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Abstract

Traditional noun phrase coreference res-

olution systems represent features only

of pairs of noun phrases. In this paper,

we propose a machine learning method

that enables features over sets of noun

phrases, resulting in a first-order proba-

bilistic model for coreference. We out-

line a set of approximations that make this

approach practical, and apply our method

to the ACE coreference dataset, achiev-

ing a 45% error reduction over a com-

parable method that only considers fea-

tures of pairs of noun phrases. This result

demonstrates an example of how a first-

order logic representation can be incorpo-

rated into a probabilistic model and scaled

efficiently.

1 Introduction

Noun phrase coreference resolution is the problem

of clustering noun phrases into anaphoric sets. A

standard machine learning approach is to perform a

set of independent binary classifications of the form

“Is mention a coreferent with mention b?”

This approach of decomposing the problem into

pairwise decisions presents at least two related diffi-

culties. First, it is not clear how best to convert the

set of pairwise classifications into a disjoint cluster-

ing of noun phrases. The problem stems from the

transitivity constraints of coreference: If a and b are

coreferent, and b and c are coreferent, then a and c

must be coreferent.

This problem has recently been addressed by a

number of researchers. A simple approach is to per-

form the transitive closure of the pairwise decisions.

However, as shown in recent work (McCallum and

Wellner, 2003; Singla and Domingos, 2005), bet-

ter performance can be obtained by performing rela-

tional inference to directly consider the dependence

among a set of predictions. For example, McCal-

lum and Wellner (2005) apply a graph partitioning

algorithm on a weighted, undirected graph in which

vertices are noun phrases and edges are weighted by

the pairwise score between noun phrases.

A second and less studied difficulty is that the

pairwise decomposition restricts the feature set to

evidence about pairs of noun phrases only. This re-

striction can be detrimental if there exist features of

sets of noun phrases that cannot be captured by a

combination of pairwise features. As a simple exam-

ple, consider prohibiting coreferent sets that consist

only of pronouns. That is, we would like to require

that there be at least one antecedent for a set of pro-

nouns. The pairwise decomposition does not make

it possible to capture this constraint.

In general, we would like to construct arbitrary

features over a cluster of noun phrases using the

full expressivity of first-order logic. Enabling this

sort of flexible representation within a statistical

model has been the subject of a long line of research

on first-order probabilistic models (Gaifman, 1964;

Halpern, 1990; Paskin, 2002; Poole, 2003; Richard-

son and Domingos, 2006).

Conceptually, a first-order probabilistic model

can be described quite compactly. A configura-

tion of the world is represented by a set of predi-
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Figure 1: An example noun coreference graph in

which vertices are noun phrases and edge weights

are proportional to the probability that the two nouns

are coreferent. Partitioning such a graph into disjoint

clusters corresponds to performing coreference res-

olution on the noun phrases.

cates, each of which has an associated real-valued

parameter. The likelihood of each configuration of

the world is proportional to a combination of these

weighted predicates. In practice, however, enu-

merating all possible configurations, or even all the

predicates of one configuration, can result in in-

tractable combinatorial growth (de Salvo Braz et al.,

2005; Culotta and McCallum, 2006).

In this paper, we present a practical method to per-

form training and inference in first-order models of

coreference. We empirically validate our approach

on the ACE coreference dataset, showing that the

first-order features can lead to an 45% error reduc-

tion.

2 Pairwise Model

In this section we briefly review the standard pair-

wise coreference model. Given a pair of noun

phrases xij = {xi, xj}, let the binary random vari-

able yij be 1 if xi and xj are coreferent. Let F =
{fk(xij , y)} be a set of features over xij . For exam-

ple, fk(xij , y) may indicate whether xi and xj have

the same gender or number. Each feature fk has an

associated real-valued parameter λk. The pairwise

model is

p(yij |xij) =
1

Zxij

exp
∑

k

λkfk(xij , yij)

where Zxij
is a normalizer that sums over the two

settings of yij .

This is a maximum-entropy classifier (i.e. logis-

tic regression) in which p(yij |xij) is the probability

that xi and xj are coreferent. To estimate Λ = {λk}
from labeled training data, we perform gradient as-

cent to maximize the log-likelihood of the labeled

data.

Two critical decisions for this method are (1) how

to sample the training data, and (2) how to combine

the pairwise predictions at test time. Systems of-

ten perform better when these decisions complement

each other.

