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1.1 Introduction

Relational data has two characteristics: first, statistical dependencies exist between

the entities we wish to model, and second, each entity often has a rich set of features

that can aid classification. For example, when classifying Web documents, the

page’s text provides much information about the class label, but hyperlinks define

a relationship between pages that can improve classification [Taskar et al., 2002].

Graphical models are a natural formalism for exploiting the dependence structure

among entities. Traditionally, graphical models have been used to represent the

joint probability distribution p(y,x), where the variables y represent the attributes

of the entities that we wish to predict, and the input variables x represent our

observed knowledge about the entities. But modeling the joint distribution can

lead to difficulties when using the rich local features that can occur in relational

data, because it requires modeling the distribution p(x), which can include complex

dependencies. Modeling these dependencies among inputs can lead to intractable

models, but ignoring them can lead to reduced performance.

A solution to this problem is to directly model the conditional distribution p(y|x),

which is sufficient for classification. This is the approach taken by conditional ran-

dom fields [Lafferty et al., 2001]. A conditional random field is simply a conditional

distribution p(y|x) with an associated graphical structure. Because the model is
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conditional, dependencies among the input variables x do not need to be explicitly

represented, affording the use of rich, global features of the input. For example,

in natural language tasks, useful features include neighboring words and word bi-

grams, prefixes and suffixes, capitalization, membership in domain-specific lexicons,

and semantic information from sources such as WordNet. Recently there has been

an explosion of interest in CRFs, with successful applications including text process-

ing [Taskar et al., 2002, Peng and McCallum, 2004, Settles, 2005, Sha and Pereira,

2003], bioinformatics [Sato and Sakakibara, 2005, Liu et al., 2005], and computer

vision [He et al., 2004, Kumar and Hebert, 2003].

This chapter is divided into two parts. First, we present a tutorial on current

training and inference techniques for conditional random fields. We discuss the

important special case of linear-chain CRFs, and then we generalize these to

arbitrary graphical structures. We include a brief discussion of techniques for

practical CRF implementations.

Second, we present an example of applying a general CRF to a practical relational

learning problem. In particular, we discuss the problem of information extraction,

that is, automatically building a relational database from information contained

in unstructured text. Unlike linear-chain models, general CRFs can capture long

distance dependencies between labels. For example, if the same name is mentioned

more than once in a document, all mentions probably have the same label, and it

is useful to extract them all, because each mention may contain different comple-

mentary information about the underlying entity. To represent these long-distance

dependencies, we propose a skip-chain CRF, a model that jointly performs seg-

mentation and collective labeling of extracted mentions. On a standard problem

of extracting speaker names from seminar announcements, the skip-chain CRF has

better performance than a linear-chain CRF.

1.2 Graphical Models

1.2.1 Definitions

We consider probability distributions over sets of random variables V = X ∪ Y ,

where X is a set of input variables that we assume are observed, and Y is a set of

output variables that we wish to predict. Every variable v ∈ V takes outcomes from

a set V, which can be either continuous or discrete, although we discuss only the

discrete case in this chapter. We denote an assignment to X by x, and we denote

an assignment to a set A ⊂ X by xA, and similarly for Y . We use the notation

1{x=x′} to denote an indicator function of x which takes the value 1 when x = x′

and 0 otherwise.

A graphical model is a family of probability distributions that factorize according

to an underlying graph. The main idea is to represent a distribution over a large

number of random variables by a product of local functions that each depend on

only a small number of variables. Given a collection of subsets A ⊂ V , we define
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an undirected graphical model as the set of all distributions that can be written in

the form

p(x,y) =
1

Z

∏

A

ΨA(xA,yA), (1.1)

for any choice of factors F = {ΨA}, where ΨA : Vn → ℜ+. (These functions are

also called local functions or compatibility functions.) We will occasionally use the

term random field to refer to a particular distribution among those defined by an

undirected model. To reiterate, we will consistently use the term model to refer to a

family of distributions, and random field (or more commonly, distribution) to refer

to a single one.

The constant Z is a normalization factor defined as

Z =
∑

x,y

∏

A

ΨA(xA,yA), (1.2)

which ensures that the distribution sums to 1. The quantity Z, considered as a

function of the set F of factors, is called the partition function in the statistical

physics and graphical models communities. Computing Z is intractable in general,

but much work exists on how to approximate it.

Graphically, we represent the factorization (1.1) by a factor graph [Kschischang

et al., 2001]. A factor graph is a bipartite graph G = (V, F,E) in which a variable

node vs ∈ V is connected to a factor node ΨA ∈ F if vs is an argument to ΨA. An

example of a factor graph is shown graphically in Figure 1.1 (right). In that figure,

the circles are variable nodes, and the shaded boxes are factor nodes.

In this chapter, we will assume that each local function has the form

ΨA(xA,yA) = exp

{

∑

k

θAkfAk(xA,yA)

}

, (1.3)

for some real-valued parameter vector θA, and for some set of feature functions or

sufficient statistics {fAk}. This form ensures that the family of distributions over V

parameterized by θ is an exponential family. Much of the discussion in this chapter

actually applies to exponential families in general.

A directed graphical model, also known as a Bayesian network, is based on a directed

graph G = (V,E). A directed model is a family of distributions that factorize as:

p(y,x) =
∏

v∈V

p(v|π(v)), (1.4)

where π(v) are the parents of v in G. An example of a directed model is shown in

Figure 1.1 (left).

We use the term generative model to refer to a directed graphical model in which

the outputs topologically precede the inputs, that is, no x ∈ X can be a parent of

an output y ∈ Y . Essentially, a generative model is one that directly describes how

the outputs probabilistically “generate” the inputs.
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Figure 1.1 The naive Bayes classifier, as a directed model (left), and as a factor

graph (right).

1.2.2 Applications of graphical models

In this section we discuss a few applications of graphical models to natural language

processing. Although these examples are well-known, they serve both to clarify the

definitions in the previous section, and to illustrate some ideas that will arise again

in our discussion of conditional random fields. We devote special attention to the

hidden Markov model (HMM), because it is closely related to the linear-chain CRF.

1.2.2.1 Classification

First we discuss the problem of classification, that is, predicting a single class

variable y given a vector of features x = (x1, x2, . . . , xK). One simple way to

accomplish this is to assume that once the class label is known, all the features

are independent. The resulting classifier is called the naive Bayes classifier. It is

based on a joint probability model of the form:

p(y,x) = p(y)
K
∏

k=1

p(xk|y). (1.5)

This model can be described by the directed model shown in Figure 1.1 (left). We

can also write this model as a factor graph, by defining a factor Ψ(y) = p(y), and

a factor Ψk(y, xk) = p(xk|y) for each feature xk. This factor graph is shown in

Figure 1.1 (right).

Another well-known classifier that is naturally represented as a graphical model is

logistic regression (sometimes known as the maximum entropy classifier in the NLP

community). In statistics, this classifier is motivated by the assumption that the log

probability, log p(y|x), of each class is a linear function of x, plus a normalization

constant. This leads to the conditional distribution:

p(y|x) =
1

Z(x)
exp







λy +
K

∑

j=1

λy,jxj







, (1.6)

where Z(x) =
∑

y exp{λy +
∑K

j=1 λy,jxj} is a normalizing constant, and λy is a

bias weight that acts like log p(y) in naive Bayes. Rather than using one vector per

class, as in (1.6), we can use a different notation in which a single set of weights is

shared across all the classes. The trick is to define a set of feature functions that are
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nonzero only for a single class. To do this, the feature functions can be defined as

fy′,j(y,x) = 1{y′=y}xj for the feature weights and fy′(y,x) = 1{y′=y} for the bias

weights. Now we can use fk to index each feature function fy′,j , and λk to index

its corresponding weight λy′,j . Using this notational trick, the logistic regression

model becomes:

p(y|x) =
1

Z(x)
exp

{

K
∑

k=1

λkfk(y,x)

}

. (1.7)

We introduce this notation because it mirrors the usual notation for conditional

random fields.

1.2.2.2 Sequence Models

Classifiers predict only a single class variable, but the true power of graphical

models lies in their ability to model many variables that are interdependent. In this

section, we discuss perhaps the simplest form of dependency, in which the output

variables are arranged in a sequence. To motivate this kind of model, we discuss an

application from natural language processing, the task of named-entity recognition

(NER). NER is the problem of identifying and classifying proper names in text,

including locations, such as China; people, such as George Bush; and organizations,

such as the United Nations. The named-entity recognition task is, given a sentence,

first to segment which words are part of entities, and then to classify each entity

by type (person, organization, location, and so on). The challenge of this problem

is that many named entities are too rare to appear even in a large training set, and

therefore the system must identify them based only on context.

