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Abstract

Although information extraction and data mining
appear together in many applications, their inter-
face in most current systems would better be de-
scribed as serial juxtaposition than as tight inte-
gration. Information extraction populates slots in
a database by identifying relevant subsequences of
text, but is usually not aware of the emerging pat-
terns and regularities in the database. Data mining
methods begin from a populated database, and are
often unaware of where the data came from, or its
inherent uncertainties. The result is that the accu-
racy of both suffers, and significant mining of com-
plex text sources is beyond reach.

This position paper proposes the use of unified, re-
lational, undirected graphical models for informa-
tion extraction and data mining, in which extrac-
tion decisions and data-mining decisions are made
in the same probabilistic “currency,” with a com-
mon inference procedure—each component thus
being able to make up for the weaknesses of the
other and therefore improving the performance of
both. For example, data mining run on a partially-
filled database can find patterns that provide “top-
down” accuracy-improving constraints to informa-
tion extraction. Information extraction can provide
a much richer set of “bottom-up” hypotheses to
data mining if the mining is set up to handle ad-
ditional uncertainty information from extraction.

We outline an approach and describe several mod-
els, but provide no experimental results.

1 Introduction

Data mining gives us the ability to see patterns, predict the
future, and make informed decisions based on the evidence
in large databases. For example, data mining of categori-
cal and numerical consumer shopping data allow a retailer
to understand which items are bought by the same customers,
predict sales of seasonal items, and more efficiently manage
its inventory.! Over the past decade, the use of data mining
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techniques has revolutionized many commercial and govern-
ment enterprises by enabling more accurate decision making
in such areas as industrial control [Wang, 1999], fraud de-
tection [Fawcett and Provost, 1997], inventory management
[Agrawal et al., 1993], and customer relationship manage-
ment [Domingos and Richardson, 2001].

There is already much data in the necessary “database-
form,” (with fields and records), but there is also a vast
amount of important information available only in natural
language text, such as Web pages, publications, corporate
memos, research findings, government reports and other doc-
uments. To be accurately mined, these data must first be be
first organized and normalized into database-form.

Information extraction aims to do just this—it is the pro-
cess of filling the fields and records of a database from un-
structured text. Its traditional intended use is as the first
step of a pipeline in which unstructured text is converted
into a structured database, and then data mining produces
predictive models from this database. Historically informa-
tion extraction has most often been studied for news articles
[Appelt ef al., 1995], but more recently has been applied to
many textual formats, including Web pages [Soderland, 1997;
Craven et al., 1998; Blei er al., 2002], government reports
[Pinto et al., 2003], scientific articles [Lawrence et al., 1999;
McCallum et al., 2000b; Ray and Craven, 2001] and legal
documents [Bruninghaus and Ashley, 2001]. Also recently
there has been somewhat of a revolution in the use of statis-
tical and machine learning methods for information extrac-
tion, e.g. [Bikel et al., 1997; McCallum et al., 2000a; Laf-
ferty et al., 2001; Carreras et al., 2002; Roth and Yih, 2002;
Ray and Craven, 2001; Klein et al., 2003].

However, in spite of the improved results of these machine
learning methods, and in spite of a surge of over-anxious
commercial ventures claiming success, information extrac-
tion with sufficient accuracy to dump directly into data min-
ing remains elusive, and the promise of mining from textual
sources is largely unfulfilled. Although there has been much
discussion about combining information extraction and data
mining, there are few examples of successful pipelining of
the two technologies on anything but simple problems.

This position paper proposes extraction-mining random
fields—a family of models for improving our ability to data
mine information in unstructured text by using information
extraction and data mining methods that have such tight inte-
gration that the boundaries between them disappear, and they



can be accurately described as a unified framework for ex-
traction and mining. This framework uses rich, intertwined
undirected graphical models in which extraction decisions
and data-mining decisions are made with a common inference
procedure—the evidence for an outcome being the result of
inference both “bottom up” from extraction, and “top down”
from data mining. Thus (1) intermediate hypotheses from
both extraction and data mining can be easily communicated
between extraction and data mining in a closed loop system,
(2) mutually-reinforcing evidence and uncertainty will have
the opportunity to be properly marshaled, (3) and accuracy
and confidence assessment will improve.

