presented in Section 4 is by no means the
only possibility for creating a robust test collection. A sim-
pler expert aggregation model might perform as well or bet-
ter (though all our efforts to simplify failed). In addition to
expert aggregation, we could estimate probabilities by look-
ing at similarities between documents. This is an obvious
area for future exploration.

Additionally, it will be worthwhile to investigate the issue
of overfitting: the circumstances it occurs under and what
can be done to prevent it. In the meantime, capping confi-
dence estimates at 95% is a “hack” that solves the problem.

We have many more experimental results that we unfor-
tunately did not have space for but that reinforce the notion
that RTC is highly robust: with just a few judgments per
topic, we can accurately assess the confidence in any pair-
wise comparison of systems.
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