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Abstract

Sensor interpretation involves the determination of
high-level explanations of sensor data. Blackboard-
based interpretation systems have usually been limited
to incremental hypothesize and test strategies for re-
solving uncertainty. We have developed a new inter-
pretation framework that supports the use of more so-
phisticated strategies like differential diagnosis. The
RESUN framework has two key components: an evi-
dential representation that includes explicit, symbolic
encodings of the sources of uncertainty (SOUs) in the
evidence for hypotheses and a script-based, incremental
control planner. Interpretation is viewed as an incre-
mental process of gathering evidence to resolve particu-
lar sources of uncertainty. Control plans invoke actions
that examine the symbolic SOUs associated with hy-
potheses and use the resulting information to post goals
to resolve uncertainty. These goals direct the system to
expand methods appropriate for resolving the current
sources of uncertainty in the hypotheses. The planner’s
refocusing mechanism makes it possible to postpone fo-
cusing decisions when there is insufficient information
to make decisions and provides opportunistic control
capabilities. The RESUN framework has been imple-
mented and experimentally verified using a simulated
aircraft monitoring application.

Introduction

Sensor interpretation involves the determination of
high-level ezplanations of sensor and other observa-
tional data. The interpretation process is based on a
hierarchy of abstraction types like the one in Figure 1
for a vehicle monitoring application. An interpreta-
tion system incrementally creates or extends hypothe-
ses that represent possible explanations for subsets of
the data. In vehicle monitoring, data from sensors
(e.g., Acoustic Data and Radar Data) is abstracted and
correlated to identify potential vehicle positions (Ve-
hicle hypotheses), vehicle movements (Track hypothe-
ses), and vehicle goals (Mission hypotheses). Interpre-
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Figure 1: Vehicle monitoring abstraction hierarchy.

tation can be difficult because there may be combinato-
rial numbers of alternative possible explanations of the
data, creating each hypothesis may be computation-
ally expensive, the correctness of the hypotheses will
be uncertain due to uncertainty in the data and prob-
lem solving knowledge, and the volume of data may be
too great for complete examination.

In order to understand the complexities of the inter-
pretation process, it is useful to understand the distinc-
tion [Clancey 1985] draws between classification prob-
lem solving and constructive problem solving. In classi-
fication problem solving, the solution is selected from
among a pre-enumerated set of all the possible solu-
tions. In constructive problem solving, the set of pos-
sible solutions is determined as part of the problem
solving process. While problems like simple diagnosis
[Peng & Reggia 1986] can be approached using clas-
sification techniques, interpretation problems require
constructive problem solving because of the combina-
torics of their answer spaces. For example, in vehi-
cle monitoring, an (effectively) infinite number of dif-
ferent Track hypotheses is possible, an indeterminate
number of instances of Track hypotheses may be cor-
rect (since the number of vehicles that may be moni-
tored is unknown), and correlation ambiguity produces
a combinatorial number of data combinations to be
considered. Clancey notes that constructive problem
solving requires capabilities not required for classifica-



tion problem solving—e.g., the ability to apply signif-
icant amounts of knowledge to focus the construction
process. In addition, well-developed evidential reason-
ing techniques like Dempster-Shafer and Bayesian net-
works [Pearl 1988] are directly applicable only to clas-
sification problem solving [Carver 1990].

Interpretation problems have often been approached
using blackboard frameworks. This is because the black-
board model supports constructive problem solving and
because it supports opportunistic control for dealing
with uncertain data and problem solving knowledge
[Carver 1990, Lesser & Erman 1977]. Despite the power
of the blackboard model, most blackboard-based inter-
pretation systems (e.g., [Durfee & Lesser 1986, Erman
et al. 1988, Lesser & Corkill 1983, Nii et al. 1982, and
Williams 1988]) have been limited to using variations of
incremental hypothesize and test' strategies for resolv-
ing interpretation uncertainty. The designers of the
Hearsay-II architecture believed that blackboard sys-
tems would have the capability to do differential diag-
nosts because of their integrated representation of alter-
native, competing hypotheses [Lesser & Erman 1977].
However, explicit differential diagnosis techniques have
not been exploited by blackboard-based interpretation
systems? because of limitations in their evidence rep-
resentations and control frameworks [Lesser & Erman
1977, Carver & Lesser 1990].

