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Abstract

Record deduplication is the task of merging database records that refer

to the same underlying entity. In relational databases, accurate dedupli-

cation for records of one type is often dependent on the merge decisions

made for records of other types. Whereas nearly all previous approaches

have merged records of different types independently, this work models

these inter-dependencies explicitly to collectively deduplicate records of

multiple types. We construct a conditional random field model of dedu-

plication that captures these relational dependencies, and then employ a

novel relational partitioning algorithm to jointly deduplicate records.

We evaluate the system on two citation matching datasets, for which

we deduplicate both papers and venues. We show that by collectively

deduplicating paper and venue records, we obtain up to a 30% error re-

duction in venue deduplication, and up to a 20% error reduction in paper

deduplication over competing methods.

1 Introduction

A common prerequisite for knowledge discovery is accurately combining data
from multiple, heterogeneous sources into a unified, mineable database. An
important step in creating such a database is record deduplication: consolidating
multiple records that refer to the same abstract entity. The difficulty in this
task arises both from data errors (e.g. misspellings and missing fields) and from
variants in field values (e.g. abbreviations).

Most historical approaches have framed the deduplication problem as a set of
independent decisions. For each pair of records, a similarity score is calculated,
and the records are merged if the similarity is above some threshold [8]. The
decisions are combined by taking the transitive closure of the resulting adjacency
matrix.

More recently, McCallum and Wellner [13] and Parag and Domingos [20]
have demonstrated that making multiple deduplication decisions collectively
can provide better results than historical approaches. These models are types
of conditional random fields (CRFs) [9], where the observed nodes are mentions,
and the predicted nodes are the deduplication decisions for each pair of nodes.
By framing inference as an instance of graph partitioning, the models are “col-
lective” in the sense that mentions are clustered based not only on their distance
to each other, but also on their distance from all other partitions. By treating
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deduplication decisions in dependent relation to each other, inconsistencies and
noise in the similarity metric may be overcome.

This paper presents a model for collective deduplication, extended to the im-
portant and ubiquitous case of relational databases, where records have types,
and where there exist relations between records of different types. These rela-
tions provide useful evidence for deduplication decisions because the identity of
a record often depends on the identities of related records.

For example, consider a database of research papers, where records can be
of type paper, venue, or author. If two paper records are labeled as duplicates,
then it follows that the venue records corresponding to those papers should also
be labeled as duplicates. The reverse is more subtly true: if two venues are du-
plicates, then this may slightly increase the probability that their corresponding
papers are duplicates.

We propose a model that leverages these subtle interdependencies to make
deduplication decisions collectively across multiple record types.

In particular, we present a CRF for the citation domain that provides a con-
ditional probabilistic model of deduplication decisions over records of multiple
types given observed record mentions and the relations among them. We pro-
pose a novel, relational graph partitioning algorithm for inference that not only
ensures that deduplication decisions made for different record types are consis-
tent, but also allows the decisions from one record type to inform the decisions
for another record type.

Parameter estimation consists of maximizing the product of local marginals
for pairs of records of different types. That is, we parameterize the CRF to
learn weights over 4-tuples consisting of a record pair and a related record pair
of a different type. In the citation domain, these 4-tuples consist of a pair of
paper records, and a pair of related venue records. In this way, the model learns
parameters to trade-off paper and venue deduplication decisions.

We provide results on a database of research papers, where we show that
modeling deduplication of paper and venue records collectively improves dedu-
plication performance for each type, providing up to a 30% error reduction in
venue deduplication, and up to a 20% error reduction in paper deduplication
over a previously proposed collective model [13] that does not model the depen-
dencies between record types.

2 Related Work

To the best of our knowledge, this is the first paper to present a discriminative,
collective model of deduplication for multiple, related record types and demon-
strate empirically the performance gains attainable over independent models.
We briefly review classical work in deduplication, then discuss recent efforts in
collective deduplication.

