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1. INTRODUCTION 

The Mneme’ project is an investigation of techniques for iqtegrating program- 
ming language and database features to provide better support for cooperative, 
information-intensive tasks such as computer-aided software engineering. The 

i Mneme is the Greek word for memory; we pronounce it NEE-mee. 
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project strategy is to implement efficient, distributed, persistent programming 
languages. We report here on the Mneme persistent object store, a fundamental 
component of the project. We discuss, in turn, our goals for the long-term Mneme 
store effort; the conceptual design of the store; a working prototype of a subset 
of the full design; related work; conclusions and future directions. 

1 .l Goals for the Store 

The Mneme project’s overall goal is to provide better support for cooperative, 
information-intensive tasks, including computer-aided design (CAD)-ranging 
from VLSI design through electrical, mechanical, and architectural design-as 
well as computer-aided software engineering (CASE). The tasks also include 
document preparation, publishing, and office automation applications, as well as 
hypertext and other advanced information systems and tools to support group 
work. We use cooperation to imply concurrent, distributed work and a need for 
nonstandard (i.e., not necessarily serializable) concurrency control and integrity 
management, and use information intensiue to imply a need for reliable and 
efficient storage, retrieval, and manipulation of potentially long-lived data having 
considerable internal structure. 

The Mneme store effort takes a particular approach to supporting these tasks, 
namely to provide the illusion of a large, shared heap of objects, directly accessible 
from the programming language used to build the applications. Our hypothesis 
is that this model is a good foundation; the store project is an attempt to produce 
prototypes that allow the hypothesis to be tested, by us and by others. 

Given the overall goal of the effort, we arrived at the following specific 
objectives for the store: 

Goals for the Mneme Store 

-The store should provide an appropriate notion of object, such that identity of, 
and relationships among, objects are preserved. 

-The store should incur very low overhead to manipulate resident objects and 
have high performance for retrieval and storage. 

-The store software should be portable across a wide range of systems and 
usable from a variety of tools and programming languages. 

-The store should provide mechanisms whose policies can be changed and 
extended. 

-The store should operate in a distributed, heterogeneous, client/server envi- 
ronment, with as much transparency as possible, while substantially respecting 
autonomy of resources. 

-The store should support demarcated, somewhat independent, subcollections 
of data within its heap model. 

-The store should support further research into cooperative data-sharing tech- 
niques, integration with programming languages (i.e., persistent programming 
languages and database programming languages), and models incorporating 
distributed execution as well as distributed storage. 

We now consider the rationale for each of these goals. 
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Object Structure. The applications of interest use complex and highly struc- 
tured data, which can be thought of as directed graphs where the edges are 
pointers and the nodes are objects. We must be able to preserve this structure, 
and it is important that we do so as simply as possible. The additional features 
commonly associated with objects (dynamically invoked methods, inheritance 
hierarchies, etc.) are desirable for many applications. On the other hand, typing 
and invocation mechanisms vary considerably across programming languages, 
even in the object-oriented realm. For broadest applicability of the store’s 
features, we restricted its goals to providing object structure and identity only, 
not object execution semantics. Thus, a Mneme object is a contiguous block 
of fields with an associated object identifier, but Mneme objects have no 
types/classes, methods, or inheritance, since we want to allow a variety of type, 
inheritance, and invocation mechanisms to be built on top of Mneme. For similar 
reasons, we restricted the store’s notion of “edge” or “relationship” to simple 
pointers, rather than, for example, automatically managed binary or higher arity 
relationships. More sophisticated data models can be built in terms of the simple 
Mneme objects. This keeps Mneme lightweight and general, and somewhat “low 
level,” compared with database management systems. 

Performance. One of the motivations of the overall Mneme project in exploring 
language-database integration is the poor performance of approaches that do not 
offer a seamless combination of programming language and database function- 
ality. Having to make calls on a separate database manager, frequently residing 
in a different process, and having to convert data between programming language 
and database formats are examples of performance obstacles that integration can 
address. (Another motivation for integration is the relatively poorer functionality 
and less desirable semantics of nonintegrated systems; this has been called the 
impedance mismatch problem [ 131.) Further, many cooperative, information- 
intensive applications, especially CAD, are quite demanding. Unpublished esti- 
mates for performance requirements include being able to do at least 100,000 
references per second to fields of objects, to support “dragging” collections of 
items on a workstation display screen,2 and being able to retrieve 10,000 “useful,” 
“typical size” objects per second from external storage into memory.3 “Typical 
size” for languages such as CLU [28, 291, Smalltalk-80@ [17], and Trelliso [38] 
appears to be in the range of 30 to 50 bytes; but this is rather informally collected 
evidence. In any case, the desired retrieval rate is at least a substantial fraction 
of the bandwidth of a magnetic disk on a typical workstation. The underlying 
challenge is interesting: designing the store as a separate component without 
incurring the overheads that arise from separate, self-contained database 
managers. 

Portability. In order to justify the effort of building the store, as well as to 
encourage others to experiment with it and develop evidence as to the appropri- 
ateness and value of the approach, the store should be usable on as many systems 

’ This number comes from informal discussion with a Smalltalk CAD tool developer at a workshop. 

3 This goal came from CAD tool developers of a large computer manufacturer. 
e Smalltalk- is a registered trademark of PARC Place Systems, Inc. 
e Trellis is a registered trademark of Digital Equipment Corporation. The programming language 

component of the Trellis system was formerly called Owl. 
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as possible, and from a reasonable collection of existing programming languages. 
While our intent is to support persistent and database programming languages 
(the integrated approach), it is cost effective and reasonable to require that one 
be able to write applications that use the store via subroutine calls (noninte- 
grated), provided this does not compromise support for integrated use. 

Extensibility. The applications we wish to support vary considerably in their 
semantics, and have performance characteristics and demands that are not well 
understood. Because of this variability and lack of knowledge, it is important 
that the store allow its object management policies, especially those affecting 
performance, and concurrency and versioning semantics, to be tuned, controlled, 
and extended. Such policies include clustering, prefetch, caching, buffering, 
concurrency control, recovery, and versioning. 

Distribution. The hardware setting (workstations with local area networks) 
and general software framework (the client/server model) are dictated by what 
is available, both to the target applications and to us in our own research 
environment. Physical distribution per se is more of an implementation concern. 
The deeper issue is supporting and trading off between sharing (multiple concur- 
rent users) and autonomy (individual control of resources, ranging from the 
physical (servers and disks) to the conceptual (subcollections of objects)). Note 
that the trade-off must not be fixed, since different organizations and different 
applications have different relative needs for sharing versus autonomy. 

Subcollections. In a large space of objects it is crucial for users and applications 
to be able to identify and manipulate meaningful subsets of objects. It should 
also be possible to extract and insert such subsets of objects from one store (space 
of objects) into another, so as to exchange data between different organizations, 
groups not connected to the same distributed system, for backup, and so on. 
Subcollections can also support autonomy (e.g., if subcollections can be separately 
“owned” and controlled) and can reduce the scope of possible damage to the store 
by a runaway program. 

Basis for Further Research. To a certain extent, this goal summarizes the 
overall goal of the effort to build the store, since that effort is part of a larger 
project. There are, though, specific implications deriving from the project direc- 
tion. The store should be suited to integration with some programming lan- 
guages (current efforts include Smalltalk- and Modula-3 [9]), it should allow 
experimentation with techniques for sharing data cooperatively, and should be a 
suitable basis for an architecture examining issues of distributed execution as 
well as distributed storage. 

2. CONCEPTS OF THE MNEME STORE DESIGN 

We now introduce the architecture, concepts, and semantics of the Mneme store 
design. We treat the design as an ideal to be approached through a series of 
prototypes, to be adjusted as experience is gained from those prototypes. 
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2.1 Architecture 

Primarily in order to support the performance goal, we determined that much of 
the functionality of the Mneme store would be embodied in a subroutine library 
linked with the application, or, in the case of a persistent programming language, 
included as part of the language run-time system. If the store software were run 
in a separate process or on a separate machine, the communication, task switch- 
ing, and general operating system overhead would substantially interfere with 
performance. Thus, we decided that much of the detailed object semantics would 
be implemented within the user’s process and address space, though storage 
facilities are ultimately provided by the operating system or via servers run in 
separate processes, possibly on different machines. This architecture is illustrated 
in Figure 1. 
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Fig. 1. The Mneme store system architecture. 

Putting the detailed object semantics in the user address space has advantages 
beyond performance. It also makes it easier for users to extend Mneme’s policies; 
they can simply provide routines for Mneme to call at appropriate points. Servers 
are likewise accessed via subroutine calls to server interface routines. The initial 
prototype uses a simple local disk “server,” implemented within the client process 
using standard operating system calls. 

The primary abstraction supported by the client interface is that of an object, 
whereas the primary abstraction of the client-server interface is a physical 
segment, which is a vector of bytes accessed using a server-specified identifier. 
While one could store one object per physical segment, this would tend to be 
inefficient. Physical segments generally contain many objects, and thus offer 
means to cluster objects for storage and retrieval, providing hope of attaining our 

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990. 



108 - J. Eliot 6. Moss 

performance goals. We are not committed to client-server interaction at a single 
level of granularity, and there is some evidence that multiple granularities need 

to be offered [14]. We are also not committed to any specific servers or modes of 
interactions with them; the architecture is designed to be independent of that 
issue. 

We now discuss three issues that arise from this architectural approach: safety, 

concurrency control, and buffering. Since user code can misbehave in arbitrary 
ways, putting substantial parts of Mneme in the client space jeopardizes the 
safety of the Mneme data structures as well as user data. The only way to obtain 
a high degree of safety, as well as enforced security and authorization controls, 
is to erect protection barriers, which, on most hardware platforms, implies using 
a separate process or a separate machine. Thus, servers are the source of true 
safety, though the compiler and run-time system for a persistent program 
language can greatly enhance safety by eliminating or reducing the possibility of 
various errors. Safety is not a primary focus of our work. On the other hand, it 
is clear that safety and performance may be at odds, since safety demands 
protection boundaries that generally reduce performance. However, as is the case 
with retrieval performance, safety performance probably hinges on granularity, 
and, as we will see, Mneme offers multiple choices for places to associate safety 
and security controls. In particular, if controls are implemented mostly on 
physical segments or larger granules, then the performance penalty will be much 
smaller than if controls are placed on individual objects. 