One approach to NER is to classify each word independently as one of either

Person, Location, Organization, or Other (meaning not an entity). The

problem with this approach is that it assumes that given the input, all of the named-

entity labels are independent. In fact, the named-entity labels of neighboring words

are dependent; for example, while New York is a location, New York Times is an

organization.

This independence assumption can be relaxed by arranging the output variables in

a linear chain. This is the approach taken by the hidden Markov model (HMM)

[Rabiner, 1989]. An HMM models a sequence of observations X = {xt}
T
t=1 by

assuming that there is an underlying sequence of states Y = {yt}
T
t=1 drawn from a

finite state set S. In the named-entity example, each observation xt is the identity

of the word at position t, and each state yt is the named-entity label, that is, one

of the entity types Person, Location, Organization, and Other.

To model the joint distribution p(y,x) tractably, an HMM makes two independence

assumptions. First, it assumes that each state depends only on its immediate

predecessor, that is, each state yt is independent of all its ancestors y1, y2, . . . , yt−2

given its previous state yt−1. Second, an HMM assumes that each observation

variable xt depends only on the current state yt. With these assumptions, we can
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specify an HMM using three probability distributions: first, the distribution p(y1)

over initial states; second, the transition distribution p(yt|yt−1); and finally, the

observation distribution p(xt|yt). That is, the joint probability of a state sequence

y and an observation sequence x factorizes as

p(y,x) =
T

∏

t=1

p(yt|yt−1)p(xt|yt), (1.8)

where, to simplify notation, we write the initial state distribution p(y1) as p(y1|y0).

In natural language processing, HMMs have been used for sequence labeling tasks

such as part-of-speech tagging, named-entity recognition, and information extrac-

tion.

1.2.3 Discriminative and Generative Models

An important difference between naive Bayes and logistic regression is that naive

Bayes is generative, meaning that it is based on a model of the joint distribution

p(y,x), while logistic regression is discriminative, meaning that it is based on

a model of the conditional distribution p(y|x). In this section, we discuss the

differences between generative and discriminative modeling, and the advantages of

discriminative modeling for many tasks. For concreteness, we focus on the examples

of naive Bayes and logistic regression, but the discussion in this section actually

applies in general to the differences between generative models and conditional

random fields.

The main difference is that a conditional distribution p(y|x) does not include a

model of p(x), which is not needed for classification anyway. The difficulty in

modeling p(x) is that it often contains many highly dependent features, which

are difficult to model. For example, in named-entity recognition, an HMM relies on

only one feature, the word’s identity. But many words, especially proper names, will

not have occurred in the training set, so the word-identity feature is uninformative.

To label unseen words, we would like to exploit other features of a word, such as

its capitalization, its neighboring words, its prefixes and suffixes, its membership in

predetermined lists of people and locations, and so on.

To include interdependent features in a generative model, we have two choices: en-

hance the model to represent dependencies among the inputs, or make simplifying

independence assumptions, such as the naive Bayes assumption. The first approach,

enhancing the model, is often difficult to do while retaining tractability. For exam-

ple, it is hard to imagine how to model the dependence between the capitalization of

a word and its suffixes, nor do we particularly wish to do so, since we always observe

the test sentences anyway. The second approach, adding independence assumptions

among the inputs, is problematic because it can hurt performance. For example,

although the naive Bayes classifier performs surprisingly well in document classi-

fication, it performs worse on average across a range of applications than logistic

regression [Caruana and Niculescu-Mizil, 2005].
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Figure 1.2 Diagram of the relationship between naive Bayes, logistic regression,

HMMs, linear-chain CRFs, generative models, and general CRFs.

Furthermore, even when naive Bayes has good classification accuracy, its prob-

ability estimates tend to be poor. To understand why, imagine training naive

Bayes on a data set in which all the features are repeated, that is, x =

(x1, x1, x2, x2, . . . , xK , xK). This will increase the confidence of the naive Bayes

probability estimates, even though no new information has been added to the data.

Assumptions like naive Bayes can be especially problematic when we generalize

to sequence models, because inference essentially combines evidence from different

parts of the model. If probability estimates at a local level are overconfident, it

might be difficult to combine them sensibly.

Actually, the difference in performance between naive Bayes and logistic regression

is due only to the fact that the first is generative and the second discriminative;

the two classifiers are, for discrete input, identical in all other respects. Naive Bayes

and logistic regression consider the same hypothesis space, in the sense that any

logistic regression classifier can be converted into a naive Bayes classifier with the

same decision boundary, and vice versa. Another way of saying this is that the naive

Bayes model (1.5) defines the same family of distributions as the logistic regression

model (1.7), if we interpret it generatively as

p(y,x) =
exp {

∑

k λkfk(y,x)}
∑

ỹ,x̃ exp {
∑

k λkfk(ỹ, x̃)}
. (1.9)

This means that if the naive Bayes model (1.5) is trained to maximize the con-

ditional likelihood, we recover the same classifier as from logistic regression. Con-

versely, if the logistic regression model is interpreted generatively, as in (1.9), and is

trained to maximize the joint likelihood p(y,x), then we recover the same classifier

as from naive Bayes. In the terminology of Ng and Jordan [2002], naive Bayes and

logistic regression form a generative-discriminative pair.

The principal advantage of discriminative modeling is that it is better suited to
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including rich, overlapping features. To understand this, consider the family of naive

Bayes distributions (1.5). This is a family of joint distributions whose conditionals

all take the “logistic regression form” (1.7). But there are many other joint models,

some with complex dependencies among x, whose conditional distributions also

have the form (1.7). By modeling the conditional distribution directly, we can

remain agnostic about the form of p(x). This may explain why it has been observed

that conditional random fields tend to be more robust than generative models to

violations of their independence assumptions [Lafferty et al., 2001]. Simply put,

CRFs make independence assumptions among y, but not among x.

Another way to make the same point is due to Minka [2005]. Suppose we have a

generative model pg with parameters θ. By definition, this takes the form

pg(y,x; θ) = pg(y; θ)pg(x|y; θ). (1.10)

But we could also rewrite pg using Bayes rule as

pg(y,x; θ) = pg(x; θ)pg(y|x; θ), (1.11)

where pg(x; θ) and pg(y|x; θ) are computed by inference, i.e., pg(x; θ) =
∑

y
pg(y,x; θ)

and pg(y|x; θ) = pg(y,x; θ)/pg(x; θ).

Now, compare this generative model to a discriminative model over the same family

of joint distributions. To do this, we define a prior p(x) over inputs, such that p(x)

could have arisen from pg with some parameter setting. That is, p(x) = pc(x; θ′) =
∑

y
pg(y,x|θ′). We combine this with a conditional distribution pc(y|x; θ) that

could also have arisen from pg, that is, pc(y|x; θ) = pg(y,x; θ)/pg(x; θ). Then the

resulting distribution is

pc(y,x) = pc(x; θ′)pc(y|x; θ). (1.12)

By comparing (1.11) with (1.12), it can be seen that the conditional approach has

more freedom to fit the data, because it does not require that θ = θ′. Intuitively,

because the parameters θ in (1.11) are used in both the input distribution and the

conditional, a good set of parameters must represent both well, potentially at the

cost of trading off accuracy on p(y|x), the distribution we care about, for accuracy

on p(x), which we care less about.

In this section, we have discussed the relationship between naive Bayes and lo-

gistic regression in detail because it mirrors the relationship between HMMs and

linear-chain CRFs. Just as naive Bayes and logistic regression are a generative-

discriminative pair, there is a discriminative analog to hidden Markov models, and

this analog is a particular type of conditional random field, as we explain next. The

analogy between naive Bayes, logistic regression, generative models, and conditional

random fields is depicted in Figure 1.2.
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Figure 1.3 Graphical model of an HMM-like linear-chain CRF.
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Figure 1.4 Graphical model of a linear-chain CRF in which the transition score

depends on the current observation.

1.3 Linear-Chain Conditional Random Fields

In the previous section, we have seen advantages both to discriminative modeling

and sequence modeling. So it makes sense to combine the two. This yields a linear-

chain CRF, which we describe in this section. First, in Section 1.3.1, we define linear-

chain CRFs, motivating them from HMMs. Then, we discuss parameter estimation

(Section 1.3.2) and inference (Section 1.3.3) in linear-chain CRFs.