Record deduplication, known variously as record linkage, coreference res-
olution, deduplication, and identity uncertainty, is prevalent in many fields,
including computer vision, databases, and natural language processing.
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Originally introduced in the database community as “record linkage” [17],
record deduplication was later formalized by Fellegi and Sunter [8] as the compu-
tation over features between pairs of records, and further extended by Winkler
[25, 26]. This previous work calculates a similarity score for record pairs, col-
lapses those above a similarity threshold, then performs transitive closure. It
is not relational in the sense that one deduplication decision does not directly
affect another.

More recent record linkage work has considered the deduplication of categor-
ical data, allowing attributes to be deduplicated along with records [1]; however,
that work does not utilize machine learning and requires thresholds to be set
manually.

Methods of learning a better similarity score have been investigated recently
in the database community [5, 7]. Similar trends exist in natural language
processing for the task of coreference resolution, where research has focused
on learning more useful similarity metrics and applying them to thresholding
techniques analogous to those found in the database community [18, 16].

Only recently have collective deduplication models been investigated. Milch
et. al have introduced generative models to reason in worlds with an unknown
number of objects, enabling probability distributions to be defined over rela-
tional data with many object types [11, 15]. While these models have appealing
formal semantics, their generative nature forces the model to make conditional
independence assumptions among features.

Our work can be viewed as extensions to recent models applying conditional
random fields to the deduplication task [13, 24, 20]. McCallum and Wellner [13]
have presented CRFs which perform collective coreference by equating inference
in the CRF as a graph partitioning problem, resulting in collective coreference of
records of one type. This previous work demonstrated the advantages collective
coreference has over classical approaches; however, it does not model multiple
types of coreferent objects.

Parag and Domingos [20] present a CRF model similar to that in McCal-
lum and Wellner [13] in that it collectively deduplicates records of the same
type using graph partitioning. Additionally, this method allows information
to propagate between records by way of their shared attributes. However, the
Parag and Domingos model does not treat attributes as first-class objects. In
particular, their model collapses string identical attribute nodes and creates “in-
formation nodes” to model whether or not attributes match. The model does
not explicitly optimize deduplication decisions for attributes; rather, the “infor-
mation nodes” can be viewed as an input variables to record deduplication. An
important distinction with our work is that in the Parag and Domingos model,
joint deduplication only occurs among records sharing an identical attribute.
This is often not the case in real data.

In a sense, the Parag and Domingos model can be viewed as a discriminative
version of a recently proposed hierarchical model for deduplication by Raviku-
mar and Cohen [22], which introduces latent match nodes for attributes. Here
again, determining whether attribute values are coreferent is viewed as a local
decision used as input to the record deduplication decision. Our model instead
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PID Author Title Venue VID

0 X. Li Predicting the stock market CIKM 10
1 X. Li Predicting the stock market Conf on Information Management 20
2 J. Smith Semi-Definite Programming CIKM 30
3 Smith, J. Semi-Definate Programing Conference on Info Management 40

Table 1: An example of four papers with the same venues in a publications
database. PID is the paper id, and VID is the venue id.

treats attributes as records themselves, performing full deduplication on them
as well as their related records.

Other recent work in knowledge discovery has leveraged relational infor-
mation to perform coreference [3, 4]. These models define a similarity metric
between records that considers the identity of related records. This is similar in
spirit to our model, since it uses deduplication decisions of related records to cal-
culate the similarity between records. However, their model is mainly concerned
with deduplicating authors alone, and does not explicitly model deduplication
of multiple record types. Also, the training methods described in those models
do not capture the rich set of features available to the model presented in this
paper.

Our model can also be described as a type of relational Markov network
(RMN) [23], which have been employed successfully in relational domains, al-
though not multi-type deduplication. Another important distinction is that
our training and inference methods differ substantially from the loopy belief
propagation algorithm commonly used in RMNs.

3 Motivating Example

We first provide an example to motivate the potential benefits of collective
deduplication for databases with multiple record types.

Consider again a database of research papers, with author, paper, and venue
records. Our task is to deduplicate the various mentions of these records into
unique entities. Table 1 shows a database of four papers and four venues, each
with unique ids. Papers 0 and 1 and papers 2 and 3 should be merged; all the
venues should be merged.