Granularity is also relevant to concurrency control, and again it is necessary 
to support more than one granularity. In addition to supporting multiple granu- 
larities of locks (e.g., lock hierarchies as described in [19]) or some other 
concurrency control technique such as timestamps or optimistic concurrency 
control [26], concurrency control may be needed at multiple levels of abstraction 
[32]. For example, objects, which might sometimes move from segment to 
segment, are at a higher level of abstraction than physical segments or ranges of 
bytes within segments. Another interesting problem related to concurrency 
control is that, in a persistent programming language, because we desire trans- 
parency, the concurrency control requirements will usually be implicit in the 
manipulations of objects (reads and writes). A related problem is that different 
servers may provide different concurrency control features, yet the programmer 
should be isolated from server idiosyncrasies. 

Our approach to these problems is to assume that serializability [16] of reads 
and writes is adequate in most cases, and that the programmer will become 
explicitly involved when more subtle concurrency control is required. Sec- 
tion 2.2.5 describes our approach to extensible concurrency control within the 
object store design. A key challenge is to devise a client-server interface that is 
independent of server implementation yet offers adequate flexibility. It is clear 
that concurrency control is ultimately performed by the servers, but the Mneme 
client software and the layer between Mneme and the underlying servers both 
perform significant transformations between the (mostly implied) concurrency 
control requirements of the user and the concurrency features supplied by the 
servers. 

With respect to buffering, Mneme uses client virtual memory to hold objects 
in use by the client. These buffers are private to the individual client, and the 
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client typically requests a physical segment at a time, with concurrency control 
used to obtain the desired degree of coherence and consistency. While the client’s 
buffers are private to the client, it is possible for a server to use a shared buffer 
pool, either within client memory or in a separate process or machine. It might 
be possible, although more problematic, to allow a client to access shared buffers 
directly, via a shared virtual memory area; but this has negative impacts on 
safety and possibly on transparency (if, for example, locking were required upon 
each individual manipulation of an object in the shared space). 

In sum, putting most of the Mneme object semantics into the client space is 
necessary for performance, although it introduces other problems. However, 
these problems can be addressed by varying the split of server functionality 
between the client space and other local or remote processes, and by varying 
granularity. Moreover, some of the problems, most notably transparency of 
concurrency control and the possible need to copy from shared buffers into client 
space, also arise if Mneme is implemented in a separate address space. 

2.2 Concepts 

Below we describe the concepts available to Mneme clients. In presenting these 
concepts and their semantics, we will refer back to our goals for the store to help 
explain the rationale for the features and choices. The major concepts are objects, 
files, and pools. Additional concepts include handles (which are used to access 
objects) and transactions. 

2.2.1 Objects. A Mneme object is a byte vector, with some embellishments, as 
follows. First, an object has associated with it a unique object identifier (id), which 
allows the object to be located and accessed. Object identifiers are logically 
equivalent to addresses or pointers; each object has an “address,” the object can 
contain ids that “point to” other objects (or even the same object). A Mneme id 
is about the same size as a pointer-a 32-bit word, less a few bits to allow for 
tagging in those languages that need it. Second, the ids stored within an object 
can be enumerated, which helps support garbage collection (among other things). 
Third, each object has a few associated attribute bits (on the order of eight) 
intended for indicating such properties as whether the object is read-only. The 

design does not specify their use-attributes are more of a hook for extensions- 
though some specific potential uses are mentioned. Finally, each object has a 
(current) size. Additionally, one can change the size of an object, replace it by 
another object, and delete it. 

We developed this specific object concept for several reasons, most easily 
discussed by considering alternatives. Perhaps the simplest notion of object, used 
in some well-known designs (e.g., [lo, 20, 39]), is a vector of bytes alone. Our 
addition of attribute bits is not very profound; requiring that ids inside objects 
be enumerable is more interesting. We do it partly so that we can garbage collect 
the store, but it also allows us to use different forms for identifiers in client 
memory versus external memory, which is described further in Section 2.2.3. 

Our approach to enumerating ids in objects is for Mneme to rely on a small 
number of client-provided routines to tell Mneme where the ids are within an 
object when Mneme needs to know. Thus, the client is free to use any appropriate 

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990. 



110 l J. Eliot 6. Moss 

descriptor or format mechanism. For example, Smalltalk and Trellis segregate 

pointer and nonpointer data and have only a small number of simple formats, 
which require run-time support anyway. Languages that make more distinctions 
at compile time might need to produce tables and label objects with their 
type/format. 

Even though we go beyond simple byte vectors, our object concept has no 
notion of “class” or “type.” This is not a problem, since one can simply establish 
a convention for languages needing class/type information. For example, the first 
few bytes of each object might contain the class/type of the object. 

We allow for tagging of ids. The main reason for this is to fit better with 
Smalltalk and similar languages. If a language does not require tagging, then it 
will not incur additional overhead in supplying or manipulating tags. The main 
implication is that ids are limited to 28 bits. (How we support an effectively 
unbounded space of objects is explained in Section 2.2.3.) 

Just as we could have chosen richer object semantics than we did, we could 
have chosen a richer object relationship model, e.g., binary or higher order 
relationships, rather than just objects and pointers (ids). This would not have 
matched up well with existing programming languages. It would also have 
required more implementation effort and might have introduced performance 
problems. The difficulty is that relationships have many alternative representa- 
tions, a number of which must be offered in order to obtain good performance 
over a range of cases. Further, as more sophisticated data model features are 
added, one requires more of a data manipulation language, which encroaches 
upon the programming language’s responsibilities. We feel that such data models 
can and should be built on top of the Mneme model-that Mneme provides a 
low-level abstraction of storage, and advanced features such as relationships and 
arbitrary properties and attributes can be built in terms of this structure. Of 
course, an “object” at the higher level of semantics probably would not correspond 
directly to a single Mneme object; that is, higher level relationship models 
probably imply higher level object models as well. Our choice is consistent with 
providing a low overhead, simple, and general base on which to build, without 
imposing very specific semantics. 

To summarize, the format we chose for objects embodies the desired structure 
and minimal object semantics-every object has an id, the object can contain ids 
to describe its pointer relationships to other objects, the ids can be easily 
enumerated (for garbage collection, etc.), and the object can contain any non-id 
data desired. This structure is simple, general, and efficient in storage and access. 

2.2.2 Handles. While Mneme could support all object manipulation by having 
the client present ids, this would require looking the ids up in a resident object 
table prior to each access. To allow the client to amortize the lookup cost over a 
series of manipulations of the same object, we introduce handles. A handle 
provides efficient access to the internals of a resident object. Specifically, a 
handle contains the object’s id, a pointer to the data part of an object, the size of 
the object, and so on. Not only does using a handle obviate repeated lookup and 
avoid object residency checks, it also permits tight encodings to be used in object 
headers without sacrificing performance, since the header can be decoded once 
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and the information stored in the handle for repeated use. Thus actual manipu- 
lation of object contents is done via presenting a handle rather than an id. 

Clients provide space for handles, which are “created” (filled in) by giving 
Mneme the object id and a pointer to the handle space. When access is no longer 
desired, the handle may be “destroyed,” meaning it will no longer be used to 
access the object in question. The actions of creating and destroying handles 
serve several purposes. First of all, these actions delimit a period of time during 
which an object is actively being accessed and must be available to the application. 
Thus, handle creation and destruction can be used to indicate the times at which 
locks should be acquired and released (at least conceptually). Creating a handle 
requires that the object be located, which involves searching a table of resident 
objects, and, if the object is not resident, the object must then be fetched from 
external storage, causing what we call an object fault. Thus, handle creation and 
destruction provide information essential to buffer management. 

The main drawbacks of handles are their size and the imposition of an 
additional level of management between the application and the object. This 
level of management is also a level of abstraction, though, and improves the 
robustness of the system. On the other hand, while handles may be adequate for 
direct use of the store by some applications, they may not be the best approach 
for tight integration with a programming language. Therefore, in addition to 
access via handles, we allow applications to obtain pointers to objects in the 
buffers and manipulate objects directly. This avoids the subroutine call overhead 
and the indirections and checks of the handle interface, but requires more care 
on the part of the programmer. We have explored the performance aspects of 
handles versus direct pointers in more depth elsewhere [31]. In brief, direct 
pointer access substantially boosts performance of object manipulation compared 
with the handle interface. In order to delimit a span of use of an object, after 
obtaining a pointer and using it, one must release the pointer, informing Mneme 
that the particular pointer is being discarded and will not be used further. One 
may obtain the pointer again, given the object id, and begin another span of use, 
as often as desired. Handles allow updates to be noted by the handle routine 
performing the updates. When pointers are used, the application must inform 
Mneme if the object is modified. This may be done when the pointer is acquired, 
when it is released, or any time in between. 

2.2.3 Files and Locality of Ids. Mneme groups objects together into units called 
files. A file of objects can be separately named and located within an overall 
distributed store. A typical implementation of the concept associates individual 
files with specific server machines, although the association could change with 
time, and this implementation strategy is not dictated by the Mneme store 
design. Every Mneme object resides in a file. We are exploring whether and how 
to allow objects to move from file to file, which may be important for global 
garbage collection (cf. [8]). 

Files are a convenient unit for storage, and provide modularity of the object 
space, one of the stated goals. We intend that Mneme files, or groups of related 
files, be reasonable units of backup, recovery, garbage collection, and transfer 
between different Mneme stores. Transfer in particular, and backup and recovery 
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to some extent, depend also on the style of use by the applications, since a file’s 

objects can refer to objects in other files, and hence such references might occur 
out of context if a file is transferred or restored without regard for its references 
to/from other files. 