1.3.1 From HMMs to CRFs

To motivate our introduction of linear-chain conditional random fields, we begin

by considering the conditional distribution p(y|x) that follows from the joint

distribution p(y,x) of an HMM. The key point is that this conditional distribution

is in fact a conditional random field with a particular choice of feature functions.

First, we rewrite the HMM joint (1.8) in a form that is more amenable to general-

ization. This is

p(y,x) =
1

Z
exp







∑

t

∑

i,j∈S

λij1{yt=i}1{yt−1=j} +
∑

t

∑

i∈S

∑

o∈O

µoi1{yt=i}1{xt=o}







,

(1.13)

where θ = {λij , µoi} are the parameters of the distribution, and can be any real

numbers. Every HMM can be written in this form, as can be seen simply by setting

λij = log p(y′ = i|y = j) and so on. Because we do not require the parameters to

be log probabilities, we are no longer guaranteed that the distribution sums to 1,

unless we explicitly enforce this by using a normalization constant Z. Despite this

added flexibility, it can be shown that (1.13) describes exactly the class of HMMs

in (1.8); we have added flexibility to the parameterization, but we have not added

any distributions to the family.
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We can write (1.13) more compactly by introducing the concept of feature functions,

just as we did for logistic regression in (1.7). Each feature function has the

form fk(yt, yt−1, xt). In order to duplicate (1.13), there needs to be one feature

fij(y, y′, x) = 1{y=i}1{y′=j} for each transition (i, j) and one feature fio(y, y′, x) =

1{y=i}1{x=o} for each state-observation pair (i, o). Then we can write an HMM as:

p(y,x) =
1

Z
exp

{

K
∑

k=1

λkfk(yt, yt−1, xt)

}

. (1.14)

Again, equation (1.14) defines exactly the same family of distributions as (1.13),

and therefore as the original HMM equation (1.8).

The last step is to write the conditional distribution p(y|x) that results from the

HMM (1.14). This is

p(y|x) =
p(y,x)

∑

y′ p(y′,x)
=

exp
{

∑K

k=1 λkfk(yt, yt−1, xt)
}

∑

y′ exp
{

∑K

k=1 λkfk(y′
t, y

′
t−1, xt)

} . (1.15)

This conditional distribution (1.15) is a linear-chain CRF, in particular one that

includes features only for the current word’s identity. But many other linear-chain

CRFs use richer features of the input, such as prefixes and suffixes of the current

word, the identity of surrounding words, and so on. Fortunately, this extension

requires little change to our existing notation. We simply allow the feature functions

fk(yt, yt−1,xt) to be more general than indicator functions. This leads to the general

definition of linear-chain CRFs, which we present now.

Definition 1.1

Let Y, X be random vectors, Λ = {λk} ∈ ℜK be a parameter vector, and

{fk(y, y′,xt)}
K
k=1 be a set of real-valued feature functions. Then a linear-chain

conditional random field is a distribution p(y|x) that takes the form

p(y|x) =
1

Z(x)
exp

{

K
∑

k=1

λkfk(yt, yt−1,xt)

}

, (1.16)

where Z(x) is an instance-specific normalization function

Z(x) =
∑

y

exp

{

K
∑

k=1

λkfk(yt, yt−1,xt)

}

. (1.17)

We have just seen that if the joint p(y,x) factorizes as an HMM, then the associated

conditional distribution p(y|x) is a linear-chain CRF. This HMM-like CRF is

pictured in Figure 1.3. Other types of linear-chain CRFs are also useful, however.

For example, in an HMM, a transition from state i to state j receives the same

score, log p(yt = j|yt−1 = i), regardless of the input. In a CRF, we can allow the

score of the transition (i, j) to depend on the current observation vector, simply
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by adding a feature 1{yt=j}1{yt−1=1}1{xt=o}. A CRF with this kind of transition

feature, which is commonly used in text applications, is pictured in Figure 1.4.

To indicate in the definition of linear-chain CRF that each feature function can

depend on observations from any time step, we have written the observation

argument to fk as a vector xt, which should be understood as containing all the

components of the global observations x that are needed for computing features

at time t. For example, if the CRF uses the next word xt+1 as a feature, then the

feature vector xt is assumed to include the identity of word xt+1.

Finally, note that the normalization constant Z(x) sums over all possible state

sequences, an exponentially large number of terms. Nevertheless, it can be computed

efficiently by forward-backward, as we explain in Section 1.3.3.

1.3.2 Parameter Estimation

In this section we discuss how to estimate the parameters θ = {λk} of a linear-

chain CRF. We are given iid training data D = {x(i),y(i)}N
i=1, where each x(i) =

{x
(i)
1 , x

(i)
2 , . . . x

(i)
T } is a sequence of inputs, and each y(i) = {y

(i)
1 , y

(i)
2 , . . . y

(i)
T } is

a sequence of the desired predictions. Thus, we have relaxed the iid assumption

within each sequence, but we still assume that distinct sequences are independent.

(In Section 1.4, we will see how to relax this assumption as well.)

Parameter estimation is typically performed by penalized maximum likelihood.

Because we are modeling the conditional distribution, the following log likelihood,

sometimes called the conditional log likelihood, is appropriate:

ℓ(θ) =
N

∑

i=1

log p(y(i)|x(i)). (1.18)

One way to understand the conditional likelihood p(y|x; θ) is to imagine combining

it with some arbitrary prior p(x; θ′) to form a joint p(y,x). Then when we optimize

the joint log likelihood

log p(y,x) = log p(y|x; θ) + log p(x; θ′), (1.19)

the two terms on the right-hand side are decoupled, that is, the value of θ′ does

not affect the optimization over θ. If we do not need to estimate p(x), then we can

simply drop the second term, which leaves (1.18).

After substituting in the CRF model (1.16) into the likelihood (1.18), we get the

following expression:

ℓ(θ) =
N

∑

i=1

T
∑

t=1

K
∑

k=1

λkfk(y
(i)
t , y

(i)
t−1,x

(i)
t ) −

N
∑

i=1

log Z(x(i)), (1.20)

Before we discuss how to optimize this, we mention regularization. It is often the

case that we have a large number of parameters. As a measure to avoid overfitting,

we use regularization, which is a penalty on weight vectors whose norm is too
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large. A common choice of penalty is based on the Euclidean norm of θ and on a

regularization parameter 1/2σ2 that determines the strength of the penalty. Then

the regularized log likelihood is

ℓ(θ) =
N

∑

i=1

T
∑

t=1

K
∑

k=1

λkfk(y
(i)
t , y

(i)
t−1,x

(i)
t ) −

N
∑

i=1

log Z(x(i)) −
K

∑

k=1

λ2
k

2σ2
. (1.21)

The notation for the regularizer is intended to suggest that regularization can also

be viewed as performing maximum a posteriori estimation of θ, if θ is assigned

a Gaussian prior with mean 0 and covariance σ2I. The parameter σ2 is a free

parameter which determines how much to penalize large weights. Determining the

best regularization parameter can require a computationally-intensive parameter

sweep. Fortunately, often the accuracy of the final model does not appear to

be sensitive to changes in σ2, even when σ2 is varied up to a factor of 10. An

alternative choice of regularization is to use the ℓ1 norm instead of the Euclidean

norm, which corresponds to an exponential prior on parameters [Goodman, 2004].

This regularizer tends to encourage sparsity in the learned parameters.

In general, the function ℓ(θ) cannot be maximized in closed form, so numerical

optimization is used. The partial derivatives of (1.21) are

∂ℓ

∂λk

=
N

∑

i=1

T
∑

t=1

fk(y
(i)
t , y

(i)
t−1,x

(i)
t ) −

N
∑

i=1

T
∑

t=1

∑

y,y′

fk(y, y′,x
(i)
t )p(y, y′|x(i)) −

K
∑

k=1

λk

σ2
.

(1.22)

The first term is the expected value of fk under the empirical distribution:

p̃(y,x) =
1

N

N
∑

i=1

1{y=y(i)}1{x=x(i)}. (1.23)

The second term, which arises from the derivative of log Z(x), is the expectation

of fk under the model distribution p(y|x; θ)p̃(x). Therefore, at the unregularized

maximum likelihood solution, when the gradient is zero, these two expectations are

equal. This pleasing interpretation is a standard result about maximum likelihood

estimation in exponential families.