Imagine an agglomerative deduplication system which begins by assuming
each record is unique. Suppose the system first considers merging papers 0 and
1. Although the venues do not match, all the other fields are exact matches,
so it is feasible that the system may overcome this discrepancy. After merging
papers 0 and 1, the system also merges the corresponding venues 10 and 20
into the same cluster, since the venues of duplicate papers must themselves be
duplicates.

Imagine the system next merges venues 10 and 30 because they are string
identical. The system must now decide if papers 2 and 3 are duplicates. Treated
in isolation, a system may have a hard time correctly detecting that 2 and
3 are duplicates: the authors are highly similar, but the title contains two
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Figure 1: Three increasingly complex models of paper and venue deduplication.
Xa and Xb are paper and venue records, respectively. Y is a binary random
variable indicating duplicate records, and Rab

ij denotes whether paper Xa
i was

published in venue Xb
j .

misspellings, and the venues are extremely dissimilar.
However, the system we have described so far is fortunate to have more

information at its disposal. It has already merged venues 10 and 20, which are
highly similar to venues 30 and 40. By consulting its database of deduplicated
venues, it could determine that 30 and 40 are in fact the same venue. With this
information in hand, it may be more forgiving of the spelling mistakes in the
title, finally merging papers 2 and 3 correctly.

This example illustrates the notion that the identity of an object is dependent
on the identity of related objects. Notice that by using relational information,
the system not only merged papers it might not have otherwise (2 and 3), but
also merged venues it might not have (10, 20 and 30, 40). Indeed, the chain of
deduplication decisions which led to optimal performance interleaved paper and
venue decisions: (0,1), (10,20), (30,40), (2,3).

The work presented here describes a system that models the deduplication
decisions of related records collectively, enabling the sort of probabilistic trade-
offs instrumental to the success of the system in this example.

4 Model

The model is an instance of a conditional random field that jointly models the
conditional probability of multiple deduplication decisions given an observed
relational database.

We begin with a brief review of conditional random fields, followed by a
formal description of the model. We then describe the approximations used to
make inference and parameter estimation tractable for this model.
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4.1 Conditional Random Fields

Conditional random fields (CRFs) [9] are undirected graphical models encoding
the conditional probability of a set of output variables Y given a set of evidence
variables X. The set of distributions expressible by a CRF is specified by an
undirected graph G, where each vertex corresponds to a random variable. If
C = {{yc,xc}} is the set of cliques in G, then the conditional probability of y

given x is

pΛ(y|x) =
1

Zx

∏

c∈C

φc(yc,xc; Λ)

where φ is a potential function parameterized by Λ and Zx =
∑

y

∏

c∈C φ(yc,xc)
is a normalization factor. We assume φc factorizes as a log-linear combination
of arbitrary features computed over clique c, therefore

φc(yc,xc; Λ) = exp

(

∑

k

λkfk(yc,xc)

)

The model parameters Λ = {λk} are a set of real-valued weights typically
learned from labeled training data by maximum likelihood estimation.

4.2 CRFs for multi-type deduplication

Let X be a collection of random variables representing observed record mentions
in a database that requires deduplication. For clarity, assume there are only two
types of records, X = (Xa,Xb), where Xa = (Xa

1 , . . . , Xa
n), Xb = (Xb

1, . . . , X
b
m).

The goal of deduplication is to partition X into clusters of records that all refer
to the same abstract entity.

To this end, we define a collection of binary random variables Y = (Ya,
Yb) that indicate whether or not two records are duplicates. For example, Y a

ij

indicates whether or not records Xa
i and Xa

j are coreferent. We also define

the binary random variables R, where Rab
ij indicates whether some arbitrary

relation R holds between record mentions Xa
i and Xb

j .
For example, in a research paper database, Xa represents the set of paper

records, Xb represents the set venue records, Y a
ij indicates whether Xa

i and Xa
j

are duplicates, and Rab
ij indicates whether paper Xa

i was published at venue Xb
j .

