Evaluating an Information Extraction System
W. Lehnert, C. Cardie, D. Fisher?*, J. McCarthy, E. Riloff, & S. Soderland

COMPUTER SCIENCE DEPARTMENT, LGRC
UNIVERSITY OF MASSACHUSETTS
BOX 34610
AMHERST MA 01003-4610
lehnert@cs.umass.edu

*University of California, Berkeley
Department of Computer Science
Berkeley, CA

Abstract:

Many natural language researchers are now turning their attention to a relatively
new task orientation known as information extraction. Information extraction
systems are predicated on an [/0 orientation that makes it possible to conduct formal
evaluations and meaningful cross-system comparisons. This paper presents the
challenge of information extraction and shows how information extraction systems
are currently being evaluated. We describe a specific system developed at the
University of Massachusetts, identify key research issues of general interest, and
conclude with some observations about the role of performance evaluations as a
stimulus for basic research.

1. Information Extraction from Text

Progress in natural language processing is typically divided into major subareas
according to the types of issues being addressed. Methods for sentence analysis
associated with syntactic structures and full sentence grammars are strongly
influenced by theoretical linguistics. In-depth narrative text comprehension is often
pursued by psychologists and others with an interest in human memory models.
Natural language interfaces for practical database access are influenced by the
logical structure of formal query languages and relational databases. Work on
discourse analysis builds its foundations on formalisms for planning and user
modelling.

Very recently a new orientation for research in natural language processing has
emerged under the name of information extraction. This area addresses information
processing needs associated with large volumes of text containing information from
some domain of interest. For example, a stock analyst might want to track news stories
about corporate mergers; an intelligence analyst might need to track descriptions of
terrorist events in a geographic region; an insurance adjuster might want to compile
data from text-based hospital records. In general, information extraction refers to the
problem of finding useful information in a collection of texts, and encoding that
information in a format suitable for incorporation into a database.

Acknowledgements: This research was supported by Office of Naval Research Contract NO0O014-92-]J-1427 and NSF Grant no.
EEC-9209623, State/Industry/University Cooperative Research on Intelligent Information Retrieval.

At the present time, most information extraction tasks are managed manually, by
human analysts who read the source documents and create database entries by hand.
This work is time-consuming, tedious, and difficult to monitor for quality control. In
recent years, a growing number of researchers in natural language processing have
begun to look at information extraction applications and organize entire research
projects around the special requirements of this relatively new task orientation. As a
result, we are coming to understand that the language processing requirements of
information extraction are somewhat different from the requirements of other
language processing applications. Furthermore, a body of existing technology is
already positioned to address the information extraction problem with promising
results.

The information extraction problem is especially interesting as a subarea in natural
language processing insofar as it lends itself to comparative performance evaluations
and relatively clean evaluation metrics. Because the output of an information
extraction system is a populated database, it is possible to compare the output of a
given system to an ideal database in order to determine how well that system is doing.
This distinguishes information extraction systems from other natural language
processing systems where evaluation is highly problematic.

In this paper we will overview two recent performance evaluations in information
extraction, and describe an information extraction system developed at the University
of Massachusetts. We will present a detailed evaluation of our own system along with
an extensive example of information extraction in action. In closing, we will discuss
the limitations of quantitative evaluations and the importance of qualitative
assessments during system development.

2. A First Message Understanding Evaluation (MUC-3)

In 1991 DARPA sponsored an ambitious evaluation of information extraction
technologies in the form of the Third Message Understanding Conference (MUC-3).
This was a first attempt at a quantitative performance evaluation based on blind test
sets and rigorous test procedures. Fifteen research labs participated in MUC-3 and a
published proceedings records both test results and system descriptions [Sundheim
1991]. The process of coordinating fifteen laboratories in an evaluation of large
complicated language processing systems is a difficult one, but MUC-3 was conducted

with considerable planning and foresight.1

The MUC-3 performance evaluation utilized a development corpus of 1300 documents

describing terrorist activities in Latin America.Z Each text in the development corpus
was paired with hand-coded template instantiations designed to capture all relevant
information embodied in the source text. The MUC-3 challenge was to design a system
that could generate these template instantiations automatically, without any human
assistance. Each MUC-3 system was evaluated on the basis of a blind test set consisting
of 100 new documents. No alterations to the participating systems were allowed once a

1 We note that earlier attempts at comparative performance evaluation took place at the MUCK1
and MUCK2 message understanding conferences in 1987 and 1989. Although these earlier attempts
were less ambitious in their scope than MUC-3, they created a foundation that was instrumental to
the success of the 1991 evaluation.

2 All text materials were provided by the Foreign Broadcast Information Service.

site had downloaded the test materials for the final evaluation. The results were
scored by a program that compared system-generated “response” templates to hand-
coded “key” templates (see Figure 1).

Figure 1: A Method for Evaluating Message Understanding Systems
Figure 1 is not available at this time.

A serious description of the MUC-3 tests and evaluation becomes fairly involved and
cannot be covered in the space of a few paragraphs. For our purposes we’ll show some
sample input, some sample output, and a sample score report. A more comprehensive
overview can be found in [Lehnert and Sundheim 1991].

Here is a sample text taken from the first blind test set (TST1):

TST1-MUC3-0004

BOGOTA, 30 AUG 89 (INRAVISION TELEVISION CADENA 2) -- [TEXT] LAST NIGHT'’S
TERRORIST TARGET WAS THE ANTIOQUIA LIQUEUR PLANT. FOUR POWERFUL ROCKETS WERE
GOING TO EXPLODE VERY CLOSE TO THE TANKS WHERE 300,000 GALLONS OF THE SO-
CALLED CASTILLE CRUDE, USED TO OPERATE THE BOILERS, IS STORED. THE WATCHMEN
ON DUTY REPORTED THAT AT 2030 THEY SAW A MAN AND A WOMAN LEAVING A SMALL
SUITCASE NEAR THE FENCE THAT SURROUNDS THE PLANT. THE WATCHMEN EXCHANGED FIRE
WITH THE TERRORISTS WHO FLED LEAVING BEHIND THE EXPLOSIVE MATERIAL THAT ALSO
INCLUDED DYNAMITE AND GRENADE ROCKET LAUNCHERS, METROPOLITAN POLICE PERSONNEL
SPECIALIZING IN EXPLOSIVES, DEFUSED THE ROCKETS. SOME 100 PEOPLE WERE WORKING
INSIDE THE PLANT.

THE DAMAGE THE ROCKETS WOULD HAVE CAUSED HAD THEY BEEN ACTIVATED CANNOT BE
ESTIMATED BECAUSE THE CARIBE SODA FACTORY AND THE GUAYABAL RESIDENTIAL AREA
WOULD HAVE ALSO BEEN AFFECTED.

THE ANTIOQUIA LIQUEUR PLANT HAS RECEIVED THREATS IN THE PAST AND MAXIMUM
SECURITY HAS ALWAYS BEEN PRACTICED IN THE AREA. SECURITY WAS STEPPED UP LAST
NIGHT AFTER THE INCIDENT. THE LIQUEUR INDUSTRY IS THE LARGEST FOREIGN
EXCHANGE PRODUCER FOR THE DEPARTMENT.

The relevant information in each text may have one key template, more than one key
template, or no key template if the text is deemed to be irrelevant. The text given
above has one key template associated with it (see Figure 2).

The scoring program evaluates overall system performance by checking each
response template against the available key templates. Information must be properly
positioned in the right slots and in the right response templates in order to be counted
correct. The Recall score measures the ratio of correct information extracted from
the texts against all the available information present in the texts. The Precision score
measures the ratio of correct information that was extracted against all the

information that was extracted.3 For a test run of 100 texts, recall and precision are

3 For example, suppose you answered two of four test questions correctly. Your recall score for the
test would be 50%. But your precision score for the test would depend on how many questions you
answered altogether. If you answered all four, your precision would be 50%. If you answered three
questions, your precision would be 75%, and if you were smart enough to only answer two questions,
then your precision would be 100%.

averaged over all the output templates and computed four different ways. Figure 3
shows the official UMass score report from the final MUC-3 test run on a second set of

100 blind texts (TST2).