Now we discuss how to optimize ℓ(θ). The function ℓ(θ) is concave, which follows

from the convexity of functions of the form g(x) = log
∑

i exp xi. Convexity is

extremely helpful for parameter estimation, because it means that every local

optimum is also a global optimum. Adding regularization ensures that ℓ is strictly

concave, which implies that it has exactly one global optimum.

Perhaps the simplest approach to optimize ℓ is steepest ascent along the gradient

(1.22), but this requires too many iterations to be practical. Newton’s method

converges much faster because it takes into account the curvature of the likelihood,

but it requires computing the Hessian, the matrix of all second derivatives. The size

of the Hessian is quadratic in the number of parameters. Since practical applications

often use tens of thousands or even millions of parameters, even storing the full

Hessian is not practical.
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Instead, current techniques for optimizing (1.21) make approximate use of second-

order information. Particularly successful have been quasi-Newton methods such

as BFGS [Bertsekas, 1999], which compute an approximation to the Hessian from

only the first derivative of the objective function. A full K × K approximation to

the Hessian still requires quadratic size, however, so a limited-memory version of

BFGS is used, due to Byrd et al. [1994]. As an alternative to limited-memory BFGS,

conjugate gradient is another optimization technique that also makes approximate

use of second-order information and has been used successfully with CRFs. Either

can be thought of as a black-box optimization routine that is a drop-in replacement

for vanilla gradient ascent. When such second-order methods are used, gradient-

based optimization is much faster than the original approaches based on iterative

scaling in Lafferty et al. [2001], as shown experimentally by several authors [Sha

and Pereira, 2003, Wallach, 2002, Malouf, 2002, Minka, 2003].

Finally, it is important to remark on the computational cost of training. Both the

partition function Z(x) in the likelihood and the marginal distributions p(yt, yt−1|x)

in the gradient can be computed by forward-backward, which uses computational

complexity O(TM2). However, each training instance will have a different partition

function and marginals, so we need to run forward-backward for each training

instance for each gradient computation, for a total training cost of O(TM2NG),

where N is the number of training examples, and G the number of gradient

computations required by the optimization procedure. For many data sets, this

cost is reasonable, but if the number of states is large, or the number of training

sequences is very large, then this can become expensive. For example, on a standard

named-entity data set, with 11 labels and 200,000 words of training data, CRF

training finishes in under two hours on current hardware. However, on a part-of-

speech tagging data set, with 45 labels and one million words of training data, CRF

training requires over a week.

1.3.3 Inference

There are two common inference problems for CRFs. First, during training, com-

puting the gradient requires marginal distributions for each edge p(yt, yt−1|x), and

computing the likelihood requires Z(x). Second, to label an unseen instance, we

compute the most likely (Viterbi) labeling y∗ = arg maxy p(y|x). In linear-chain

CRFs, both inference tasks can be performed efficiently and exactly by variants

of the standard dynamic-programming algorithms for HMMs. In this section, we

briefly review the HMM algorithms, and extend them to linear-chain CRFs. These

standard inference algorithms are described in more detail by Rabiner [1989].

First, we introduce notation which will simplify the forward-backward recursions.

An HMM can be viewed as a factor graph p(y,x) =
∏

t Ψt(yt, yt−1, xt) where Z = 1,

and the factors are defined as:

Ψt(j, i, x)
def
= p(yt = j|yt−1 = i)p(xt = x|yt = j). (1.24)
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If the HMM is viewed as a weighted finite state machine, then Ψt(j, i, x) is the

weight on the transition from state i to state j when the current observation is x.

Now, we review the HMM forward algorithm, which is used to compute the

probability p(x) of the observations. The idea behind forward-backward is to first

rewrite the naive summation p(x) =
∑

y
p(x,y) using the distributive law:

p(x) =
∑

y

T
∏

t=1

Ψt(yt, yt−1, xt) (1.25)

=
∑

yT

∑

yT−1

ΨT(yT, yT−1, xT)
∑

yT−2

ΨT−1(yT−1, yT−2, xT−1)
∑

yT−3

· · · (1.26)

Now we observe that each of the intermediate sums is reused many times during

the computation of the outer sum, and so we can save an exponential amount of

work by caching the inner sums.

This leads to defining a set of forward variables αt, each of which is a vector of size

M (where M is the number of states) which stores one of the intermediate sums.

These are defined as:

αt(j)
def
= p(x〈1...t〉, yt = j) (1.27)

=
∑

y〈1...t−1〉

Ψt(j, yt−1, xt)
t−1
∏

t′=1

Ψt′(yt′ , yt′−1, xt′), (1.28)

where the summation over y〈1...t−1〉 ranges over all assignments to the sequence

of random variables y1, y2, . . . , yt−1. The alpha values can be computed by the

recursion

αt(j) =
∑

i∈S

Ψt(j, i, xt)αt−1(i), (1.29)

with initialization α1(j) = Ψ1(j, y0, x1). (Recall that y0 is the fixed initial state of

the HMM.) It is easy to see that p(x) =
∑

yT
αT(yT) by repeatedly substituting the

recursion (1.29) to obtain (1.26). A formal proof would use induction.

The backward recursion is exactly the same, except that in (1.26), we push in the

summations in reverse order. This results in the definition

βt(i)
def
= p(x〈t+1...T〉|yt = i) (1.30)

=
∑

y〈t+1...T〉

T
∏

t′=t+1

Ψt′(yt′ , yt′−1, xt′), (1.31)

and the recursion

βt(i) =
∑

j∈S

Ψt+1(j, i, xt+1)βt+1(j), (1.32)

which is initialized βT(i) = 1. Analogously to the forward case, we can compute

p(x) using the backward variables as p(x) = β0(y0)
def
=

∑

y1
Ψ1(y1, y0, x1)β1(y1).
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By combining results from the forward and backward recursions, we can compute

the marginal distributions needed for the gradient (1.22). Applying the distributive

law again, we see that

p(yt−1, yt|x) = Ψt(yt, yt−1, xt)




∑

y〈1...t−2〉

t−1
∏

t′=1

Ψt′(yt′ , yt′−1, xt′)









∑

y〈t+1...T〉

T
∏

t′=t+1

Ψt′(yt′ , yt′−1, xt′)



 , (1.33)

which can be computed from the forward and backward recursions as

p(yt−1, yt|x) ∝ αt−1(yt−1)Ψt(yt, yt−1, xt)βt(yt). (1.34)

Finally, to compute the globally most probable assignment y∗ = arg maxy p(y|x),

we observe that the trick in (1.26) still works if all the summations are replaced by

maximization. This yields the Viterbi recursion:

δt(j) = max
i∈S

Ψt(j, i, xt)δt−1(i) (1.35)

Now that we have described the forward-backward and Viterbi algorithms for

HMMs, the generalization to linear-chain CRFs is fairly straightforward. The

forward-backward algorithm for linear-chain CRFs is identical to the HMM version,

except that the transition weights Ψt(j, i, xt) are defined differently. We observe that

the CRF model (1.16) can be rewritten as:

p(y|x) =
1

Z(x)

T
∏

t=1

Ψt(yt, yt−1,xt), (1.36)

where we define

Ψt(yt, yt−1,xt) = exp

{

∑

k

λkfk(yt, yt−1,xt)

}

. (1.37)

With that definition, the forward recursion (1.29), the backward recursion (1.32),

and the Viterbi recursion (1.35) can be used unchanged for linear-chain CRFs.

Instead of computing p(x) as in an HMM, in a CRF the forward and backward

recursions compute Z(x).

A final inference task that is useful in some applications is to compute a marginal

probability p(yt, yt+1, . . . yt+k|x) over a range of nodes. For example, this is useful

for measuring the model’s confidence in its predicted labeling over a segment of

input. This marginal probability can be computed efficiently using constrained

forward-backward, as described by Culotta and McCallum [2004].
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1.4 CRFs in General

In this section, we define CRFs with general graphical structure, as they were

introduced originally [Lafferty et al., 2001]. Although initial applications of CRFs

used linear chains, there have been many later applications of CRFs with more

general graphical structures. Such structures are especially useful for relational

learning, because they allow relaxing the iid assumption among entities. Also,

although CRFs have typically been used for across-network classification, in which

the training and testing data are assumed to be independent, we will see that CRFs

can be used for within-network classification as well, in which we model probabilistic

dependencies between the training and testing data.