In the general case where R is unobserved, one could construct the condi-
tional distribution P (Ya,Yb,R|X). With this model, one can infer from an
observed set of records the most probable set of duplicate records and the most
probable set of relations between records. For example, in the publications do-
main, one may want to model the advisor of relation between authors, while
also modeling author deduplication.

We postpone this investigation for future work, and instead focus on the
case where R is observed. For instance, in citation data, we know which venues
records are related to which paper records. Thus, we desire to model the con-
ditional distribution P (Ya,Yb|X,R).
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Figure 1 displays three increasingly complex graphical models of this con-
ditional distribution. Vertices are random variables, edges indicate a possible
probabilistic dependence between variables, and shaded vertices indicate ob-
served variables. Model (a) corresponds to the classical approach, which treats
each duplication decision independently. Model (b) is the approach evaluated in
McCallum and Wellner [13], extended here to the case of multiple record types.
Note that in this model deduplication decisions for records of the same type are
made collectively.

Model (c) is the one this paper advocates. Not only are deduplication deci-
sions for records of the same type made collectively, but also the decisions for
one type of record are dependent on decisions made for related records. For ease
of presentation, we have only included the observed relation variables R which
are true.

We now provide a more precise description of model (c).
Let xab

ij = 〈xa
i , xa

j , xb
i , x

b
j〉 be a pair of observed paper record mentions and

their corresponding venue records. To capture the dependence between ya
ij and

yb
ij , we factorize the potential functions to consider them jointly, resulting in

the model:

p(ya,yb|x, r) =
1

Zx

exp
(

∑

i,j,l

λlfl(x
ab
ij , ya

ij , y
b
ij , r

ab
ij )

+
∑

i,j,k

λ∗f∗(y
a
ij , y

a
jk, ya

ik, yb
ij , y

b
jk, yb

ik)
)

where the features f∗ are consistency checking functions used to enforce
transitivity among deduplication decisions. For example, if papers xa

i and xa
j

are coreferent, and xa
j and xa

k are coreferent, then not only must papers xa
i and

xa
k be coreferent, but venues xb

i , x
b
j , x

b
k must also be coreferent. (Note f∗ is of

notational use only — in practice, the inference algorithm simply avoids these
impossible configurations.)

Because both ya
ij and yb

ij are arguments to the feature functions fl, these
potentials capture the cross-product of paper and venue deduplication deci-
sions. This allows the learned weights to encourage merging paper records
which have equivalent venue records, and to discourage merging papers with
different venues.

The cost of modeling these interdependencies is a highly connected graphi-
cal model, which necessitates approximations in both inference and parameter
estimation. We describe these approximations below.

4.3 Inference

Inference in this model corresponds to finding the solution to

y∗ = (ya∗,yb∗) = argmax
y

pΛ(ya,yb|xa,xb, r)
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that is, finding the most probable deduplication decisions y∗ given xa,xb, r and
the learned parameters Λ.

Exact inference in this model is intractable because the space of possible y

is exponential in the number of records x, and the the high connectivity of the
graph precludes a feasible dynamic program to make this search tractable.

One common approximate inference technique for such a predicament is to
perform loopy belief propagation; that is, perform standard belief propagation
[21], ignoring the “message double-counting” caused by the cycles in the graph.
However, the severe cyclicity of this model may require a prohibitive amount of
time for belief propagation to converge, if it converges at all.

Instead, we follow recent work which finds an equivalence between graph
partitioning algorithms and inference in certain undirected graphical models
[6]. We first transform our graph to a weighted, undirected graph that only
contains vertices for variables x and has edges weighted by the (log) clique
potential for each pair of vertices. The value on these edges depends on which
type of records they join.

For paper edges, we define the weight

wa
ij =

∑

yb
ij
∈{0,1}

(

∑

l

λlfl(x
ab
ij , ya

ij = 1, yb
ij , r

ab
ij )

−
∑

l

λlfl(x
ab
ij , ya

ij = 0, yb
ij , r

ab
ij )
)

and similarly for venue edges:

wb
ij =

∑

ya
ij
∈{0,1}

(

∑

l

λlfl(x
ab
ij , ya

ij , y
b
ij = 1, rab

ij )

−
∑

l

λlfl(x
ab
ij , ya

ij , y
b
ij = 0, rab

ij )
)

Intuitively, the paper weights wa
ij can be thought of as the compatibility of

papers xa
i , xa

j , summed over possible deduplication decisions for venues xb
i , x

b
j .