Our focus in both areas is on relational data—data about
entities and links that is better described by graphs than by the
flat attribute-value representations used in much of machine
learning. The edges (or hyper-edges) in such graphs represent
binary (or n-ary) relations between entities, such as familial
relationships among people or hyperlink relations among web
pages. In terms of probabilistic models, individual relations
or chains of multiple relations help structure the probabilistic
dependencies among entities. More formally, in addition to
having graph structure, we define a relational task as one in
which the system’s outputs have several components, y =
{91, ...}, and not all the components are independent from
each other given the inputs, x; thus 3, j such that P(y;|x) #
P(yilyj. x).

Our proposed models are all trained to maximize con-
ditional probability of the outputs given the inputs. Such
models have the advantage of not requiring explicit rep-
resentation of dependencies among the features of the in-
put. This is especially advantageous when using complex,
overlapping and multi-granularity features, as is common in
work with natural language text [McCallum er al., 2000a;
Lafferty et al., 2001].

2 The Task and Problem

Data mining has enabled a revolution in planning, decision
making and organizational efficiency in many areas of indus-
try and government. A similar revolution could be brought
about in many additional areas if it were possible to mine the
vast amount of information currently locked in unstructured
text. In many domains, there is far more information in doc-
uments and other text than there is in structured databases.

For example, CiteSeer [Lawrence et al., 1999] mines the
Web for research papers, extracts title, authorship and citation
information, and thus enables analysis of the citation graph
for finding seminal and survey papers. This service has had
significant impact on the the practice of computer science re-
search. However, the variety of fields and relations it extracts
is small, and the limited accuracy of its existing relations con-
strains the ability to perform more sophisticated data mining.
For example, Pasula er al. [2002] note that CiteSeer contains
records of over 30 separate Al textbooks written by Russel
and Norvig, when actually there is only one.

Unfortunately, the complex data mining of rich unstruc-
tured text is not feasible with current methods: extraction is
often inaccurate, co-reference resolution is often poor, and
data mining is not able to recover from a noisy database.

2.1 Inaccurate extraction

State-of-the-art precision and recall for extracting named en-
tities (such as people, organizations and locations) is in the
low- to mid-90’s percent for many systems and domains—
including BBN’s IdentiFinder on news wire articles [Bikel et
al., 1997], Cora’s hidden Markov models on research paper
headers [McCallum e al., 2000b], and WhizBang Lab’s ex-
tractors on web page data [McCallum, 2002]. The winners of
the CoNLL-2002 named entity competition [Carreras et al.,
2002] reached only about 80% precision and recall on Span-
ish newswire text. One of the most recent research papers on
named entity extraction from Web pages reached precision
and recall in the high 80s [Collins, 2002]. Reaching about
90% precision and recall may seem good until one realizes
that this means that more than one in ten fields in the database
are either incorrect or missing.

When we consider the accuracy of database records (or
“relations”) instead of individual fields, the state-of-the-art is
even worse. For a relation to be correct, all its constituent
fields and its relation-type categorization must be correct.
Even if a system had 95% accuracy in extracting individ-
ual fields and categorizing relations, the overall accuracy of
a three-slot relation would be only 80%. This happens be-
cause each automated decision in the formation of a relation
is performed independently, and the errors compound. For
example, the top performer in the 2002 DARPA ACE evalua-
tion had entity extraction precision and recall scores of about
80%, but binary relation extraction scores of only roughly
60% [DARPA, 2002].

A better solution should not treat the components of a re-
lation independently, but should make coordinated decisions
and model them together. For example, the model could know
that a person graduates from a university, not from another
person, and use this to coordinate its extraction of a person
name, a university name, and its categorization of the rela-
tion. If done correctly, relations should actually provide con-
straints that help improve overall extraction accuracy, not hurt
it. This idea is one component of our proposed approach, and
is expanded in the section 3.

2.2 Poor coreference resolution

One of the key problems in current systems that work on
unstructured text is recognizing when two string names are
referring to the same entity. For example, “Colin Powell,”
“Powell,” “U.S. Secretary of State,” “the Secretary of State”
are not string-identical, but in some context may all refer to
the same person. If they get separate entries in the database,
relational connections will be missing, and data mining will
not find the patterns it should [Jensen, 1999].