The generalization from linear-chain CRFs to general CRFs is fairly straightfor-

ward. We simply move from using a linear-chain factor graph to a more general

factor graph, and from forward-backward to more general (perhaps approximate)

inference algorithms.

1.4.1 Model

First we present the general definition of a conditional random field.

Definition 1.2

Let G be a factor graph over Y . Then p(y|x) is a conditional random field if for

any fixed x, the distribution p(y|x) factorizes according to G.

Thus, every conditional distribution p(y|x) is a CRF for some, perhaps trivial,

factor graph. If F = {ΨA} is the set of factors in G, and each factor takes the

exponential family form (1.3), then the conditional distribution can be written as

p(y|x) =
1

Z(x)

∏

ΨA∈G

exp







K(A)
∑

k=1

λAkfAk(yA,xA)







. (1.38)

In addition, practical models rely extensively on parameter tying. For exam-

ple, in the linear-chain case, often the same weights are used for the factors

Ψt(yt, yt−1,xt) at each time step. To denote this, we partition the factors of G

into C = {C1, C2, . . . CP }, where each Cp is a clique template whose parameters are

tied. This notion of clique template generalizes that in Taskar et al. [2002], Sutton

et al. [2004], and Richardson and Domingos [2005]. Each clique template Cp is a

set of factors which has a corresponding set of sufficient statistics {fpk(xp,yp)} and

parameters θp ∈ ℜK(p). Then the CRF can be written as

p(y|x) =
1

Z(x)

∏

Cp∈C

∏

Ψc∈Cp

Ψc(xc,yc; θp), (1.39)
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where each factor is parameterized as

Ψc(xc,yc; θp) = exp







K(p)
∑

k=1

λpkfpk(xc,yc)







, (1.40)

and the normalization function is

Z(x) =
∑

y

∏

Cp∈C

∏

Ψc∈Cp

Ψc(xc,yc; θp). (1.41)

For example, in a linear-chain conditional random field, typically one clique tem-

plate C = {Ψt(yt, yt−1,xt)}
T
t=1 is used for the entire network.

Several special cases of conditional random fields are of particular interest. First,

dynamic conditional random fields [Sutton et al., 2004] are sequence models which

allow multiple labels at each time step, rather than single labels as in linear-chain

CRFs. Second, relational Markov networks [Taskar et al., 2002] are a type of general

CRF in which the graphical structure and parameter tying are determined by an

SQL-like syntax. Finally, Markov logic networks [Richardson and Domingos, 2005,

Singla and Domingos, 2005] are a type of probabilistic logic in which there are

parameters for each first-order rule in a knowledge base.

1.4.2 Applications of CRFs

CRFs have been applied to a variety of domains, including text processing, com-

puter vision, and bioinformatics. In this section, we discuss several applications,

highlighting the different graphical structures that occur in the literature.

One of the first large-scale applications of CRFs was by Sha and Pereira [2003], who

matched state-of-the-art performance on segmenting noun phrases in text. Since

then, linear-chain CRFs have been applied to many problems in natural language

processing, including named-entity recognition [McCallum and Li, 2003], feature

induction for NER [McCallum, 2003], identifying protein names in biology abstracts

[Settles, 2005], segmenting addresses in Web pages [Culotta et al., 2004], finding

semantic roles in text [Roth and Yih, 2005], identifying the sources of opinions [Choi

et al., 2005], Chinese word segmentation [Peng et al., 2004], Japanese morphological

analysis [Kudo et al., 2004], and many others.

In bioinformatics, CRFs have been applied to RNA structural alignment [Sato and

Sakakibara, 2005] and protein structure prediction [Liu et al., 2005]. Semi-Markov

CRFs [Sarawagi and Cohen, 2005] add somewhat more flexibility in choosing

features, which may be useful for certain tasks in information extraction and

especially bioinformatics.

General CRFs have also been applied to several tasks in NLP. One promising

application is to performing multiple labeling tasks simultaneously. For example,

Sutton et al. [2004] show that a two-level dynamic CRF for part-of-speech tagging

and noun-phrase chunking performs better than solving the tasks one at a time.

Another application is to multi-label classification, in which each instance can
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have multiple class labels. Rather than learning an independent classifier for each

category, Ghamrawi and McCallum [2005] present a CRF that learns dependencies

between the categories, resulting in improved classification performance. Finally, the

skip-chain CRF, which we present in Section 1.5, is a general CRF that represents

long-distance dependencies in information extraction.

An interesting graphical CRF structure has been applied to the problem of proper-

noun coreference, that is, of determining which mentions in a document, such as

Mr. President and he, refer to the same underlying entity. McCallum and Wellner

[2005] learn a distance metric between mentions using a fully-connected conditional

random field in which inference corresponds to graph partitioning. A similar model

has been used to segment handwritten characters and diagrams [Cowans and

Szummer, 2005, Qi et al., 2005].

In some applications of CRFs, efficient dynamic programs exist even though the

graphical model is difficult to specify. For example, McCallum et al. [2005] learn

the parameters of a string-edit model in order to discriminate between matching

and nonmatching pairs of strings. Also, there is work on using CRFs to learn

distributions over the derivations of a grammar [Riezler et al., 2002, Clark and

Curran, 2004, Sutton, 2004, Viola and Narasimhan, 2005]. A potentially useful

unifying framework for this type of model is provided by case-factor diagrams

[McAllester et al., 2004].

In copmputer vision, several authors have used grid-shaped CRFs [He et al., 2004,

Kumar and Hebert, 2003] for labeling and segmenting images. Also, for recognizing

objects, Quattoni et al. [2005] use a tree-shaped CRF in which latent variables are

designed to recognize characteristic parts of an object.

1.4.3 Parameter Estimation

Parameter estimation for general CRFs is essentially the same as for linear-chains,

except that computing the model expectations requires more general inference

algorithms. First, we discuss the fully-observed case, in which the training and

testing data are independent, and the training data is fully observed. In this case

the conditional log likelihood is given by

ℓ(θ) =
∑

Cp∈C

∑

Ψc∈Cp

K(p)
∑

k=1

λpkfpk(xc,yc) − log Z(x). (1.42)

It is worth noting that the equations in this section do not explicitly sum over

training instances, because if a particular application happens to have iid training

instances, they can be represented by disconnected components in the graph G.

The partial derivative of the log likelihood with respect to a parameter λpk associ-

ated with a clique template Cp is

∂ℓ

∂λpk

=
∑

Ψc∈Cp

fpk(xc,yc) −
∑

Ψc∈Cp

∑

y′
c

fpk(xc,y
′
c)p(y′

c|x). (1.43)
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The function ℓ(θ) has many of the same properties as in the linear-chain case.

First, the zero-gradient conditions can be interpreted as requiring that the suf-

ficient statistics Fpk(x,y) =
∑

Ψc
fpk(xc,yc) have the same expectations under

the empirical distribution and under the model distribution. Second, the function

ℓ(θ) is concave, and can be efficiently maximized by second-order techniques such

as conjugate gradient and L-BFGS. Finally, regularization is used just as in the

linear-chain case.

Now, we discuss the case of within-network classification, where there are depen-

dencies between the training and testing data. That is, the random variables y are

partitioned into a set ytr that is observed during training and a set ytst that is

unobserved during training. It is assumed that the graph G contains connections

between ytr and ytst.

Within-network classification can be viewed as a kind of latent variable problem,

in which certain variables, in this case ytst, are not observed in the training data.

It is more difficult to train CRFs with latent variables, because optimizing the

likelihood p(ytr|x) requires marginalizing out the latent variables ytst. Because of

this difficultly, the original work on CRFs focused on fully-observed training data,

but recently there has been increasing interest in training latent-variable CRFs

[Quattoni et al., 2005, McCallum et al., 2005].

