
A New Framework for Sensor Interpretation:Planning to Resolve Sources of UncertaintyNorman Carver and Victor LesserDepartment of Computer and Information ScienceUniversity of MassachusettsAmherst, Massachusetts 01003(carver@cs.umass.edu)AbstractSensor interpretation involves the determination ofhigh-level explanations of sensor data. Blackboard-based interpretation systems have usually been limitedto incremental hypothesize and test strategies for re-solving uncertainty. We have developed a new inter-pretation framework that supports the use of more so-phisticated strategies like di�erential diagnosis. TheRESUN framework has two key components: an evi-dential representation that includes explicit, symbolicencodings of the sources of uncertainty (SOUs) in theevidence for hypotheses and a script-based, incrementalcontrol planner. Interpretation is viewed as an incre-mental process of gathering evidence to resolve particu-lar sources of uncertainty. Control plans invoke actionsthat examine the symbolic SOUs associated with hy-potheses and use the resulting information to post goalsto resolve uncertainty. These goals direct the system toexpand methods appropriate for resolving the currentsources of uncertainty in the hypotheses. The planner'srefocusing mechanism makes it possible to postpone fo-cusing decisions when there is insu�cient informationto make decisions and provides opportunistic controlcapabilities. The RESUN framework has been imple-mented and experimentally veri�ed using a simulatedaircraft monitoring application.IntroductionSensor interpretation involves the determination ofhigh-level explanations of sensor and other observa-tional data. The interpretation process is based on ahierarchy of abstraction types like the one in Figure 1for a vehicle monitoring application. An interpreta-tion system incrementally creates or extends hypothe-ses that represent possible explanations for subsets ofthe data. In vehicle monitoring, data from sensors(e.g., Acoustic Data and Radar Data) is abstracted andcorrelated to identify potential vehicle positions (Ve-hicle hypotheses), vehicle movements (Track hypothe-ses), and vehicle goals (Mission hypotheses). Interpre-�This work was supported by the O�ce of Naval Re-search under University Research Initiative grant numberN00014-86-K-0764.
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Figure 1: Vehicle monitoring abstraction hierarchy.tation can be di�cult because there may be combinato-rial numbers of alternative possible explanations of thedata, creating each hypothesis may be computation-ally expensive, the correctness of the hypotheses willbe uncertain due to uncertainty in the data and prob-lem solving knowledge, and the volume of data may betoo great for complete examination.In order to understand the complexities of the inter-pretation process, it is useful to understand the distinc-tion [Clancey 1985] draws between classi�cation prob-lem solving and constructive problem solving. In classi-�cation problem solving, the solution is selected fromamong a pre-enumerated set of all the possible solu-tions. In constructive problem solving, the set of pos-sible solutions is determined as part of the problemsolving process. While problems like simple diagnosis[Peng & Reggia 1986] can be approached using clas-si�cation techniques, interpretation problems requireconstructive problem solving because of the combina-torics of their answer spaces. For example, in vehi-cle monitoring, an (e�ectively) in�nite number of dif-ferent Track hypotheses is possible, an indeterminatenumber of instances of Track hypotheses may be cor-rect (since the number of vehicles that may be moni-tored is unknown), and correlation ambiguity producesa combinatorial number of data combinations to beconsidered. Clancey notes that constructive problemsolving requires capabilities not required for classi�ca-



