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Abstract

A tight lower-bounding measure for dynamic time warping

(DTW) distances for univariate time series was introduced

in [Keogh 2002] and a proof for its lower-bounding prop-

erty was presented. Here we extend these findings to allow

lower-bounding of DTW distances for multivariate time se-

ries.

1. Introduction

Dynamic Time Warping (DTW) is an algorithm that aligns

and compares two time series by calculating a matching

error for them. Generally, the error measures obtained

with DTW are more intuitive than other measures, e.g. Eu-

clidean distance. Furthermore, the compared time series

do not have to have equal lengths. For an introduction to

DTW we refer the reader to standard literature, such as

[Sankoff & Kruskal 1983].

One drawback of DTW is its high computational cost

(O(mn) for comparing sequences of length m and n). This

makes the comparison of a large number of time series very

expensive, if not impossible for a fixed amount of computa-

tional resources. The concept of lower-bounding measures

can reduce the cost of many tasks that rely on DTW.

For example, the search for a time series in a data base

that is most similar to a provided template can be found

more efficiently than using DTW to compare the template

to every series in the data base (i.e. sequential scan). A

lower-bounding measure is cheap and approximates, but un-

derestimates the actual cost determined by DTW. It can be

used to avoid comparing the template to a time series with

DTW when the lower-bounding estimate indicates that the

time series is a worse match than the current best match
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(see [Faloutsos 1999] or [Keogh 2002] for a more detailed

explanation).

E. Keogh presented a lower-bounding measure for com-

paring univariate time series, i.e. series where a scalar is

recorded at every sampling point. He showed that his lower-

bounding measure is tighter than previously proposed mea-

sures [Yi et al. 1998, Kim et al. 2001] for a great number of

data sets. We have extended his findings to multivariate time

series, which record a constant number of scalars per sam-

pling point. Here we present our extension and prove its

lower bounding property.

The presentation of the lower-bounding scheme closely

follows the notation of the original work [Keogh 2002]. We

refer the reader to that publication and to [Faloutsos 1999]

for an introduction to the idea of lower-bounding. Without

this theoretical background, the presentation in this work

will be difficult to follow.

2. Multivariate Time Series Extension

In [Keogh 2002] the time series

C = c1, c2, . . . , ci, . . . , cm and

Q = q1, q2, . . . , qj , . . . , qn

are univariate. That is, the elements of Q and C are scalar:

ci, qj ∈ R. In this work, Q and C are multivariate time

series: ci, qj ∈ Rl, where l is an integer constant ≥ 1.

As a notational convention, when referring to the p-th di-

mension of a time series element we use an extra subscript,

e.g. ci,p. For l = 1 the lower-bounding measure presented

here reduces to that in [Keogh 2002], which we refer to as

LB Keogh.

2.1. Local Distance Measure

In order to align time series, a distance measure d(·, ·),
which allows the similarity assessment of positions in two

time series, must be defined. We call this the local distance
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measure, as opposed to the global “distance” between the

two time series. LB Keogh uses

d(ci, qj) = (ci − qj)
2

for this distance. For comparing multivariate time series

components, we use

d(ci, qj) =
l

∑

p=1

(ci,p − qj,p)
2 (1)

in this work. Note that in this distance measure, which is the

square of the Euclidean distance, each dimension of ci and

qj contributes an equal amount to the total error. In practice,

the ranges of all dimensions of C and Q are normalized to

make them comparable.

Using the local distance measure, the DTW algorithm

finds a warping path

W = w1, w2, . . . , wk, . . . , wK , wk = (i, j)k,

which aligns corresponding locations (i.e. indices i and j)

in the two time series C and Q. The length K of all warping

paths W satisfies

max(m,n) ≤ K ≤ m + n − 1 (2)

The path W that DTW recovers is the one with minimum

accumulated cost, i.e.

DTW (Q,C) = minW
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, (3)

where d(wk) = d(ci, qj) (corresponding i and j at position

k in warping path). K is a function of W, since warping

paths can vary in length.

2.2. Lower-Bounding Measure

LB Keogh exploits the fact that most DTW applications use

global path constraints when comparing time series: i and

j in wk = (i, j) are constrained to j − r ≤ i ≤ j + r,

where r depends on the kind of path constraint that is used

(e.g. Sakoe-Chiba band [Sakoe & Chiba 1978] or Itakura

parallelogram [Itakura 1975]; see Figure 1).