Suppose we have a conditional random field with inputs x in which the output

variables y are observed in the training data, but we have additional variables w

that are latent, so that the CRF has the form

p(y,w|x) =
1

Z(x)

∏

Cp∈C

∏

Ψc∈Cp

Ψc(xc,wc,yc; θp). (1.44)

The objective function to maximize during training is the marginal likelihood

ℓ(θ) = log p(y|x) = log
∑

w

p(y,w|x). (1.45)

The first question is how even to compute the marginal likelihood ℓ(θ), because if

there are many variables w, the sum cannot be computed directly. The key is to

realize that we need to compute log
∑

w
p(y,w|x) not for any possible assignment

y, but only for the particular assignment that occurs in the training data. This

motivates taking the original CRF (1.44), and clamping the variables Y to their

observed values in the training data, yielding a distribution over w:

p(w|y,x) =
1

Z(y,x)

∏

Cp∈C

∏

Ψc∈Cp

Ψc(xc,wc,yc; θp), (1.46)

where the normalization factor is

Z(y,x) =
∑

w

∏

Cp∈C

∏

Ψc∈Cp

Ψc(xc,wc,yc; θp). (1.47)

This new normalization constant Z(y,x) can be computed by the same inference
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algorithm that we use to compute Z(x). In fact, Z(y,x) is easier to compute,

because it sums only over w, while Z(x) sums over both w and y. Graphically, this

amounts to saying that clamping the variables y in the graph G can simplify the

structure among w.

Once we have Z(y,x), the marginal likelihood can be computed as

p(y|x) =
1

Z(x)

∑

w

∏

Cp∈C

∏

Ψc∈Cp

Ψc(xc,wc,yc; θp) =
Z(y,x)

Z(x)
. (1.48)

Now that we have a way to compute ℓ, we discuss how to maximize it with respect

to θ. Maximizing ℓ(θ) can be difficult because ℓ is no longer convex in general

(intuitively, log-sum-exp is convex, but the difference of two log-sum-exp functions

might not be), so optimization procedures are typically guaranteed to find only local

maxima. Whatever optimization technique is used, the model parameters must be

carefully initialized in order to reach a good local maximum.

We discuss two different ways to maximize ℓ: directly using the gradient, as in

Quattoni et al. [2005]; and using EM, as in McCallum et al. [2005]. To maximize ℓ

directly, we need to calculate its gradient. The simplest way to do this is to use the

following fact. For any function f(λ), we have

df

dλ
= f(λ)

d log f

dλ
, (1.49)

which can be seen by applying the chain rule to log f and rearranging. Applying

this to the marginal likelihood ℓ(Λ) = log
∑

w
p(y,w|x) yields

∂ℓ

∂λpk

=
1

∑

w
p(y,w|x)

∑

w

∂

∂λpk

[

p(y,w|x)
]

(1.50)

=
∑

w

p(w|y,x)
∂

∂λpk

[

log p(y,w|x)
]

. (1.51)

This is the expectation of the fully-observed gradient, where the expectation is

taken over w. This expression simplifies to

∂ℓ

∂λpk

=
∑

Ψc∈Cp

∑

w′
c

p(w′
c|y,x)fk(yc,xc,w

′
c) −

∑

Ψc∈Cp

∑

w′
c,y′

c

p(w′
c,y

′
c|xc)fk(y′

c,xc,w
′
c).

(1.52)

This gradient requires computing two different kinds of marginal probabilities.

The first term contains a marginal probability p(w′
c|y,x), which is exactly a

marginal distribution of the clamped CRF (1.46). The second term contains a

different marginal p(w′
c,y

′
c|xc), which is the same marginal probability required

in a fully-observed CRF. Once we have computed the gradient, ℓ can be maximized

by standard techniques such as conjugate gradient. In our experience, conjugate

gradient tolerates violations of convexity better than limited-memory BFGS, so it

may be a better choice for latent-variable CRFs.

Alternatively, ℓ can be optimized using expectation maximization (EM). At each
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iteration j in the EM algorithm, the current parameter vector θ(j) is updated as

follows. First, in the E-step, an auxiliary function q(w) is computed as q(w) =

p(w|y,x; θ(j)). Second, in the M-step, a new parameter vector θ(j+1) is chosen as

θ(j+1) = arg max
θ′

∑

w′

q(w′) log p(y,w′|x; θ′). (1.53)

The direct maximization algorithm and the EM algorithm are strikingly similar.

This can be seen by substituting the definition of q into (1.53) and taking deriva-

tives. The gradient is almost identical to the direct gradient (1.52). The only dif-

ference is that in EM, the distribution p(w|y,x) is obtained from a previous, fixed

parameter setting rather than from the argument of the maximization. We are un-

aware of any empirical comparison of EM to direct optimization for latent-variable

CRFs.

1.4.4 Inference

In general CRFs, just as in the linear-chain case, gradient-based training requires

computing marginal distributions p(yc|x), and testing requires computing the most

likely assignment y∗ = arg maxy p(y|x). This can be accomplished using any

inference algorithm for graphical models. If the graph has small treewidth, then the

junction tree algorithm can be used to exactly compute the marginals, but because

both inference problems are NP-hard for general graphs, this is not always possible.

In such cases, approximate inference must be used to compute the gradient. In this

section, we mention various approximate inference algorithms that have been used

successfully with CRFs. Detailed discussion of these are beyond the scope of this

tutorial.

When choosing an inference algorithm to use within CRF training, the important

thing to understand is that it will be invoked repeatedly, once for each time that

the gradient is computed. For this reason, sampling-based approaches which may

take many iterations to converge, such as Markov chain Monte Carlo, have not

been popular, although they might be appropriate in some circumstances. Indeed,

contrastive divergence [Hinton, 2000], in which an MCMC sampler is run for only

a few samples, has been successfully applied to CRFs in vision [He et al., 2004].

Because of their computational efficiency, variational approaches have been most

popular for CRFs. Several authors [Taskar et al., 2002, Sutton et al., 2004] have

used loopy belief propagation. Belief propagation is an exact inference algorithm for

trees which generalizes the forward-backward. Although the generalization of the

forward-backward recursions, which are called message updates, are neither exact

nor even guaranteed to converge if the model is not a tree, they are still well-defined,

and they have been empirically successful in a wide variety of domains, including

text processing, vision, and error-correcting codes. In the past five years, there has

been much theoretical analysis of the algorithm as well. We refer the reader to

Yedidia et al. [2004] for more information.
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1.4.5 Discussion

This section contains miscellaneous remarks about CRFs. First, it is easily seen

that logistic regression model (1.7) is a conditional random field with a single

output variable. Thus, CRFs can be viewed as an extension of logistic regression

to arbitrary graphical structures.

Although we have emphasized the view of a CRF as a model of the conditional

distribution, one could view it as an objective function for parameter estimation of

joint distributions. As such, it is one objective among many, including generative

likelihood, pseudolikelihood [Besag, 1977], and the maximum-margin objective

[Taskar et al., 2004, Altun et al., 2003]. Another related discriminative technique for

structured models is the averaged perceptron, which has been especially popular in

the natural language community [Collins, 2002], in large part because of its ease of

implementation. To date, there has been little careful comparison of these, especially

CRFs and max-margin approaches, across different structures and domains.

Given this view, it is natural to imagine training directed models by conditional

likelihood, and in fact this is commonly done in the speech community, where it is

called maximum mutual information training. However, it is no easier to maximize

the conditional likelihood in a directed model than an undirected model, because in

a directed model the conditional likelihood requires computing log p(x), which plays

the same role as Z(x) in the CRF likelihood. In fact, training is more complex in a

directed model, because the model parameters are constrained to be probabilities—

constraints which can make the optimization problem more difficult. This is in stark

contrast to the joint likelihood, which is much easier to compute for directed models

than undirected models (although recently several efficient parameter estimation

techniques have been proposed for undirected factor graphs, such as Abbeel et al.

[2005] and Wainwright et al. [2003]).

1.4.6 Implementation Concerns

There are a few implementation techniques that can help both training time and

accuracy of CRFs, but are not always fully discussed in the literature. Although

these apply especially to language applications, they are also useful more generally.

First, when the predicted variables are discrete, the features fpk are ordinarily

chosen to have a particular form:

fpk(yc,xc) = 1{yc=ỹc}qpk(xc). (1.54)

In other words, each feature is nonzero only for a single output configuration ỹc, but

as long as that constraint is met, then the feature value depends only on the input

observation. Essentially, this means that we can think of our features as depending

only on the input xc, but that we have a separate set of weights for each output

configuration. This feature representation is also computationally efficient, because

computing each qpk may involve nontrivial text or image processing, and it need be
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evaluated only once for every feature that uses it. To avoid confusion, we refer to

the functions qpk(xc) as observation functions rather than as features. Examples of

observation functions are “word xt is capitalized” and “word xt ends in ing”.