0. MESSAGE ID TST1-MUC3-0004
1. TEMPLATE ID 1
2. DATE OF INCIDENT 29 AUG 89
3. TYPE OF INCIDENT ATTEMPTED BOMBING
4. CATEGORY OF INCIDENT TERRORIST ACT
5. PERPETRATOR: ID OF INDIV(S) “MAN"
“WOMAN"

6. PERPETRATOR: ID OF ORG(S) -
7. PERPETRATOR: CONFIDENCE -

8. PHYSICAL TARGET: ID(S) “ANTIOQUIA LIQUEUR PLANT”/
“LIQUEUR PLANT”
9. PHYSICAL TARGET: TOTAL NUM 1
10. PHYSICAL TARGET: TYPE(S) COMMERCIAL: “ANTIOQUIA LIQUEUR PLANT”/
“LIQUEUR PLANT”
11. HUMAN TARGET: ID(S) “PEOPLE"”
12. HUMAN TARGET: TOTAL NUM PLURAL
13. HUMAN TARGET: TYPE (S) CIVILIAN: “PEOPLE”
14. TARGET: FOREIGN NATION (S) -
15. INSTRUMENT: TYPE (S) *
16. LOCATION OF INCIDENT COLOMBIA: ANTIOQUIA (DEPARTMENT)
17. EFFECT ON PHYSICAL TARGET(S) NO DAMAGE: “ANTIOQUIA LIQUEUR PLANT”/

“LIQUEUR PLANT”

18. EFFECT ON HUMAN TARGET (S) NO INJURY OR DEATH: “PEOPLE”

Figure 2: A Sample Answer Key

Figure 3: The Official UMass Score Report from MUC-3
Figure 3 is not available at this time

Although four scoring metrics were computed for each score report,
MATCHED/MISSING was designated as the official scoring metric for MUC-3. Figure 4
shows a scatter plot for the recall and precision of all 15 sites under the official
scoring metric.

Figure 4: Overall Recall/Precision Results for all the MUC-3 sites
Figure 4 is not available at this time.

It is easy to drown in the numbers of these score reports, but it is important to look
beyond the numbers and the scatter plots at the bigger picture. The development
effort behind the UMass system yielded three important results, and only one of them
is evident in the MUC-3 score reports:

(1) The UMass/MUC-3 system was relatively successful. UMass posted the highest
combined scores for recall and precision of all the systems tested.

(2) The UMass/MUC-3 system was relatively expensive to build. We estimated that 2.25
person/years of effort went into MUC-3. This represents more effort than any of
the other sites would admit to, and twice as much as the average effort level
underlying all the MUC-3 systems.

(3) The graduate students who implemented the UMass/MUC-3 system had no desire to
ever build anything like it again. Their labor was time consuming and tedious.
They established the viability of the UMass approach relative to other approaches,
but with a human labor factor that threw into question the practicality of the
technology.

Our participation in MUC-3 benefited our research in a variety of ways. On the one
hand, it established the viability of our general approach to information extraction.
On the other hand, it presented us with a major research challenge that could not be
ignored. The difference between a viable message understanding technology and a
practical message understanding technology lies in the ease with which that
technology can be ported across domains. In order to examine this issue more
substantively, we need to move beyond the score reports and the scatter plots and look
at the specifics of the system that UMass ran at MUC-3.

3. The CIRCUS Sentence Analyzer

CIRCUS is a conceptual analyzer that produces semantic case frame representations
for input sentences. Although space does not permit us to give a full technical
description of CIRCUS, we will attempt to convey some sense of sentence analysis via
CIRCUS. For more details, please consult [Lehnert 1991; and Cardie and Lehnert 1991].

CIRCUS wuses no syntactic grammar and produces no parse tree as it analyzes a
sentence. Rather, it uses lexically-indexed syntactic knowledge to segment incoming
text into noun phrases, prepositional phrases, and verb phrases. These constituents
are stored in global buffers that track the subjects, verbs, direct objects, and
prepositional phrases of a sentence. Because we restrict the buffer contents to simple
constituents with a highly local sense of the sentence, larger constituents like clauses
are not explicitly stored by the syntactic component of CIRCUS.

While syntactic buffers are being filled with sentence fragments, a mechanism for
handling predictive semantics is responsible for establishing case role assignments.
Semantic case frames are activated by concept node (CN) definitions, and each CN
definition can be triggered by one or more lexical items. These CN triggers index the
CN definitions and initiate all CN-related processing. Associated with each slot in a CN
are both hard and soft constraints. A hard constraint is a predicate that must be
satisfied, while a soft constraint defines a preference rather than an absolute
requirement. When a CN instantiation meets certain criteria established by the CN
definition, CIRCUS freezes that case frame and passes it along as output from the
sentence analyzer. A single sentence can generate an arbitrary number of case
frame instantiations depending on the conceptual complexity of the sentence and the
availability of relevant CN definitions in the CN dictionary.

Because CIRCUS is designed to generate case frame representations in response to
sentence fragments, ungrammatical sentences or sentences with highly complicated
syntactic structures are often navigated without difficulty. CIRCUS was designed to
maximize robust processing in the face of incomplete knowledge. It does not require

complete dictionary coverage with respect to CN definitions or even part-of-speech
recognition, so CIRCUS is especially well-suited for information extraction
applications from unconstrained text. As described above, the first serious evaluation
of CIRCUS took place with MUC-3, where CIRCUS posted the highest combined scores
for recall and precision of all the participating sites [Lehnert et al. 1991a, 1991b, and
1991c]. However, questions were raised about the portability and scalability of
CIRCUS’ approach to information extraction.

We welcomed an opportunity to focus on practicality issues in preparing for the next
message understanding performance evaluation in 1992. The dictionary used by the
UMass/MUC-3 system emerged after roughly 1500 hours of highly skilled labor by two
advanced graduate students and one post doc. This one aspect of the system
represented the single largest investment of manual knowledge engineering and the
greatest bottleneck with respect to portability across domains. A practical information
extraction system would require some capability for automated dictionary
construction in order to reduce this manual engineering requirement. Although the
difference between a viable dictionary and a practical dictionary is not one that can
be seen in any score reports, we decided to focus on this aspect of our system
development because it represented a compelling research issue. We believe that it is
important to participate in performance evaluations, but it is equally important to
maintain a sense of the basic research issues, even if those issues do not lend
themselves to the kinds of visible progress that can be measured in score reports.

4. A Second Message Understanding Evaluation (MUC-4)

The MUC-4 evaluation was conducted in 1992 with a format very similar to that used in
MUC-3. A total of 19 organizations participated in the development of the MUC-4
systems, including 12 “veterans” of MUC-3 and five new university labs. The
development corpus of Latin American terrorism was used again, but this time there
were two test sets of 100 novel texts (TST3 and TST4) instead of one. A different scoring
metric was chosen as the official metric (All Templates) because it was more sensitive
to spurious templates than the metric used in MUC-3 (Matched/Missing). In addition to
the template instantiation task, all systems were evaluated for their text filtering
capabilities as well (a natural side effect of the information extraction task). A method
for analyzing the statistical significance of the test results was also utilized [Chinchor
et al 1993]. Because MUC-4 used the same domain as MUC-3, veteran sites were able to
conduct system development experiments that picked up where their MUC-3 effort left
off. For UMass, this meant addressing the questions that had been raised about
portability and scalability [Lehnert et al 1992a and 1992b].

In confronting the issue of efficient system development, we chose to focus on the
problem of dictionary construction. The dictionary used by UMass/MUC-3 emerged
after roughly 1500 hours of highly skilled labor by two advanced graduate students
and one post doc. For MUC-4, we created a new dictionary that achieved nearly the full
functionality of the UMass/MUC-3 dictionary after only 8 hours of effort on the part
of a first-year graduate student. This outcome was achieved through the use of an
automated dictionary construction tool called AutoSlog [Riloff and Lehnert 1993, Riloff
1993a].

We ran two versions of our system for MUC-4. The official system and a second
optional system were identical except for their dictionaries. Both dictionaries
accessed the same 5436 lexical definitions for part-of-speech recognition and word
senses (these definitions were taken from the UMass/MUC-3 dictionary), along with

2102 proper names. However, the optional system ran a CN dictionary constructed by
AutoSlog containing 379 concept node definitions. Our official system ran a version of
the UMass/MUC-3 CN dictionary augmented by 76 additional concept node definitions
imported from the AutoSlog dictionary for a total of 389 concept node definitions.
Prior to the official test runs, we predicted that both systems would produce
comparable levels of precision, and that the optional system would fall behind the
official system by 10 recall points under All Templates. Table I contains the All
Templates scores for all four test runs.4

System recall precision P&R 2P&R P&2R
Official TST3 47 57 51.52 54.67 48.71
Optional TST3 40 59 47.67 53.88 42.75
Official TST4 46 42 43.91 42.74 45.14
Optional TST4 36 46 40.39 43.58 37.64

Table I: Overall Scores for Four Test Runs

As predicted, the AutoSlog dictionary produced lower recall levels than the official
system: 7 points lower for TST3, and 10 points lower for TST4. Precision was
comparable for both systems with AutoSlog generating higher overall precision
rates: 2 points higher for TST3 and 4 points higher for TST4. We note that our
performance on TST4 was generally worse than TST3. However, a close inspection of
the detailed score reports for the official system shows that the primary difference in
those reports lies in the All Templates precision scores: 57 for TST3 vs. 42 for TST4. This
loss of precision can be explained for the most part by comparing the number of
spurious templates: 16 for TST3 vs. 34 for TST4.