In addition to modularity, files allow us to take advantage of locality of 
reference and to provide a substantial degree of autonomy, as follows. Object ids, 
as stored in objects within the store, always name objects within the same file as 
the objects containing the id. This allows ids to be relatively short-less than 32 
bits, as previously mentioned. References to objects in other files are made by 
referring to forwarder objects within the same file. A forwarder is an ordinary 
object, with the exception that it has a particular attribute bit set. Because a 
forwarder is an ordinary object (except for the setting of the one bit), it can 
contain arbitrary information to name and locate the intended target object. 
Typically, a forwarder would indicate the file and the name of the object within 
the file. By convention, a field in a forwarder indicates the forwarding protocol 
to be used; the protocol numbers are then mapped to forwarding protocol routines 
via a simple table lookup, and the forwarding routine is called to interpret the 
rest of the contents of the forwarder. This scheme allows us to add new forwarding 
protocols at wi11.4 Forwarders also allow application mediated versioning schemes 
to be implemented easily and transparently. 

Because of the very general nature of the forwarder mechanism, we can 
support a variety of cross-file reference techniques, including ones where the 
binding is interpreted contextually, similar to UNIX@ environment variables or 
VAX/VMS@ logical names. Forwarders provide a substantial opportunity for 
extension of the basic Mneme store functionality. 

To provide autonomy, as well as to support garbage collection, the actual ids 
of objects in a file are not used to name the objects from “outside” of the file. 
Rather, each file has a table mapping external names to internal object ids. The 
external names, together with some unspecified means for naming files, provide 
the only form of (potentially) immutable persistent object identifier in the design. 
Thus, such a name should be assigned to any object that an application or user 
may need to name explicitly at a later time. However, we do assume that relatively 
few objects will need such names. Autonomy is supported in that the mapping 
table can have procedural hooks, analogous to forwarding protocol routines, to 
indicate actions to be taken when an external name is looked up. Since the 
mapping routines can involve arbitrary code, they can do authorization checks, 
supply different objects to different requesters, synthesize data on demand, 
initiate prefetch, and so on. 

Note that the mapping tables are essential, since ids cannot simply be synthe- 
sized and presented to the Mneme store functions with any reliability. This is 
because Mneme may reassign ids of objects within a file, to support reclustering, 
garbage collection, reuse of the limited space of ids, and even explicit object 
deletion. The tables themselves are not expected to take much space relative to 
the objects, since only a small percentage of objects will have external names and 
thus be entered in the tables. For example, a CASE tool might store program 

‘Whether such code can be loaded dynamically is an implementation issue we have not explored. 

@ UNIX is a registered trademark of AT&T Bell Laboratories. 

@ VAX and VMS are registered trademarks of Digital Equipment Corporation. 
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parse trees in Mneme. In this case only the root of the tree needs an external 
name, whereas the parse tree likely contains hundreds to thousands of objects. 

We believe the Mneme file concept is good because of the way it simultaneously 
enhances modularity, autonomy, extensibility, and compactness (short ids). Most 
notably, the scheme keeps ids short (less than 32 bits), but supports an object 
space of unbounded size. The file concept also maps well onto existing file 
systems, as well as the client/server model of distributed data storage and access. 
In addition, the model is a relatively simple one; it is useful, though, to compare 
it with alternative approaches. (We present more detailed arguments in [30].) 

One alternative approach is a very large shared distributed virtual memory, 
where object ids are addresses naming bytes or words. Problems with this 
approach include lack of object semantics, difficulty in garbage collection, the 
need for long addresses and large pointers, and poor support for autonomy, 
modularity, and extensibility. Of course, object semantics can be provided at a 
higher level; and that is what Mneme does. Mneme memory management is 
simplified and made more flexible by not having object ids linked to precise 
physical locations. This is because object ids with some degree of location 
independence allow some movement without id reassignment. Thus, we can do 
some compaction and reuse of space without garbage collecting the entire store. 
Garbage collection is more of a problem in a shared address space, since the 
whole space may have to be searched to determine reachability. The segmentation 
introduced by files, similar to the areas of [8], makes garbage collection more 
realistic. 

The main advantages of the virtual memory approach are simplicity and 
familiarity, although the simplicity may be only apparent, not real, when we 
consider administration of a very large distributed store. Most of the problems 
mentioned occur for any byte/word addressed store, regardless of whether the 
virtual memory is more structured, e.g., segmented as on Multics [34] or the Intel 
432 system [22, 351. 

Another alternative to the Mneme addressing scheme is immutable object 
identifiers. Sometimes provision of such identifiers is seen as equivalent to 
supporting object identity, although we argue that object identity and persistence 
of immutable names for objects are distinct ideas. For further discussion of the 
concept of identity, see [24]. Note that Mneme supports identity in the sense of 
preserving the graph structure defined by object references, but without the most 
frequently used kind of name (object ids) being immutable. While forwarders and 
mapping tables can support other semantics as well, we presume that they 
provide at least the capability to continue to refer to precisely the same object, 
so long as the object is not explicitly deleted. Hence, our design does provide 
immutable persistent names when they are required, but avoids their overhead 
in the many cases where they are not. 

Immutable object identifiers present three major problems, all related to 
performance. First, in a large system, they will have to be long. This might be 
ameliorated if objects are grouped in a manner similar to our files, but if there is 
substantial movement of objects from file to file, performance problems of space 
(a mapping table) or time (forwarding addresses) result. (If objects move a lot, 
Mneme will also incur time overhead chasing through forwarders.) The second 
problem is retrieval time. If object ids are immutable, as objects are reclustered 
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over time the ids lose any power they might originally have had to provide a hint 
as to where an object is located. In a large store it is likely that two or more 

secondary storage accesses will be required to fetch an object: one to determine 
its location and a second to retrieve it. Prefetch and clustering will reduce the 
impact of this problem, but cannot entirely eliminate it. Mneme (as we will see) 
can use object ids as substantial location hints and eliminate at least one 
secondary storage access on object retrieval, assuming a per-object id-to-location 
map would be too large to keep in main memory. The third problem is internal 
and external object table size. If object ids are entirely independent of object 
location and clustering, then a per-object mapping table is needed for finding 
objects in external storage, and a per-object table is also needed for locating 
objects currently resident in main memory. In both cases the tables must be able 
to handle sparse key sets. Mneme uses smaller external mapping tables, and 
faster and probably more compact internal mapping tables, deriving both speed 
and space benefits compared to immutable object id approaches. 

In summary, the Mneme concept of a file as a modular collection of objects, as 
a local space of object identifiers, and as a unit of autonomy, supports several of 
our goals better than the alternative designs considered. 

2.2.4 Pools and Strategies. Mneme files are physical and logical units of 
grouping and naming objects: physical in that files physically contain objects, 
and logical in that files are visible to Mneme users and are involved in the 
naming of objects, although cross-file references can be followed transparently, 
unless access is denied or some other difficulty arises. Mneme pools, on the other 
hand, are logical, and not directly physical, groups of objects within files, and 
pools are not directly involved in object naming. Pools do not span files because 
each file is an autonomous collection of objects, bound to other files only via the 
cross linking of the ijrwarder mechanism. 

Each Mneme object is associated with (stored in) exactly one pool, and that 
pool determines the policy under which the object is managed. A management 
strategy is a vector of pointers to routines for making individual policy decisions. 
A strategy is associated with a pool when the pool is created. Strategies can 
depend on pool-specific variables, called pool attributes. Thus, a strategy can be 
generic with specific parameters given by the pool’s attributes. In addition to 
determining object management policy, pools support scanning the objects they 
contain, and thus are useful for grouping objects for later query processing. 

Let us consider two examples of the pool concept in action. The routine for 
creating an object has the following inputs: the desired size for the object, the 
initial attribute settings, the pool in which to create the object (which implies 
the file as well since pools are units within files), and an additional parameter to 
be interpreted by the pool’s object-creation policy routine. After preliminary 
argument checking, the Mneme object-creation routine calls the pool strategy’s 
object-creation routine, which chooses the physical segment in which to place 
the new object. 

Another example of policy involvement occurs when a handle is requested 
for an object (given the object id) and the object is determined not to be resi- 
dent. In this case, the object’s pool (strategy) object-fault policy routine is called. 
Clearly, the object itself must be retrieved, but the policy routine determines 
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whether to prefetch additional data, how the object should be locked, the buffer 
replacement policy to be used, and so on. If the requested object is a forwarder, 
then further policy and forwarding/mapping implementation routines become 
involved. 

Recall that policy routines reside in the client’s address space. For the strategy 
mechanism to work correctly, strategies are assigned numbers by an appropriate 
authority (analogous to forwarding protocol numbers), and standards are devel- 
oped as to what each strategy should do. Pools indicate their associated strategy 
by strategy number, and the client tells Mneme the location of the routines 
implementing each strategy, so that Mneme can fill in the strategy routine tables. 
Setting up the strategy tables is frequently done just after initialization, but 
routines can be added while the system is running. Dynamic loading of strategies, 
if provided, is up to the client. 

Thus, in addition to providing a default strategy, the Mneme store design 
allows new strategies to be developed and specifies means by which strategy 
routine vectors can be filled in by an application, so that policies need not be 
built into the Mneme store code. If an application attempts to use an object 
whose pool strategy vector has not been set up, an error handler is called. 

Pools support policy/mechanism separation and policy extensibility. The cur- 
rent design leaves open as a research question the detailed design of the strategy 
routine interfaces. The pool concept supports flexible approaches to object 
clustering, storage allocation, prefetch, concurrency, consistency, buffering/ 
caching, and perhaps even security, versioning, and other issues. 