tion problem solving|e.g., the ability to apply signif-icant amounts of knowledge to focus the constructionprocess. In addition, well-developed evidential reason-ing techniques like Dempster-Shafer and Bayesian net-works [Pearl 1988] are directly applicable only to clas-si�cation problem solving [Carver 1990].Interpretation problems have often been approachedusing blackboard frameworks. This is because the black-board model supports constructive problem solving andbecause it supports opportunistic control for dealingwith uncertain data and problem solving knowledge[Carver 1990, Lesser & Erman 1977]. Despite the powerof the blackboard model, most blackboard-based inter-pretation systems (e.g., [Durfee & Lesser 1986, Ermanet al. 1988, Lesser & Corkill 1983, Nii et al. 1982, andWilliams 1988]) have been limited to using variations ofincremental hypothesize and test1 strategies for resolv-ing interpretation uncertainty. The designers of theHearsay-II architecture believed that blackboard sys-tems would have the capability to do di�erential diag-nosis because of their integrated representation of alter-native, competing hypotheses [Lesser & Erman 1977].However, explicit di�erential diagnosis techniques havenot been exploited by blackboard-based interpretationsystems2 because of limitations in their evidence rep-resentations and control frameworks [Lesser & Erman1977, Carver & Lesser 1990].To illustrate the kind of control reasoning that aninterpretation should be able to do, consider the fol-lowing vehicle monitoring system scenario: \In orderto meet its goals, the system has to reduce its uncer-tainty in hypothesis Track1. To do this, it must �rstdetermine the reasons Track1 is uncertain. ExaminingTrack1, it �nds that a major source of uncertainty isthe existence of a competing hypothesis, Track2, whichcan provide an alternative explanation for a part ofTrack1's supporting data. In examining the reasonswhy Track2 is uncertain, the system �nds that the por-tion of Track2's supporting data which is not also sup-porting Track1, might actually be able to be explainedas a ghost. If this were the case, it would decrease thebelief in Track2 thereby helping to resolve the uncer-tainty in Track1. For this reason, the system decidesto construct a hypothesis representing the alternativeghosting explanation and then attempts to su�cientlyprove or disprove it...."This example shows that in interpretation problems,the process of making control decisions may requirethat a system be able to: gather information for the1Incremental hypothesize and test (also known as evi-dence aggregation) means that to resolve uncertainty abouta hypothesis, a system should attempt to locate all the datathat would have been caused if the hypothesis were correct.Di�erential diagnosis means that a system should attemptto discount the possible alternative explanations for the hy-pothesis' supporting evidence.2Both Hearsay-II and the planner of [Durfee & Lesser1986] included techniques which implicitly did some limiteddi�erential diagnosis.

control process, consider the evidential relationshipsamong hypotheses, understand how di�erent methodscan be used to satisfy its goals, and carry out meth-ods for resolving uncertainty that involve sequences ofactions. Sophisticated interpretation also requires theability to do detailed control reasoning so that the ac-tions taken can be very sensitive to the goals of theinterpretation process (termination con�dence criteria,time available, etc.) and the particulars of the situ-ation (current evidence and uncertainties, data char-acteristics, availability of sensors, etc.). For instance,the failure to �nd data to extend a Track hypothesismight be due to the data having been missed by thesensor (due to some environmental disturbance, etc.).However, indiscriminately pursuing this possibility canlead to a combinatorial explosion in the number of hy-potheses being considered. Thus, the decision abouthow to resolve the Track's uncertainty must carefullyconsider whether it is currently appropriate to pursuethe possibility of missing data; even if it is because thispossibility that the Track continues to be pursued, itmay be appropriate to look at alternative sources ofuncertainty �rst.In this paper, we will describe a new interpreta-tion framework called RESUN. This framework sup-ports the use of sophisticated interpretation strategies.It provides an alternative to conventional blackboardsystems for interpretation. The RESUN framework isintroduced in the next section. Its evidential repre-sentation system and control planner are described inmore detail in the following two sections. The �nal sec-tion of the paper discusses the status of our research,presents some experimental results, and concludes witha summary of the contributions of this work.The RESUN FrameworkThe two main components of RESUN are the eviden-tial representation system and the control planner. Thekey feature of the evidential representation is its use ofexplicit, symbolic encodings of the sources of uncer-tainty (SOUs) in the evidence for the hypotheses. Forexample, a Track hypothesis in a vehicle monitoringsystem may be uncertain because its supporting sensordata might have alternative explanations as a Ghost oras part of a di�erent Track or it may be uncertain be-cause its evidence is incomplete or its correct Missionexplanation is uncertain; these are possible sources ofuncertainty for Track hypotheses. As interpretation in-ferences are made in RESUN, symbolic statements areattached to the hypotheses to represent their currentsources of uncertainty. This allows the system to un-derstand the reasons why its hypotheses are uncertain.Control is provided by a script-based, incrementalplanner. A planning-based approach to control facili-tates sophisticated control reasoning. The hierarchicalgoal/plan/subgoal structure created by a planner pro-vides detailed context information as well as explicit de-cision options. This allows control reasoning to be very