Setting aside the differences between TST3 and TST4, we were pleased to see how well
the AutoSlog dictionary performed relative to our hand-crafted dictionary from the
previous year. Comparing P&R scores, our AutoSlog dictionary achieved 93% of the
overall performance of our official system on TST3, and 92% of the official system's
performance on TST4. In an effort to leverage the UMass/MUC-3 and the AutoSlog
dictionaries, we strengthened the performance of the MUC-3 dictionary by
augmenting it with 76 AutoSlog definitions.® This was done because our official system
was designed to demonstrate our best capabilities with respect to information
extraction. A cleaner comparison of our original MUC-3 dictionary vs. the AutoSlog
dictionary would have resulted in a smaller difference in overall performance, and
given AutoSlog a much stronger showing. As it stands, we are comparing the pure
AutoSlog dictionary in our optional runs to the official run dictionary that derived
20% of its definitions from AutoSlog.

Our MUC-4 test results have demonstrated that an effective domain-dependent
dictionary can be efficiently constructed using a representative text corpus

4 A single scoring measure known as the F-measure was used to rank the MUC-4 systems. Under
P&R, the F-measure weighed recall and precision equally. Under 2P&R, the measure favored
precision over recall, and under P&2R the measure favored recall over precision.

5 Other methods of combining the two dictionaries were tested, but this was the most effective
strategy.

accompanied by hand-coded template encodings. Our preliminary and very limited
efforts produced a dictionary that closely mirrors the functionality obtained by a
relatively successful hand-crafted dictionary. Although the process of dictionary
construction via AutoSlog is not completely automated, the manual labor needed can
be completed in a matter of hours by a single individual with minimal expertise in
dictionary construction. As a result, we are now in a position to claim that effective
customized dictionaries can be constructed quickly and easily by relatively
inexperienced system developers. We consider this to be a significant step forward in
the area of automated dictionary construction for text extraction applications.

5. Automated Dictionary Construction

The AutoSlog construction tool analyzes available key templates in conjunction with
source texts and generates hypothesized CIRCUS definitions without human assistance.
AutoSlog’s proposed concept node definitions are derived from sentences in the MUC-
4 development corpus that contain string fills found in their associated key templates.
Using the complete 1300-text DEV corpus as the training set for our dictionary
construction experiment, AutoSlog proposed 1356 concept node definitions based on
1272 string-fill slots. Although a large number of these definitions were flawed in
some way, 375 of the 1356 definitions (28%) proposed by AutoSlog were deemed
acceptable when reviewed by visual inspection.

Each AutoSlog definition begins with a single string fill in a single key template.
Given a specific slot, AutoSlog extracts the first non-empty string fill listed in the key
template (string-fill slots often contain multiple strings based on multiple references
within the source text). It then searches the source text for the first instance of that
string within the source text. Once located, AutoSlog pulls the complete sentence
containing that string from the source text and passes it to the CIRCUS sentence
analyzer for syntactic analysis. CIRCUS analyzes the sentence using a part-of-speech
dictionary. If successful, a set of buffers is instantiated with simple syntactic
constituents corresponding to a subject, a verb, and possibly an object or a
prepositional phrase. When the original string fill shows up in one of these buffers,
AutoSlog hypothesizes a concept node definition complete with a lexical trigger,
complement pattern, and slot constraints. This definition is then written to a file and
AutoSlog returns to the key template for the next string fill slot. Figure 5 shows the
AutoSlog construction tool in action.

Figure 5: Automated Dictionary Construction
Figure 5 is not available at this time.

The presence of string-fills in key templates is a crucial requirement for AutoSlog. In
fact, the more string-fill slots, the better. Each MUC-4 template contained six string-
fill slots used by AutoSlog: inc-instr-id, perp-ind-id, perp-org-id, phys-tgt-id, hum-
tgt-name, and hum-tgt-desc. After processing the 1300 texts of DEV, AutoSlog
generated 136 definitions based on inc-instr-id, 316 definitions from perp-ind-id, 201
definitions from perp-org-id, 306 definitions from phys-tgt-id, 193 definitions from
hum-tgt-name, and 204 definitions from hum-tgt-desc. This dictionary was compiled
in a 14-hour batch run and then passed to a CIRCUS programmer for manual review.
During the review process, each definition was dispatched into one of two possible
states: (1) keep as is, or (2) save for possible revision. Files were maintained for the
"keeps" and the "edits" with the expectation that the keep-definitions might be

augmented by some number of edit-definitions that could be salvaged via manual
knowledge engineering. The initial categorization into "keeps" and "edits" was
relatively fast because each definition could be categorized on the basis of visual
inspection alone. Many definitions destined for the edit files were easy to spot since
they often resulted from parsing errors, patterns of no linguistic generality, or
patterns of dubious reliability.

Here is an example a good AutoSlog definition generated by the first text in the
development corpus:

Id: DEV-MUC3-0001 Trigger: KIDNAPPED Trigger Root: KIDNAP Syntactic-type: VERB

Slot filler: "TERRORISTS"

Sentence: (THE ARCE BATTALION COMMAND HAS REPORTED THAT ABOUT &&50 PEASANTS OF
VARIOUS AGES HAVE BEEN KIDNAPPED BY TERRORISTS OF THE
FARABUNDO_MARTI_NATIONAL_LIBERATION_FRONT IN SAN_MIGUEL DEPARTMENT >PE)

Name: %ACTOR-PASSIVE-VERB-PP-KIDNAPPED-BY%

Time limit: 10

Variable Slots: Constraints:
(ACTOR (*PP* (IS-PREP? '(BY)))) (((CLASS ORGANIZATION *PP%*)
(CLASS TERRORIST *PP*)

(CLASS PROPER-NAME *PP*)
(CLASS HUMAN *PP)))
Constant Slots: (TYPE PERPETRATOR)
Enabling Conditions: (PASSIVE))

This definition extracts slot fillers from constructions of the form: "X
is/was/(has/have been) kidnapped by Y." This particular definition will only pick up
the conceptual actor Y. A separate definition is needed to pick up the conceptual
victim X. The following is an example of a bad AutoSlog definition:

Id: DEV-MUC3-0036 Trigger: WAS Trigger Root: WAS Syntactic-type: VERB

Slot Filler: "MEMBER OF THE DEMOCRATIC SOCIALIST PARTY"

Sentence: (GILDA FLORES WAS AN ACTIVE MEMBER OF THE DEMOCRATIC SOCIALIST PARTY OF
GUATEMALA >CO WHOSE SECRETARY_GENERAL MARIO SOLORZANO REPORTED
SALVADORAN PARAMILITARY GROUPS ARE CARRYING_OUT ACTIONS IN THIS COUNTRY
>PE)

Name: %VICTIM-ACTIVE-OBJECT-VERB-WAS%

Time Limit: 10

Variable Slots: Constraints:

(VICTIM (*DO* 1)) (((CLASS HUMAN *DO%*)

(CLASS PROPER-NAME *DQO%)))

Constant Slots: (TYPE KIDNAPPING)

Enabling Conditions: ((ACTIVE :CHECK-DO-NO-ONE T))

As it stands, this definition hypothesizes that the verb “was” predicts the victim of a
kidnapping. Although the source sentence does legitimately suggest that the verb “to
be” can be used to link human names with human descriptions, this proposed
definition cannot be trusted to deliver a kidnapping victim.

When AutoSlog creates a new definition, it checks the existing set of previously
proposed definitions to see if the current proposal duplicates an older one. AutoSlog
does not produce multiple copies of the same definition. By tracking the number of
duplicates AutoSlog suppresses, we can see evidence that the dictionary is
approaching a saturation point. In particular, we note that after AutoSlog has

processed 1200 texts, nearly two thirds of its proposed definitions for the next 100 texts
are duplicates of previously generated definitions. Figure 6 shows the weakening
frequency of new dictionary definitions as we move through the development corpus.

Figure 6: Dictionary Saturation Under AutoSlog
Figure 6 is not available at this time.

Although the AutoSlog dictionary definitions are derived from only six template slots,
template-generation routines are capable of extracting the information needed to fill
additional slots. When the AutoSlog dictionary operates in conjunction with the full
system, we can fill every template slot except phys-tgt-effect, phys-tgt-total-num, and
hum-tgt-total-num.

The 8-hour AutoSlog dictionary was completed only four weeks before the final
testing for MUC-4. After seeing how much impact AutoSlog can have on the process
of dictionary construction, we are now pursuing enhancements to AutoSlog in order
to strengthen its baseline performance. As it stands, AutoSlog can be moved to new
domains with a minimal amount of software tuning. Adjustments must be made to
handle a new template format, but any templates that contain string-fills will serve to
fuel dictionary construction.