2.2.5 Transactions. Since the Mneme store is intended to support exploration 
of techniques for cooperative sharing, some kind of concurrency control mecha- 
nism is required. Serializability is a clean, unifying correctness condition that 
has enabled the development and evaluation of many concurrency control pro- 
tocols that prevent interference. Unfortunately, there does not yet exist such a 
simple and unifying correctness condition that allows all the forms of cooperation 
that appear to be desirable. The approach we have taken in Mneme is to support 
serializability, in the belief that most of the time it is appropriate, and to provide 
additional nonserializable primitives for those situations where serializability is 
too limiting. The key here is to provide primitives with reasonably simple, yet 
fully general, semantics, so that application-specific concurrency control is not 
overly difficult to build, yet virtually any protocol can be implemented. 

A Mneme store session is a period of interaction with the store, analogous to a 
login session with an operating system. A session establishes a context of use, 
including open Mneme files and ids of objects in those files. A transaction is a 
unit of work, concurrency control, and consistency, within a session. All Mneme 
object manipulations occur within transactions. The intent is that so-called “long 
transactions,” “design transactions,” or “cooperative transactions” that span 
sessions are implemented at higher levels of abstraction, using Mneme store 
transactions to implement their various atomic steps. Sessions allow considerable 
caching of names, objects, and other file related information, increasing perfor- 
mance and providing a more convenient context of work for applications. Notably, 
the design guarantees that object ids (as used by a client) retain their meaning 
from transaction to transaction within a session. 
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As indicated above, the design includes a basic transaction model that supports 
serializability, augmented with facilities to build application-specific, nonserial- 
izable models. The basic transaction model is quite straightforward. The set of 
committed transactions is guaranteed to be serializable, and individual transac- 
tions are guaranteed to be all-or-nothing (all effects installed on commit, none 
on abort). Serialization is done in terms of individual objects and whether they 
have been read or modified. This specification allows considerable flexibility. For 
example, one can use read-write locking or optimistic concurrency control, With 
care, different pools can use different strategies (they must produce consistent 
serialization orders). 

An important point is that our design defines the meaning of abort and commit, 
but makes no guarantees concerning which transactions can or will commit. 
Thus, while read-write locking on a per-object basis is correct and allows high 
concurrency, one can lock in more restrictive modes (e.g., write lock when an 
object has only been read, in anticipation of a possible write) or in larger 
granularities (physical groups of objects, whole pools, or even entire files, as in 
[19]). This allows use of simpler and more efficient techniques to boost perfor- 
mance when the highest concurrency is not required. For example, when an 
entire design file is checked out, it is not necessary to lock each individual object 
within the file. 

Another point to consider is that any locking or concurrency control is a side- 
effect of acquiring a handle, updating slots or bytes, and so on, similar to the 
automatic locking typical of database systems. That is, there are no explicit lock 
or unlock calls performed by clients, no additional lock modes, and so on. It 
remains to be seen if additional “hooks” are necessary for more precise specifi- 
cation of access to objects, or whether the pool/strategy approach to tailoring 
concurrency control and recovery is adequate. 

The transaction semantics extension facility aims to provide a small number 
of minimal, general primitives. These primitives supply two basic pieces of 
functionality: mutual exclusion and notification. This functionality is intended to 
provide concurrency control and synchronization, as needed. 

Mutual exclusion is supported via the introduction of a new concept: volatile 
pools, which work as follows. When a client acquires a handle on an object stored 
in a volatile pool, Mneme gives the client exclusive access to that object until the 
handle is released. Similarly, mutual exclusion is guaranteed from the time a 
direct access pointer is acquired until it is released. When the handle (or pointer) 
is released, the object may be accessed and/or updated by other processes. Thus, 
volatile pools provide “short locks” on objects, with the result that the object 
contents are volatile, in the sense that they can appear to change spontaneously.’ 
The mutual exclusion provided by volatile pools is adequate for building any 
desired concurrency control semantics. The short exclusive-mode lock is used for 
locking the data structure containing lock and scheduling information for the 
user-defined locks, similar to the techniques of [44]. While this approach is 
fully general, interesting performance questions remain, such as how best to 
cache volatile objects, which can be treated differently by different volatile pool 
strategies. 

’ This notion of volatility is not related to hardware crashes or other forms of memory loss. 

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990. 



Design of the Mneme Persistent Object Store * 117 

Notification is required to support continuation after waiting for a transaction 
to change state (abort, commit, etc.). Mutual exclusion plus notification are 
adequate to implement application-specific locking. Notification has two aspects: 
registering interest in particular events and receiving notices of the events as 
they occur. Registering interest in events is straightforward. Receiving notices 
in a general way is a bit more subtle, since Mneme is not aware of any multi- 
threading that might or might not be present in the application. Our solution is 
to have the application designate a subroutine to be called when the event occurs. 
This subroutine may take action directly, or may simply register the event 
occurrence so that the application run-time system will process it later. The 
Mneme design provides for notification of transaction state change and for time 
expiration. 

For a number of reasons, crash resiliency is a more difficult problem to handle 
well: it can noticeably affect performance, it tends to require a single global 
strategy, it has pervasive effects on the software, and it is a major source of 
system complexity. In Mneme, we chose to adapt the recovery methods of the 
POSTGRES storage manager [41]. The idea is to locate (insofar as possible) log 
information pertaining to a particular segment of data in that same segment, 
with the only global log being the record of committed transactions. 

This approach is appealing for Mneme because it allows each pool to take a 
different strategy as to the details of logging and recovery for the segments of 
objects in that pool, and minimizes the common facilities to the transaction 
commit log. Localizing log information with the affected objects also makes sense 
for volatile pools: when the objects are recorded, their log records will be also, 
with no additional effort. Further, any connection made between the log infor- 
mation in the segments and the transaction log is up to the pool strategy routines. 
The POSTGRES approach is also appealing because it leads quite naturally 
in the direction of support for temporal or historical data as well as simple 
versioning. 

The extent to which the POSTGRES approach suffers from performance 
difficulties in practice remains to be seen, given that we are not assuming the 
availability of stable main memory. We expect that logically storing the log 
information with the segments, but recording changes physically using techniques 
such as the database cache [15,33], will help overcome the potential performance 
problems. 

In summary, the Mneme store design includes a basic transaction facility, a 
transaction extension facility, and support for crash resiliency. In addition to 
transactions, which have “traditional” database system semantics (but are spec- 
ified so as to allow a variety and mixture of strategies in implementation), the 
design also includes the notion of a session. Sessions provide a scope for naming 
objects and allow for caching across transactions. 

2.3 Summary of Design Concepts 

Now that we have introduced the Mneme design, it is perhaps helpful to review 
the main contribution and value of each concept of the design: 

-Objects. Clearly, we must offer objects of some kind; the issue is exactly what 
kind. We provide a simple model intended to offer good performance, to be a 
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good base on which to build more sophisticated semantics, and to be a good 
match for programming language implementation. 

-Files. Files, combined with the forwarding mechanism, address many of the 
significant issues of distribution, especially autonomy, while encouraging 
transparency (automatic following of forwarders) and allowing extensions (new 
forwarding protocols, etc.). Files also provide modularity of the data in the 
store, making it easier to garbage collect (among other things). 

-Pools. The primary advantage of pools is that they allow different collections 
of objects to be managed under different policies, even within the same file. 
This is ultimately important for performance. Adding or modifying pool policies 
(strategies) is also the most significant way in which Mneme can be extended. 

-Physical segments. By grouping multiple objects together into a single chunk 
for transfer and storage, segments improve performance. Also, since segments 
are very simple (vectors of bytes) and at a lower level of abstraction than 
objects, they are a good basis for the interface between Mneme and external 
storage servers. 

-Transactions. Transactions and sessions provide the concurrency control and 
synchronization crucial in a system allowing concurrent work. Volatile pools 
allow new concurrency control techniques to be devised and implemented 
without fundamental changes to Mneme. 

3. THE INITIAL PROTOTYPE 

We have built a working prototype Mneme store. We had two main goals for the 
prototype: to explore certain aspects of the design and to provide support for our 
persistent programming language implementation efforts. In terms of the design, 
we were most concerned about the performance of the interface to objects, 
especially when accessing and manipulating objects resident in buffers. We were 
also concerned about I/O performance. The prototype is thus, in a sense, a 
feasibility study to see if adequate performance can be achieved. With respect to 
persistent language support, we are developing implementations of Persistent 
Smalltalk and Persistent Modula-3, which pose different problems since they are 
at opposite ends of the interpreted versus compiled and run-time versus compile- 
time type checking spectra. Efficient persistent languages impose two primary 
demands: rapid access to resident objects, and compact objects and object 
identifiers. If these demands are not met, then the persistent language (when 
manipulating resident objects) will compare unfavorably with nonpersistent 
languages. 

Our goals for the first prototype do not require all features of the design, so we 
implemented only those features needed. In some cases we provided limited 
implementations of features as well. For example, the prototype supports at most 
one million (220) objects per file, stored in at most 1024 segments. We emphasize 
that the design is itself a valuable contribution, without a complete implemen- 
tation, because important strategies and approaches (such as the file concept) 
have been articulated and have influenced the prototype. Further, the implemen- 
tation is also worthwhile because it has given useful experience with the design, 
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allowed interesting performance measurements which will guide further design, 
and provided support for persistent programming language implementation. 

3.1 Differences from the Design 

We now describe the primary ways in which the prototype is different from the 
design presented earlier. First, there is no explicit support for distribution, 
multiple users, or resiliency. Clearly, the decision to omit these features from the 
initial prototype greatly simplified implementation, but since we were most 
concerned with testing the object interface performance with resident objects 
and raw retrieval speed, we did not need multiuser or distributed systems support. 
It is also clear that adding such support to the system is not likely to increase 
performance. We do believe, however, that it will not dramatically decrease 
performance either. This is because, as previously argued, we expect concurrency 
control and retrieval to be done mostly in terms of medium to large granules, 
meaning the per-object overhead will be small. Further, we are most concerned 
with applications that manipulate a considerable volume of data, so that most 
transactions generate more than few updates; this suggests that the incremental 
cost of transaction commit records, for example, is small. In any case, we wanted 
to see if the object interface could possibly reach our performance goals, and we 
have purposely separated the question of whether or not transaction and distri- 
bution support has dramatic or only incremental effects. In fact, having the 
nontransaction system as a benchmark will enable us more easily to determine 
the costs of the transaction features when they are added. 