To illustrate the kind of control reasoning that an
interpretation should be able to do, consider the fol-
lowing vehicle monitoring system scenario: “In order
to meet its goals, the system has to reduce its uncer-
tainty in hypothesis Track;. To do this, it must first
determine the reasons T'rack; is uncertain. Examining
Track,, it finds that a major source of uncertainty is
the existence of a competing hypothesis, Tracks, which
can provide an alternative explanation for a part of
Track,’s supporting data. In examining the reasons
why Tracks is uncertain, the system finds that the por-
tion of T'rack;’s supporting data which is not also sup-
porting T'rack;, might actually be able to be explained
as a ghost. If this were the case, it would decrease the
belief in Track, thereby helping to resolve the uncer-
tainty in Track;. For this reason, the system decides
to construct a hypothesis representing the alternative
ghosting explanation and then attempts to sufficiently
prove or disprove it....”

This example shows that in interpretation problems,
the process of making control decisions may require
that a system be able to: gather information for the

! Incremental hypothesize and test (also known as ewvi-
dence aggregation) means that to resolve uncertainty about
a hypothesis, a system should attempt to locate all the data
that would have been caused if the hypothesis were correct.
Differential diagnosis means that a system should attempt
to discount the possible alternative explanations for the hy-
pothesis’ supporting evidence.

’Both Hearsay-II and the planner of [Durfee & Lesser
1986] included techniques which implicitly did some limited
differential diagnosis.

control process, consider the evidential relationships
among hypotheses, understand how different methods
can be used to satisfy its goals, and carry out meth-
ods for resolving uncertainty that involve sequences of
actions. Sophisticated interpretation also requires the
ability to do detailed control reasoning so that the ac-
tions taken can be very sensitive to the goals of the
interpretation process (termination confidence criteria,
time available, etc.) and the particulars of the situ-
ation (current evidence and uncertainties, data char-
acteristics, availability of sensors, etc.). For instance,
the failure to find data to extend a Track hypothesis
might be due to the data having been missed by the
sensor (due to some environmental disturbance, etc.).
However, indiscriminately pursuing this possibility can
lead to a combinatorial explosion in the number of hy-
potheses being considered. Thus, the decision about
how to resolve the Track’s uncertainty must carefully
consider whether it is currently appropriate to pursue
the possibility of missing data; even if it is because this
possibility that the Track continues to be pursued, it
may be appropriate to look at alternative sources of
uncertainty first.

In this paper, we will describe a new interpreta-
tion framework called RESUN. This framework sup-
ports the use of sophisticated interpretation strategies.
It provides an alternative to conventional blackboard
systems for interpretation. The RESUN framework is
introduced in the next section. Its evidential repre-
sentation system and control planner are described in
more detail in the following two sections. The final sec-
tion of the paper discusses the status of our research,
presents some experimental results, and concludes with
a summary of the contributions of this work.

The RESUN Framework

The two main components of RESUN are the eviden-
tial representation system and the control planner. The
key feature of the evidential representation is its use of
explicit, symbolic encodings of the sources of uncer-
tainty (SOUs) in the evidence for the hypotheses. For
example, a Track hypothesis in a vehicle monitoring
system may be uncertain because its supporting sensor
data might have alternative explanations as a Ghost or
as part of a different Track or it may be uncertain be-
cause its evidence is incomplete or its correct Mission
explanation is uncertain; these are possible sources of
uncertainty for Track hypotheses. As interpretation in-
ferences are made in RESUN, symbolic statements are
attached to the hypotheses to represent their current
sources of uncertainty. This allows the system to un-
derstand the reasons why its hypotheses are uncertain.

Control is provided by a script-based, incremental
planner. A planning-based approach to control facili-
tates sophisticated control reasoning. The hierarchical
goal/plan/subgoal structure created by a planner pro-
vides detailed context information as well as explicit de-
cision options. This allows control reasoning to be very



detailed; decision procedures can be highly context-
specific and can reason explicitly about the choices. In
addition, because planning-based control is inherently
goal-directed, it can support active data gathering for
applications like vehicle monitoring.