Coreference (also known as de-duplication, or record
matching) is also a difficult problem in traditional databases.
There, some of the most successful approaches bring to bear
a multitude of evidence from different fields of each record,
e.g. [Borthwick et al., 2000; Bilenko and Mooney, 2002].
However, the problem is especially difficult in text domains
where the original data is unstructured, the availability of
some fields is questionable, and the collection of fields into
records has not yet been performed.

Often some amount of coreference resolution must hap-
pen in order to gather all fields of a record because the infor-



mation is dispersed across multiple sentences, paragraphs or
documents. Thus we have a difficult chicken-and-egg prob-
lem: to perform accurate coreference we need a multitude of
evidence from different fields of a record, but to gather all the
fields of a record we rely on coreference resolution. Corefer-
ence resolution and record (relation) building should happen
simultaneously in a coordinated effort.

Part of the reason coreference has historically been so
problematic in text domains is that it sits on the boundary
between extraction and data mining. Formation of the fields
and records is addressed by extraction; record de-duplication
is usually seen as a database issue. However, as we have
just pointed out, they rely on each other in highly intertwined
ways. They cannot be deeply solved separately. This is par-
ticularly true of cross-document coreference, an extremely
important problem that has received little attention.

Early work on relational coreference resolution includes
Pasula et al. [2002] and McCallum and Wellner [2003]; the
later is briefly described in section 3.4.

2.3 Fragile data mining

One might hope that data mining techniques could compen-
sate for the errors introduced by inaccurate extraction and
poor coreference resolution. Research in data mining has a
long history of constructing accurate models using combina-
tions of many features. Work with decision trees, Bayesian
classifiers, support-vector machines, and ensemble methods,
has produced methods that combine large numbers of (poten-
tially noisy) features into a single model that can “damp out”
high levels of noise and allow accurate predictions.

Unfortunately, this existing work on high-accuracy clas-
sifiers presumes propositional instances, each of which has
large numbers of features. In contrast, data produced by in-
formation extraction has a rich relational structure, but each
entity and relation has relatively few features. This obviates
the strategies used to such great effect in propositional learn-
ers, and can often result in brittle, inaccurate models. Some
relational learning techniques attempt to overcome this dif-
ficulty by constructing relational features to supplement the
relatively small number of intrinsic features present in the raw
data. However, such calculations rely simultaneously on both
extracted relations (the most error prone element of extracted
data) and extracted features, so they suffer from the combined
errors of both types of data.

Fortunately, relational graphical models can leverage two
sources of added power to compensate for the relative lack
of high-quality features. First, these models can incorporate
information about the uncertainty of the underlying data to in-
fluence how strongly specific features influence predictions.
By using uncertainty estimates on extracted entities, relations,
and features, the models can “play to the strengths” available
in extracted data. Second, these models can use the relational
structure of the data themselves so that high-confidence infer-
ences about some entities can be used to aid inferences about
related entities. We discuss this approach in more detail in
section 3.3.

2.4 Consequences of Problems

The consequence of these problems is that little or no data
mining is conducted on databases produced through extrac-

tion from unstructured text.

A few preliminary research-level exceptions are discussed
in section 4. Two larger-scale exceptions are FlipDog.com
(a database of job openings populated mostly through ex-
traction), and CiteSeer [Lawrence et al., 1999] (a database
of research papers and citations populated through various
automatic methods). However, FlipDog makes significant
concessions in recall to obtain higher precision, and also re-
lies on non-trivial amounts of human verification to clean
its database [McCallum, 2002]. In CiteSeer, the extraction
of research paper references is significantly easier than most
kinds of named entity extraction from less structured data,
and CiteSeer still makes many significant errors in extraction
and coreference (as described in the “Russell and Norvig” ex-
ample in section 2).

We believe that extraction and data mining should be able
to help each other through close coordination rather than each
failing separately. We describe our approach in some detail
in the next section.

3 A Solution

Our approach to both information extraction and data min-
ing is based on statistical machine learning and probabilistic
models. These methods have had a high degree of success in
each of the two fields recently. There are also strong benefits
to using models of IE and data mining that are tightly com-
patible with each other—with both of them speaking the lan-
guage of probabilities, they will share a common, low-level
communication medium.

In fact, we propose a model that is so tightly integrated that
the boundaries between IE and data mining disappear. Our
proposed unified system can be understood as a single, large
conditionally-trained undirected graphical model. This is a
type of probabilistic model that excels at capturing highly in-
terdependent, relational data in which strict causality among
events is not necessarily apparent—a set of circumstances ap-
pearing both in low-level text data and higher-level relational
data mining.