Another difference is that the prototype does not support extremely large 
collections of objects. It allows (as mentioned above) up to about one million 
objects per file and about one thousand segments per file. While multiple files 
are supported, cross-file references are not. Again, files with up to a million 
objects were adequate for us to get started. Further, we have sketched out in 
some detail the mechanisms necessary to support larger files, and firmly believe 
that the crucial performance measures will not change much as we move from 
current mechanisms to more capable ones. Some of the necessary changes are 
discussed in more depth later. Our main reason in not supporting larger files in 
the first prototype is that it is a bit more complicated, and we desired to have 
the prototype operational as soon as possible. 

A third difference is that the prototype supplies a small number of built-in 
object formats within Mneme, rather than relying on the client to deal with 
object formats and id enumeration. In particular, the prototype segregates ids 
and bytes, and uses a particular tagging scheme. Ids are stored in slots. A slot 
can contain an id (which can be null, represented by 0) or an immediate value; 
the two cases are discriminated using the sign bit of the 32-bit word. Since 
garbage collection is not yet implemented, the slot/byte segregation and built-in 
tagging scheme are not all that important a difference from the design. Also 
related to objects, the prototype does not support changing an object’s size or 
replacing it with another object. 

Finally, the prototype does no buffer management in the sense of automatically 
choosing and purging buffers of objects. Because of the direct pointer interface, 
this could be problematic. There is also an interesting tension between associating 
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buffer management with Mneme pool strategies-which is natural in the Mneme 
framework-and the obvious point that buffer management is necessarily global, 
since it involves managing memory as a global resource. Our view of the 
performance-critical aspects of applications is that they must be able to retrieve 
a design file rapidly, manipulate the design file efficiently, and propagate updates 
rapidly when done. If we view this model of persistent programming applications 
as primary, then buffer management is not the most important issue, since an 
application proceeds in distinct phases of loading, working, and saving. For 
example, in a CAD tool, one is likely to load a design file (retrieve all the relevant 
objects in the file), work on that file for a period of time, and then store back 
any changes at the end of the work session. We were mostly interested in whether 
the Mneme object interface could possibly be efficient enough for this style of 
work. Hence, advanced buffer management was not important in the prototype, 
and was not provided. We simply allocate virtual memory at will and write 
modified segments back only when their file is closed. 

3.2 The Client Interface 

We now summarize the C routines available to clients of the Mneme prototype. 
We begin by describing the style of the interface. It is relevant because good style 
in interface design makes a considerable difference in usability and also affects 
how frequently users of the interface make mistakes. Here are the principles 
we arrived at, some from the start and others after draft interfaces had seen 

some use: 

-A number of uniformity conventions were followed, to make the interface 
easier to understand and remember. For example, every routine returns a result 
code with a uniform interpretation. 

-Since users are notoriously slack about checking for error result codes, we 
provided an exception reporting and handling feature. Mneme maintains a 
stack of error-handling routines and the user may push and pop routines on 
that stack at will. When an error occurs, the top routine is presented with 
information about the error and can handle the error, cause Mneme to return 
the same or a different error code, or pass the error on to the next routine 
down the stack. This feature has proved to be of considerable assistance in 
finding and resolving bugs, in applications as well as in Mneme itself. 

-All dynamic (as opposed to persistent), visible (as opposed to internal) struc- 
tures are allocated and freed by the user. This improves performance by 
allowing local stack space to be used wherever possible, avoiding calls to 
manage heap-allocated memory. 

We now summarize the functions available, in related groups. Where relevant, 
we describe the actual interfaces of routines. 

3.2.1 Object, Handle, and Pointer Operations. There are a few functions related 
to object ids alone (object deletion, identity comparison, and existence checking), 
but most object manipulations are performed via handles or direct pointers. It is 
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useful to consider the interfaces of the object-creation routines: 

MnObjectCreate (poolid, nslots, nbytes, attrs, near, hnd, id) 
MnObjectCreatePtr (poolid, nslots, nbytes, attrs, near, ptr, id) 

They show that creating an object requires identifying the pool in which to create 
the object (that pool’s strategy routine does the actual placement decision), which 
implies the file as well, since pools do not span files. We must also specify the 
size of the object (number of slots, number of bytes) and the initial attributes. 
The near parameter is passed to the strategy routine and is generally used to 
indicate the identity of an existing object near which the new object should be 
placed. Finally, hnd, ptr, and id are the handle on, direct pointer to, and id of the 
new object, respectively. 

It is also instructive to consider the interfaces to the routines for obtaining 
and releasing handles and pointers: 

MnHandleCreate (id, hnd) 
MnHandleDestroy (hnd) 
MnldPtr (id, mod, ptr) 
MnldRelease (id, mod) 
MnldMod (id) 

MnHandleCreate and MnldPtr are the routines that can cause object faults; 
they take an object id as input and return a handle or direct pointer. The pointer 
routine also allows us to indicate that the object will be modified, should we 
happen to know that. MnHandleDestroy and MnldRelease are the routines that 
mark the end of a period of use of an object. MnldRelease allows us to note 
that the object has been modified, and MnldMod allows such notation to occur 
at any time, since it may not always be conveniently known when MnldPtr or 
MnldRelease are called. Recall that in the case of handles, all manipulation is 
done via additional Mneme routines, which can automatically record if an object 
is modified. 

Additional handle routines allow us to determine information about the object 
(its file, pool, number of slots, number of bytes, and whether it has been modified) 
and to access and update its slots, bytes, and attributes. We also provide the 
ability to copy ranges of slots or bytes from one object to another and to fill a 
range of slots or bytes with a user-specified value. 

Since a direct pointer allows most of these operations to be performed without 
Mneme calls, there are fewer operations related to these pointers, but one can 
determine the number of slots and bytes in an object as well as access and update 
the attribute bits. An interesting aspect of the direct pointer interface is that 

clients can observe the external (on-disk) format of the Mneme ids, rather than 
the usual client form. Recall that with the on-disk form, an id is relative to the 
file containing the object. To simplify and speed up manipulation of ids in 
external format, a number of the id-related operations have corresponding forms 
that accept a file identifier (uniquely identifies a currently open file) and a 
persistent id (the external identifier of an object in the file). There are also 
routines to map between the internal and external id format. The additional 
routines are needed as a consequence of our decision to support direct access to 
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objects in the Mneme buffers, as well as an implementation decision that the 
buffer contents would be in the on-disk format. (Clients may change the internal 
format of objects in the buffers, so long as the external format is restored by the 
time the buffer is written back to disk.) 

3.2.2 Pool and Strategy Operations. Pools can be created and destroyed, and 
they have associated attributes, allowing them to have arbitrary client-specified 
(and strategy-specific) parameters. In the prototype these attributes are realized 
as name-value pairs, where both the name and the value are strings. One can 
get, set, and remove individual attributes and get all the attributes at once. The 
only interesting interface to consider is the one for pool creation: 

MnPoolCreate (fileid, stratid, poolid) 

Here fileid and stratid are inputs, indicating the file to contain the pool and the 
strategy to be used. The output is poolid. A pool id is used in object creation, as 
we have seen; one can also determine a pool’s file from the pool’s id. While we 
have not done so to date, it would be straightforward to provide routines to 
iterate through all objects in a pool, all currently resident objects of a pool, and 
so on. 

There is only one routine related to strategies; it allows the client to indicate 
the routine to be executed when a particular strategy event occurs for a given 
strategy. A strategy event is a particular occurrence, such as the creation of an 
object. The set of events is not considered part of the Mneme client interface per 
se; it is part of the strategy interface. This interface was not developed much in 
the prototype, and relatively fixed policies were used, with the result that the 
currently defined strategy events are not very interesting. The interesting aspect 
of this feature is its design and future extensibility rather than the current 
implementation. 

3.2.3 File Operations. To support the extension of options related to file 
handling, such as the “mode” in which to open a file, the prototype provides a 
session-wide collection of options. These are name-value pairs, where the name 
and value are both strings. While options are similar to the attributes attached 
to pools (and files), options are not associated with data structures, but with the 
current session. They are similar to Unix environment variables. Each file 
operation (or, for that matter, any server or policy routine) can examine options 
relevant to it. This idea is important because it simplifies the interfaces of the 
file operations and helps to prevent operating system peculiarities from creeping 
into them. 

The basic file manipulation operations, and the file attribute routines, are 
straightforward. We provide routines to create, delete, rename, open, and close 
files; to test whether a file of a given name exists; and to get, set, and remove file 
attributes (name-value pairs stored in the file). File attributes are intended to 
help support things such as tagging files with the name of the application that 
built them. 

A number of additional inquiries are provided related to open files (named by 
file identifiers returned by the file open routine). The most interesting routines 
are those that get and set the root object of a file. Since the prototype does not 
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support automatic cross-file references, the incoming reference table mechanism 
was not needed in its full generality. Instead, we provided one starting point in 
each file: the root object. When a file is created it has no root object, but at any 
later time, any object in the file can be designated as the root. This has proved 
adequate for the simple applications we have dealt with to date. It is also a good 
starting point for eventual incoming reference table functionality: we can hang 
the more advanced structure off the root object. To do so we need only develop 
routines for managing the necessary dictionary data structure and offer them for 
general use. The root object approach currently allows each application to use 
whatever approach is appropriate. The eventual implementation of cross-file 
references will require future standardization of these lookup mechanisms, or of 
aspects of them, at least. The root object idea may turn out to be useful in 
addition to the incoming reference table: objects reachable from the root object 
in some sense “belong” in the file, whereas those that are reachable only from 
the incoming reference table are candidates to move to other files. (This idea 
comes from [8].) 