Similarly, the venue weights wb
ij can be thought of as the compatibility of venues

xb
i , x

b
j , summed over the possible deduplication decisions for papers xa

i , xa
j . In-

terpreting the weights as the similarity between two records, we can see that
the similarity of paper records considers the similarity of their venue records,
and vice versa.

This results in a weighted, undirected graph with edge weights ranging from
−∞ to +∞. It can be shown that finding an optimal partitioning of this graph
corresponds to finding the optimal configuration y∗ in the original undirected
graphical model. Here, the number of partitions is unknown, as it corresponds
to the number of unique records.
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Although graph partitioning with positive and negative edge weights is NP-
hard, there exist several good approximations, including recent work in cor-
relation clustering [2]. Additionally, McCallum and Wellner [13] have found
that greedy agglomerative clustering with an average link criterion works well
in practice.

However, traditional partitioning algorithms would not account for the known
dependencies between clusters that exist in our data. Therefore, we develop a
novel, relational agglomerative clustering algorithm that exploits these depen-
dencies.

Traditional greedy agglomerative clustering first initializes each vertex to
its own cluster, then iteratively merges the clusters that are “closest,” where
the distance between clusters is often defined as the average of the edge weights
connecting the two clusters. We augment this algorithm with two enhancements.

First, we must enforce the constraint that duplicate papers have duplicate
venues. This is straight-forwardly enforced by the following rule: Whenever a
pair of paper clusters are merged, their corresponding venue clusters must also
be merged.

The second enhancement redefines the distance between clusters to more
accurately reflect the impact of the first enhancement. Let Ca

i , Ca
j be two paper

clusters that are candidates to be merged, and let Cb
i , C

b
j be the venue clus-

ters corresponding to these papers. The first enhancement requires that if we
merge Ca

i , Ca
j , we must also merge Cb

i , C
b
j . However, the current distance metric

between Ca
i , Ca

j does not reflect this fact.

To remedy this, we redefine the distance between two paper clusters (Ca
i , Cb

j )
to be the average of (1) the traditional distance between the paper clusters
(Ca

i , Cb
j ) and (2) the traditional distance between their corresponding venue

clusters (Cb
i , C

b
j ). (Note that we choose the average rather than the sum to

deal with papers that have no venue information.) This metric is likely to
better approximate the effect merging Ca

i , Ca
j will have on the objective function

pΛ(y|x, r), since it accounts for the merger of the corresponding venue clusters.
This new clustering algorithm provides benefits to both paper and venue

deduplication that would be unavailable in an independent clustering algorithm.
As illustrated in our motivating example in Section 3, it is often the case that pa-
per duplicates are not detected because they have venues with decidedly different
surface forms (e.g. “CIKM” and “Conference on Knowledge and Information
Management”). The second enhancement addresses this problem by using the
evidence from previous venue clusterings to inform paper deduplication. Specif-
ically, if “CIKM” has already been resolved with “ Conference on Knowledge
and Information Management,” then merging papers with venues “CIKM” and
“Conference on Knowledge and Information Management” will be encouraged,
since there will be a high similarity between their associated venue clusters.

Conversely, by the hard constraint introduced in the first enhancement, dif-
ficult venue deduplication decisions are informed by confident paper deduplica-
tion decisions, as was also illustrated in Section 3. In this way, deduplication
decisions for both record types simultaneously grow more accurate.
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4.4 Parameter Estimation

Given a labeled corpus of fully clustered data, maximum likelihood parameter
estimation corresponds to finding the parameters Λ which maximize the log-
likelihood of the labeled training data. Exact estimation is intractable here
because it requires calculating the normalization term Zx, a sum over all possible
values of y, which is a sum over all possible partitionings of the data. Due to
the nature of the data and the high connectivity of the graph, this cannot be
efficiently computed with a dynamic program.

