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Abstract

This paper describes an algorithm that uses multi-scale

Gaussian differential features (MGDFs) for face recogni-

tion. Results on standard sets indicate at least 96% recog-

nition accuracy, and a comparable or better performance

with other well known techniques. The MGDF based tech-

nique is very general; its original application included

similarity retrieval in textures, trademarks, binary shapes

and heterogeneous gray-level collections.

1 Introduction

Face recognition technologies can significantly impact

authentication, monitoring and image indexing applica-

tions. This paper presents an algorithm to compute sim-

ilarity of faces as a whole. The task is to query a database

using the image of a face and then have the system ei-

ther ascertain its identity, or retrieve the top ✄ similar

matches. As such, the technique is general and has hith-

erto been used successfully in image retrieval tasks such

as finding similar scenes, trademarks, binary shapes and

textures [23, 24, 25]. The approach is based on the two hy-

potheses; first that visual appearance of a face plays an im-

portant role in judging similarity and second, multi-scale

differential features of the image brightness surface form

effective appearance features.

The first hypothesis is based on the observation that vi-

sual appearance is an important cue with which we judge

similarity. We readily recognize objects that share a visual

appearance as similar, and in the absence of other evidence,

are likely to reject those that do not. A precise definition of☎
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visual appearance is difficult. The physical and perceptu-

al phenomena that define appearance are not well known,

and even when there is agreement, such as the effect of

object (3D)shape, surface texture, illumination, albedo and

viewpoint, it is non-trivial to decompose an image along

these components. However, early recognition algorithm-

s [9, 16, 32] brought forward the notion that the similarity

between computational representations of imaged bright-

ness surfaces, in many cases, correlates with similarities in

visual appearance of objects. Therefore, it is not unreason-

able to develop appearance representations and similarity

measures to suit the semantics of the retrieval or recogni-

tion task.

In this paper, an appearance representation for face

recognition using distributions of local features of the im-

age brightness surface is constructed. Local features are

obtained by applying operators to the image that, equiva-

lently, can be thought of as tunable spatial-frequency filter-

s, statistical descriptors of the brightness surface, or ap-

proximations of the local shape of the image brightness

surface. Specifically, multi-scale differential features are

used [3, 5, 7, 11, 15, 23, 24, 25, 26, 21, 28, 29] and this

choice is motivated by arguments [3, 7] that the local struc-

ture of an image can be represented in a stable and ro-

bust manner by the outputs of a set of multi-scale Gaussian

derivative filters (MGDFs) applied to an image. In order to

deduce global similarity between two face images, multi-

scale differential features are composed into histograms

and correlated.

The first part of this paper begins with a brief review of

scale-space theory underlying MGDFs and ends with an al-

gorithm to deduce global similarity. In the second part, this

algorithm is applied to face recognition. Using the databas-

es and protocol for evaluation described by Sim et. al. [30],

this paper demonstrates that the algorithm presented here is

at least as effective when compared to several other meth-

ods.



1.1 Related Work

Face recognition has received significant attention and

it is beyond the scope of this paper to fully investigate

the available techniques. Instead we describe techniques

that are most relevant to our approach. Sim et al [30] use

a relatively simple technique of matching decimated im-

ages with extremely good results. Although our approach

is completely different we use their evaluation methodol-

ogy. Other techniques for face recognition have also been

developed using projection profiles [33], deformable sur-

faces [14], hidden Markov models (HMM) [27], and self-

organizing maps [10]. None of these techniques are related

to the ones presented here, but comparisons can be made

by reading the results presented here and those results pre-

sented by Lawrence and Sim [10, 30]. Results on the FER-

ET collection with other techniques may also be found in

Phillips [19].

From an appearance representation standpoint, princi-

pal component analysis (PCA) based techniques are more

relevant. PCA was pioneered by Kirby and Sirovich [9]

as a representation for faces which was also developed in-

to an effective face recognition system by Turk and Pent-

land [32], with generalizations to multiple views [16, 18],

illumination changes [16], and replicated on other object-

s [16]. Since the success of eigen decomposition depend-

s on the objects being correlated an attempt was made to

overcome this restriction by Swets et. al [31, 36]. They

extend the traditional PCA method to multiple classes of

objects using Fischer’s discriminant analysis [1]. The ap-

proach presented in this paper is different because Eigen

decompositions are not used to characterize appearance.

Further, the method presented here uses no learning and

does not require constant sized images. In fact, one of the

conclusions drawn from this paper is that a scale-space de-

composition (rather than an eigen one) performs equiva-

lently well. That is, an unbiased representation performs

as well (if not better) than the learned representation.