detailed; decision procedures can be highly context-speci�c and can reason explicitly about the choices. Inaddition, because planning-based control is inherentlygoal-directed, it can support active data gathering forapplications like vehicle monitoring.The main innovation in our planner is its refocusingmechanism. This mechanism can be used to postponefocusing decisions when there is insu�cient informa-tion about the particular situation to make a conclu-sive choice. The ability to postpone focusing decisionsresults in a model of control in which there is not onlya search for the correct interpretations, but also an ex-plicit search for the best methods to use to pursue theinterpretations. The refocusing mechanism also addsopportunistic control capabilities to the (goal-directed)planning mechanism by allowing focus points to changein response to a variety of events. This is crucial tothe successful use of planning-based control. Interpre-tation requires data/event-directed control capabilitiesto deal with uncertainties in the data and problem solv-ing knowledge as well as to handle dynamic situations(as in vehicle monitoring). The refocusing mechanismmakes it clear that opportunism is not some specialform of control that must be added to the planner, butthat it simply results from particular types of condi-tions which should redirect the control search.In the RESUN framework, interpretation is viewedas an incremental process of gathering evidence to re-solve particular sources of uncertainty in the hypothe-ses. Control plans invoke actions that examine hy-potheses and return information about the symbolicSOUs associated with the hypotheses. Focusing knowl-edge is applied to select the SOUs that will be used infurther plan expansion to post goals to resolve uncer-tainty. These goals allow the system to identify meth-ods that can resolve the current sources of uncertaintyin the hypotheses. Focusing knowledge is again appliedto select the best methods to pursue and the plans forthese methods are re�ned to produce appropriate in-terpretation actions. This general process is repeateduntil the termination criteria are satis�ed.Termination is an important issues for interpreta-tion. Interpretation systems not only must resolve un-certainty about the correctness of the hypotheses theycreate, they must also be su�ciently certain there arenot additional answers which have not yet been identi-�ed. This is a critical issue because possible hypothe-ses are incrementally identi�ed when doing construc-tive problem solving and it is typically infeasible toexamine all of the data. As part of the RESUN ap-proach, we have developed a high level model of thestate of problem solving that is used to drive the over-all interpretation process. This model represents theneed to resolve uncertainty in existing hypotheses andto investigate the possibility of additional answers. Forexample, additional answers might be possible if someportion of the region of interest has not yet been ex-amined by the system or if there is data which has

not been ruled out as being able to support an answer.The problem solving model makes it possible to usegoal-directed strategies to limit the amount of the datawhich is examined. This capability is important in ap-plications like vehicle monitoring where there may bea number of sensors generating continuous streams ofdata.Hypotheses and Sources of UncertaintyThe basis of the interpretation process is abduction.It is abductive inferences that identify possible expla-nations for data (and, conversely, possible support forhypotheses). Abductive inferences are uncertain due tothe possibility of alternative explanations for the data.This is the basic underlying source of all interpretationuncertainty. However, our symbolic SOUs must repre-sent more information than just the possible alternativeexplanations for hypotheses; there are several factorswhich in
uence the level of belief in hypotheses andthus several ways to go about resolving uncertainty.Hypothesis correctness can only be guaranteed bydoing complete di�erential diagnosis|i.e., discountingall of the possible explanations for the supporting data.Even if complete support can be found for a hypoth-esis there may still be alternative explanations for allof this support. However, while complete support can-not guarantee correctness, the amount of supportingevidence is often a signi�cant factor when evaluatingthe belief in a hypothesis (this is the basis of hypoth-esize and test). For example, once a Track hypothesisis supported by correlated sensor data from a \rea-sonable" number of individual positions (Vehicle hy-potheses), the belief in the Track will be fairly highregardless of whether alternative explanations for itssupporting data are still possible. In addition, com-plete di�erential diagnosis is typically very di�cult be-cause it requires the enumeration of all of the possi-ble interpretations which might include the supportingdata|many of which may not be able to be conclu-sively discounted. Thus, a combination of hypothesizeand test and (partial) discounting of critical alternativeexplanations must be used to gather su�cient evidencefor interpretation hypotheses. Our representation ofuncertainty is designed to drive this process.Another important aspect of our evidential repre-sentation is its view of a hypothesis as a set of exten-sions. Each extension represents a di�erent possible\version" of the hypothesis|i.e., a di�erent bindingfor the hypothesis' parameters. The versions of a hy-pothesis that are of interest and must be representedare identi�ed as part of the constructive problem solv-ing process. A hypothesis' parameter values are con-strained by the parameter values of its supporting dataand hypotheses. Typically, evidence (especially incom-plete evidence) will only partially constrain a hypoth-esis' parameters|i.e., there will be uncertainty aboutthe correct values for the parameters. Thus, evidencefor an interpretation hypothesis not only justi�es the