In the next subsections we describe how recent research
in both information extraction and data mining have inde-
pendently arrived at undirected graphical models, and then
describe our proposed unification, the advantages of our ap-
proach, and several specific models.

3.1 Models for information extraction

Finite state machines are the dominant model for information
extraction both in industry and research. There was signifi-
cant early work with hand-tuned finite state transducers, e.g.
[Jerry er al., 1996], but more recent work is with finite state
machines whose parameters are set by machine learning—
most commonly hidden Markov models [Bikel et al., 1997,
Leek, 1997; Freitag and McCallum, 1999; Ray and Craven,
20011.

Hidden Markov models have parameters for state-to-state
transition probabilities and per-state observation emission
probabilities. From these one can easily calculate the proba-
bility that the model would have generated a particular state
sequence associated with a particular observation symbol se-
quence. When used for extraction, the emission symbols are



typically natural language words, and states are associated
with different extraction fields. For example, to extract per-
son names, the hidden Markov model may have two states,
one for person-names, and one for other. To perform ex-
traction on a particular word sequence, one uses the Viterbi
algorithm to find the state sequence most likely to have gen-
erated the given the observed word sequence, and then des-
ignates as person names any words Viterbi that claims were
generated while in the person-name state.

A disadvantage of hidden Markov models is that, being
generative models of the observation sequence, they are lim-
ited in their ability to represent many non-independent, over-
lapping features of the sequence. In other words, since the
observations are generated by the model, the model must rep-
resent any correlations between features in order to faithfully
reproduce them. When there are many correlated features, or
complex dependencies among them, (or a desire to capture
features at multiple levels of granularity and features of the
past and future), this modeling is prohibitively difficult, (and
in many cases impossible).

The ability to use arbitrary features is important because
often significant features of the observation sequence include
not just the identity of the words, (e.g. the word “Wisniewski”
was observed), but also other features of the word and its
context—for example, it is capitalized, it ends in “ski,” it is in
bold face, left justified, it is a member of a list of last names
from the U.S. Census, the previous word is a recognized first
name, and the next word is “said”. All of these are powerful
pieces of evidence that the word is a person’s last name—
especially useful evidence if the word “Wisniewski” does not
appear anywhere in the labeled training data, (a typical cir-
cumstance in the common case of limited labeled data).

Furthermore, and highly significant to our approach, we
also want an information extraction model that provides a
place for data mining to inject arbitrary “top-down” infor-
mation that could improve extraction accuracy. A simple,
yet powerful interface between data mining and extraction is
for the extraction model to see the output of data mining es-
sentially as additional features—top-down features instead of
bottom-up word features. Details and variations are discussed
in the following subsections.

Maximum entropy Markov models (MEMMSs) [McCallum
et al., 2000a] and conditional random fields (CRFs) [Lafferty
et al., 2001] are two conditional-probability finite state mod-
els that—because they are conditional instead of generative—
afford the use of arbitrary features in their modeling of the
observation sequence.

Conditional Markov models have provided strong empir-
ical success. They extracted question-answer pairs from
Frequently-Asked-Question lists with double the precision of
an HMM [McCallum et al., 2000a]. They reduced part-of-
speech tagging errors on unknown words by 50% over an
HMM [Lafferty et al., 2001]. They have achieved world-class
results in noun phrase segmentation [Sha and Pereira, 2003al.
They found tables in government reports significantly more
accurately than previous methods [Pinto et al., 2003]. They
remain an extremely promising area for new research.

3.2 Models for data mining

Work on data mining has traditionally relied on a common
family of techniques for learning statistical models from
propositional data. For example, algorithms that learn deci-
sion trees [Quinlan, 1993; Breiman et al., 1984], linear mod-
els [McCullagh and Nelder, 1989], and simple Bayesian clas-
sifiers [Mitchell, 1997] are typical parts of many data mining
systems. More recently, work has focused on how to com-
bine simple models into more complex models such as en-
sembles learned through bagging [Breiman, 1996] and boost-
ing [Schapire, 1999]. Finally, the use of graphical models of
propositional data [Jordan, 1998] has become widespread, of-
ten incorporating simple classifiers such as decision trees to
estimate conditional probability distributions.