Appearance features can also be extracted in the fre-

quency domain and in this sense are commonly related to

texture features. In the context of image retrieval Ma et.

al. [12] use Gabor filters to retrieve images with similar

texture. Gabor jets [34] have also been used for face recog-

nition. We find that a comparison between Gaussian and

Gabor filters is instructive. Gabor filters are sine modu-

lated Gaussian functions, which can be tuned to respond

to a bandwidth around a certain center frequency. They

exhibit compactness in space and frequency, are optimal

in the sense of the uncertainty principle (time-bandwidth

product) and are complete. Gabor filters are not equivari-

ant with rotations, and separable implementations are ex-

pensive. In contrast, Gaussian derivatives exhibit the same

time-bandwidth property and although they have infinite

support, they can be safely truncated at around four stan-

dard deviations. While Gaussian derivatives have coupled

bandwidth and center frequency, in practice separate tun-

ing is not necessary. Rather, the derivatives provide a “nat-

ural” sampling of the frequency space, because they repre-

sent the orders of approximation in a Taylor series sense.

The significant advantage of using the Gaussian derivatives

is that, they are equivariant with rotations [4] eliminating

the need for explicitly oriented filters and also support the

formulation of rotational invariants. Gaussian derivatives

are separable and efficient implementations are possible.

There are several other interesting properties and the read-

er is referred to [6, 23] for a more basic review.

2 Computing Global Similarity
The steps involved in deducing similarity between a

query face image and a database image are as follows:

Database images are filtered a priori with Gaussian deriva-

tives, and then, at each pixel, the gradient orientation and

surface curvature is computed. A query image is filtered

the same way and multi-scale histograms of curvature and

orientation are correlated to measure similarity. In the au-

thentication task the identity of the best matching image in

the database is ascribed to the query and in the monitoring

task, the top ✄ are presented to the user. Below, the use

of differential features and the steps in the algorithm are

discussed.

2.1 Differential features:

The simplest differential feature is a vector of spatial

derivatives. For example, given an image ✆ , and some

point, ✝✟✞ the first two orders of spatial derivatives can be

used as a feature (vector). This vector approximates the

shape of the local intensity surface in the sense of a sec-

ond order Taylor approximation. Including higher orders

produces a more precise approximation. Derivatives cap-

ture useful statistical information about the image. The first

derivatives represent the gradient or ”edgeness” of the in-

tensity and the second derivatives can be used to represent

curvatures (bars, blobs and so on).

However it is important that derivatives be computed in

a stable manner. Derivatives will be stable if, instead of

using just finite differences, they are computed by filtering

an image with normalized Gaussian derivative filters (ac-

tually any ✠☛✡ function will do [3]). In two dimensions, a

Gaussian derivative is the derivative of the function

☞✍✌✏✎ ✞✒✑✔✓✖✕ ✗✘✚✙ ✑✜✛✣✢✥✤ ✝✟✦ ✤ ✛★✧✪✩✫✛✘ ✑✜✛
In the frequency domain, a Gaussian derivative filter is

a band-pass filter, as shown in Figure 1 (one-dimensional

case). Computing derivatives by filtering with a Gaussian

derivative at a certain scale, therefore, implies that only
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Figure 1: Gaussian derivative filters in the frequency do-

main.

a limited band of frequencies are being observed. Thus,

in order to describe the original image more completely,

a multi-scale representation is necessary. Sampling the

scale-space of the image becomes essential.

2.2 Gaussian scale-space:

The necessity of a multi-scale representation described

above can be concluded for any smooth band-limiting fil-

ter by using the commutativity of differentiation and con-

volution. The Gaussian happened to be a convenien-

t function; it has natural scale parameterization, smooth-

ness and self-similarity across scales. However, the Gaus-

sian is more than just convenient. There are compelling

theory and implementation related arguments for using

multi-scale Gaussian derivatives to form appearance fea-

tures. In particular, it has been shown by several au-

thors [3, 5, 11, 26, 35], that under certain general con-

straints, the (isotropic) Gaussian filter forms a unique op-

erator for representing an image across the space of scales.

Structures (such as edges) observed at a coarser scale can

be related to structures already present at a finer scale and

not as an artifact of the filter. In general, the Gaussian (lin-

ear) scale-space serves as an unbiased (without using any

other information) front end (pre-processor) for represent-

ing the image from which differential features may be com-

puted. It is beyond the scope of this document to engage

in a full discussion about the scale-space image represen-

tation and, instead, the reader is referred to the following

papers [3, 11, 26, 35, 23]. Other reasons for choosing the

Gaussian are presented in Section 1.1.