hypothesis, it can also re�ne it by further constrainingits parameter values. However, because most interpre-tation evidence is uncertain, alternative sets of evidencemay be pursued for a hypothesis. This produces mul-tiple alternative versions of the hypothesis. In mostblackboard systems, these versions are maintained asindependent hypotheses; ignoring valuable informationabout the relationships between the versions. Usingextensions, we can represent a high level of belief ina Track hypothesis (i.e., high belief that there is a ve-hicle moving through the monitored environment) de-spite great uncertainty about the correct version of thehypothesis (i.e., uncertainty about the correct path oridentity of the vehicle).Our model of interpretation uncertainty is based onthe reasons why abductive inferences are uncertain,the factors that a�ect the belief in interpretation hy-potheses, and our extensions model of hypotheses. Themodel speci�es a set of SOU classes that characterizethe uncertainty in interpretation hypotheses. Theseclasses apply to all interpretation domains. In addi-tion, we have identi�ed a set of SOU class instancesthat are appropriate for particular applications. A dis-cussion of SOU instances is beyond the scope of thispaper (see [Carver 1990]).Our model of interpretation uncertainty consists ofthe following SOU classes for hypothesis extensions(see [Carver 1990] for more detailed de�nitions):partial evidence Denotes the fact that there is in-complete evidence for the hypothesis. For example,a Track hypothesis will have a no explanation SOUassociated with it if it has not yet have been ex-amined for valid Mission explanations and will havea partial support SOU if its supporting Vehicle hy-potheses only cover a portion of the complete Track.possible alternative support Denotes the possibil-ity that there may be alternative evidence whichcould play the same role as a current piece of sup-port evidence. This is an additional complicationfor di�erential diagnosis in interpretation problemsas compared with classi�cation problems.possible alternative explanation Denotes the pos-sibility that there may be particular alternative ex-planations for the hypothesis extension.alternative extension Denotes the existence of acompeting, alternative extension of the same hypoth-esis; using evidence which is inconsistent with otherversions of the hypothesis. This is the primary rep-resentation of the relationships between hypotheses.negative evidence Denotes the failure to be able to�nd some particular support or any valid explana-tions. Negative evidence is not conclusive because italso has sources of uncertainty associated with it|e.g., that sensors may miss some data.uncertain constraint Denotes that a constraint as-sociated with the inference could not be validated be-cause of incomplete evidence or uncertain parametervalues. This SOU represents uncertainty over the va-

lidity of an evidential inference; the other SOUs areconcerned with the correctness of inferences.uncertain evidence Technically, this is not anotherSOU class. Uncertain support and uncertain expla-nation SOUs serve as placeholders for the uncer-tainty in the evidence for a hypothesis because SOUsare not automatically propagated.Figure 2 shows three extensions of a Track hypoth-esis along with their associated SOUs and parameters.Track-Ext1 is an intermediate extension while Track-Ext2 and Track-Ext3 are alternative maximal exten-sions. The alternative extensions result from compet-ing possible explanations of the Track as an Attack-Mission or as a Recon-Mission. This alternatives re-lationship between these Mission hypotheses is repre-sented by the alternative extension SOUs in Track-Ext2and Track-Ext3. These SOUs indicate that there is anegative evidential relationship between the extensions:more belief in Track-Ext2 or Attack-Mission results inless belief in Track-Ext3 or Recon-Mission (and viceversa). They also make it possible for the system torecognize that the uncertainty in Attack-Mission neednot be directly resolved, but can be pursued by resolv-ing the uncertainty in Recon-Mission or by resolvingthe uncertainty in the Track's parameter values (in or-der to limit its consistent interpretations). This ex-ample also demonstrates how extensions represent dif-ferent versions of hypotheses: the uncertainty in thevalue of Track-Ext1's ID parameter has been resolveddi�erently by the alternative explanations. The un-certainty that results from each explanation only be-ing consistent with a subset of the possible values forthe Track's ID parameter is represented by uncertainconstraint SOUs. These SOUs do not appear in the�gure because they are maintained as part of the in-ferences; they are accessed through the \placeholder"uncertain-explanation SOUs which represent the over-all uncertainty in the explanations.RESUN's evidential representation system includesa scheme for numerically summarizing the symbolicSOUs using domain-speci�c evaluation functions. Thesummarization process produces a composite charac-terization of the uncertainty in a hypothesis in termsof an overall belief rating and the relative uncertaintycontributions of the di�erent classes of SOUs. Thissummarization is used in evaluating the satisfaction oftermination criteria and when reasoning about controldecisions. Having the composite rating allows for moredetailed reasoning than would be possible with a singlenumber rating. For example, it can distinguish be-tween a hypothesis that has low belief due to a lack ofevidence and one for which there is negative evidence.The composite rating also permits the use of modu-lar evaluation functions (these evaluation functions ef-fectively compute conditional probabilities|see [Pearl1988]). Domain-speci�c evaluation functions are cur-rently used because neither Bayes' Rule nor Dempster'sRule are generally applicable to interpretation due to