Given a data set in which noun phrases have been

manually clustered, the training data can be cre-

ated by simply enumerating over each pair of noun

phrases xij , where yij is true if xi and xj are in

the same cluster. However, this approach generates

a highly unbalanced training set, with negative ex-

amples outnumbering positive examples. Instead,

Soon et al. (2001) propose the following sampling

method: Scan the document from left to right. Com-

pare each noun phrase xi to each preceding noun

phrase xj , scanning from right to left. For each pair

xi, xj , create a training instance 〈xij , yij〉, where yij

is 1 if xi and xj are coreferent. The scan for xj ter-

minates when a positive example is constructed, or

the beginning of the document is reached. This re-

sults in a training set that has been pruned of distant

noun phrase pairs.

At testing time, we can construct an undirected,

weighted graph in which vertices correspond to

noun phrases and edge weights are proportional to

p(yij |xij). The problem is then to partition the graph

into clusters with high intra-cluster edge weights and

low inter-cluster edge weights. An example of such

a graph is shown in Figure 1.

Any partitioning method is applicable here; how-

ever, perhaps most common for coreference is to

perform greedy clustering guided by the word or-

der of the document to complement the sampling

method described above (Soon et al., 2001). More

precisely, scan the document from left-to-right, as-

signing each noun phrase xi to the same cluster

as the closest preceding noun phrase xj for which

p(yij |xij) > δ, where δ is some classification

threshold (typically 0.5). Note that this method con-

trasts with standard greedy agglomerative cluster-

ing, in which each noun phrase would be assigned

to the most probable cluster according to p(yij |xij).



Choosing the closest preceding phrase is common

because nearby phrases are a priori more likely to

be coreferent.

We refer to the training and inference methods de-

scribed in this section as the Pairwise Model.

3 First-Order Logic Model

We propose augmenting the Pairwise Model to

enable classification decisions over sets of noun

phrases.

Given a set of noun phrases x
j = {xi}, let the bi-

nary random variable yj be 1 if all the noun phrases

xi ∈ x
j are coreferent. The features fk and weights

λk are defined as before, but now the features can

represent arbitrary attributes over the entire set x
j .

This allows us to use the full flexibility of first-order

logic to construct features about sets of nouns. The

First-Order Logic Model is

p(yj |x
j) =

1

Zxj

exp
∑

k

λkfk(x
j , yj)

where Zxj is a normalizer that sums over the two

settings of yj .

Note that this model gives us the representational

power of recently proposed Markov logic networks

(Richardson and Domingos, 2006); that is, we can

construct arbitrary formulae in first-order logic to

characterize the noun coreference task, and can learn

weights for instantiations of these formulae. How-

ever, naively grounding the corresponding Markov

logic network results in a combinatorial explosion of

variables. Below we outline methods to scale train-

ing and prediction with this representation.

As in the Pairwise Model, we must decide how to

sample training examples and how to combine inde-

pendent classifications at testing time. It is impor-

tant to note that by moving to the First-Order Logic

Model, the number of possible predictions has in-

creased exponentially. In the Pairwise Model, the

number of possible y variables is O(|x|2), where

x is the set of noun phrases. In the First-Order

Logic Model, the number of possible y variables is

O(2|x|): There is a y variable for each possible el-

ement of the powerset of x. Of course, we do not

enumerate this set; rather, we incrementally instan-

tiate y variables as needed during prediction.

A simple method to generate training examples

is to sample positive and negative cluster examples

uniformly at random from the training data. Positive

examples are generated by first sampling a true clus-

ter, then sampling a subset of that cluster. Negative

examples are generated by sampling two positive ex-

amples and merging them into the same cluster.

At testing time, we perform standard greedy ag-

glomerative clustering, where the score for each

merger is proportional to the probability of the

newly formed clustering according to the model.

Clustering terminates when there exists no addi-

tional merge that improves the probability of the

clustering.

We refer to the system described in this section as

First-Order Uniform.

4 Error-driven and Rank-based training

of the First-Order Model

In this section we propose two enhancements to

the training procedure for the First-Order Uniform

model.

First, because each training example consists of

a subset of noun phrases, the number of possible

training examples we can generate is exponential in

the number of noun phrases. We propose an error-

driven sampling method that generates training ex-

amples from errors the model makes on the training

data. The algorithm is as follows: Given initial pa-

rameters Λ, perform greedy agglomerative cluster-

ing on training document i until an incorrect cluster

is formed. Update the parameter vector according to

this mistake, then repeat for the next training docu-

ment. This process is repeated for a fixed number of

iterations.