Using this fact, two time series U and L (for upper and

lower) can be constructed, such that they define an envelope

that the time series Q must lie in, regardless of how much it

is skewed under all possible warping paths that are allowed

under the global path constraint. In the multivariate case,

the original definition

ui = max(qi−r : qi+r) (4)

li = min(qi−r : qi+r) (5)
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(b) Itakura parallelogram;

Figure 1: The two most popular global path constraints used

in DTW implementations. The index pairs (i, j)k are con-

strained to lie in the shaded regions of the cost matrices.

becomes

ui = (ui,1, ui,2, . . . , ui,l) (6)

li = (li,1, li,2, . . . , li,l) (7)

where

ui,p = max(qi−r,p : qi+r,p) (8)

li,p = min(qi−r,p : qi+r,p). (9)

This definition leads to an inequality which we will use in

the proof of the lower-bounding measure:

∀i ∀p : li,p ≤ qi,p ≤ ui,p.

Using the new definition of L and U , we can replace the

original lower-bounding function LB Keogh with the multi-

variate lower-bounding measure

LB MV (Q,C) = (10)

=

√

√

√

√

√

n
∑

i=1

l
∑

p=1







(ci,p − ui,p)
2 if ci,p > ui,p

(ci,p − li,p)
2 if ci,p < li,p

0 otherwise

(11)
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Figure 2: Contributions to lower-bounding distance mea-

sure in uni- and multivariate cases.

Figure 2 shows how distance contributions are counted in

the uni- and multivariate case of the lower-bounding mea-

sure.

2



2.3. Lower-Bounding Proof

Following the line of thought in E. Keogh’s work, we now

prove this

Proposition: For any two sequences Q and C of the same

length n, for any global constraint on the warping path of

the form j − r ≤ i ≤ j + r, the following inequality holds:

LB MV (Q,C) ≤ DTW (Q,C).

Proof: We need to prove

√

√

√

√

√

n
∑

i=1

l
∑

p=1







(ci,p − ui,p)
2 if ci,p > ui,p

(ci,p − li,p)
2 if ci,p < li,p

0 otherwise

≤

√

√

√

√

K
∑

k=1

d(wk),

where W = w1, w2, . . . , wk, . . . , wK is the minimum-cost

warping path with length K. Squaring both sides yields

n
∑

i=1

l
∑

p=1







(ci,p − ui,p)
2 if ci,p > ui,p

(ci,p − li,p)
2 if ci,p < li,p

0 otherwise

≤

K
∑

k=1

d(wk).

We can prove this inequality by showing that for every sum-

mation term on the left-hand side there exists an equal or

greater term on the right-hand side. Since the length K of

the warping path is greater than or equal to n (see equation

2), every term of the summation
∑n

i=1 . . . on the left-hand

side of the above equation can be matched with a greater or

equal term of the summation
∑K

k=1 . . . on the right-hand

side. Specifically, for a given index i on the left-hand side,

we pick k on the right-hand side, such that wk = (i, j) for

some j. An index k with this property is guaranteed to ex-

ist because of local continuity constraints. Terms wk on the

right-hand side are not matched more than once, since i is

different for every matched term on the left-hand side.

We have left to show

l
∑

p=1







(ci,p − ui,p)
2 if ci,p > ui,p

(ci,p − li,p)
2 if ci,p < li,p

0 otherwise

≤ d(wk).

Expanding the right-hand side yields

l
∑

p=1







(ci,p − ui,p)
2 if ci,p > ui,p

(ci,p − li,p)
2 if ci,p < li,p

0 otherwise

≤

l
∑

p=1

(ci,p − qj,p)
2,

which we can prove by showing that every summation term

on the left is less than or equal to the corresponding term on

the right. We have three cases:

Case ci,p > ui,p:

(ci,p − ui,p)
2 ≤ (ci,p − qj,p)

2 (12)

We can take the square root of both sides, because the terms

in parentheses are positive: the left-hand side is obvious,

because of the case (ci,p > ui,p) we are treating.

By definition, our global path constraint guarantees j −

r ≤ i ≤ j+r, from which we can deduce i−r ≤ j ≤ i+r.

Using the definition of ui,p = max(qi−r,p : qi+r,p), we get

qj,p ≤ ui,p. Since ui,p < ci,p (definition of case), ci,p−qj,p

is positive.

Hence, we get

ci,p − ui,p ≤ ci,p − qj,p (13)

−ui,p ≤ −qj,p (14)

qj,p ≤ ui,p (15)

which is true.

Case ci,p < li,p:

This proof is straightforward with an argument similar to

the above.

Case li,p ≤ ci,p ≤ ui,p:

Trivially we have

0 ≤ (ci,p − qj,p)
2,

where the right-hand side is obviously non-negative. �

Extension to Minkowski metrics: we would like to point

out that this lower-bounding approach is not limited to the

Euclidean metric, but can easily be extended to arbitrary

Minkowski (p-) metrics (modify equations 1, 3 and 11).

3. Conclusion

We have presented and proven an extension of E. Keoghs

tight lower-bounding measure to multivariate time series.

This measure can form the basis for DTW indexing ap-

proaches as shown in [Keogh 2002]. Furthermore, sequen-

tial scans of time series data bases can be sped up tremen-

dously, depending on the nature of the data collection.
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