VEHICLE1-EXTPosition=(t1,x1,y1)ID=fVID2,VID3g VEHICLE2-EXTPosition=(t2,x2,y2)ID=fVID2,VID3gTRACK-EXT1Positions= ((t1,x1,y1),(t2,x2,y2))ID=fVID2,VID3gSOUs=f(no-explanation)(partial-support V1 V2)(uncertain-support V1)(uncertain-support V2)(possible-alt-support V2)g TRACK-EXT2Positions=((t1,x1 ,y1),(t2,x2,y2))ID=VID2SOUs=f. . .(uncertain-explanation attack)(alternative-extension track-ext3((alt-explanation recon)))g TRACK-EXT3Positions=((t1,x1,y1),(t2,x2,y2))ID=VID3SOUs=f. . .(uncertain-explanation recon)(alternative-extension track-ext2((alt-explanation attack)))g
ATTACK-MISSIONPositions=((t1,x1 ,y1),(t2,x2,y2))ID=VID2 RECON-MISSIONPositions=((t1,x1,y1),(t2,x2,y2))ID=VID3

6 6���* HHHY 6 66 6extext -�����Figure 2: Example hypothesis extensions with their symbolic sources of uncertainty.lack of independence of hypothesis evidence.The RESUN representation of hypotheses and evi-dence addresses a problem that was �rst identi�ed inHearsay-II [Lesser & Erman 1977]: \The state infor-mation associated with a hypothesis is very local anddoes not adequately characterize the state(s) of the hy-pothesis network(s) connected to it . . . the state infor-mation associated with an individual hypothesis mustallow a KS to analyze quickly . . . the role that the hy-pothesis plays in the larger context of the hypothesisnetworks it is part of." The representation of hypothe-ses as set of alternative extensions e�ectively maintainsindependent contexts that can be characterized by thesummarization process.Numeric representations of uncertainty like proba-bilities and Dempster-Shafer belief functions cannot tobe used to identify methods for directly resolving un-certainties because they summarize the reasons whyevidence is uncertain [Pearl 1988]. Our use of a sym-bolic representation of uncertainty is similar to [Cohen1985]'s symbolic representations of the reasons to be-lieve and disbelieve evidence which he calls endorse-ments. However, the work on endorsements did notproduce any general formalism for representing andreasoning with symbolic evidence. Our representationis speci�c to abductive inferences and the needs of in-terpretation control.Opportunistic Control PlanningThe planner that we developed is a script-based, in-cremental planner. Script-based planning [Swartout1988] means that the planning process is based on aset of control plan schemas that represent the possi-ble methods that can be used to satisfy goals. Eachnon-primitive plan speci�es a sequence of subgoalsthat implement the plan using a shu�e grammar thatcan express strict sequences, concurrency, alternatives,

optional subsequences, and iterated subgoal subse-quences. Each primitive plan represents an actionthat can be taken to immediately satisfy a goal. RE-SUN's format for specifying control plans is describedin [Carver 1990].Classical AI planners [Wilkins 1988] are not appro-priate for domains like interpretation where the out-come of actions is uncertain and where external agentsa�ect the world. We deal with these problems throughincremental planning (interleaving planning and execu-tion), allowing actions to return results, and by includ-ing explicit information gathering actions. Successfulactions may return results that are bound to plan vari-ables and in
uence further plan expansion. Informa-tion gathering actions allow the planner to maintainonly that part of the world state which is needed andto make sure it is su�ciently up to date. Data gather-ing actions are similar to information gathering actionsexcept that they are used to control active sensors.As plans are re�ned and expanded, a structurelike that shown in Figure 3 is created. Here thesubgoal Have-Ext-SOU, the initial subgoal of theplan, Eliminate-Extension-SOUs, matches the primi-tive Identify-Sources-of-Uncertainty. When the prim-itive is executed, it returns a list of the SOUs inthe speci�ed hypothesis extension. This list is boundto the plan variable sou. Following this action, theplan is expanded further, posting the subgoal Have-Eliminated-Ext-SOU. This subgoal includes the partial-support binding of the variable sou which was selectedthrough focusing. This subgoal matches two plans, oneof which is selected by focusing for further re�nement.In a planning-based approach to control, controldecisions|i.e., decisions about which domain actionsto take next|result from a sequence of planner focus-ing decisions. Thus focusing heuristics represent strat-egy knowledge that selects the interpretation methods