Exactly how to update the parameter vector is ad-

dressed by the second enhancement. We propose

modifying the optimization criterion of training to

perform ranking rather than classification of clus-

ters. Consider a training example cluster with a neg-

ative label, indicating that not all of the noun phrases

it contains are coreferent. A classification training

algorithm will “penalize” all the features associated

with this cluster, since they correspond to a negative

example. However, because there may exists subsets

of the cluster that are coreferent, features represent-

ing these positive subsets may be unjustly penalized.

To address this problem, we propose constructing

training examples consisting of one negative exam-
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Figure 2: An example noun coreference factor graph

for the Pairwise Model in which factors fc model the

coreference between two nouns, and ft enforce the

transitivity among related decisions. The number of

y variables increases quadratically in the number of

x variables.

ple and one “nearby” positive example. In particular,

when agglomerative clustering incorrectly merges

two clusters, we select the resulting cluster as the

negative example, and select as the positive example

a cluster that can be created by merging other exist-

ing clusters.1 We then update the weight vector so

that the positive example is assigned a higher score

than the negative example. This approach allows

the update to only penalize the difference between

the two features of examples, thereby not penaliz-

ing features representing any overlapping coreferent

clusters.

To implement this update, we use MIRA (Mar-

gin Infused Relaxed Algorithm), a relaxed, online

maximum margin training algorithm (Crammer and

Singer, 2003). It updates the parameter vector with

two constraints: (1) the positive example must have

a higher score by a given margin, and (2) the change

to Λ should be minimal. This second constraint is

to reduce fluctuations in Λ. Let s+(Λ,xj) be the

unnormalized score for the positive example and

s−(Λ,xk) be the unnormalized score of the neg-

ative example. Each update solves the following

1Of the possible positive examples, we choose the one with
the highest probability under the current model to guard against
large fluctuations in parameter updates
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Figure 3: An example noun coreference factor graph

for the First-Order Model in which factors fc model

the coreference between sets of nouns, and ft en-

force the transitivity among related decisions. Here,

the additional node y123 indicates whether nouns

{x1, x2, x3} are all coreferent. The number of y

variables increases exponentially in the number of

x variables.

quadratic program:

Λt+1 = argmin
Λ

||Λt − Λ||2

s.t.

s+(Λ,xj) − s−(Λ,xk) ≥ 1

In this case, MIRA with a single constraint can be

efficiently solved in one iteration of the Hildreth and

D’Esopo method (Censor and Zenios, 1997). Ad-

ditionally, we average the parameters calculated at

each iteration to improve convergence.

We refer to the system described in this section as

First-Order MIRA.

5 Probabilistic Interpretation

In this section, we describe the Pairwise and First-

Order models in terms of the factor graphs they ap-

proximate.

For the Pairwise Model, a corresponding undi-

rected graphical model can be defined as

P (y|x) =
1

Zx

∏

yij∈y

fc(yij , xij)

∏

yij ,yjk∈y

ft(yij , yj,k, yik, xij , xjk, xik)



where Zx is the input-dependent normalizer and fac-

tor fc parameterizes the pairwise noun phrase com-

patibility as fc(yij , xij) = exp(
∑

k λkfk(yij , xij)).
Factor ft enforces the transitivity constraints by

ft(·) = −∞ if transitivity is not satisfied, 1 oth-

erwise. This is similar to the model presented in

McCallum and Wellner (2005). A factor graph for

the Pairwise Model is presented in Figure 2 for three

noun phrases.

For the First-Order model, an undirected graphi-

cal model can be defined as

P (y|x) =
1

Zx

∏

yj∈y

fc(yj ,x
j)

∏

yj∈y

ft(yj ,x
j)

where Zx is the input-dependent nor-

malizer and factor fc parameterizes the

cluster-wise noun phrase compatibility as

fc(yj ,x
j) = exp(

∑
k λkfk(yj , x

j)). Again,

factor ft enforces the transitivity constraints by

ft(·) = −∞ if transitivity is not satisfied, 1 other-

wise. Here, transitivity is a bit more complicated,

since it also requires that if yj = 1, then for any

subset x
k ⊆ x

j , yk = 1. A factor graph for the

First-Order Model is presented in Figure 3 for three

noun phrases.

The methods described in Sections 2, 3 and 4 can

be viewed as estimating the parameters of each fac-

tor fc independently. This approach can therefore

be viewed as a type of piecewise approximation of

exact parameter estimation in these models (Sutton

and McCallum, 2005). Here, each fc is a “piece”

of the model trained independently. These pieces

are combined at prediction time using clustering al-

gorithms to enforce transitivity. Sutton and McCal-

lum (2005) show that such a piecewise approxima-

tion can be theoretically justified as minimizing an

upper bound of the exact loss function.