6. Looking Under all the Numbers

As a result of our experience with MUC-3 and MUC-4 we believe we have learned how
to best use a performance evaluation in our own system development effort. When
serious effort goes into the analysis of extensive score reports that utilize different
metrics for measuring performance in a variety of ways, it is easy to be seduced by all
the numbers and lose sight of less rigorous feedback mechanisms. We have conducted
a post hoc analysis of our system's performance on TST3 in order to better understand
the various problems encountered on TST3. Most of this analysis explores the behavior
of CIRCUS, its use of concept node definitions, and the effects of memory-based
consolidation.® As detailed and useful as the score reports are, they are not designed to
tease apart the individual performance contributions of a sentence analyzer,
discourse analyzer, or template generator. Subcomponents like these must be analyzed
separately if we want to understand where to focus future development efforts.

In order to understand some of the discussion to follow, it will help to know what is
meant by “mapping problems” during scoring. Whenever there is one response
template and exactly one key template, there can be no mapping problem. The lone
response template is compared to the key template and scoring proceeds on a slot-by-
slot basis. But suppose the number of response templates does not correspond to the
number of key templates. Then we can have a mapping problem.

For example, suppose there are two response templates and only one key template.
According to the scoring guidelines, only one response template can be compared to
the key template. The remaining response template is deemed “spurious” and all of
the information it contains will be counted as spurious information, even if it appears

6 Memory-based consolidation refers to that part of the system that analyzes concept node
instantiations generated by CIRCUS and maps them into template instantiations of the type shown
in figure 2. More will be said about memory-based consolidation at the end of this section.

10

in the key template. So which response template should be mapped to the key
template and which should be counted as spurious? In general, we would like to make
this decision in a way that maximizes our overall score.

The scoring program attempts to solve the mapping problem via a hill-climbing
algorithm, but hill-climbing does not guarantee optimal solutions, so the scoring
program can make mapping errors. It is possible for humans to intervene with
mapping specifications for specific situations, but mapping problems can be very
difficult to resolve by visual inspection, and recall/precision trade offs are common.

When “good” information is placed in a spurious template or a template that doesn’t
map to the key containing that information, we lose both recall and precision. Some
of the scoring metrics are more forgiving with respect to precision losses due to
spurious templates (e.g. MATCHED/ONLY is forgiving while ALL TEMPLATES is not),
but all of the scoring metrics register recall losses associated with spurious templates.

So we see that it is not enough to craft a system that extracts information perfectly at
the sentence level. It is also critical that the information be grouped into the
response templates correctly with the right number of templates being generated.
Human encoders do not always agree on the right number of templates for some of the
more complicated documents, so it is understandable that the computer systems run
into template mapping problems as well.

6.1 Recall Limitations

The dictionary used by the official UMass/MUC-4 system contained 389 concept node

definitions. Of these, 172 (44%) were enabled’ to process TST3. On average, each
definition was enabled nearly 9 times for a total of 1515 concept node enablements
(~15 per text on average).

For TST3, CIRCUS extracted 943 strings to fill variable slots in enabled concept nodes.
Because of redundant concept node definitions, almost half of these string fills were
duplicates, leaving 520 unique string fills extracted by CIRCUS. According to our
analysis, 214 of these string fills were discarded during consolidation and 306 string
fills made it into a response template.

Of the 520 non-redundant string-fills, 38% were correctly incorporated into a
response template where they matched the string or strings listed in a key template. A
full 34% were correctly discarded or merged by consolidation (and therefore did not
make it into a response template). The sum of these instances accounts for 72% of the
total string fills - all handled correctly by consolidation. Of the remaining string fills,
21% appeared in response templates as spurious slot fills, and 7% were incorrectly
discarded. Of the 237 string fills that did legitimately correspond to slot fills in key
templates, consolidation correctly incorporated 199 (84%) into response templates.
Even so, our overall recall score was only 46%. Where are the other string fills?

Our analysis shows that CIRCUS generated 225 good (full match) string fills and 12
partially good (partial match) string fills. According to the score report, there were
416 possible string fills for TST3. That tells us CIRCUS is producing only 55% of the

7 An enabled concept node is one that produces a case frame instantiation. All output generated by
CIRCUS is based on enabled concept nodes.

11

possible string fills for TST3. This 55% hit rate effectively imposes a rough ceiling on
our overall recall, and suggests that significant gains in recall will require stronger
performance levels during sentence analysis.

6.2 Precision Limitations

When we examine the 306 string fills present in our TST3 response templates, we find
that 187 could be matched to slot fills in some key template and 12 could be partially
matched to a key template slot fill. If all of these string fills were in correct slots and
correct templates, our string fill precision would be 63%. But only 142 string fills
result in full matches with key template slots and 24 result in partial matches. Of the
107 strings that can’t be matched to any key template, we have found the following
breakdown of errors:

49 (46%) should have been discarded as irrelevant

16 (15%) were from mis-fired concept node definitions

15 (14%) were from parser errors

14 (13%) should have been merged with a more specific string

12 (11%) were from words not covered adequately by the dictionary
1 (1%) was from a source string altered by preprocessing

Of the 49 false hits associated with relevancy discriminations, our single greatest
precision error came from 30 false hits on military clashes8. After that, four general
problem areas share roughly equal responsibility for a significant number of errors:
(1) false hits associated with faulty concept node definitions, (2) CIRCUS sentence
analysis errors, (3) consolidation merging failures, and (4) inadequate dictionary
coverage.

6.3 Dictionary Coverage

Although inadequate dictionary coverage was identified as a source of visible
precision loss, we have been remarkably well-served by a relatively small dictionary
of 5436 lexical items augmented by 2102 proper names. An analysis of the TST3 lexicon
shows that 1008 words appearing in TST3 were not recognized by our system. Of these,
696 occurred only once. Of the remaining 312 words, the vast majority were proper
names. A visual inspection of the unrecognized word list suggested that our lexicon
was apparently adequate for the demands of TST3. However, this does not mean that all
of our associated definitions were above reproach.

Our official dictionary contains a total of 389 concept node definitions, but only 172 of
these were used during TST3. A frequency analysis of these 172 definitions showed
that 20% of the definitions generated 74% of the string fills. A total of 37 (22%)
concept node definitions failed to produce any string fills (perhaps these contain no
variable slots or maybe they were discarded during consolidation), while one concept
node definition produced 65 string fills, and three others produced over 50 string fills
(each). Figure 7 shows the complete frequency distribution.

Figure 7: Concept Node Frequency Distribution
Figure 7 is not available at this time.

8A military clash was defined to be fighting between two military organizations, and these incidents
were not designated as terrorist incidents according to our domain definition.

12

6.4 Comparing TST3 and TST4

Our F-scores suggest dramatic differences between TST3 and TST4, but a closer look
suggests that there is just one underlying factor responsible for these divergent score
summaries. Table II shows a more detailed perspective on the differences and
similarities between TST3 and TST4.

TST3 TST4

REC PRE OVG REC PRE OVG
MATCHED/MISSING 47 67 14 46 68 14
MATCHED/SPURIOUS 60 57 26 63 42 46
MATCHED/ONLY 60 67 14 63 68 14
ALL TEMPLATES 47 57 26 46 42 46
SET FILLS ONLY 50 71 13 49 73 14
STRING FILLS ONLY 37 57 20 42 64 17
F-SCORES 51.52 54.67 48.71 4391 4274 45.14

Table II: TST3 and TST4 score reports from the official test runs

Reviewing the scores in Table II, we see that there is a remarkable similarity across
most of the scores for TST3 and TST4. Our TST4 score was even better than our TST3
score under String Fills Only. The major differences appear in the precision and
overgeneration scores for Matched/Spurious and All Templates. These differences also
correspond to a striking difference in the number of spurious templates generated
for TST3 (16) and TST4 (34). Looking deeper into the problem, we determined that two
factors seemed to contribute to the large number of spurious templates in TST4.

First, many legitimate templates were deemed spurious because of mapping problems.
We can see some evidence of this in the results of a comparative test designed to assess
the impact of templates lost due to incorrect incident-type slot fills. In the
comparative test, we will use "ATTACK" as the slot fill for all incident-type slots. This
ensures that no template is deemed spurious due to a mapping restriction based on
incident types. Table III shows the resulting F scores from comparative test runs for
both TST3 and TST4, running the official UMass/MUC-4 system and generating batch
score reports throughout.