Have-Eliminated-Ext-SOUs?ext = track-ext2Eliminate-Extension-SOUs?ext = track-ext2Have-Ext-SOU?ext = track-ext2 Have-Eliminated-Ext-SOU?ext = track-ext2?sou = (partial-support V1V2)Identify-Sources-of-Uncertainty?ext = track-ext2 Extend-Track-Using-Complete-Tracking?ext = track-ext2 Extend-Track-Using-Approximate-Tracking?ext = track-ext2Have-Identi�ed-Adjacent-Extension-Region?ext = track-ext2?sou =f(partial-support V1V2 . . . )(uncertain-support V2)(possible-alt-support V2)� � �g
PlansSubgoals ??-XXXXXz�����9? XXXXXz�����9???Figure 3: An example of the instantiated goal/plan/subgoal structure produced by the planner.and method instances to be pursued. In RESUN, eachfocusing heuristic is associated with a particular controlplan and can examine the instantiated planning struc-ture. This provides detailed context information for de-cisions. Strategy knowledge is de�ned in terms of threeclasses of focusing heuristics. Match focusing heuristicsselect among competing control plans capable of satis-fying a subgoal|i.e., competing methods. Variable fo-cusing heuristics select among competing bindings forplan variables|i.e., competing method instances. Sub-goal focusing heuristics select among the active sub-goals for a plan instance when subgoals can be carriedout concurrently, but it is preferable to sequence thesubgoals (due to uncertainty over their ability to besatis�ed, for instance).The refocusing mechanism allows focusing heuris-tics to designate their decision points as refocus points.This is done by instantiating a refocus unit that speci-�es the decision point, the conditions under which refo-cusing should occur, and a refocus handler. When therefocus conditions are satis�ed, the refocus handler isinvoked and re-evaluates the choices made at the deci-sion point|within the context of the further expandedplan. Using this mechanism, the system can deal withnondeterminism in focusing decisions by postponingdecisions in order to gather more speci�c informationabout the situation. For example, when extending aTrack hypothesis, the best direction to extend it in de-pends on the quality of the data which is actually avail-able in each alternative region. The refocusing mecha-nism makes it possible to postpone the decision aboutwhere to extend the track until the plans for both al-ternative directions are expanded to a point where therelative quality of the data can be evaluated. When theplans have been expanded to this point, the decision is

reconsidered and a the single best direction is selectedto be pursued for the next track extension.The refocusing mechanism also makes it possibleto implement opportunistic control strategies that canshift the system's focus-of-attention between compet-ing plans and goals in response to changes in the situ-ation. This is possible because refocus units are eval-uated and applied in a demon-like fashion and theirconditions can refer to the characteristics of the devel-oping plans and interpretations, and other factors suchas data availability. For example, the amount of e�ortto be expended on one alternative can be limited or thearrival of critical data noted. Refocusing controls thesystem's backtracking since refocus points e�ectivelyde�ne the backtrack points and the conditions underwhich the system backtracks. This provides the sys-tem with an intelligent form of nonchronological back-tracking because it is directed by heuristic refocusingknowledge.A number of planning-based control approaches havebeen developed, but none provide a completely suit-able framework for interpretation driven by our sym-bolic SOUs. [Clancey 1986]'s tasks and meta-rules arereally control plans and their substeps, but the frame-work is limited by the fact that meta-rules directly in-voke subtasks so there is no ability to search for thebest methods. The BB1 system [Hayes-Roth & Hewett1988] has a di�erent view of planning, in which plans se-lect sequences of ratings functions rather than directlyselecting actions. This limits its ability to support de-tailed, explicit control reasoning. Also, since BB1 relieson an agenda mechanism, it can be ine�cient for in-terpretation problems involving large amounts of databecause only a fraction of the possible actions will everbe taken (see [Hayes-Roth 1990] for recent work that