The main innovation in our planner is its refocusing
mechanism. This mechanism can be used to postpone
focusing decisions when there is insufficient informa-
tion about the particular situation to make a conclu-
sive choice. The ability to postpone focusing decisions
results in a model of control in which there is not only
a search for the correct interpretations, but also an ex-
plicit search for the best methods to use to pursue the
interpretations. The refocusing mechanism also adds
opportunistic control capabilities to the (goal-directed)
planning mechanism by allowing focus points to change
in response to a variety of events. This is crucial to
the successful use of planning-based control. Interpre-
tation requires data/event-directed control capabilities
to deal with uncertainties in the data and problem solv-
ing knowledge as well as to handle dynamic situations
(as in vehicle monitoring). The refocusing mechanism
makes it clear that opportunism is not some special
form of control that must be added to the planner, but
that it simply results from particular types of condi-
tions which should redirect the control search.

In the RESUN framework, interpretation is viewed
as an incremental process of gathering evidence to re-
solve particular sources of uncertainty in the hypothe-
ses. Control plans invoke actions that examine hy-
potheses and return information about the symbolic
SOUs associated with the hypotheses. Focusing knowl-
edge is applied to select the SOUs that will be used in
further plan expansion to post goals to resolve uncer-
tainty. These goals allow the system to identify meth-
ods that can resolve the current sources of uncertainty
in the hypotheses. Focusing knowledge is again applied
to select the best methods to pursue and the plans for
these methods are refined to produce appropriate in-
terpretation actions. This general process is repeated
until the termination criteria are satisfied.

Termination is an important issues for interpreta-
tion. Interpretation systems not only must resolve un-
certainty about the correctness of the hypotheses they
create, they must also be sufficiently certain there are
not additional answers which have not yet been identi-
fied. This is a critical issue because possible hypothe-
ses are incrementally identified when doing construc-
tive problem solving and it is typically infeasible to
examine all of the data. As part of the RESUN ap-
proach, we have developed a high level model of the
state of problem solving that is used to drive the over-
all interpretation process. This model represents the
need to resolve uncertainty in existing hypotheses and
to investigate the possibility of additional answers. For
example, additional answers might be possible if some
portion of the region of interest has not yet been ex-
amined by the system or if there is data which has

not been ruled out as being able to support an answer.
The problem solving model makes it possible to use
goal-directed strategies to limit the amount of the data
which is examined. This capability is important in ap-
plications like vehicle monitoring where there may be
a number of sensors generating continuous streams of
data.

Hypotheses and Sources of Uncertainty

The basis of the interpretation process is abduction.
It is abductive inferences that identify possible expla-
nations for data (and, conversely, possible support for
hypotheses). Abductive inferences are uncertain due to
the possibility of alternative explanations for the data.
This is the basic underlying source of all interpretation
uncertainty. However, our symbolic SOUs must repre-
sent more information than just the possible alternative
explanations for hypotheses; there are several factors
which influence the level of belief in hypotheses and
thus several ways to go about resolving uncertainty.

Hypothesis correctness can only be guaranteed by
doing complete differential diagnosis—i.e., discounting
all of the possible explanations for the supporting data.
Even if complete support can be found for a hypoth-
esis there may still be alternative explanations for all
of this support. However, while complete support can-
not guarantee correctness, the amount of supporting
evidence is often a significant factor when evaluating
the belief in a hypothesis (this is the basis of hypoth-
esize and test). For example, once a Track hypothesis
is supported by correlated sensor data from a “rea-
sonable” number of individual positions (Vehicle hy-
potheses), the belief in the Track will be fairly high
regardless of whether alternative explanations for its
supporting data are still possible. In addition, com-
plete differential diagnosis is typically very difficult be-
cause it requires the enumeration of all of the possi-
ble interpretations which might include the supporting
data—many of which may not be able to be conclu-
sively discounted. Thus, a combination of hypothesize
and test and (partial) discounting of critical alternative
explanations must be used to gather sufficient evidence
for interpretation hypotheses. Owur representation of
uncertainty is designed to drive this process.

Another important aspect of our evidential repre-
sentation is its view of a hypothesis as a set of ezten-
stons. Each extension represents a different possible
“version” of the hypothesis—i.e., a different binding
for the hypothesis’ parameters. The versions of a hy-
pothesis that are of interest and must be represented
are identified as part of the constructive problem solv-
ing process. A hypothesis’ parameter values are con-
strained by the parameter values of its supporting data
and hypotheses. Typically, evidence (especially incom-
plete evidence) will only partially constrain a hypoth-
esis’ parameters—i.e., there will be uncertainty about
the correct values for the parameters. Thus, evidence
for an interpretation hypothesis not only justifies the



hypothesis, it can also refine it by further constraining
its parameter values. However, because most interpre-
tation evidence is uncertain, alternative sets of evidence
may be pursued for a hypothesis. This produces mul-
tiple alternative versions of the hypothesis. In most
blackboard systems, these versions are maintained as
independent hypotheses; ignoring valuable information
about the relationships between the versions. Using
extensions, we can represent a high level of belief in
a Track hypothesis (i.e., high belief that there is a ve-
hicle moving through the monitored environment) de-
spite great uncertainty about the correct version of the
hypothesis (i.e., uncertainty about the correct path or
identity of the vehicle).