This representation can lead to a large number of features, which can have signifi-

cant memory and time requirements. For example, to match state-of-the-art results

on a standard natural language task, Sha and Pereira [2003] use 3.8 million features.

Not all of these features are ever nonzero in the training data. In particular, some

observation functions qpk are nonzero only for certain output configurations. This

point can be confusing: One might think that such features can have no effect on

the likelihood, but actually they do affect Z(x), so putting a negative weight on

them can improve the likelihood by making wrong answers less likely. In order to

save memory, however, sometimes these unsupported features, that is, those which

never occur in the training data, are removed from the model. In practice, however,

including unsupported features typically results in better accuracy.

In order to get the benefits of unsupported features with less memory, we have had

success with an ad hoc technique for selecting only a few unsupported features. The

main idea is to add unsupported features only for likely paths, as follows: first train

a CRF without any unsupported features, stopping after only a few iterations; then

add unsupported features fpk(yc,xc) for cases where xc occurs in the training data,

and p(yc|x) > ǫ. McCallum [2003] presents a more principled method of feature

selection for CRFs.

Second, if the observations are categorical rather than ordinal, that is, if they are

discrete but have no intrinsic order, it is important to convert them to binary

features. For example, it makes sense to learn a linear weight on fk(y, xt) when fk

is 1 if xt is the word dog and 0 otherwise, but not when fk is the integer index

of word xt in the text’s vocabulary. Thus, in text applications, CRF features are

typically binary; in other application areas, such as vision and speech, they are

more commonly real-valued.

Third, in language applications, it is sometimes helpful to include redundant factors

in the model. For example, in a linear-chain CRF, one may choose to include both

edge factors Ψt(yt, yt−1,xt) and variable factors Ψt(yt,xt). Although one could

define the same family of distributions using only edge factors, the redundant node

factors provide a kind of backoff, which is useful when there is too little data.

In language applications, there is always too little data, even when hundreds of

thousands of words are available.

Finally, often the probabilities involved in forward-backward and belief propagation

become too small to be represented within numerical precision. There are two

standard approaches to this common problem. One approach is to normalize each

of the vectors αt and βt to sum to 1, thereby magnifying small values. A second

approach is to perform computations in the logarithmic domain, e.g., the forward

recursion becomes

log αt(j) =
⊕

i∈S

(

log Ψt(j, i, xt) + log αt−1(i)
)

, (1.55)
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where ⊕ is the operator a ⊕ b = log(ea + eb). At first, this does not seem much of

an improvement, since numerical precision is lost when computing ea and eb. But

⊕ can be computed as

a ⊕ b = a + log(1 + eb−a) = b + log(1 + ea−b), (1.56)

which can be much more numerically stable, particularly if we pick the version of

the identity with the smaller exponent. CRF implementations often use the log-

space approach because it makes computing Z(x) more convenient, but in some

applications, the computational expense of taking logarithms is an issue, making

normalization preferable.

1.5 Skip-Chain CRFs

In this section, we present a case study of applying a general CRF to a practical

natural language problem. In particular, we consider a problem in information

extraction, the task of building a database automatically from unstructured text.

Recent work in extraction has often used sequence models, such as HMMs and

linear-chain CRFs, which model dependencies only between neighboring labels, on

the assumption that those dependencies are the strongest.

But sometimes it is important to model certain kinds of long-range dependencies

between entities. One important kind of dependency within information extraction

occurs on repeated mentions of the same field. When the same entity is mentioned

more than once in a document, such as Robert Booth, in many cases all mentions

have the same label, such as Seminar-Speaker. We can take advantage of this

fact by favoring labelings that treat repeated words identically, and by combining

features from all occurrences so that the extraction decision can be made based on

global information. Furthermore, identifying all mentions of an entity can be useful

in itself, because each mention might contain different useful information. However,

most extraction systems, whether probabilistic or not, do not take advantage of

this dependency, instead treating the separate mentions independently.

To perform collective labeling, we need to represent dependencies between distant

terms in the input. But this reveals a general limitation of sequence models,

whether generatively or discriminatively trained. Sequence models make a Markov

assumption among labels, that is, that any label yt is independent of all previous

labels given its immediate predecessors yt−k . . . yt−1. This represents dependence

only between nearby nodes—for example, between bigrams and trigrams—and

cannot represent the higher-order dependencies that arise when identical words

occur throughout a document.

To relax this assumption, we introduce the skip-chain CRF, a conditional model

that collectively segments a document into mentions and classifies the mentions by

entity type, while taking into account probabilistic dependencies between distant

mentions. These dependencies are represented in a skip-chain model by augmenting
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Figure 1.5 Graphical representation of a skip-chain CRF. Identical words are

connected because they are likely to have the same label.

wt = w

wt matches [A-Z][a-z]+

wt matches [A-Z][A-Z]+

wt matches [A-Z]

wt matches [A-Z]+

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

wt appears in list of first names,

last names, honorifics, etc.

wt appears to be part of a time followed by a dash

wt appears to be part of a time preceded by a dash

wt appears to be part of a date

Tt = T

qk(x, t + δ) for all k and δ ∈ [−4, 4]

Table 1.1 Input features qk(x, t) for the seminars data. In the above wt is the word

at position t, Tt is the POS tag at position t, w ranges over all words in the training

data, and T ranges over all part-of-speech tags returned by the Brill tagger. The

“appears to be” features are based on hand-designed regular expressions that can

span several tokens.

a linear-chain CRF with factors that depend on the labels of distant but similar

words. This is shown graphically in Figure 1.5.

Even though the limitations of n-gram models have been widely recognized within

natural language processing, long-distance dependencies are difficult to represent

in generative models, because full n-gram models have too many parameters if n

is large. We avoid this problem by selecting which skip edges to include based on

the input string. This kind of input-specific dependence is difficult to represent in

a generative model, because it makes generating the input more complicated. In

other words, conditional models have been popular because of their flexibility in

allowing overlapping features; skip-chain CRFs take advantage of their flexibility

in allowing input-specific model structure.
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1.5.1 Model

The skip-chain CRF is essentially a linear-chain CRF with additional long-distance

edges between similar words. We call these additional edges skip edges. The features

on skip edges can incorporate information from the context of both endpoints, so

that strong evidence at one endpoint can influence the label at the other endpoint.

When applying the skip-chain model, we must choose which skip edges to include.

The simplest choice is to connect all pairs of identical words, but more generally we

can connect any pair of words that we believe to be similar, for example, pairs of

words that belong to the same stem class, or have small edit distance. In addition,

we must be careful not to include too many skip edges, because this could result

in a graph that makes approximate inference difficult. So we need to use similarity

metrics that result in a sufficiently sparse graph. In the experiments below, we focus

on named-entity recognition, so we connect pairs of identical capitalized words.

Formally, the skip-chain CRF is defined as a general CRF with two clique templates:

one for the linear-chain portion, and one for the skip edges. For an sentence x, let

I = {(u, v)} be the set of all pairs of sequence positions for which there are skip

edges. For example, in the experiments reported here, I is the set of indices of all

pairs of identical capitalized words. Then the probability of a label sequence y given

an input x is modeled as

pθ(y|x) =
1

Z(x)

T
∏

t=1

Ψt(yt, yt−1,x)
∏

(u,v)∈I

Ψuv(yu, yv,x), (1.57)

where Ψt are the factors for linear-chain edges, and Ψuv are the factors over skip

edges. These factors are defined as

Ψt(yt, yt−1,x) = exp

{

∑

k

λ1kf1k(yt, yt−1,x, t)

}

(1.58)

Ψuv(yu, yv,x) = exp

{

∑

k

λ2kf2k(yu, yv,x, u, v)

}

, (1.59)

where θ1 = {λ1k}
K1

k=1 are the parameters of the linear-chain template, and θ2 =

{λ2k}
K2

k=1 are the parameters of the skip template. The full set of model parameters

are θ = {θ1, θ2}.

As described in Section 1.4.6, both the linear-chain features and skip-chain features

are factorized into indicator functions of the outputs and observation functions,

as in (1.54). In general the observation functions qk(x, t) can depend on arbitrary

positions of the input string. For example, a useful feature for NER is qk(x, t) = 1

if and only if xt+1 is a capitalized word.