P&R 2P&R P&2R

TSTS3 - official system 46.47 49.64 43.68
TST3 - (mapping restriction

circumvented) 45.46 48.63 42.67

TST4 - official system 39.44 38.56 40.36
TST4 - (mapping restriction

circumvented) 40.98 40.38 41.58

Table III: The Effect of Spurious Templates Lost to Incorrect Incident-Types

13

In comparing the net effect of the "all attacks" heuristic, we find that there is no
advantage to any of the F-scores when all templates are typed as attacks in TST3.
Indeed, there is a uniform drop of one point across the board when "all attacks" is
turned on. On the other hand, the F scores for TST4 all benefit from the "all attacks"
heuristic. P&R goes up 1.54, 2P&R goes up 1.82, and P&2R goes up 1.22. This tells us that
we did not tend to lose otherwise legitimate templates because of their incident types
in TST3, whereas a significant number of legitimate templates were lost for this
reason in TST4. Precision is most dramatically affected by these errors, but P&R may
have lost at least 2 points because of this problem.

Second, a large number of spurious templates were created when military targets
were not recognized to be military in nature9. We have already seen how military
clashes were the single greatest source of spurious string fills in TST3. Even so, we
generated only 3 spurious templates due to false hits on military targets in TST3. In
TST4 we generated 12 spurious templates for the same reason. If we assume that each
spurious template contains at least 10 slot fills (a reasonable assumption when
template filtering is in place), it follows that 120 spurious slot fills are coming from
false hits on military targets in TST4. Removing 120 spurious slot fills from the TST4
score report, the precision score under All Templates goes from 42 to 48, and the P&R
score goes up about 3 points as a result.

6.5 Memory-Based Consolidation

In general, we do not expect CIRCUS to filter out spurious information. It seems more
appropriate for the sentence analyzer to pick up all events describing terrorist-
related events, and then let a subsequent processor apply any domain-specific filters
designed to recognize illegitimate targets. This separation of functionality allows
CIRCUS to work with reasonably generic concept node definitions (albeit a set of
concept node definitions that are determined by the domain). In our MUC-3 and MUC-4
systems, a consolidation module was used to manage intersentential phenomena such
as pronoun resolution, discourse analysis, and additional filtering required by the
domain definition. More generally, consolidation refers to the problem of mapping CN
instantiations produced by CIRCUS into event descriptions appropriate for template
instantiations. Since information pertaining to a single event can be distributed
across multiple sentences, problems associated with consolidation are challenging,
especially when a text describes multiple events. It is necessary to know when
different noun phrases point to the same referent and when the topic shifts from one
event to another.

The UMass/MUC-3 system used a rule based consolidation module which was largely
dominated by rules designed to merge appropriate structures. Because the rule base
was large (168 rules), it was difficult to pinpoint weak spots in the rule base and it
became increasingly difficult to make reliable adjustments as needed. Our
dissatisfaction with the UMass/MUC-3 approach prompted us to design a new
consolidation module for MUC-4.

The UMass/MUC-4 consolidation module is "memory-based" in the sense that it
assumes a specific memory organization strategy, and all processing is motivated by a
small number of memory manipulations. The basic structure of memory-based

9According to our domain guidelines, an attack on a military target does not describe a terrorist
incident.

14

consolidation (MBC) is a simple stack of incident structures, along with two associated
stacks that track human targets and physical targets. At the end of each consolidation
run, the number of incident structures on the incident stack usually corresponds to
the number of templates we will instantiate, with each incident structure containing
all the information needed to fill at least one template.

The incident structure serves as the basic data type inside MBC as well as the data type
that is output from MBC. An incident structure is a frame consisting of slots for a date,
location, perpetrators, and subevents. Each subevent consists of a specific incident
type (murder, bombing, robbery, etc.) along with victims, physical targets,
instruments, and effects. Although multiple subevents are permitted in an incident-
structure to handle combined events like an arson/robbery combination, most
incident structures contain only one subevent. When a new incident-structure is
generated, it will either be merged with an existing incident structure already on the
incident stack, or it will be added to the incident stack as a separate incident. When
target templates are eventually generated from incident structures on the incident
stack, each subevent within an incident structure will spawn its own template
instantiation.

In comparing MBC with the rule-based consolidation module in UMass/MUC-3, we find
that MBC tends to generate fewer spurious templates without sacrificing significant
recall. However, we have seen test sets where MBC does lag behind in recall. In
general, the two modules seem quite comparable in terms of overall performance,
although MBC is easier to understand, maintain, and scale up. Most of the merging
rules used by rule-based consolidation were incorporated into MBC, so it makes sense
that the two modules exhibit similar behavior. Our decision to run MBC for MUC-4 was
largely motivated by use of the All Templates metric as the official scoring metric for
MUC-4. Because All Templates is maximally sensitive to all types of precision loss, it is
generally advantageous to minimize spurious templates for this metric. MBC seemed
better at eliminating spurious templates, so we decided to risk a possible loss of some
recall for the sake of maximizing our precision.

7. But How Well Does It Work?

To balance a strictly quantitative profile of our information extraction capabilities, it
is useful to examine a concrete example in some detail. Time spent on a concrete
example can shed light on a variety of issues that might go otherwise unnoticed in a
presentation that is restricted to scatter plots and score reports. Indeed, one of the
most useful aspects of the MUC-3 and MUC-4 meetings were the “system
walkthroughs.” Each site was asked to present an analysis of their system operating
on a specific test document, with attention directed to a set of particular questions and
specific problems. Because each site was required to discuss the same text,
comparisons across systems emerged very naturally without hard analysis. The
system walkthroughs also painted a more intuitive picture of system capabilities and
weaknesses than could be gathered from quantitative analyses. It was especially
striking at MUC-4 to see that certain similarities were shared by a number of systems
that posted strong performance levels.

To convey this more intuitive sense of system capabilities, we will reproduce our
system walkthrough from MUC-4 here [Lehnert et al 1992b]. In this walkthrough, we
trace the processing of a sample text that contains two separate bombing incidents. In
general, CIRCUS generates multiple CN instantiations in response to each sentence,
while memory-based consolidation (MBC) extracts information from the CNs and

15

organizes it within incident structures. CIRCUS and MBC work in a serial fashion:
CIRCUS analyzes the entire text first, and then MBC works on the resulting concept
node instantiations. But for the sake of this presentation, we will examine the effects
of CIRCUS and MBC working together on a sentence-by-sentence basis.

Because our CN definitions extract information on the basis of phrase fragments, we
will underline those portions of the input sentences that are important to relevant
CNs. Any remaining segments of the input sentences that are not underlined are
effectively ignored during semantic processing by CIRCUS. We will also show the
preprocessed version of each input sentence, to indicate which items have been
recognized by the phrasal lexicon (these will be catenated), and other minor

transformations to the original source text. Abbreviations preceded by “>” represent
punctuation marks. For example, >CO is a comma.

The first job of MBC is to partition multiple CNs into event structures which are then
restructured into incident structures. As a rule, all CNs generated from a single
sentence tend to fall into the same partition, so we will omit any detailed discussion of
this preliminary conversion. But it is important to note that essential merging
operations can take place during the creation of initial incident structures. For
example, S1 illustrates how an accused perpetrator is linked to a murder because their
associated CNs fall into a single partition:

S1: (SALVADORAN PRESIDENT-ELECT ALFREDO CRISTIANI CONDEMNED THE TERRORIST KILLING OF ATTORNEY
GENERAL ROBERTO GARCIA ALVARADO AND ACCUSED THE FARABUNDO MARTI NATIONAL LIBERATION FRONT
(FMLN) OF THE CRIME >PE)

CIRCUS triggers a murder CN from "KILLING" which picks up a victim = "ATTORNEY
GENERAL ROBERTO GARCIA ALVARADO." The subject of the sentence has been
recognized as such but does not enter into the murder CN. When CIRCUS encounters
the verb “ACCUSED”, a clause boundary is recognized. This allows CIRCUS to reset
syntactic buffers and pick up "ACCUSED" as a new verb while retaining the previous
subject buffer. "ACCUSED" triggers a perpetrator CN with confidence =
SUSPECTED_OR_ACCUSED, accuser = "SALVADORAN PRESIDENT-ELECT ALFREDO
CRISTIANI", and perpetrator = FARABUNDO_MARTI_NATIONAL_LIBERATION_FRONT.
Note that the FMLN is recognized as a terrorist organization, thereby satisfying a soft
constraint in the perpetrator CN. "ACCUSED" tells us to assume a less than factual
confidence level within the perpetrator CN, but CIRCUS does not connect the
perpetrator CN with any event description. In particular, no attempt is made by
CIRCUS to resolve a referent for "the crime." The two resulting CN instantiations look
like:

TYPE = MURDER
VICTIM = WS-GOVT-OFFICIAL,...noun group = (ATTORNEY GENERAL ROBERTO GARCIA ALVARADO)

TYPE = PERPETRATOR
CONFIDENCE = SUSPECTED_OR_ACCUSED_BY_AUTHORITIES
ACCUSER = WS-GOVT-OFFICIAL
noun group = (PRESIDENT-ELECT ALFREDO CRISTIANTI)
predicates = (SALVADORAN)
PERPETRATOR = WS-ORGANIZATION,...
noun group= (FARABUNDO_MARTI_NATIONAL
_LIBERATION_FRONT)