6 Experiments

6.1 Data

We apply our approach to the noun coreference ACE

2004 data, containing 443 news documents with

28,135 noun phrases to be coreferenced. 336 doc-

uments are used for training, and the remainder for

testing. All entity types are candidates for corefer-

ence (pronouns, named entities, and nominal enti-

ties). We use the true entity segmentation, and parse

each sentence in the corpus using a phrase-structure

grammar, as is common for this task.

6.2 Features

We follow Soon et al. (2001) and Ng and Cardie

(2002) to generate most of our features for the Pair-

wise Model. These include:

• Match features - Check whether gender, num-

ber, head text, or entire phrase matches

• Mention type (pronoun, name, nominal)

• Aliases - Heuristically decide if one noun is the

acronym of the other

• Apposition - Heuristically decide if one noun is

in apposition to the other

• Relative Pronoun - Heuristically decide if one

noun is a relative pronoun referring to the other.

• Wordnet features - Use Wordnet to decide if

one noun is a hypernym, synonym, or antonym

of another, or if they share a hypernym.

• Both speak - True if both contain an adjacent

context word that is a synonym of “said.” This

is a domain-specific feature that helps for many

newswire articles.

• Modifiers Match - for example, in the phrase

“President Clinton”, “President” is a modifier

of “Clinton”. This feature indicates if one noun

is a modifier of the other, or they share a modi-

fier.

• Substring - True if one noun is a substring of

the other (e.g. “Egypt” and “Egyptian”).

The First-Order Model includes the following fea-

tures:

• Enumerate each pair of noun phrases and com-

pute the features listed above. All-X is true if

all pairs share a feature X , Most-True-X is true

if the majority of pairs share a feature X , and

Most-False-X is true if most of the pairs do not

share feature X .



• Use the output of the Pairwise Model for each

pair of nouns. All-True is true if all pairs are

predicted to be coreferent, Most-True is true if

most pairs are predicted to be coreferent, and

Most-False is true if most pairs are predicted

to not be coreferent. Additionally, Max-True

is true if the maximum pairwise score is above

threshold, and Min-True if the minimum pair-

wise score is above threshold.

• Cluster Size indicates the size of the cluster.

• Count how many phrases in the cluster are

of each mention type (name, pronoun, nom-

inal), number (singular/plural) and gender

(male/female). The features All-X and Most-

True-X indicate how frequent each feature is

in the cluster. This feature can capture the soft

constraint such that no cluster consists only of

pronouns.

In addition to the listed features, we also include

conjunctions of size 2, for example “Genders match

AND numbers match”.

6.3 Evaluation

We use the B3 algorithm to evaluate the predicted

coreferent clusters (Amit and Baldwin, 1998). B3

is common in coreference evaluation and is similar

to the precision and recall of coreferent links, ex-

cept that systems are rewarded for singleton clus-

ters. For each noun phrase xi, let ci be the number

of mentions in xi’s predicted cluster that are in fact

coreferent with xi (including xi itself). Precision for

xi is defined as ci divided by the number of noun

phrases in xi’s cluster. Recall for xi is defined as

the ci divided by the number of mentions in the gold

standard cluster for xi. F1 is the harmonic mean of

recall and precision.

6.4 Results

In addition to Pairwise, First-Order Uniform, and

First-Order MIRA, we also compare against Pair-

wise MIRA, which differs from First-Order MIRA

only by the fact that it is restricted to pairwise fea-

tures.

Table 1 suggests both that first-order features and

error-driven training can greatly improve perfor-

mance. The First-Order Model outperforms the Pair-

F1 Prec Rec

First-Order MIRA 79.3 86.7 73.2

Pairwise MIRA 72.5 92.0 59.8

First-Order Uniform 69.2 79.0 61.5

Pairwise 62.4 62.5 62.3

Table 1: B3 results for ACE noun phrase corefer-

ence. FIRST-ORDER MIRA is our proposed model

that takes advantage of first-order features of the

data and is trained with error-driven and rank-based

methods. We see that both the first-order features

and the training enhancements improve performance

consistently.

wise Model in F1 measure for both standard train-

ing and error-driven training. We attribute some of

this improvement to the capability of the First-Order

model to capture features of entire clusters that may

indicate some phrases are not coreferent. Also, we

attribute the gains from error-driven training to the

fact that training examples are generated based on

errors made on the training data. (However, we

should note that there are also small differences in

the feature sets used for error-driven and standard

training results.)