1.5 Skip-Chain CRFs 27

System stime etime location speaker overall

BIEN Peshkin and Pfeffer [2003] 96.0 98.8 87.1 76.9 89.7

Linear-chain CRF 97.5 97.5 88.3 77.3 90.2

Skip-chain CRF 96.7 97.2 88.1 80.4 90.6

Table 1.2 Comparison of F1 performance on the seminars data. The top line gives

a dynamic Bayes net that has been previously used on this data set. The skip-chain

CRF beats the previous systems in overall F1 and on the speaker field, which has

proved to be the hardest field of the four. Overall F1 is the average of the F1 scores

for the four fields.

The observation functions for the skip edges are chosen to combine the observations

from each endpoint. Formally, we define the feature functions for the skip edges to

factorize as:

f ′
k(yu, yv,x, u, v) = 1{yu=ỹu}1{yv=ỹv}q

′
k(x, u, v) (1.60)

This choice allows the observation functions q′k(x, u, v) to combine information from

the neighborhood of yu and yv. For example, one useful feature is q′k(x, u, v) = 1

if and only if xu = xv = “Booth” and xv−1 = “Speaker:”. This can be a useful

feature if the context around xu, such as “Robert Booth is manager of control

engineering. . . ,” may not make clear whether or not Robert Booth is presenting a

talk, but the context around xv is clear, such as “Speaker: Robert Booth.” 1

Because the loops in a skip-chain CRF can be long and overlapping, exact inference

is intractable for the data we consider. The running time required by exact inference

is exponential in the size of the largest clique in the graph’s junction tree. In junction

trees created from the seminars data, 29 of the 485 instances have a maximum

clique size of 10 or greater, and 11 have a maximum clique size of 14 or greater.

(The worst instance has a clique with 61 nodes.) These cliques are far too large to

perform inference exactly. For reference, representing a single factor that depends on

14 variables requires more memory than can be addressed in a 32-bit architecture.

Instead, we perform approximate inference using loopy belief propagation, which

was mentioned in Section 1.4.4. We use an asynchronous tree-based schedule known

as TRP [Wainwright et al., 2001].

1.5.2 Results

We evaluate skip-chain CRFs on a collection of 485 e-mail messages announcing

seminars at Carnegie Mellon University. The messages are annotated with the

seminar’s starting time, ending time, location, and speaker. This data set is due to

1. This example is taken from an actual error made by a linear-chain CRF on the seminars
data set. We present results from this data set in Section 1.5.2.
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Field Linear-chain Skip-chain

stime 12.6 17

etime 3.2 5.2

location 6.4 0.6

speaker 30.2 4.8

Table 1.3 Number of inconsistently mislabeled tokens, that is, tokens that are

mislabeled even though the same token is labeled correctly elsewhere in the docu-

ment. Learning long-distance dependencies reduces this kind of error in the speaker

and location fields. Numbers are averaged over 5 folds.

Freitag [1998], and has been used in much previous work.

Often the fields are listed multiple times in the message. For example, the speaker

name might be included both near the beginning and later on, in a sentence like “If

you would like to meet with Professor Smith. . . ” As mentioned earlier, it can be

useful to find both such mentions, because different information can occur in the

surrounding context of each mention: for example, the first mention might be near

an institutional affiliation, while the second mentions that Smith is a professor.

We evaluate a skip-chain CRF with skip edges between identical capitalized words.

The motivation for this is that the hardest aspect of this data set is identifying

speakers and locations, and capitalized words that occur multiple times in a seminar

announcement are likely to be either speakers or locations.

Table 1.1 shows the list of input features we used. For a skip edge (u, v), the input

features we used were the disjunction of the input features at u and v, that is,

q′k(x, u, v) = qk(x, u) ⊕ qk(x, v) (1.61)

where ⊕ is binary or. All of our results are averaged over 5-fold cross-validation

with an 80/20 split of the data. We report results from both a linear-chain CRF

and a skip-chain CRF with the same set of input features.

We calculate precision and recall as2

P =
# tokens extracted correctly

# tokens extracted

R =
# tokens extracted correctly

# true tokens of field

2. Previous work on this data set has traditionally measured precision and recall per
document, that is, from each document the system extracts only one field of each type.
Because the goal of the skip-chain CRF is to extract all mentions in a document, these
metrics are inappropriate, so we cannot compare with this previous work. Peshkin and
Pfeffer [2003] do use the per-token metric (personal communication), so our comparison
is fair in that respect.
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As usual, we report F1 = (2PR)/(P + R).

Table 1.2 compares a skip-chain CRF to a linear-chain CRF and to a dynamic

Bayes net used in previous work [Peshkin and Pfeffer, 2003]. The skip-chain CRF

performs much better than all the other systems on the Speaker field, which is

the field for which the skip edges would be expected to make the most difference.

On the other fields, however, the skip-chain CRF does slightly worse (less than 1%

absolute F1).

We expected that the skip-chain CRF would do especially well on the speaker field,

because speaker names tend to appear multiple times in a document, and a skip-

chain CRF can learn to label the multiple occurrences consistently. To test this

hypothesis, we measure the number of inconsistently mislabeled tokens, that is, to-

kens that are mislabeled even though the same token is classified correctly elsewhere

in the document. Table 1.3 compares the number of inconsistently mislabeled to-

kens in the test set between linear-chain and skip-chain CRFs. For the linear-chain

CRF, on average 30.2 true speaker tokens are inconsistently mislabeled. Because

the linear-chain CRF mislabels 121.6 true speaker tokens, this situation includes

24.7% of the missed speaker tokens.

The skip-chain CRF shows a dramatic decrease in inconsistently mislabeled tokens

on the speaker field, from 30.2 tokens to 4.8. Consequently, the skip-chain CRF also

has much better recall on speaker tokens than the linear-chain CRF (70.0 R linear

chain, 76.8 R skip chain). This explains the increase in F1 from linear-chain to

skip-chain CRFs, because the two have similar precision (86.5 P linear chain, 85.1

skip chain). These results support the original hypothesis that treating repeated

tokens consistently especially benefits recall on the Speaker field.

On the Location field, on the other hand, where we might also expect skip-

chain CRFs to perform better, there is no benefit. We explain this by observing

in Table 1.3 that inconsistent misclassification occurs much less frequently in this

field.

1.5.3 Related Work

Recently, Bunescu and Mooney [2004] have used a relational Markov network to

collectively classify the mentions in a document, achieving increased accuracy by

learning dependencies between similar mentions. In their work, however, candidate

phrases are extracted heuristically, which can introduce errors if a true entity is

not selected as a candidate phrase. Our model performs collective segmentation

and labeling simultaneously, so that the system can take into account dependencies

between the two tasks.

As an extension to our work, Finkel et al. [2005] augment the skip-chain model with

richer kinds of long-distance factors than just over pairs of words. These factors

are useful for modeling exceptions to the assumption that similar words tend to

have similar labels. For example, in named-entity recognition, the word China is

as a place name when it appears alone, but when it occurs within the phrase The

China Daily, it should be labeled as a organization. Because this model is more
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complex than the original skip-chain model, Finkel et al. estimate its parameters in

two stages, first training the linear-chain component as a separate CRF, and then

heuristically selecting parameters for the long-distance factors. Finkel et al. report

improved results both on the seminars data set that we consider in this chapter,

and on several other standard information extraction data sets.

Finally, the skip-chain CRF can also be viewed as performing extraction while

taking into account a simple form of coreference information, since the reason that

identical words are likely to have similar tags is that they are likely to be coreferent.

Thus, this model is a step toward joint probabilistic models for extraction and data

mining as advocated by McCallum and Jensen [2003]. An example of such a joint

model is the one of Wellner et al. [2004], which jointly segments citations in research

papers and predicts which citations refer to the same paper.

1.6 Conclusion

Conditional random fields are a natural choice for many relational problems be-

cause they allow both graphically representing dependencies between entities, and

including rich observed features of entities. In this chapter, we have presented a

tutorial on CRFs, covering both linear-chain models and general graphical struc-

tures. Also, as a case study in CRFs for collective classification, we have presented

the skip-chain CRF, a type of general CRF that performs joint segmentation and

collective labeling on a practical language understanding task.

The main disadvantage of CRFs is the computational expense of training. Although

CRF training is feasible for many real-world problems, the need to perform inference

repeatedly during training becomes a computational burden when there are a large

number of training instances, when the graphical structure is complex, when there

are latent variables, or when the output variables have many outcomes. One focus

of current research [Abbeel et al., 2005, Sutton and McCallum, 2005, Wainwright

et al., 2003] is on more efficient parameter estimation techniques.
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