3.2.4 Miscellaneous Operations. The interface includes several operations for 
acquiring statistics and counts. These are clearly very important, considering our 
goals of measuring performance. Several routines are related to tracking and 
reporting information about the contents of files (number of objects, number of 
segments, space consumed, etc.) and several with dynamic statistics (number of 
faults, volume of data moved, number of calls to certain routines, etc.). There 
are also a number of other minor functions to handle matters such as initializa- 
tion, shutdown, the error handler stack, and so forth. 

3.3 Implementation 

The prototype is written in C [23], and has been run on the VAX/VMS, Ultrixe, 
and SunOSe operating systems, and should run under other systems supporting 
C if they have adequate memory and disk capacity. The system is designed to be 
highly portable, and the choice of C was made largely because of the wide 
availability of implementations of C, especially within the research community. 
C also supports the type-unsafe operations necessary for such things as imposing 
object structure on raw bytes retrieved from a server. 

While most aspects of the prototype implementation (table design, algorithms, 
etc.) are straightforward, the implementations of object identifiers and segments 
are deserving of more detailed discussion, since these implementations are crucial 
to good performance. 

3.3.1 Client and Persistent Identifiers. As previously mentioned, the on-disk 
and client forms of object identifiers are different. While perhaps not obvious, 
the reason is straightforward. Since each file autonomously maintains its own 
space of object identifiers naming objects within the file, two files can end up 
using the same identifier, producing a clash if we attempt to use both files at the 
same time without some sort of mapping. Now we could add a file identifier to 

@ Ultrix is a registered trademark of Digital Equipment Corporation. 
@ SunOS is a registered trademark of Sun Microsystems. 
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the object identifiers to disambiguate, but we desire to keep object identifiers 
short: they should fit in a single machine word, with room left for a few tag bits. 
This is important in obtaining good performance: multiword identifiers not only 
take more space within objects (making objects larger) in a general sense, they 
also take more space at each level of the memory hierarchy, and thus increase 
cache misses, virtual memory page faults, buffer replacements, and so on. The 
minimal reasonable expansion from one machine word is a doubling to two words. 
Further, since we are talking about persistent objects, larger ids mean more disk 
space, and possibly longer seek times (because things will be more spread out). 
Larger ids will also consume more disk and network bandwidth for transmission. 
Further, manipulating multiword identifiers will take more instructions. In short, 
identifier length has a global effect on performance. This issue is explored in 
more detail in [30]. 

Using short ids does mean that to disambiguate object ids from different files 
requires some sort of mapping between the form in the files (which we call 
persistent ids) and the form ordinarily used by clients (client ids). If we are not 
to lose the performance benefits of short ids, the mappings between persistent 
and client ids must be time and space efficient. In the prototype, because the 
number of objects per file and the number of open files were both limited, we 
could actually concatenate a file number and an object number within a single 
machine word. However, we have designed techniques that do not cheat in this 
way, so as to convince ourselves (and others) that the mapping is efficient enough. 

First, for files that are within specified size limits in terms of the number of 
objects they contain, we can still append the tile identifier to the object identifier. 
This is accomplished by having a boundary in the middle of the id field such that 
the file number is to the left and the object id (persistent id) within that file is 
to the right. Having a fixed boundary is limiting, so we use two id bits to 
distinguish between any of four boundaries. To make this more concrete, suppose 
ids are 28 bits long. We use one bit to choose between this scheme and another 
to be discussed in a moment, two bits to choose the boundary, and have 25 bits 
remaining to split between file numbers and object ids. While the boundaries 
may need tuning as we gain experience, here is a reasonable initial choice for the 
four boundaries: 

Tag File bits Number of files Object id bits Objects per file 

00 11 2048 14 16384 
01 8 256 17 131072 
10 5 32 20 1048576 
11 2 4 23 8388608 

The point is to allow many files, to allow large tiles, and to allow both to be 
mixed. Note that this mapping approach always includes all objects of a file, even 
if not all of them are being referred to by the application. On the positive side, 
this mapping is quite fast and requires no tables if file ids are assigned appropri- 
ately. Note that if a file grows while it is in use, such that it has more objects 
than permitted by its current mapping, we can institute a new mapping in the 
next larger category (maintaining the ability to map previously converted client 
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ids by permitting aliases). The details of the scheme are not crucial; its speed 
and flexibility in terms of numbers and sizes of files are its important features. 

What the variable boundary scheme does not handle is a large number of large 
files. Of course, we have already imposed a firm limit of 228 client ids in use at a 
time by restricting ids to 28 bits, and a large number of large files would tend to 
violate this hard limit. The interesting case is a large number of large files where 
we are naming only a portion of the objects in each file. To handle this situation, 
we introduce table-supported id mapping. Clearly, it would be expensive in space 
to map individual ids; we choose to map them in “chunks” of 214 identifiers. Each 
open file being mapped this way has a table indicating the upper 13 bits to use 
for each group of 214 identifiers in the file that have an assigned mapping. This 
supports mapping from persistent ids to client ids. The reverse mapping, as well 
as allocation of the “chunks,” is handled by a single global table in the client 
with an entry for each of the 213 patterns in the upper bits. While slower than 
the variable boundary technique, this scheme is still fast; the choice between the 
two schemes is controlled by a single bit in file identifiers and client identifiers. 

3.3.2 Logical Segments. In addition to mapping between persistent and client 
identifier forms, we must be able to locate objects efficiently, on disk and in 
memory. The concept of logical segments plays an important role in locating 
objects with high performance. A logical segment is a set of object ids that have 
the same high-order bits and vary only in the low-order bits. In the prototype, 
the logical segment size is 1024 object ids. Thus, any two object ids that differ 
only within their 10 least significant bits are in the same logical segment. 
A logical segment of ids is the analog (in object id space) of a virtual memory 
page (in a virtual address space). 

We require that objects in the same logical segment be located in the same 
physical segment; recall that a physical segment is the unit of communication 
between Mneme and servers. Thus, rather than mapping individual objects to 
physical segments, we need only map logical segments to physical segments. 
Since there are 1024 objects per logical segment, the mapping tables can be up 
to 1024 times smaller than a per-object table. The smaller size allows the map to 
fit in main memory when a per-object map may not, and thus the logical segment 
grouping allows most object faults to be satisfied with one disk retrieval. Logical 
segments were introduced to improve performance and are not required by the 
Mneme design. 

Since each pool has an associated object management strategy, each physical 
segment is contained in precisely one pool, so that the physical segment is under 
the control of a unique strategy. Further, since each logical segment is contained 
in precisely one physical segment, each logical segment is contained in a single 
pool. Thus, at a physical level, each pool manages a set of physical segments, and 
at a logical level, a set of logical segments. 

In the prototype, files are limited to 2” objects, leading to the following object 
location mechanisms. Given an object id, the file number is in some upper bits; 
this is used to index the file table. An entry in the file table includes a pointer to 
the file’s logical segment table, which is brought into main memory when the file 
is opened. The lower bits of an object id can be broken into a logical segment 
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number (10 bits) and the number of an object within that segment (10 bits). The 
logical segment number is used to index the file’s logical segment table; the 

logical segment table entry indicates whether the logical segment is resident, and 
if so, where it is. A logical segment has a header containing self-relative pointers 
to the (up to) 1024 objects within the segment, which can be thought of as a 
fragment of an object table. The object number bits of an object id are used to 
index this table fragment and find the actual object. If the object is not resident, 
the logical segment table’s pointer to the resident copy of the segment will be 
null. The logical segment table entry also indicates the physical segment con- 
taining the logical segment. This physical segment can be requested from the 
file’s server and loaded into a buffer. This two-level direct lookup scheme is 
illustrated in Figure 2. 

Since the client id format will change in the future, the object-location 
mechanism will also change; and it is important to convince ourselves that it can 
be about as fast as the two-level technique. First, we note that the crucial code 
path is locating resident objects, since a few additional instructions to deal with 
a nonresident object will not affect fault time noticeably. In the future we will 
substitute a hash table for the two-level scheme. The hash procedure will take 
the upper 20 bits of an id, probe the hash table, and either fail (the logical 
segment is not resident) or produce the address of the logical segment’s object 
table fragment. Given a simple hash function (e.g., extract some bits) and 
sufficiently low load factor on the table, this should perform approximately the 
same as the two-level lookup, on average. 

Locating logical segments on disk can still be done via direct lookup, or, if we 
are concerned about the space consumed by tables when not all of a file is used, 
we can substitute a multiple-level lookup scheme (e.g., a B-tree), at the cost of 
threatening the one-disk access property that the logical segment concept at- 
tempts to provide. 

3.3.3 Physical Segments A Mneme physical segment is a byte string that 
contains one or more logical segments of objects. Physical segments are the items 
of discourse with servers; and it is generally assumed that a physical segment is 
stored contiguously, allowing efficient retrieval and storage of the segment as a 
unit. Our physical segments are analogous to the pages of database systems, 
except that physical segments do not have any fixed size. Reasonable sizes for 
physical segments probably range from a substantial fraction of a disk track up 
to a disk cylinder. When an object fault occurs, we always retrieve a complete 
physical segment (a policy routine could request additional segments). Thus, the 
physical segment is the true unit of clustering in Mneme. 

While the details of physical segment layout may not be crucial, for concrete- 
ness we describe the format used in the prototype. A physical segment is laid out 
with the object table parts of all of its logical segments at the beginning. These 
grow upwards as logical segments are added to the physical segment. The objects 
are allocated from the high end of the segment, with the object region growing 
downwards toward the object table region. An object table entry (OTE) is mostly 
a self-relative pointer to the corresponding object. The OTE also contains 
referenced, modified, and deleted flags. The physical segment’s entry in the file’s 
physical segment table contains the various storage management pointers for 
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memory allocation within the segment. Free OTEs are chained through the OTEs 
themselves, with the head being in the physical segment table entry. The physical 
segment structure is illustrated in Figure 3. 