One could perform stochastic gradient ascent on an approximation of the
likelihood. However, it has been noted that maximizing a product of local
marginals performs at least as well as this approximation on a similar corefer-
ence task, if not better [24, 12]. Whereas in [24] the local marginals are over
single coreference decisions, here we maximize a product of joint conditional
probabilities for decisions ya

ij and yb
ij , which we define as

PΛ(ya
ij , y

b
ij |x

a,xb, r) =
1

Z ′
x

exp





∑

i,j,l

λlfl(x
ab
ij , ya

ij , y
b
ij , rij)





where Z ′
x is a normalization constant summing over possible values for the pair

〈ya
ij , y

b
ij〉.

For a labeled dataset D, the log-likelihood is defined as

LΛ(D) = log







∏

〈ya
ij

,yb
ij
〉∈D

PΛ(ya
ij , y

b
ij |x

a,xb, r)







We perform gradient ascent on L by maximizing its derivative:

∂L

∂λl

=
∑

〈x,y,r〉∈D

(

∑

i,j,l

λlfl(x
ab
ij , ya

ij , y
b
ij , r

ab
ij )

−
∑

〈y′a
ij

,y′b
ij
〉

PΛ(y′a
ij , y

′b
ij |x

a,xb, r)

∑

i,j,l

λlfl(x
ab
ij , y′a

ij , y
′b
ij , r

ab
ij )
)

Because the defined likelihood is a convex function, we can perform gra-
dient ascent using any suitable optimization algorithm. In particular, we use
limited-memory BFGS, which iteratively approximates second-order curvature
information to speed up convergence [19].

The estimation method can also be viewed as learning a distance metric
between paper-venue pairs. As explained in Section 4.3, this metric is used
to weight the edges in the deduplication graph, which is then partitioned at
inference time.
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5 Experiments

We evaluate our model on two datasets of research paper citations. The first
is from Citeseer [10], containing approximately 1500 citations, with 900 unique
papers and 350 unique venues. The second is from the Cora Computer Sci-
ence Research Paper Engine1, containing about 1800 citations, with 600 unique
papers and 200 unique venues.

Both datasets are manually labeled for both paper coreference and venue
coreference, as well as manually segmented into fields, such as author, title, etc.
The data were collected by searching for certain authors and topic, and they are
split into subsets with non-overlapping papers for the sake of cross-validation
experiments.

We used a number of feature functions, including exact and approximate
string match2 on normalized and unnormalized values for the following citation
fields: title, booktitle, journal, authors, venue, date, editors, institution, and the
entire unsegmented citation string. We also calculated an unweighted cosine
similarity between tokens in the title and author fields. Additional features
include whether or not the papers have the same publication type (e.g. journal
or conference), as well as the numerical distance between fields such as year and
volume. All real values were binned and converted into binary-valued features.

To evaluate performance, we compare the clusters output by our system with
the true clustering using pairwise metrics. Pairwise precision is the fraction of
pairs in the same cluster that are coreferent; pairwise recall is the fraction of
coreferent papers that were placed in the same cluster. Pairwise F1 is the
harmonic mean of pairwise precision and pairwise recall.

Tables 2 and 3 show the F1 performance of two systems: joint is the system
we have advocated in this paper, and indep is the system which deduplicates
records of different types independently. Note that this system corresponds
to model (b) in Figure 1, so deduplication decisions are made collectively for
records of the same type, as in McCallum and Wellner [13]. Since the McCallum
and Wellner model has been shown to consistently outperform the classical
transitive closure model, we do not compare with the classical model here.

Results are listed by the name of each test set; the remaining sections are
used for training.