16

MBC’s preprocessing and partitioning merge these two CNs into a single event
structure before any high-level memory integration is attempted. Incident structures
are designed to collapse multiple events (subevents) associated with a single
perpetrator into a single structure. The incident structure for S1 looks like:

INCIDENT
DATE = NIL
LOCATION = NIL
PERPS = (#S(PERPETRATOR
ID NIL
ORG (FARABUNDO_MARTI_NATIONAL_LIBERATION_FRONT)
WORD-SENSES (WS-TERRORIST WS-ORGANIZATION)
CONFIDENCE (SUSPECTED_OR_ACCUSED_BY_AUTHORITIES)
NEW-INFO NIL
SENTENCE 1))
NEW = NIL
PLURAL = NIL
DISCOURSE-MODE = NIL
SUBEVENT: NIL
TARGETS: NIL EFFECTS: NIL INSTRUMENT: NIL
VICTIMS: (#s(VICTIM
ID (ROBERTO GARCIA ALVARADO)
TITLE (ATTORNEY GENERAL)
NATIONALITY NIL
NUM1
TYPE (WS-GOVT-OFFICIAL WS-LEGAL-OR-JUDICIAL
WS-PROPER-NAME)
EFFECTS (DEATH)
SENTENCE 1))

Because MBC has no incident structures on its incident stack, this new incident
structure is added to the stack, and the victim description is added to the victim stack.

S2: (we omit this sentence from the discussion - no alterations to memory are made)

S3: (GARCIA ALVARADO >CO &&56 >CO WAS KILLED WHEN A BOMB PLACED BY URBAN GUERRILLAS ON HIS
VEHICLE EXPLODED AS IT CAME TO A HALT AT AN INTERSECTION IN DOWNTOWN SAN_SALVADOR >PE)

CIRCUS generates 5 CNs in response to this sentence. A simple CN describing a weapon
is generated by "BOMB." More complicated CNs are triggered by "KILLED," "PLACED,"
and "EXPLODED."

The trigger "KILLED" creates a murder CN with victim = "GARCIA ALVARADO."

The trigger "PLACED" creates a location CN with instrument = "BOMB," and actor =
"URBAN GUERRILLAS." This same CN also looks for a physical target inside a
prepositional phrase, but it misses “ON HIS VEHICLE” because “on” is not one of the
prepositions that it predicts. If the sentence had said “outside”, “inside”, “by”, “near”,
“in”, “under”, “opposite”, “across_from”, or “in_front_of”, instead of “on”, we would
have picked up this physical target. The omission of “on” was a simple oversight in an
otherwise legitimate CN definition. This particular CN is specifically predicting a
bomb since bombs are frequently the object of the verb "to place" in this domain.

The trigger "EXPLODED" creates a bombing CN with instrument = "A BOMB."

17

Note that we miss the location San Salvador in S3. Although we have a bottom-up
mechanism designed to find dates and locations, it doesn’t always work. All 5 CNs are
placed in a single partition which generates a new incident structure containing a
single subevent:

SUBEVENT: BOMBING

TARGETS: NIL EFFECTS: NIL INSTRUMENT: (#S(INSTRUMENT
VICTIMS: (#S(VICTIM ID (BOMB)
ID (GARCIA ALVARADO) TYPE WS-BOMB))
TITLE NIL
NATIONALITY NIL
NUM1

TYPE (WS-GOVT-OFFICIAL WS-LEGAL-OR-JUDICIAL
WS-PROPER-NAME)

EFFECTS (DEATH)

SENTENCE 3))

When MBC receives this new incident structure, it runs a memory integration test for
compatible target/victim descriptions, and determines that this new subevent is
compatible with the incident structure already in memory. MBC therefore merges the
two incidents, and memory acquires the fact that Alvarado was killed by a bomb.

S4-7: (we omit these sentences from the discussion - no alterations to memory are made)
S8: (VICE PRESIDENT-ELECT FRANCISCO MERINO SAID THAT WHEN THE ATTORNEY RGENERALQ@S CAR STOPPED

AT A LIGHT ON A STREET IN DOWNTOWN SAN SALVADOR >CO AN INDIVIDUAL PIACED A BOMB ON THE ROOF OF
THE ARMORED VEHICLE >PE)

CIRCUS generates two CNs here. One fairly complicated CN is triggered by "PLACED."
This CN picks up not just the bomb as a weapon, but also the individual as the
responsible party, and the vehicle as a target. The second CN describes the bomb as a
weapon and its link to the targeted vehicle (as before). These two CNs are largely
redundant, and they are merged into a single incident structure because they share
the same partition. This incident structure contains a perpetrator id = "AN
INDIVIDUAL" along with the following subevent:

SUBEVENT: BOMBING

TARGETS: #S(PHYS-OBJ VICTIMS: NIL
ID (ARMORED VEHICLE) EFFECTS: NIL
NUM1 INSTRUMENT: (#S(INSTRUMENT
TYPE (WS-TRANSPORT-VEHICLE) ID (BOMB)
EFFECTS NIL
TYPE WS-BOMB))
SENTENCE 8))

MBC checks this incident structure against the incident structure already in memory
and determines that they should be merged, thereby picking up a physical target for
the first time. Had we picked up this physical target from S3 as well, the target
integration test would have merged the two vehicle descriptions at this point as well.
Note that MBC merges the description of the perpetrator as “an individual” with the
previously encountered descriptor “urban guerrillas” because the earlier description
is recognized to be more specific.

S9-10: (we omit these sentences from the discussion - no alterations to memory are made)

18

S11: (GUERRILLAS ATTACKED QMERINO@S HOME IN SAN SALVADOR ON APR 14 89 >CO &&5 DAYS AGO >CO WITH
EXPLOSIVES >PE)

CIRCUS generates 7 highly redundant CNs in response to S11. The most comprehensive
CN instantiates an attack with actor = "GUERRILLAS," target = "MERINO'S HOME," and
instrument = "EXPLOSIVES." This same CN also picks up the location (San Salvador) and
date (April 14) by the bottom-up attachment mechanism. Locations and dates are
normally not predicted by CN definitions, but they can be inserted into available CNs
via bottom-up attachment. All of this information is incorporated into a single
incident structure containing a bombing subevent (an attack using explosives is
understood to be a bombing). The resulting incident structure is then passed to the
memory integration portion of MBC.

Just as before, MBC checks to see if the new incident can be merged into the lone
incident structure currently stored in memory. But this time the new structure fails to
match the existing structure because of incompatible targets. MBC cannot merge a
home with a vehicle. When MBC fails to merge the new bombing incident with the old
bombing incident, it moves down the target stack to see if there is another incident
structure that might merge, but there are no other physical targets in memory. MBC
adds the new incident to the top of the incident stack, and memory now contains two
bombing incidents.

S12: (THERE WERE &&7 CHILDREN >CO INCLUDING &&4 OF THE VICE @PRESIDENT@S CHILDREN >CO IN THE
HOME AT THE TIME >PE)

CIRCUS produces no output for this sentence because no CN triggers are encountered.
We sometimes miss information in sentences where the only verb is a form of "to be."

S13: (A_15-YEAR-OLD NIECE OF @MERINO@S WAS INJURED >PE)

CIRCUS generates an injury CN with victim = "A 15-YEAR-OLD NIECE." This results in a
subevent of unknown type with a victim id = "A 15-YEAR-OLD NIECE." When MBC
receives this incident, it examines the first incident on the top of its stack to see if a
merge is possible. Since no incompatible victims are found in memory for this
incident (the latest bombing incident specifies no victims), a merging occurs.

S14-S17 (we omit these sentences from our discussion - no alterations are made to memory.)
S18: (RICARDO VALDIVIESO >CO PRESIDENT OF THE LEGISLATIVE ASSEMBLY AND AN ARENA LEADER >CO

SAID THE FMLN AND ITS FRONT GROUPS ARE RESPONSIBLE FOR THE "IRRATIONAL VIOLENCE THAT KILLED
ATTORNEY GENERAL GARCIA >DQ >PE)

CIRCUS produces a murder CN with victim = "Attorney General Garcia" and actor =
"irrational violence." This CN has a soft constraint on the actor slot which specifies a
human or organization, but the CN survives the CN filter because its other variable
slot has a filler that does meet the required soft constraints (the filter errs on the side
of spurious information if one slot looks good and the other slot looks bad). MBC is
careful to check available soft constraints when it integrates information into its
preliminary incident structures. Any slot fill that violates a soft constraint is
discarded at that time.