Our model of interpretation uncertainty is based on
the reasons why abductive inferences are uncertain,
the factors that affect the belief in interpretation hy-
potheses, and our extensions model of hypotheses. The
model specifies a set of SOU classes that characterize
the uncertainty in interpretation hypotheses. These
classes apply to all interpretation domains. In addi-
tion, we have identified a set of SOU class instances
that are appropriate for particular applications. A dis-
cussion of SOU instances is beyond the scope of this
paper (see [Carver 1990]).

Our model of interpretation uncertainty consists of
the following SOU classes for hypothesis extensions
(see [Carver 1990] for more detailed definitions):

partial evidence Denotes the fact that there is in-
complete evidence for the hypothesis. For example,
a Track hypothesis will have a no ezplanation SOU
associated with it if it has not yet have been ex-
amined for valid Mission explanations and will have
a partial support SOU if its supporting Vehicle hy-
potheses only cover a portion of the complete Track.

possible alternative support Denotes the possibil-
ity that there may be alternative evidence which
could play the same role as a current piece of sup-
port evidence. This is an additional complication
for differential diagnosis in interpretation problems
as compared with classification problems.

possible alternative explanation Denotes the pos-
sibility that there may be particular alternative ex-
planations for the hypothesis extension.

alternative extension Denotes the existence of a
competing, alternative extension of the same hypoth-
esis; using evidence which is inconsistent with other
versions of the hypothesis. This is the primary rep-
resentation of the relationships between hypotheses.

negative evidence Denotes the failure to be able to
find some particular support or any valid explana-
tions. Negative evidence is not conclusive because it
also has sources of uncertainty associated with it—
e.g., that sensors may miss some data.

uncertain constraint Denotes that a constraint as-
sociated with the inference could not be validated be-
cause of incomplete evidence or uncertain parameter
values. This SOU represents uncertainty over the va-

lidity of an evidential inference; the other SOUs are
concerned with the correctness of inferences.

uncertain evidence Technically, this is not another
SOU class. Uncertain support and uncertain ezpla-
nation SOUs serve as placeholders for the uncer-
tainty in the evidence for a hypothesis because SOUs
are not automatically propagated.

Figure 2 shows three extensions of a Track hypoth-
esis along with their associated SOUs and parameters.
Track-Ext; is an intermediate eztension while Track-
Ext, and Track-Exts are alternative mazimal ezten-
stons. The alternative extensions result from compet-
ing possible explanations of the Track as an Attack-
Mission or as a Recon-Mission. This alternatives re-
lationship between these Mission hypotheses is repre-
sented by the alternative eztension SOUs in Track-Ext,
and Track-Exts. These SOUs indicate that there is a
negative evidential relationship between the extensions:
more belief in Track-Ext, or Attack-Mission results in
less belief in Track-Extz or Recon-Mission (and vice
versa). They also make it possible for the system to
recognize that the uncertainty in Attack-Mission need
not be directly resolved, but can be pursued by resolv-
ing the uncertainty in Recon-Mission or by resolving
the uncertainty in the Track’s parameter values (in or-
der to limit its consistent interpretations). This ex-
ample also demonstrates how extensions represent dif-
ferent versions of hypotheses: the uncertainty in the
value of Track-Ext;’s ID parameter has been resolved
differently by the alternative explanations. The un-
certainty that results from each explanation only be-
ing consistent with a subset of the possible values for
the Track’s ID parameter is represented by uncertain
constraint SOUs. These SOUs do not appear in the
figure because they are maintained as part of the in-
ferences; they are accessed through the “placeholder”
uncertain-ezplanation SOUs which represent the over-
all uncertainty in the explanations.