Unfortunately, attempting to adapt these propositional
learners to relational data can lead to serious statistical er-
rors. Over the past two years, the second author has iden-
tified several ways in which the structure of relational data
can cause significant bias in learned models. For example,
many relational data sets exhibit autocorrelation among the
features of relational entities (e.g., most coauthors of a pa-
per tend to be employed by a single type of organization).
This autocorrelation can be useful for prediction, but it can
also systematically bias naive learning algorithms toward fea-
tures with the least supporting evidence [Jensen and Neville,
2002]. More recently, we have also discovered that corre-
lation between the feature values and the structure of rela-
tional data can cause naive learners to produce models with
invalid structure [Jensen et al., 2003al. We have found so-
lutions to both these problems [Jensen and Neville, 2003;
Jensen et al., 2003a] and incorporated them into our own re-
lational learning algorithms.

Another failing of many traditional data mining techniques
is that they do not use uncertainty information on data items.
Although we know the probability of correct extraction for
a given entity or relation, most data mining models cannot
use that information during learning or inference. Notable
exceptions are the techniques for learning and inference in
graphical models.

A final failing of traditional models learned through data
mining is that they make predictions for each instance (e.g.,
each document) individually, independent of any other. These
approaches typically “propositionalize” the data, by flatten-
ing complex relational data into a single table. Such ap-
proaches miss the potential opportunity to correct for errors
on some instances based on higher-confidence predictions
about related instances.

Fortunately, a small but growing body of researchers is ex-
ploring new methods for relational data mining that overcome
these difficulties. These techniques move beyond naive adap-
tations of methods for propositional learning, and they take
seriously the unique opportunities and challenges presented
by relational data. One excellent example is the work by
Getoor et al. [2001] on learning probabilistic relational mod-
els (PRMs), a form of directed graphical model that learns the
interdependence among features of related entities. PRMs
have been applied to learning relationships among movies
and their actors, among tuberculosis patients and their con-
tacts, and among Web pages.

Despite their power, PRMs are unable to express many of



the types of mutual dependence among features because a
PRM must be a directed acyclic graph. For example, the
acyclicity constraint makes it nearly impossible to express au-
tocorrelation [Jensen and Neville, 2002], a nearly ubiquitous
feature of relational data sets. Autocorrelation can be used to
greatly improve model accuracy through the natural feedback
of probabilistic inference.

Undirected graphical models, however, remove the
acyclicity constraint, and some of the most advanced work
in relational learning has focused on these models in the
past two years. These models combine the benefits of tradi-
tional graphical models, including understandability and in-
corporation of uncertainty, with the advantages of full infer-
ential feedback. Studies of relational or collective classifi-
cation with undirected models [Taskar et al., 2002; Neville
and Jensen, 2000] have shown impressive gains in accu-
racy. Based on the our preliminary work, undirected graph-
ical models of relational data are poised to produce sub-
stantial accuracy gains in almost all cases, analogous to the
type of gains seen with ensemble classifiers [Breiman, 1996;
Schapire, 1999] and for the same reasons—substantial reduc-
tions in variance because of an increase in the evidence used
for each inference [Jensen et al., 2003b].

3.3 A Unified Model

Thus, conditionally-trained, undirected graphical models are
at the heart of recent work in two fields: one examining data
at word level for information extraction, and the other exam-
ining data at the entity level for data mining. Even though
they provide modeling at different levels of abstraction, they
meet each other at the entity level, and are fundamentally pro-
viding models of the same data—one “bottom up,” the other
“top down.”

The two models are entirely compatible with each other.
An undirected graphical model of information extraction can
be combined with an undirected graphical model of data min-
ing in one grand, unified graphical model—a unified proba-
bilistic model, with a unified representation of data and out-
comes, a unified set of parameters, unified inference proce-
dures, and unified learning procedures.

Seen in this light, information extraction and data min-
ing are not separate processes, but a single collective whole.
No hard, brittle decisions need to be made at one stage of a
pipeline in order to be passed to the next stage—the subtlest
and most uncertain of hypotheses can be communicated back
and forth between extraction and data mining, each helping
the other converge to an agreed upon conclusion.