When MBC attempts to integrate this incident into memory, it locates a compatible

victim in the victim stack, and merges the new incident structure with the existing
structure that describes Garcia as a victim. Because we have now merged new

19

information into an incident that was not at the top of the incident stack, we have to
reorder the incident stack by moving the most recently referenced incident to the top
of the stack. This effectively identifies the first incident as the current topic once
again. Ideally, this would set us up to correctly integrate information contained later
in S21 and S22 where new information is presented about the vehicle bombing, but
CIRCUS fails to pick up the additional human targets from those sentences, so the topic
shift that we’ve successfully recognized at S18 goes unrewarded.

When MBC completes its analysis, the two bombing incident structures are converted
into two template instantiations, along with a third threat incident picked up from
additional sentences near the end of the text. In order to instantiate the final
templates, we rely on semantic features in our dictionary to recognize a home as a
civilian residence and an armored vehicle as a transport vehicle.

We did fairly well on the first template (see Figure 8). We missed San Salvador as the
location within El Salvador, we said the vehicle was destroyed instead of damaged, and
we missed 3 human targets (the driver who was not hurt, and the 2 bodyguards, one of
whom was injured). All the other slots were correctly filled. On the second template,
we fail in three places. We have no perpetrator organization, we miss the physical
target type for Merino’s home (it should have been GOVERNMENT OFFICE OR
RESIDENCE), and we are missing the 7 children that were human targets (this is one of
the few texts where a hum-tgt-total-num slot should receive a value).

0. MESSAGE: ID TST2-MUC4-0048

1. MESSAGE: TEMPLATE 1 ;correct

2. INCIDENT: DATE - 19 APR 89 ;correct

3. INCIDENT: LOCATION EL SALVADOR :partial

4. INCIDENT: TYPE BOMBING ;correct

5. INCIDENT: STAGE OF EXEC. ACCOMPLISHED ;correct

6. INCIDENT: INSTRUMENT ID “BOMB” ;correct

7. INCIDENT: INSTRUMENT TYPE BOMB: “BOMB” ;correct

8. PERP: INCIDENT CATEGORY TERRORIST ACT ;eorrect

9. PERP: INDIVIDUA “URBAN GUERRILLAS” ;correct

10: PERP: ORGANIZATION ID “FARABUNDO MARTI NATIONAL LIBERATION ;correct

FRONT”

11: PERP: ORG CONFIDENCE SUSPECTED OR ACCUSED BY AUTHORITIES: ;correct
“FARABUNDO MARTI NATIONAL
LIBERATION FRONT”

12: PHYS TGT: ID “ARMORED VEHICLE” ;correct

13: PHYS TGT: TYPE TRANSPORT VEHICLE: “ARMORED VEHICLE” ;correct

14: PHYS TGT: NUMBER 1: “ARMORED VEHICLE” ;correct

15: PHYS TGT: FOREIGN NATION - ;N/A

16. PHYS TGT: EFFECT DESTROYED: “ARMORED VEHICLE” ;partial

17: PHYS TGT: TOTAL NUMBER - ;N/A

18: HUM TGT: NAME “ROBERTO GARCIA ALVARADO” ;correct

19: HUM TGT: DESCRIPTION “ATTORNEY GENERAL”: “ROBERTO GARCIA ;correct/missing
ALVARADO”

20: HUM TGT: TYPE GOVERNMENT OFFICIAL: “ROBERTO GARCIA ;correct/missing
ALVARADO”

21: HUM TGT: NUMBER 1: “ROBERTO GARCIA ALVARADO” ;correct/missing

22. HUM TGT: FOREIGN NATION - ;N/A

23: HUM TGT: EFFECT DEATH: “ROBERTO GARCIA ALVARADO” ;correct/missing

24: HUM TGT: TOTAL NUMBER - ;N/A

Figure 8: Our response template for the first bombing incident

20

Overall, TST2-MUC4-0048 showed the UMass/MUC-4 system working fairly well and not
making any major errors. Most of our recall loss resulted from a failure to recognize
relevant information in S12 (the 7 children), S21 and S22 (the driver and 2
bodyguards). As we saw in this text, the system can recover from some failures in
sentence analysis when a text provides redundant descriptions (e.g. we missed the
physical target in S3, but picked it up correctly in S8). When memory-based
consolidation responds correctly to topic transitions, the output that CIRCUS generates
usually makes it into the correct places in the response templates. TST2-MUC4-0048
shows how MBC was able to correctly recognize two topic transitions: first from an old
incident to a new incident, and then back again to the earlier incident. Given that the
errors encountered for TST2-MUC4-0048 were relatively minor (one could even argue
that the third template was valid and should have been covered by an optional key
template), there is nothing here that illustrates the more serious problems that
impacted our TST3 and TST4 score reports.

Figure 9 shows score reports for the two templates that mapped to TST2-MUC4-0048
answer keys, along with the final score report for the entire message which
averages in the spurious template that we generated for the threat. This final score
report for the whole message illustrates how much negative impact spurious
templates have on precision if a system is generating one spurious template for every
two good templates. If we had generated a summary score report based on only two
templates instead of three, our All Templates precision would have been 94. With the
third template averaged in, our All Templates precision drops to 76.

In a domain that is characterized by complicated domain guidelines, with many grey
areas, hand-coded key templates cannot be trusted to embody encodings that are
necessarily superior to the output of a high performance extraction system. If this is
the case, it may be very difficult to attain 85% precision under All Templates. Optimal
precision levels may be closer to the 70-80% range. It has been estimated that the
upper limits on human performance are around 75% for recall and 85% for precision
[Sundheim 1992], but these estimates have not been substantiated by carefully
designed experiments. In any case, it is clear that any task confounded by complex
task specifications, limitations in the template format, and inherent ambiguities in
the source texts, is not going to lend itself to perfect recall and precision levels by
either humans or machines.

21

Vehicle Bombing Template

POS ACT COR PAR INC ACR TPA SPU MIS NON REC PRE OVG

inc-total 6 6 5 1 0 0 0 0 0 0 92 92 0
perp-total 4 4 4 0 0 0 0 0 0 0 100 100 O
phys-tgt-total 4 4 3 1 0 0 0 0 0 2 88 88 0
hum-tgt-total 14 5 5 0 0 0 0 0 9 2 36 100 0
TOTAL 28 19 17 2 0 0 0 0 9 4 64 95 0
Home Bombing Template
POS ACT COR PAR INC ACR IPA SPU MIS NON REC PRE OVG
inc-total 6 6 6 0 0 0 0 0 0 0 100 100 0
perp-total 4 2 2 0 0 0 0 0 2 0 50 100 0
phys-tgt-total 3 3 2 0 1 o0 o0 o0 o0 3 67 67 0
hum-tgt-total 11 4 4 0 0 0 0 0 7 2 36 100 0
TOTAL 24 15 14 0 1 0 0 0 9 5 58 93 0
Total Scores for TST2-MUC4-0048
POS ACT COR PAR INC ACR IPA SPU MISNON REC PREOVG

inc-total 12 16 11 1 0 0 0 4 0 2 96 72 25
perp-total 8 7 6 0 0 0 0 1 2 3 75 86 14
phys-tgt-total 7 7 5 1 1 o o o0 o0 11 178 178 0
hum-tgt-total 25 12 9 0 0 0 0 3 16 8 36 75 25
MATCHED/ 52 34 31 2 1 0 0 0 18 9 62 94 0

MISSING
MATCHED/ 52 42 31 2 1 0 0 8 18 24 62 76 19

SPURIOUS
MATCHED ONLY 52 34 31 2 1 0 0 0 18 9 62 9 0
ALL TEMPLATES 52 42 31 2 1 0 0 8 18 24 62 76 19
SET FILLS ONLY 23 16 14 1 1 0 0 0 7 5 63 91 0
STRING FILLS 15 10 10 0 0 0 0 0 5 1 67 100 0

ONLY

P&R 2P&R P&2R
68.29 72.72 64.37

Figure 9: Partial and Overall Scores for TST2-MUC4-0048

22

8. Conclusion

It has always been difficult to evaluate natural language processing technologies.
Disagreements over semantic representations and intermediate syntactic
representations divide the natural language processing community and act as
barriers to objective system evaluations. Additional differences over the divergent
goals of various language processing systems add to the confusion. One system might
focus on robust sentence analysis while another addresses the viability of a
psychological memory model or perhaps a linguistic model for anaphora resolution.
When there is no common ground on which to base an evaluation, we are forced to
compare apples and oranges.