RESUN’s evidential representation system includes
a scheme for numerically summarizing the symbolic
SOUs using domain-specific evaluation functions. The
summarization process produces a composite charac-
terization of the uncertainty in a hypothesis in terms
of an overall belief rating and the relative uncertainty
contributions of the different classes of SOUs. This
summarization is used in evaluating the satisfaction of
termination criteria and when reasoning about control
decisions. Having the composite rating allows for more
detailed reasoning than would be possible with a single
number rating. For example, it can distinguish be-
tween a hypothesis that has low belief due to a lack of
evidence and one for which there is negative evidence.
The composite rating also permits the use of modu-
lar evaluation functions (these evaluation functions ef-
fectively compute conditional probabilities—see [Pearl
1988]). Domain-specific evaluation functions are cur-
rently used because neither Bayes’ Rule nor Dempster’s
Rule are generally applicable to interpretation due to
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Figure 2: Example hypothesis extensions with their symbolic sources of uncertainty.

lack of independence of hypothesis evidence.

The RESUN representation of hypotheses and evi-
dence addresses a problem that was first identified in
Hearsay-1I [Lesser & Erman 1977]: “The state infor-
mation associated with a hypothesis is very local and
does not adequately characterize the state(s) of the hy-
pothesis network(s) connected to it ...the state infor-
mation associated with an individual hypothesis must
allow a KS to analyze quickly ...the role that the hy-
pothesis plays in the larger context of the hypothesis
networks it is part of.” The representation of hypothe-
ses as set of alternative extensions effectively maintains
independent contezts that can be characterized by the
summarization process.

Numeric representations of uncertainty like proba-
bilities and Dempster-Shafer belief functions cannot to
be used to identify methods for directly resolving un-
certainties because they summarize the reasons why
evidence is uncertain [Pearl 1988]. Our use of a sym-
bolic representation of uncertainty is similar to [Cohen
1985)’s symbolic representations of the reasons to be-
lieve and disbelieve evidence which he calls endorse-
ments. However, the work on endorsements did not
produce any general formalism for representing and
reasoning with symbolic evidence. Our representation
is specific to abductive inferences and the needs of in-
terpretation control.

Opportunistic Control Planning

The planner that we developed is a script-based, in-
cremental planner. Scripi-based planning [Swartout
1988] means that the planning process is based on a
set of control plan schemas that represent the possi-
ble methods that can be used to satisfy goals. Each
non-primitive plan specifies a sequence of subgoals
that implement the plan using a shuffle grammar that
can express strict sequences, concurrency, alternatives,

optional subsequences, and iterated subgoal subse-
quences. FEach primitive plan represents an action
that can be taken to immediately satisfy a goal. RE-
SUN'’s format for specifying control plans is described
in [Carver 1990].

Classical AI planners [Wilkins 1988] are not appro-
priate for domains like interpretation where the out-
come of actions is uncertain and where external agents
affect the world. We deal with these problems through
incremental planning (interleaving planning and execu-
tion), allowing actions to return results, and by includ-
ing explicit information gathering actions. Successful
actions may return results that are bound to plan vari-
ables and influence further plan expansion. Informa-
tion gathering actions allow the planner to maintain
only that part of the world state which is needed and
to make sure it is sufficiently up to date. Data gather-
ing actions are similar to information gathering actions
except that they are used to control active sensors.

As plans are refined and expanded, a structure
like that shown in Figure 3 is created. Here the
subgoal Have-Ezt-SOU, the initial subgoal of the
plan, Eliminate-Eztension-SOUs, matches the primi-
tive Identify-Sources-of-Uncertainty. When the prim-
itive is executed, it returns a list of the SOUs in
the specified hypothesis extension. This list is bound
to the plan variable sou. Following this action, the
plan is expanded further, posting the subgoal Hawve-
Eliminated-Ext-SOU. This subgoal includes the partial-
support binding of the variable sou which was selected
through focusing. This subgoal matches two plans, one
of which is selected by focusing for further refinement.

In a planning-based approach to control, control
decisions—i.e., decisions about which domain actions
to take next—result from a sequence of planner focus-
ing decisions. Thus focusing heuristics represent strat-
egy knowledge that selects the interpretation methods
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Figure 3: An example of the instantiated goal/plan/subgoal structure produced by the planner.

and method instances to be pursued. In RESUN, each
focusing heuristic is associated with a particular control
plan and can examine the instantiated planning struc-
ture. This provides detailed context information for de-
cisions. Strategy knowledge is defined in terms of three
classes of focusing heuristics. Match focusing heuristics
select among competing control plans capable of satis-
fying a subgoal—i.e., competing methods. Variable fo-
cusing heuristics select among competing bindings for
plan variables—i.e., competing method instances. Sub-
goal focusing heuristics select among the active sub-
goals for a plan instance when subgoals can be carried
out concurrently, but it is preferable to sequence the
subgoals (due to uncertainty over their ability to be
satisfied, for instance).