For example, consider the following scenario. Word-level
features alone might leave ambiguous whether an appearance
of the word “Tracy” on a university Web page is a person
name or a project name. An appearance of “Beth Smith” on
the same page might more certainly be hypothesized to be a
person name. Through initial coreference analysis, we might
find Beth Smith’s home page, and her relations to some other
people. These patterns of relations (in combination with the
words on her home page) might cause the model to decide
that Beth Smith is likely a professor. Knowing this might
help provide just enough additional evidence to the extrac-
tion model running in the context of the original page that
it is able to hypothesize a Principal-Investigator-Of relation

between “Beth Smith” and “Tracy”. Since the data mining
model parameters indicate that this relation only occurs be-
tween a person and a project, it can be correctly deduced that
the word “Tracy” must be a project name here, not a person
name. And furthermore an appearance of the person name
“Tracy Jones” on a different Web page can correctly be said
not to be co-referent with the project “Tracy” on the first page.
All of these constraints are communicated in subtle shades of
probability that work themselves out through the statistically
principled methods of inference.

3.4 Conditional Random Fields

In this section we define conditional random fields and
describe how they may be used to create unified models
for information extraction and data mining—illustrating this
framework with several specific examples.

Conditional Random Fields [Lafferty et al., 2001] are undi-
rected graphical models (also known as random fields) used to
calculate the conditional probability of values on designated
output variables given values assigned to other designated in-
put variables.?

Let X be a set of input random variables, and Y be a set of
output random variables. Then, by the fundamental theorem
of random fields [Hammersley and Clifford, 1971], a condi-
tional random field defines the conditional probability of val-
ues y given values x to be a product of potential functions on
cliques of the graph,

P(Y‘X) = Zi H (I)C(XCaY(:)v

* cec

where Zx = 3 [[.cc Pe(Xc,ye) is the partition func-
tion (normalizer), C is the set of all cliques, ®.(-) is the
potential function for clique ¢, x. is that sub-set of the
variables in x that participate in clique ¢, and y. is de-
fined analogously. We calculate the potential functions as a
log-linear combination of weighted features, ®.(x.,y.) =
exp(32 Mrefie(Xes ¥e))s Where fi(si—1,¢.0,1) is an arbi-
trary feature function over its arguments, and Ay is a learned
weight for each feature function.

Linear Chain

In the special case in which the designated output nodes of the
graphical model are linked only by edges in a linear chain,
CRFs make a first-order Markov independence assumption
among output nodes, and thus correspond to finite state ma-
chines (FSMs), which have been shown to be suitable se-
quence models for information extraction, e.g. [Bikel et al.,
1997; McCallum and Li, 2003].

Let x = (x1,xo,...x7) be some observed input data se-
quence, such as a sequence of words text in a document, (the
values on n input nodes of the graphical model). Let S be a
set of FSM states, each of which is associated with a label,
l € L, (such as a label PERSON). Lety = (y1,y2,...y7)
be some sequence of states, (the values on 7" output nodes).

>The term “random field” has common usage in the statistical
physics and computer vision communities. In statistics the same
models are also known as “Markov networks.” Thus Conditional
Markov Networks [Taskar et al., 2002] are identical to Conditional
Random Fields.



CRFs define the conditional probability of a state sequence
given an input sequence as

Pr(ylx) = —exp <Zz)\kfk Yt—1,Yt, X, t))

This model ties parameters A = {),...} across sequence
positions, but this is just one possible type of tying. Various
patterns of parameter tying may be based on arbitrary SQL-
like queries [Taskar er al., 2002]. Several specific patterns
relevant to unification of extraction and data mining are de-
scribed below. Many others in this framework are also possi-
ble.

Cross-referenced Linear Chain

The previous model captures dependencies between adjacent
pairs of labels, but in some cases we may have reason to be-
lieve that other, arbitrarily-separated words have dependent
labels. For example, capturing the fact that two identical cap-
italized words in the same document often should share the
same label will help us know that “Green” is a last name when
we have seen the phrase “David Green” elsewhere in the
document. Such dependencies among selected pairs, P, of
arbitrarily-separated words can be represented with a cross-
referenced linear chain,

T
Py(ylx) = *eXP (Zz)\kfk (Yt—1, Y1, %, 1)
k

t=1
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Note that the edges among the output variables now form
loops, and inference is more difficult than before. Approxi-
mate inference methods are discussed below.