Error analysis indicates that often noun xi is cor-

rectly not merged with a cluster x
j when x

j has a

strong internal coherence. For example, if all 5 men-

tions of France in a document are string identical,

then the system will be extremely cautious of merg-

ing a noun that is not equivalent to France into x
j ,

since this will turn off the “All-String-Match” fea-

ture for cluster x
j .

To our knowledge, the best results on this dataset

were obtained by the meta-classification scheme of

Ng (2005). Although our train-test splits may differ

slightly, the best B-Cubed F1 score reported in Ng

(2005) is 69.3%, which is considerably lower than

the 79.3% obtained with our method. Also note that

the Pairwise baseline obtains results similar to those

in Ng and Cardie (2002).

7 Related Work

There has been a recent interest in training methods

that enable the use of first-order features (Paskin,

2002; Daumé III and Marcu, 2005b; Richardson

and Domingos, 2006). Perhaps the most related is



“learning as search optimization” (LASO) (Daumé

III and Marcu, 2005b; Daumé III and Marcu,

2005a). Like the current paper, LASO is also an

error-driven training method that integrates predic-

tion and training. However, whereas we explic-

itly use a ranking-based loss function, LASO uses

a binary classification loss function that labels each

candidate structure as correct or incorrect. Thus,

each LASO training example contains all candidate

predictions, whereas our training examples contain

only the highest scoring incorrect prediction and the

highest scoring correct prediction. Our experiments

show the advantages of this ranking-based loss func-

tion. Additionally, we provide an empirical study to

quantify the effects of different example generation

and loss function decisions.

Collins and Roark (2004) present an incremental

perceptron algorithm for parsing that uses “early up-

date” to update the parameters when an error is en-

countered. Our method uses a similar “early update”

in that training examples are only generated for the

first mistake made during prediction. However, they

do not investigate rank-based loss functions.

Others have attempted to train global scoring

functions using Gibbs sampling (Finkel et al., 2005),

message propagation, (Bunescu and Mooney, 2004;

Sutton and McCallum, 2004), and integer linear pro-

gramming (Roth and Yih, 2004). The main distinc-

tions of our approach are that it is simple to imple-

ment, not computationally intensive, and adaptable

to arbitrary loss functions.

There have been a number of machine learning

approaches to coreference resolution, traditionally

factored into classification decisions over pairs of

nouns (Soon et al., 2001; Ng and Cardie, 2002).

Nicolae and Nicolae (2006) combine pairwise clas-

sification with graph-cut algorithms. Luo et al.

(2004) do enable features between mention-cluster

pairs, but do not perform the error-driven and rank-

ing enhancements proposed in our work. Denis and

Baldridge (2007) use a ranking loss function for pro-

noun coreference; however the examples are still

pairs of pronouns, and the example generation is not

error driven. Ng (2005) learns a meta-classifier to

choose the best prediction from the output of sev-

eral coreference systems. While in theory a meta-

classifier can flexibly represent features, they do not

explore features using the full flexibility of first-

order logic. Also, their method is neither error-

driven nor rank-based.

McCallum and Wellner (2003) use a conditional

random field that factors into a product of pairwise

decisions about pairs of nouns. These pairwise de-

cisions are made collectively using relational infer-

ence; however, as pointed out in Milch et al. (2004),

this model has limited representational power since

it does not capture features of entities, only of pairs

of mention. Milch et al. (2005) address these issues

by constructing a generative probabilistic model,

where noun clusters are sampled from a generative

process. Our current work has similar representa-

tional flexibility as Milch et al. (2005) but is discrim-

inatively trained.

8 Conclusions and Future Work

We have presented learning and inference proce-

dures for coreference models using first-order fea-

tures. By relying on sampling methods at training

time and approximate inference methods at testing

time, this approach can be made scalable. This re-

sults in a coreference model that can capture features

over sets of noun phrases, rather than simply pairs of

noun phrases.

This is an example of a model with extremely

flexible representational power, but for which exact

inference is intractable. The simple approximations

we have described here have enabled this more flex-

ible model to outperform a model that is simplified

for tractability.

A short-term extension would be to consider fea-

tures over entire clusterings, such as the number of

clusters. This could be incorporated in a ranking

scheme, as in Ng (2005).

Future work will extend our approach to a wider

variety of tasks. The model we have described here

is specific to clustering tasks; however a similar for-

mulation could be used to approach a number of lan-

guage processing tasks, such as parsing and relation

extraction. These tasks could benefit from first-order

features, and the present work can guide the approx-

imations required in those domains.

Additionally, we are investigating more sophis-

ticated inference algorithms that will reduce the

greediness of the search procedures described here.
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