The refocusing mechanism allows focusing heuris-
tics to designate their decision points as refocus points.
This is done by instantiating a refocus unit that speci-
fies the decision point, the conditions under which refo-
cusing should occur, and a refocus handler. When the
refocus conditions are satisfied, the refocus handler is
invoked and re-evaluates the choices made at the deci-
sion point—within the context of the further expanded
plan. Using this mechanism, the system can deal with
nondeterminism in focusing decisions by postponing
decisions in order to gather more specific information
about the situation. For example, when extending a
Track hypothesis, the best direction to extend it in de-
pends on the quality of the data which is actually avail-
able in each alternative region. The refocusing mecha-
nism makes it possible to postpone the decision about
where to extend the track until the plans for both al-
ternative directions are expanded to a point where the
relative quality of the data can be evaluated. When the
plans have been expanded to this point, the decision is

reconsidered and a the single best direction is selected
to be pursued for the next track extension.

The refocusing mechanism also makes it possible
to implement opportunistic control strategies that can
shift the system’s focus-of-attention between compet-
ing plans and goals in response to changes in the situ-
ation. This is possible because refocus units are eval-
uvated and applied in a demon-like fashion and their
conditions can refer to the characteristics of the devel-
oping plans and interpretations, and other factors such
as data availability. For example, the amount of effort
to be expended on one alternative can be limited or the
arrival of critical data noted. Refocusing controls the
system’s backtracking since refocus points effectively
define the backtrack points and the conditions under
which the system backtracks. This provides the sys-
tem with an intelligent form of nonchronological back-
tracking because it is directed by heuristic refocusing
knowledge.

A number of planning-based control approaches have
been developed, but none provide a completely suit-
able framework for interpretation driven by our sym-
bolic SOUs. [Clancey 1986]’s tasks and meta-tules are
really control plans and their substeps, but the frame-
work is limited by the fact that meta-rules directly in-
voke subtasks so there is no ability to search for the
best methods. The BB1 system [Hayes-Roth & Hewett
1988] has a different view of planning, in which plans se-
lect sequences of ratings functions rather than directly
selecting actions. This limits its ability to support de-
tailed, explicit control reasoning. Also, since BB1 relies
on an agenda mechanism, it can be inefficient for in-
terpretation problems involving large amounts of data
because only a fraction of the possible actions will ever
be taken (see [Hayes-Roth 1990] for recent work that



|| || experiment 1 | experiment 2 | experiment 3 | experiment 4 ||

plans instantiated 121 150 167 154
subgoals instantiated 309 428 462 440
hypotheses created 83 48 83 59
extensions created 216 116 213 152
inference actions 56 51 7 69
information actions 136 226 254 232
focusing decisions 82 93 108 97
planning time 11.6% 20.6% 14.4% 18.0%
focusing time 4.6% 7.0% 5.2% 6.3%
inference action time 81.1% 66.5% 76.2% 70.7%
information action time 2.6% 5.9% 4.3% 5.0%
|| total cpu time || 31.3s 23.2s | 36.3s | 27.6s ||

experiment 1 Weak criteria for the acceptance of non-answers, no sophisticated strategies or differential diagnosis.
experiment 2 Like experiment 1, but sophisticated control strategies; still no differential diagnosis.

experiment 3 Like experiment 2, but with stronger criteria for acceptance of non-answers.

experiment 4 Like experiment 3, but using differential diagnosis strategies.

Figure 4: Some sample results from the experimental evaluation.

addresses this issue). The incremental planning ap-
proach of [Durfee & Lesser 1986] for a blackboard-based
vehicle monitoring system is not a general planning
mechanism. Its strategy of building abstract models
of the data to guide the interpretation process is a par-
ticular problem-solving strategy that could be used in
our system with the addition of appropriate abstrac-
tion actions. [Firby 1987]’s reactive planner uses a plan
schema representation that is similar to ours, but does
not address the issues of focusing the planner and ob-
taining and integrating knowledge about the current
state of the world.