Factorial Linear Chain

When there are multiple dimensions of labels to be
predicted—for example part-of-speech, phrase boundaries,
named entities, and the classification of entities into cate-
gories (such as STUDENT and PROFESSOR)—these multi-
dimensional labels can be simultaneously predicted and ef-
ficiently represented in a factorial model. Ghahramani and
Jordan [1995] describe a factorial HMM. Factorial CRFs are
detailed in [Rohanimanesh and McCallum, 2003], and define
the probability of two label sequence factors, y and y’, con-
nected in a grid as

exp(
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Affinity- or Relationship-Matrix

When predicting entity coreference (or other types of rela-
tionships), rather than a sequence of labels, let the output be
a matrix w = {w11, w12, ...w, ... wpr } of labels on pairs
of words (or entities), and forming a matrix of coreference
decisions or other binary relationships. We define the distri-
bution,

1
Py (wx) = 7. &P Z Z A i (Wi, X, 8, 1)

tt K

+ Z A foe(Wer s Werrr s Wgrr )
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This model, in which inference corresponds to graph par-
titioning, is further described in McCallum and Wellner
[2003], where the need for dependencies among the w’s in the
second sum is also explained. Another variant described there
also predicts attributes associated with entities. The matrix
can be made sparse by approximation with Canopies [Mc-
Callum et al., 2000c].

Factorial Chain and Relationship-Matrix

Entity extraction, classification of entities, coreference, and
determination of other relationships among entities can all be
performed simultaneously by a factorial model over chains
and matrices. This is a model that could solve the “Tracy”
problem described above. The equation for P(y,y’, w|x)
(which we omit to save space) includes a straightforward
combination of the sums from the previous two models,
plus additional desired dependencies among output variables.
Other promising variations include the integration of hierar-
chical models corresponding to parse trees.

Inference and Parameter Estimation

Given an inference procedure, parameter estimation in all
these models can be performed with standard optimization
procedures such as conjugate gradient or approximate quasi-
Newton methods [Malouf, 2002; Sha and Pereira, 2003b]. In-
ference for Linear Chain models can be performed efficiently
with dynamic programming [Lafferty et al., 2001]. The other
models have loops among output variables, and thus we must
resort to approximate inference. Approximate inference in
the Affinity-Matrix models can be performed by randomized
graph partitioning algorithms, as described in [McCallum and
Wellner, 2003]. We have had considerable success perform-
ing inference in the Factorial Linear Chain [Rohanimanesh
and McCallum, 2003] with Tree-based Reparameterization
[Jaakkola er al., 2001]. Improved methods of efficient ap-
proximate inference in these models remains an open area
for research. Feature induction (which also corresponds to
graphical structure induction for these models) is described
in McCallum [2003].

4 Related Work

There has been a large amount of previous separate work on
information extraction and data mining, some of which has
been referenced and described previously in this paper.



4.1 Relational extraction and data mining

There is also a new and growing body of work in extraction
of relational data, as well as separate work in data mining
of relational data. In extraction, the association of entities
into relations has traditionally been performed by classifica-
tion of entity pairs independently from each other. For ex-
ample, noun coreference can be decided by the output of a
binary maximum entropy classifier indicating whether or not
the two nouns in the pair are co-referent [Morton, 1997]. The
binary classifiers can also be quite sophisticated, for example
using SVMs with complex kernels [Zelenko erf al., 2003].

However, these methods perform entity extraction com-
pletely independently from association (causing errors
to compound), and also make coreference and relation-
formation decisions independently from each other (allow-
ing decisions to be inconsistent and errorful). For example,
one classifier might decide that “Mr. Smith” is co-referent
with “Smith,” and another classifier might incompatibly de-
cide that this “Smith” is co-referent with “she.” An alter-
native approach is to extract and build relations in a single
augmented finite state machine [Ray and Craven, 2001] or
parsing model [Miller et al., 2000], however this only oper-
ates over relations formed within one sentence. Other work
[Roth and Yih, 2002] recognizes and models the dependen-
cies across multiple entity classifications and relations; how-
ever it relies on entity extraction having already been per-
formed. Recent work in coreference analysis also explic-
itly models the dependencies among coreference decisions on
multiple pairs of pre-extracted entities [Pasula er al., 2002;
McCallum and Wellner, 2003].