Objects are associated with Mneme pools via the physical (and hence logical) 
segments that contain the objects. This means that each physical segment belongs 
to exactly one pool, and that a pool thus manages a collection of physical and 
logical segments. This makes considerable sense, since a pool needs unambiguous 
control over the placement and retrieval of its objects and the management of 
the physical resources used to implement the objects. 

In sum, a physical segment implements a set of logical segments along with 
their objects, providing a unit of clustering, transfer, update, and interchange 
with back-end servers. In contrast, a logical segment is a group of object ids (and 
by implication a group of objects) that are always located, stored, and retrieved 
as a unit. A logical segment can be viewed abstractly as a piece of address space 
(actually, object id space), or concretely as a piece of an object table (which is 
never assembled as a single contiguous table). 

3.3.4 Server Interface. The server interface is worthy of brief comment, though 
there are no surprises. We expect this interface to evolve from prototype to 
prototype, especially since there are currently no provisions for distribution or 
concurrency. The interface includes the notion of a file, which corresponds to a 
file at the client interface. There are operations to create, delete, rename, open, 
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and close files, and a file existence test. Files also have a header associated with 
them and stored inside them. Mneme can fetch and store the header explicitly. 

Since servers assign physical segment ids, the header gives Mneme a place to get 
started without a segment id, just as the root object of a file gives Mneme clients 
a place to start without an object id. The only abstraction supported other than 
files is physical segments. They can be created and deleted; contiguous regions 
of a segment can be fetched and stored, and a segment can be grown (this feature 
is questionable, since it can always be accomplished by creating a new segment 
and copying over and deleting the old one). 

4. PERFORMANCE RESULTS 

We have measured various aspects of the performance of the prototype and 
present some relevant results here. The primary comparison we make is with 
nonpersistent forms of similar manipulations. In addition, there are absolute 
measures, and some comparison with the Exodus storage manager (ESM) [lo]. 

The comparison with ESM is necessarily rough, because it provides different 
abstractions and different functionality. Thus, though Mneme performs better 
than ESM on most of the tests reported here, those tests are not necessarily 
representative of what ESM was designed to do. Most of the performance results 
also appear in [31], although in the context of a somewhat different research 
question. 

4.1 Measurement Approach 

We measured the prototype, for the most part, with an instrumented program 
that constructs and traverses trees. In these trees, we can control the branching 
factor, the number of additional slots of internal nodes, the number of slots of 
leaves, the number of bytes of internal nodes, and the number of bytes of leaves. 
To allow the smoothest variation in the total number of nodes, we used binary 
trees in the measurements. The program can construct and traverse nonpersistent 
trees, as well as those stored in Mneme. It is written in C and runs on a 
DECStatione 3100 system; further details appear in [31]. 

We consider the performance of various user-level operations, examining in 
turn object creation, writing objects to disk, reading objects from disk, and 
locating and manipulating resident objects. 

4.2 Creation 

The table below presents measured per-object creation times (except the malloc 
line, which is an estimate). These are CPU times, but the elapsed times are 
almost exactly the same, since creation does not involve I/O (objects are created 
in main memory buffers; saving them to disk was measured separately). The 
“custom” allocation method is linear allocation (bumping a single pointer followed 

@ DECstation is a registered trademark of Digital Equipment Corporation. 
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by a limit test), with no special provision for reclamation other than reusing the 
entire heap space. The malloc cost was estimated by comparing the cost of a 
series of custom allocations versus a series of C library malloc calls. The other 
two columns are the measured cost of creating a Mneme object and returning a 
handle or a direct pointer, respectively. 

Software C, custom C, malloc Mneme, handle Mneme, direct 

Time, rsec/object 9.0 11.4 37.8 33.1 

We see that creating persistent objects in Mneme buffers costs three to four 
times as much as allocating nonpersistent objects in a main memory heap. In all 
cases, allocation cost was independent of object size within the range of sizes 
tested (about 10 to 1000 bytes total), regardless of whether the object was mostly 
slots or mostly bytes. Some of the performance difference between C and Mneme 
results from the calculation of Mneme object size from number of slots and bytes, 
the initialization of the object header, the formation of the object id, and so on. 
While it may be possible to reduce the factor of three or four somewhat, allocating 
persistent objects does involve more work, if only to allow strategy variation and 
more sophisticated choice of object placement. ESM was about four times slower 
than the Mneme direct access interface, so we feel that Mneme’s object-creation 
performance is good, even though it is substantially slower than C. We should 
point out, too, that persistent programming language implementations will create 
most objects in a transient heap, and propagate them to the persistent store only 
when they really need to persist (i.e., when they are found to be reachable from 
a persistent root, e.g., the root object of a Mneme file). Thus, creation performance 
is not the most crucial measure. 

4.3 Saving Objects 

Using data sets ranging in size up to 8 megabytes, we measured elapsed time to 
save objects to disk. It does not matter whether the objects are,new or old, and 
the number of objects does not affect the time noticeably; the procedure is I/O 
bound and depends only on the total number of bytes written. The tests were 
performed using a 667 megabyte SCSI drive (DEC RZ56). There was some 
variation, as can be seen in Figure 4, but the average write speed was approxi- 
mately 321 kilobytes per second,6 which is nearly 90% of what the disk can accept 
(measured as 360 to 370 kilobytes per second). ESM achieved some higher rates 
in our tests (343 kilobytes per second on large files), but, because its object ids 
are 12 bytes long, compared to Mneme’s 4 bytes, Mneme was faster in terms of 
objects per second. Since Mneme used most of the available bandwidth, its 
performance is good. If the “typical” object size is 40 bytes, then Mneme can 
save about 8,000 objects per second. Similar objects (ones containing the same 
number of pointers) would be larger in ESM-60 to 80 bytes-so ESM can save 
4,000 to 6,000 equivalent objects per second. 

6 We use kilo to mean 1000 and mega to mean l,OOO,OOO, reserving K for 1024 and M for 1024 X 1024. 
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Fig. 4. Writing time. 

4.4 Fetching Objects 

To test retrieval time, we performed simple traversal of the trees, faulting objects 
as necessary but doing minimal work on the objects. Here the results varied a 
little, depending on whether we used the pointer interface or the handle (call) 
interface, but when fetching 2 megabytes or more Mneme is I/O bound and 
retrieves 279 kilobytes per second, as shown in Figure 5. For a “typical” object 
size of 40 bytes, Mneme fetches almost 7,000 objects per second. This is close to 
our original performance goal, but could stand improvement. ESM achieved 
between 220 and 230 kilobytes per second. 

Tests of sequential reads of large files indicate the disk can deliver 600 to 700 
kilobytes per second, more than double what we actually achieve, and three times 
ESM. Clearly, Mneme is not always doing sequential reads. The rate at which 
the disk delivers data when the blocks of a large file are read in reverse order 
(end of the file to the beginning of the file) is 289 kilobytes per second, indicating 
that disk read order may be what is causing the difference in performance, rather 
than CPU overhead. Mneme achieves 97% of the reverse read rate. Knowing 
which segments to prefetch, clustering them together, and reading them all 
sequentially might boost the object read speed, but to do much better than we 
already have probably depends strongly on the application; but this certainly 
deserves deeper investigation. 

4.5 Locating and Manipulating Resident Objects 

To measure the cost of manipulating objects, we had to devise some manipulations 
to use as a basis for comparison. We came up with six manipulations: reading 
and updating slots, bytes, and integers. By integer we mean an aligned 4-byte 
quantity in the bytes part of an object, treated as an integer. Each of the 
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Fig. 5. Reading time. 

manipulations performed a calculation, as indicated in this table: 

Operation Item Calculation 

Reading Slot count null pointers 

Byte sum of bytes 
Integer sum of integers 

Updating Slot 
Byte 
Integer 

swap even-odd pairs of slots 
negate each byte 
negate each integer 

Note that repetition over multiple objects in these tests is accomplished by 
recursive tree traversal, so the overhead of the traversal is included in all tests. 
Here are the measured per-object times (psec) for traversal with no calculation, 
for comparison: 

Software Time 

Nonpersistent C 
Mneme, pointer 
Mneme, handle 

11.7 
20.2 
22.2 

From this table we can see that resident object location using the MnldPtr 
operation takes about 8.5 psec, and constructing a handle in MnHandleCreate 
takes another 2.0 psec. Our original goal was to support at least 100,000 object 
field accesses per second. We can see that Mneme can just barely do that if each 
field access requires an object lookup (8.5 psec, plus a little time to get the field), 
but if multiple fields are accessed per lookup, as seems likely, then it will not be 
a problem. ESM took about 66 psec per object for traversal. That its pointers 
(ids) are three times larger than Mneme’s probably has something to do with the 
cost of this operation. 
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Now let us consider actual calculations, as opposed to simple traversal. The 
table below indicates incremental per-item costs for each calculation, in psecs: 

Software Slot 

Reading Updating 

Byte Integer Slot Byte Integer 

Nonpersistent C 0.41 0.20 0.32 0.44 0.51 0.52 
Mneme, pointer 0.42 0.20 0.33 0.44 0.51 0.50 
Mneme, handle 0.83 0.25 0.51 1.06 0.62 0.72 

It is natural that the Mneme pointer interface gives performance equivalent to 
C, since once one has acquired a pointer to the object in the buffer, the 
manipulations are exactly the same. The handle interface is slower for several 
reasons: there must always be a procedure call; the request is checked to make 
sure it does not exceed the bounds of the object; ids in slots are always converted 
from external to internal format; and updates require reading information into a 
scratch buffer, modifying data in the buffer, and then copying the buffer back 
into the object. ESM allows direct access for reads, so its read performance is 
also equivalent to C. However, ESM updates require that data be prepared in a 
separate buffer and block-transferred into the object, so updates are more costly, 
and in fact noticeably more expensive than Mneme handle updates. 

4.6 Summary of Results 

Mneme offers good performance: the pointer interface allows object manipulation 
at the speed of the application language; reading and writing utilize most of the 
available disk I/O bandwidth; and performance is better than the Exodus storage 
manager. Object creation and resident object location and manipulation appear 
fast enough to satisfy our original performance goals; reading and writing appear 
a little slower than desired, but are close to hardware limits, though since the 
disk can deliver considerably more bytes per second when read sequentially, 
techniques to obtain more of that bandwidth should be explored. 