Given this general state of the field, there is a an understandable attraction to any
natural language task that lends itself to quantitiative evaluation. Information
extraction tasks have emerged as unique in this regard, but it is important to
understand exactly why information extraction is playing this role when other
language processing tasks are not. There is really nothing special about information
extraction per se. The critical requirement for any quantitative analysis of a
language processing system is the availability of precise 1/0 data sets. Since it is
generally difficult to specify desirable /0O behavior for a machine translation system
or a text-to-text summarization system, these tasks do not have I/0 data sets that can
be readily used for system development and evaluation. Even so, information
extraction is not the only natural language task that can benefit from a corpus of I/0
pairings. Natural language database interfaces work just as well. In fact, major
research efforts with database interfaces have been grounded in quantitiative
performance evaluations in much the same way that work on information extraction

operates now. 10

So it seems that the MUC effort is not unique in its ability to exploit [/0O data as an
evaluation tool. But there is one other aspect of MUC that is unique: the MUC
evaluations have been conducted within an open conference. Any research lab in
the world can apply to participate in a MUC evaluation: MUC is open to all comers and
the MUC test results are openly published.

The open nature of the MUC evaluations and the public distribution of test results
endows the MUC evaluations with a sense of credibility and influence that is not
associated with performance evaluations restricted to a select group of contractors.
Since no one is excluded from the MUC evaluations, participation in MUC confers a
degree of legitimacy on those researchers who are willing to subject their claims to
public scrutiny. But the primary contribution of the MUC evalutions to the field of
natural language processing may be only indirectly connected to the evaluation
process itself. The most remarkable contribution of MUC to the field of natural
languge processing probably lies in the fact that a large number of different
research groups have all examined the same task in depth for some number of
months before meeting to discuss their achievements and failures. A common task
facilitates communication across disparate research groups that might otherwise be
inaccessible to one another. Theoretical differences, diverse educational

10 ARPA-sponsored researchers have been working on the ATIS speech understanding project since
1989. ATIS systems are tested on their ability to interpret speech input directed at an airlines
reservation system. The final test of an ATIS query system is the correctness of the responses
supplied by the underlying database.

23

backgrounds, and paradigmatic disparities are difficult gaps to bridge, but a
remarkable amount of common ground falls into place when everyone is trying to
build the same system.

One can argue that a lot of the work needed to build an effective information
extraction system is not of theoretical interest to computational linguists, Al
researchers, or anyone else associated with academic research. This is undeniably
true. Large complicated systems are not be uniformly elegant throughout. But the
process of cost effective system development is an intellectually challenging
problem in its own right, and a lot of the tedius work associated with building a large
system might be managed in an automated or semi-automated fashion. This aspect of
cost-effective software design should be embraced by the natural language
community as a legitimate research concern right alongside our more traditional
interests. Practical system development cannot drive theoretical research, but
practical concerns can stimulate theoretical work in directions that might otherwise
be ignored. If the natural language community persists in maintaining an overly
narrow definition of its proper responsibilities, we will never close the gap between
theory and practice in natural language processing.

In the period since our initial evaluation in MUC-3, the UMass NLP Lab has been able
to pursue a number of related research projects that address basic research issues
associated with CIRCUS and text extraction systems. We have demonstrated that case-
base reasoning and machine learning techniques can be successfully applied to the
disambiguation of relative pronouns [Cardie 1992a, 1992b, and 1992c]; experiments
have shown how CIRCUS can be used to support relevancy feedback algorithms for
text classification [Riloff and Lehnert 1992, Riloff 1993b]; experiments have been
conducted with a statistical database derived from the MUC-3 corpus [Fisher and Riloff
1992]; we are obtaining a better understanding of the issues associated with automated
dictionary construction [Riloff and Lehnert 1993]; and we have designed a portable
and memory-efficient part-of-speech tagger [Lehnert and McCarthy 1993].

Our research activities since 1991 suggest that performance evaluations can stimulate
basic research in compelling and beneficial ways. It is nevertheless important to
maintain a proper perspective on the limitations associated with these evaluations.
Score reports cannot tell us everything we might want to know about a particular
system. As we saw in our discussion of automated dictionary construction, there is a
distinction between viable technologies and practical technologies that cannot be
readily assessed by performance evaluations alone. It is also important to reach
beyond the numbers in a score report during system development in order to identify
the weakest components of a complex system. When multiple components contribute
to a complex behavior, there is no substitute for manual spot checks of system output.
Quantitative feedback can never supplant the need for qualitative assessments.

We realize that quantitative methods lend themselves to hard analysis and are
therefore methodologically clean. Hand-picked examples and casual observations
provide evidence that is more properly characterized as anecdotal. But we must never
underestimate the power of the right example or an incisive observation. Without a
complement of intelligent interpretation, performance evaluations are necessarily
limited in what they can tell us about individual systems, comparisons between
systems, and the overall state-of-the-art. As useful as performance evaluations are, we
must constantly remind ourselves that a meaningful assessment of a complex
technology requires a level of comprehension that cannot be captured on a scatter
plot.

24

References

Cardie, C. (1992a) “Corpus-Based Acquisition of Relative Pronoun Disambiguation
Heuristics,” Proceedings of the 30th Annual Conference of the Association of
Computational Linguisitcs. pp. 216-223.

Cardie, C. (1992b) “Learning to Disambiguate Relative Pronouns,” Proceedings of the
Tenth National Conference on Artificial Intelligence. pp. 38-43.

Cardie, C. (1992c) “Using Cognitive Biases to Guide Feature Set Selection” Proceedings,
Fourteenth Annual Conference of the Cognitive Science Society. pp. 743-748.

Cardie, C. and Lehnert, W. (1991) “A Cognitively Plausible Approach to Understanding
Complex Syntax,” Proceedings of the Ninth National Conference on Artificial
Intelligence. pp. 117-124.

Chinchor, N., Hirschman, L., and Lewis, D. (1993) "Evaluating Message Understanding
Systems: An Analysis of The Third Message Understanding Conference (MUC-3),"
Computational Linguistics . 19(3):409-448.

Fisher, D. and Riloff, E. (1992) “Applying Statistical Methods to Small Corpora:
Benefiting from a Limited Domain,” Probabilistic Approaches to Natural Language,
AAAI Fall Symposium. pp. 47-53.

Lehnert, W. and McCarthy, J. (1993) “A Compact p-o-s Tagger for Domain-Specific
Sentence Analysis”. (in preparation).

Lehnert, W. (1991) “Symbolic/Subsymbolic Sentence Analysis: Exploiting the Best of
Two Worlds” in]J. Pollack and J. Barnden, Eds., Advances in Connectionist and Neural
Computation Theory. Ablex Publishing. Norwood, New Jersey pp. 135-164

Lehnert, W., Cardie, C., Fisher, D., McCarthy,]J., Riloff, E., Soderland, S. (1992a)
“University of Massachusetts: MUC-4 Test Results and Analysis,” Proceedings of the
Fourth Message Understanding Conference. pp. 151-158.

Lehnert, W., Cardie, C., Fisher, D., McCarthy, J., Riloff, E. Soderland, S. (1992b)
“University of Massachusetts: Description of the CIRCUS System as Used for MUC-4,”
Proceedings of the Fourth Message Understanding Conference. pp. 282-288.

Lehnert, W., Cardie, C., Fisher, D., Riloff, E., Williams, R. (1991a) “University of
Massachusetts: MUC-3 Test Results and Analysis,” Proceedings of the Third Message
Understanding Conference. pp. 116-119.

Lehnert, W., Cardie, C., Fisher, D., Riloff, E., Williams, R. (1991b) “University of
Massachusetts: Description of the CIRCUS System as Used for MUC-3,” Proceedings of
the Third Message Understanding Conference. pp. 223-233.

Lehnert, W., Williams, R., Cardie, C, Riloff, E., and Fisher, D. (1991c) “The CIRCUS

System as Used in MUC-3,” Technical Report No. 91-59, Department of Computer and
Information Science, University of Massachusetts.

25

Lehnert, W.G. and Sundheim, B. (1991) “A Performance Evaluation of Text Analysis
Technologies,” Al Magazine. Fall 1991. pp. 81-94.

Riloff, E. (1993a) “Automatically Constructing a Dictionary for Information
Extraction Tasks,” Proceedings of the Eleventh Annual Conference on Artificial
Intelligence.. pp. 811-816.

Riloff, E. (1993b) "Using Cases to Represent Context for Text Classification". To appear
in Proceedings of the Second International Conference on Information and
Knowledge Management (CIKM-93).

Riloff, E. and Lehnert, W. (1993) “Automated Dictionary Construction for Information
Extraction from Text,” Proceedings of the Ninth IEEE Conference on Artificial
Intelligence for Applications. pp. 93-99.

Riloff, E. and Lehnert, W. (1992) “Classifying Texts Using Relevancy Signatures,”
Proceedings of the Tenth National Conference on Artificial Intelligence. pp. 329-334.

Sundheim, B. (1992) “Overview of the Fourth Message Understanding Evaluation and
Conference,” Proceedings of the Fourth Message Understanding Conference. pp. 3-21.

Sundheim, B. (1991) Proceedings of the Third Message Understanding Conference.
Morgan Kaufmann, San Mateo, CA.

26