Venue performance improves considerably in the joint model, which is plau-
sible considering the strong influence paper deduplication has on venue dedu-
plication. Because paper deduplication often has more evidence at its disposal
than does venue deduplication, the joint model dramatically enhances venue
recall, obtaining a 5% absolute recall boost in Citeseer, and a 9% boost in
Cora data. This is especially noticeable when paper deduplication performance
is high: The hard constraint requiring the venues of duplicate papers to be
merged often merges venues that otherwise would have seemed too dissimilar
to merge on their own. Indeed, error analysis confirms that many of the venue

1http://www.cs.umass.edu/˜mccallum/data/cora-refs.tar.gz
2We used the Secondstring package, found at http://secondstring.sourceforge.net
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Paper Venue

indep joint indep joint

constraint 88.9 91.0 79.4 94.1

reinforce 92.2 92.2 56.5 60.1

face 88.2 93.7 80.9 82.8

reason 97.4 97.0 75.6 79.5

Micro Avg. 91.7 93.4 73.1 79.1

Table 2: Pairwise F1 deduplication performance on Citeseer data.

Paper Venue

indep joint indep joint

kibl 92.9 93.3 93.6 99.3

fahl 95.5 95.0 87.3 99.7

utgo 79.9 84.0 51.7 60.4

Micro Avg. 89.4 90.8 77.5 84.5

Table 3: Pairwise F1 deduplication performance on Cora data.

deduplication errors our model avoids are those where venues are dissimilar in
form, but are related to papers that are similar in form.

More interestingly, a noticeable improvement in paper deduplication is at-
tained by the collective model. Part of this is due to the precision enhancement
provided by the constrained clustering algorithm. Workshop and technical re-
port versions of journal or conference papers with the same title are correctly not
merged when the venues are accurately identified. Also, error analysis suggests
that papers that would not have been otherwise merged were merged because
their venues were determined to be coreferent.

It is worth noting that many of the errors made by the joint model have
causes similar to those that on average have improved performance. For exam-
ple, if paper deduplication accuracy is poor, the relational clustering algorithm
can result in many venues being merged that would not have been otherwise.
Future work should investigate how to detect poor paper accuracy and adjust
accordingly.

5.1 Scalability

While the datasets used in our experiments are of reasonable size, we would
ultimately like to apply this model to large databases. Here we briefly discuss
performance issues and describe methods to scale our model to real-world data.

Because parameter estimation maximizes the product of local node poten-
tials, it is likely to be much faster than a global approximate training method
such as loopy belief propagation. For the data used in these experiments, train-
ing time averaged about 15 minutes on dual-processor, 3.06 GHz Xeon machines
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with 4 GB of RAM. Inference time ranged from 20 minutes to about an hour,
depending on the size of the testing data.

To make inference scalable, a practical implementation would make use of
“canopies” [14]. This technique reduces the connectivity of the graph of records
by defining a cheap similarity metric between records (often using an inverted
index or tf-idf). When constructing the record graph, edges are only added be-
tween those records that have similarity above some threshold, where similarity
is the output of the cheap metric. In this way, records that are very unlikely
to be duplicates are not considered by the model. This provides an efficient,
accurate way of pruning the search space.

Besides performance issues, there is reason to believe that the advantages of
the model presented in this paper will be even more noticeable in larger data
sets, where there is more heterogeneity in field values, more interesting relational
patterns, and larger record clusters. In fact, the data used in experiments
presented here contain many singleton clusters, which is not truly reflective of
the large clusters of records found in real-world data.

6 Conclusions

We have introduced a collective model for deduplication of related records of
multiple types and demonstrated empirically the advantages it has over methods
that do not address the interdependencies inherent in relational data.

Based on these results, two promising areas of future research are (1) ex-
tending the model to databases with more than two types of records, and (2)
modeling the relation variables R. In addition to paper and venue deduplica-
tion, author deduplication is also a difficult problem that would likely benefit
from this approach, and we are in the process of harvesting data to allow us to
model author, venue, and paper deduplication jointly.

In the publications domain, the connections between author, venue, and pa-
per deduplication become more interesting with larger databases, where com-
munities and relations become more visible. In particular, exciting challenges
include building a model to predict advisor of relations between authors, suggest
possible venues for a paper, identify fruitful author collaborations, match recent
graduates with potential research labs, and discover the dynamics of research
communities.

The challenge as usual will lie in developing a model that is complex enough
to model these long-distance relations, but is still tractable enough to perform
on real data. We feel that the model proposed here is a productive step in that
long-term direction.
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