5. RELATED WORK 

There is, and has been, much activity recently in the areas of database sup- 
port for “new” applications (applications of the kind we wish to support), 
persistent/database programming languages, and even object stores and database 
extensions of virtual memory. In the interests of brevity and incisiveness, we 
relate the Mneme design (not the prototype) to well-known exemplars of the 
various approaches rather than attempting exhaustive enumeration of all related 
work. 

5.1 Extensible Databases 

POSTGRES [42], Exodus [lo, 18,371, and Genesis [7] take different approaches 
to extensibility. POSTGRES is built on the relational database model. While it 
has significant extensions, it does not support object identity or tight language 
integration. It is not a “lightweight” system. Rather, it attempts to provide a full- 
featured database system. It does provide some “side doors” for extensibility and 
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performance enhancement, but its semantic approach is still fundamentally that 
of a relational database system. 

Genesis takes more of a tool kit and building block approach for the construc- 
tion of customized databases. These databases can offer significant performance 
benefits over general-purpose database management systems, by eliminating 
unneeded features and inserting carefully chosen application-specific enhance- 
ments. The Genesis technology might possibly be used to build something like 
Mneme, but usually general routines composed together do not perform as well 
as a hand-coded implementation. 

Exodus takes more of a language approach to extensibility. Its architecture 
includes the E language, an extension of C++ [43]. Of the extensible database 
systems, Exodus is the one most similar to Mneme, but the fairest comparison 
is between Mneme and the Exodus storage manager (as opposed to other 
components of the Exodus system). Exodus storage manager objects are byte 
strings, there is no provision for garbage collection, and the design seems tuned 
to large rather than small objects. The Exodus storage manager prototype used 
in our tests supports buffer management but not concurrency, crash, recovery, 
or distribution. 

Thus, most of the extensible database systems support objects weakly or not 
at all. They also happen to be oriented towards fixed-size database pages. While 
the Exodus storage manager is more similar to Mneme in those respects, it, like 
the other systems, is designed for centralized rather than distributed use, and its 
large object identifiers and higher overhead interface make it less efficient as a 
platform for our persistent programming languages. 

5.2 Object-Oriented Databases 

Some relevant object-oriented database systems are Orion [25], Gemstone [36], 
and VBase [3]. These systems are oriented towards specific languages (Lisp, 
Smalltalk, and C/C++, respectively). Orion and Gemstone do support (single) 
servers, but none of the systems have Mneme’s orientation towards a large 
distributed space of objects. More importantly, Orion and Gemstone are not 
designed to be as easily extended as Mneme is through its pool strategies, 
forwarding protocols, and so on. Also, these other systems are all attempts at 
complete database management systems, and end up being “heavyweight” com- 
pared to Mneme. 

5.3 Persistent and Database Programming Languages 

PS-Algol [4,5] is representative of the persistent programming languages, and E 
(already mentioned), O2 [6, 271, 0++ [l, 21, and Opal (the language in the 
Gemstone system) of recent database programming languages. These systems 
are all oriented towards particular programming languages and/or data models, 
whereas Mneme is attempting to provide a generic substrate (possibly suitable 
for building some of the other systems). Some of them, O2 especially, have 
semantically richer data models, requiring more built-in features such as sets. 
None of these systems have Mneme’s goal of supporting a large, distributed, 
unbounded object space. 
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5.4 Object Stores and Persistent Memories 

Related work in this area could be stretched to include Multics [34] and a variety 
of capability architectures. More narrowly construed, some interesting examples 
are Camelot [40], 801 [ll], FAD [12], Observer [20, 391, and CACTUS [21]. 
Camelot and 801 offer different versions of persistent/recoverable virtual mem- 
ory. While Camelot supports multiple servers in a distributed environment, it 
does not provide uniform naming throughout a system. It also provides no notion 
of “object,” only a flat virtual (though resilient) memory. The 801 is an architec- 
ture in which databases can be built in virtual memory, using the paging hardware 
for database style locking (at a physical level), and so on. FAD has been similarly 
implemented, although it does include some limited object semantics. The 801 
and FAD are strictly centralized systems. 

Observer provides a network server, offering objects that are byte-vectors, and 
a variety of locking and transaction modes. It supports only a single server 
and a single space of object ids, as opposed to Mneme’s notion of a large collection 
of object spaces. The Mneme design has placed more emphasis on performance 
and on scaling to large distributed systems. While the developers of other systems 
might rightly claim that they could extend them to large distributed systems, the 
Mneme design addresses important issues that they have not addressed. In 
particular, our file concept, and the related ideas of forwarders and of mapping 
between persistent and client identifiers for objects, tackle the problems of scale 
head on. It will be easier for us to extend our prototype, since we have a design 
that addresses scale, autonomy, extensibility, and other issues of large distributed 
systems. 

CACTIS also has a substantially different focus from Mneme. It supports 
objects and connections where the connections allow the value of a slot of an 
object to be derived from the value of a slot of another object. CACTIS is oriented 
towards “active” data, and on how to perform derivation most efficiently when 
slots are updated. Mneme might provide an interesting substrate on which to 
build CACTIS or other derived/active data semantics. 

5.5 Summary of Related Work 

Mneme’s goals are unique among the systems discussed. Goals that tend to 
distinguish Mneme from other systems are the following: 

-supporting multiple programming languages; 

-providing (storage) objects with structure and identity, but “no frills”; 

-emphasizing performance; 

-addressing issues of autonomy and large distributed systems; and 

-offering policy extensibility. 

The current prototype of Mneme is not distributed, but it does meet the other 
goals, to wit: Mneme has been used with both C and Ada; earlier discussion of 
the prototype explained Mneme’s object concept; the design and performance 
results indicate our emphasis on efficiency; and we have already used the policy 
extensibility to vary the cluster (segment) sizes in some of our tests. The goals 
met distinguish Mneme from other systems. Further, the current work will 
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extend readily to distributed systems, since we have been designing for distribu- 
tion from the start. 

6. CONCLUSIONS 

Our approach to providing object semantics and high performance for CAD and 
related information-intensive applications is to build a simple, “lightweight” 
persistent object store, as opposed to a full-blown database management system. 
Referring back to the goals stated in the Introduction, the design and initial 
prototype substantially meet the following aims: object structure semantics, high 
performance, portability, and modularity. The Mneme object store design appears 
quite promising, as evidenced by the initial prototype. We have demonstrated 
that the object location, faulting, and manipulation code can support thousands 
of object accesses per second. The principal achievement is the combination of 
object functionality (identity and structure) and performance. 

To gain perspective on the design and implementation ideas that have been 
developed in the project so far, it is instructive to consider how the original goals 
are supported and which features of the design (or implementation strategy) 
address which individual goals. We consider a series of goals in turn: 

-Persistent programming. Efficient manipulation of resident objects is sup- 
ported by direct pointer access to objects in Mneme buffers, by having object 
identifiers about the same size as a machine pointer, by the fast object lookup 
mechanism, by allowance for tagging in objects, and by provision for garbage 
collection and automatic storage management. The short object ids, tagging, 
and orientation towards automatic storage management also make it easier to 
support persistence transparently in a programming language. 

-Distribution. The Mneme file concept, with forwarders, the incoming reference 
table, and root objects address a number of distributed systems issues, partic- 
ularly autonomy and security, but also issues of scale. These same features 
also address the goal of supporting identifiable and separable subcollections of 
objects. 

--Extensibility. The Mneme pool concept is present primarily for policy exten- 
sibility (although it can also be used just to group related objects). Forwarders 
and incoming reference tables also provide important support for semantic and 
policy extensibility, as do the file, pool, and object attributes. The idea of 
specifying a server interface also supports extensibility. Finally, providing 
simple and general semantics rather than building in more sophisticated 
features (e.g., data modeling primitives) supports extensibility by not preempt- 
ing higher level approaches. 

-Performance. Overall simplicity appears to aid performance, although one can 
probably always find some higher level feature that must be built in if one is 
to achieve the best possible performance. More specifically, though, Mneme 
attacks performance problems by addressing the issue of per-object costs, with 
the philosophy that any work that must be done for each object manipulated 
will noticeably affect performance. Hence, Mneme applies grouping and clus- 
tering in a number of ways to improve performance, most notably in the 
physical segment (clustering) and logical segment concepts. 
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-Portability and usability. This has been addressed by careful interface design 
applying principles such as uniformity, and by using a readily available and 
widely implemented language (C) in which to build the prototype. We have 
also taken care to avoid hardware-, operating system-, and compiler-specific 
features. 

Taking a broad view, the conceptual trade-offs in design and implemen- 
tation are interesting in that Mneme’s performance, portability, and genericity 
come as much from what is not provided as from what is. Applications may 
indeed require additional features and semantics, but Mneme supports explora- 
tion of a wide range of tasks by not supplying too much semantics, and provides 
an efficient and useful base on which to build applications, rather than starting 
from scratch every time or living with the inferior functionality and performance 
of available bases. 

In sum, the Mneme project is developing a unique blend of programming 
language, database, and distributed system functionality that promises to provide 
good support for many emerging applications. Mneme’s portability and compar- 
ative simplicity will make it attractive to researchers and others who are inter- 
ested primarily in the applications above, rather than the bytes below. The 
system has already been welcomed by two software engineering research groups 
and others are very interested. The experience of these groups will further confirm 
Mneme’s utility. 

In addition to building a second prototype and doing more complete perfor- 
mance studies of Mneme, we are engaged in building Persistent Smalltalk and 
Persistent Modula-3 on top of Mneme, to come to a better understanding of the 
performance aspects of persistent programming languages based on an object- 
faulting approach. We are also engaged in work on transaction models supporting 
cooperation and on distributed-execution models that overcome the limitations 
of distributed systems which are based only on a shared store. 
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