As described in section 3.2, there has been a recent surge
of research on relational data mining. Particularly notable
is work based on undirected graphical models [Taskar et al.,
2002], (and also indirectly [Neville and Jensen, 2000]). The
former involves experiments on data mining of academic en-
tities, although it does so through Web page and hyperlink
classification, not through full information extraction (which
would involve extracting multiple sub-segments of text on
a page, and more difficult coreference and relation-building
analysis).

4.2 Early work in integration of extraction and
data mining

There has still been relatively little work on integration be-
tween extraction and data mining. Most current work is bet-
ter characterized as serial juxtaposition, (e.g. [Ghani er al.,
2000]), or mining raw text data (such as documents, web
sites, hyperlinks, or web logs), (e.g. [Hearst, 1999; Craven
et al., 1998; Taskar et al., 2002; Kosala and Blockeel, 2000;
Anderson et al., 2002]), but not mining a rich database re-
sulting from information extraction, (that is, sub-segments of
text on a page, each referring to different entities—which is
significantly more difficult).

One interestingly different approach does not aim to ex-
tract a correct database, but instead attempts to data mine a
“soft database” consisting of the raw text of each mention,
(without any coreference analysis having been performed,
and perhaps with extraction boundary errors) [Cohen and
Hirsh, 1998]. New database operations, such as “soft joins”

may merge records based on TF-IDF similarity instead of ex-
act matches—doing so on the fly in response to a particular
query. This approach is intriguing, but it seems only to delay
the inevitable difficulties. Much noise and error remains in
these soft joins, and this approach could not support complex
relational data mining.

Some of the most truly integrated work in extraction
and data mining has been done by Ray Mooney’s group
at UT Austin. For example, in one project [Nahm and
Mooney, 20001, twelve fields of data are extracted from
USENET computer-related job ads using a rule learner. The
fields include programming-language, hardware-platform,
application-area, etc. A second rule learner is applied to
an imperfectly-extracted database to produce rules that will
predict the value in each field given the others. Then these
rules are used to fill in missing values and correct errors in
extraction—a very nice example of “closing (one turn of) the
loop.” This work is a promising first beginning; there remains
much additional work to do, especially in the use of stronger
statistical machine learning methods, such as graphical mod-
els, that have provided world-class performance in other in-
dependent extraction and data mining problems. This is the
approach we put forward in this paper.

5 Conclusions

We have presented motivation, problems and proposed so-
lutions for a unified framework of extraction and data min-
ing using conditionally-trained undirected graphical models.
This approach addresses the three critical topics of integrating
extraction and data mining:

Uncertainty management — The hypotheses of both ex-
traction and data mining are represented in probability dis-
tributions on nodes of the graphical model. For example, in
extraction sections of the model, a node might represent an in-
dividual word, and contain a probability distribution over the
entity labels person, project, university, other, etc. In the
data mining sections of the model, a node might represent a
relation between two entities, and contain a probability distri-
bution over the labels principal-investigator-of, adviser-of,
project-colleague-of, etc.

With both extraction and data mining embedded in the
same model, intermediate hypothesis are naturally communi-
cated back and forth in the language of probabilities. Rather
than being a problem, uncertainty becomes an opportunity—
with the ability for the intermediate hypotheses of data min-
ing to improve extraction, and vice-versa.

Inferential Feedback — Closed-loop feedback between
extraction and data mining is a natural outcome of inference
in the unified graphical model.

Note that there has been some previous work on feeding
extracted data into data mining (see section 4), and perform-
ing inference on this noisy data. However, we are proposing
models that actually “close the loop” by feeding results of
data mining back into extraction, and looping back to data
mining repeatedly. This closed-loop, bi-directional commu-
nication will allow subtle constraints to flow both directions,
let sharper conclusions be formed by the agglomeration of
multiple pieces of uncertain evidence, and help turn the com-
munication of uncertainty into an advantage, not a disadvan-
tage.



Relational Data — Relational data are straightforwardly
modeled in undirected graphical models by using tied param-
eters in patterns that reflect the nature of the relation. Pat-
terns of tied parameters are common in many graphical mod-
els, including finite state machines [McCallum er al., 2000a;
Lafferty et al., 20011, where they are tied across different se-
quence indices, and by more complex patterns, as in Taskar
et al. [2002]. Tied parameters use for extraction, classifi-
cation, coreference and other relationships are described in
section 3.4.
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