Status and Conclusions

In order to evaluate the RESUN framework, we have
implemented the concepts with a simulated aircraft
monitoring application. The implementation is in
Common Lisp on a Texas Instruments Explorer using
GBB [Gallagher, Corkill & Johnson 1988] to implement
the hypothesis blackboard. Aircraft monitoring is a
suitable domain for the evaluation because it has char-
acteristics that exercise all of the capabilities of the
system: there are large numbers of potential interpre-
tations of the data due to the modeling of ghosting,
noise, and sensor errors, there are complex interactions
between competing hypotheses, and there can be mul-
tiple types of sensors some of which are active and con-
trollable. The experimental results are presented and
analyzed in [Carver 1990]. To date, the experiments
have been desgined primarily to evaluate the usefulness
of this framework for defining complex, context-specific
interpretation strategies. We will discuss a few of the
conclusions from the experimentation here.

One of the most important conclusions was confir-
mation that the combination of explicit control plans
with context-specific focusing heuristics provides a flex-
ible framework for developing sophisticated interpreta-
tion strategies. The modularity of the control plans

and focusing heuristics as well as the ability to do ex-
plicit control reasoning makes it fairly easy to write and
adapt control strategies. We also found that planning-
based control is useful in a development environment
because it makes it is apparent when additional strate-
gies are required; with agenda-based blackboard con-
trol schemes, it can be difficult to determine whether
adequate strategies have been defined (encoded in the
scheduler rating function). While some flexibility may
be lost with highly goal-directed control, we believe
that a suitable set of strategies can be developed by
testing a number of scenarios and by including some
default method search strategies.

The results from a portion of one series of experi-
ments are shown in Figure 4. These experiments are
based on a data scenario in which there are two alterna-
tive tracks that was also used in [Durfee & Lesser 1986].
Experiment 1 used strategies that are comparable to
those that would be found in conventional blackboard
systems. For experiment 2, sophisticated goal-directed,
context-specific control strategies were added—though
the resolution of uncertainty was still based on hy-
pothesize and test strategies. The results show that
cpu-time reductions of 26%. were achieved and with
more complex scenarios, reductions of up to 54% were
acheived. These results are comparable to the perfor-
mance improvements that were obtained in [Durfee &
Lesser 1986] through the use of data abstraction and
modeling techniques. Experiment 3 demonstrates how
the system responds to changes in its goals. Here the
level of certainty required to eliminate potential an-
swers from consideration is increased over experiment
2. This forces the system to do additional work to dis-
prove potential answers (the system is still not allowed
to use differential diagnosis strategies). Experiment 4
demonstrates that the ability to use differential diag-
nosis strategies in resolving hypothesis uncertainty can
result in substantial improvements in problem solving



performance. Not only were cpu-time reductions of 24
to 28% achieved, but higher levels of confidence in so-
lutions could also be obtained (there is a limit to the
confidence that can be obtained with hypothesize and
test alone).

Assessing control overhead from these experiments
is problematic because the implementation has not yet
been optimized and results depend on the relative cost-
liness of the inference actions (which will vary from do-
main to domain.) Our inference functions are relatively
simple; they do not contain substantial numeric calcu-
lations like Fast Fourier Transforms. Thus it is reason-
able to expect lower overall overhead from other appli-
cations. Nonetheless, we compared figures for overhead
with a study of BB1 [Garvey & Hayes-Roth 1989] and
found overhead to be comparable.

In conclusion, this paper describes a new framework
for building sensor interpretation systems. While most
existing blackboard-based interpretation systems have
been limited to using hypothesize and test strategies to
resolve uncertainty, RESUN supports the use of more
sophisticated strategies like differential diagnosis. The
RESUN approach is based on a model that we devel-
oped of the uncertainty in abductive interpretation in-
ferences. This model makes it possible to symbolically
represent the sources of uncertainty in interpretation
hypotheses. We also developed an incremental plan-
ner that can be used to implement methods which ex-
ploit this symbolic representation of uncertainty. The
key innovation of the planner is its refocusing mecha-
nism which makes it possible to handle nondetermin-
ism in control decisions and adds opportunistic con-
trol capabilities to the goal-directed planner. We have
found that the modularity of the control plans and
the context-specific focusing heuristics provides a good
framework for encoding complex control strategies. A
detailed description and evaluation of the system is
contained in [Carver 1990]. We are currently exploring
the generality of RESUN using the domain of sound
understanding in household environments [Lesser et al.
1991].
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