experiment 1 experiment 2 experiment 3 experiment 4plans instantiated 121 150 167 154subgoals instantiated 309 428 462 440hypotheses created 83 48 83 59extensions created 216 116 213 152inference actions 56 51 77 69information actions 136 226 254 232focusing decisions 82 93 108 97planning time 11.6% 20.6% 14.4% 18.0%focusing time 4.6% 7.0% 5.2% 6.3%inference action time 81.1% 66.5% 76.2% 70.7%information action time 2.6% 5.9% 4.3% 5.0%total cpu time 31.3s 23.2s 36.3s 27.6sexperiment 1 Weak criteria for the acceptance of non-answers, no sophisticated strategies or di�erential diagnosis.experiment 2 Like experiment 1, but sophisticated control strategies; still no di�erential diagnosis.experiment 3 Like experiment 2, but with stronger criteria for acceptance of non-answers.experiment 4 Like experiment 3, but using di�erential diagnosis strategies.Figure 4: Some sample results from the experimental evaluation.addresses this issue). The incremental planning ap-proach of [Durfee & Lesser 1986] for a blackboard-basedvehicle monitoring system is not a general planningmechanism. Its strategy of building abstract modelsof the data to guide the interpretation process is a par-ticular problem-solving strategy that could be used inour system with the addition of appropriate abstrac-tion actions. [Firby 1987]'s reactive planner uses a planschema representation that is similar to ours, but doesnot address the issues of focusing the planner and ob-taining and integrating knowledge about the currentstate of the world.Status and ConclusionsIn order to evaluate the RESUN framework, we haveimplemented the concepts with a simulated aircraftmonitoring application. The implementation is inCommon Lisp on a Texas Instruments Explorer usingGBB [Gallagher, Corkill & Johnson 1988] to implementthe hypothesis blackboard. Aircraft monitoring is asuitable domain for the evaluation because it has char-acteristics that exercise all of the capabilities of thesystem: there are large numbers of potential interpre-tations of the data due to the modeling of ghosting,noise, and sensor errors, there are complex interactionsbetween competing hypotheses, and there can be mul-tiple types of sensors some of which are active and con-trollable. The experimental results are presented andanalyzed in [Carver 1990]. To date, the experimentshave been desgined primarily to evaluate the usefulnessof this framework for de�ning complex, context-speci�cinterpretation strategies. We will discuss a few of theconclusions from the experimentation here.One of the most important conclusions was con�r-mation that the combination of explicit control planswith context-speci�c focusing heuristics provides a 
ex-ible framework for developing sophisticated interpreta-tion strategies. The modularity of the control plans

and focusing heuristics as well as the ability to do ex-plicit control reasoning makes it fairly easy to write andadapt control strategies. We also found that planning-based control is useful in a development environmentbecause it makes it is apparent when additional strate-gies are required; with agenda-based blackboard con-trol schemes, it can be di�cult to determine whetheradequate strategies have been de�ned (encoded in thescheduler rating function). While some 
exibility maybe lost with highly goal-directed control, we believethat a suitable set of strategies can be developed bytesting a number of scenarios and by including somedefault method search strategies.The results from a portion of one series of experi-ments are shown in Figure 4. These experiments arebased on a data scenario in which there are two alterna-tive tracks that was also used in [Durfee & Lesser 1986].Experiment 1 used strategies that are comparable tothose that would be found in conventional blackboardsystems. For experiment 2, sophisticated goal-directed,context-speci�c control strategies were added|thoughthe resolution of uncertainty was still based on hy-pothesize and test strategies. The results show thatcpu-time reductions of 26%. were achieved and withmore complex scenarios, reductions of up to 54% wereacheived. These results are comparable to the perfor-mance improvements that were obtained in [Durfee &Lesser 1986] through the use of data abstraction andmodeling techniques. Experiment 3 demonstrates howthe system responds to changes in its goals. Here thelevel of certainty required to eliminate potential an-swers from consideration is increased over experiment2. This forces the system to do additional work to dis-prove potential answers (the system is still not allowedto use di�erential diagnosis strategies). Experiment 4demonstrates that the ability to use di�erential diag-nosis strategies in resolving hypothesis uncertainty canresult in substantial improvements in problem solving
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