2.3 Curvature and Orientation:

Several differential features can be constructed from

derivatives and several representations and methods have

been developed [21, 28, 25, 29, 24, 23, 22] for recognition

and retrieval. The choice of these features depends on sev-

eral factors, primary (among these) is tolerance to rotation,

illumination, scale since variations in these affects appear-

ance. Here we argue for two particular features.

Since the task is to robustly characterize the 3-

dimensional intensity surface (X, Y, Intensity), local curva-

tures are appropriate because the surface is uniquely deter-

mined from them. In particular, two principal curvatures,

namely the isophote and flowline curves can be computed

at a point, and represent the curvatures of the iso-intensity

contours and the gradient integral curves. In fact, principal

curvatures are nothing more than the second order spatial

derivatives expressed in a coordinate frame (gauge [3]) de-

termined by the orientation of the local intensity gradient.

The principal curvatures of the intensity surface are invari-

ant to image plane rotations, monotonic intensity variations

and further, their ratios are, in practice, quite tolerant to s-

cale variations of the entire image. The isophote (N) and

flowline (T) curvatures are defined as [8, 3]:

✄ ✕ ✬✮✭✰✯ ✘ ✆✲✱✳✆✵✴✶✆✲✱✷✴✸✦✹✆ ✛✱ ✆✲✴✲✴✸✦✹✆ ✛✴ ✆✲✱✷✱✚✺ (1)✻ ✕ ✬✽✼ ✯ ✆ ✱✷✴ ✌ ✆ ✛✱ ✦✹✆ ✛✴ ✓ ✧ ✆ ✱ ✆ ✴ ✌ ✆ ✴✵✴ ✦✹✆ ✱✥✱ ✓ ✺ (2)

✬ ✕ ✌ ✆ ✛✱ ✧ ✆ ✛✴ ✓✿✾❁❀❂ (3)

✆✲✱✍✕❃✆✲✱ ✌ ✝❄✞✒✑✔✓ and ✆✲✴❅✕❃✆✵✴ ✌ ✝❄✞✒✑✔✓ are the first order par-

tial spatial derivatives of image I around point p, computed

using Gaussian derivative at scale ✑ . Similarly, ✆✲✱✷✱✣✞❆✆✲✱✥✴ ,

and ✆✵✴✲✴ are the corresponding second derivatives. The

isophote curvature N and flowline curvature T are then

combined into a ratio called the shape index, expressed as

follows [8, 2, 15]: ✠❇✕❉❈ ❊ ✎●❋ ✦■❍❏ ✼▲❑◆▼❖❑◆P❘◗❚❙✔❯◗❱✾❲❯❨❳ ✎ The index

value C is undefined when either N and T are both zero,

and is, therefore, not computed. This is interesting because

very flat portions of an image (constant or constant slope in

intensity) are eliminated. The shape index is in the range

[0,1]. Nastar [15] also uses the shape index for recognition

and retrieval. However, his approach uses curvatures com-

puted at a single scale. Clearly, as the experiments suggest

(see Section 3), this is not enough.

The second feature used is local orientation. Local ori-

entation is the direction of the local gradient. Orientation

is independent of curvature, is stable with respect to scale

and illumination changes. The orientation is simply de-

fined as ❩ ✕❬❑◆▼❖❑◆P ✘ ✌ ✆ ✴ ✞❆✆ ✱ ✓ Note that P is defined only at

those locations where C is and ignored elsewhere. As with

the shape index P is rescaled and shifted to lie between the

interval [0,1].

Feature Histograms: Histograms of the shape index

and orientation are used to represent the distributions of

features over an image. Histograms form a global rep-

resentation because they capture the distribution of lo-

cal features and they are the simplest ways of estimat-

ing a non parametric distribution. In this implementa-



tion, curvature and orientation are generated at several s-

cales and represented as a one dimensional record or vec-

tor. The representation of the image I is the vector ❭✣❪✖✕❅❫❴✍❵ ✌ ✑ ❍ ✓ ✎✷✎✵✎ ❴❛❵ ✌ ✑❝❜✣✓✿✞ ❴❡❞ ✌ ✑ ❍ ✓ ✎✵✎✷✎ ❴❡❞ ✌ ✑✣❜❝✓❁❢ .
❴✍❵

and
❴❡❞

are

the curvature and orientation histograms respectively. It

should be noted that [28] use histograms of various dif-

ferential features. However, the difference between the t-

wo approaches is that their method uses multi-dimensional

histograms of features that does not include curvature. Fur-

ther, their representations are computed at a single scale.

Multi-dimensional histograms tend to be very sparse, and

further, are computationally more expensive to match. We

believe that using one dimensional histograms at several s-

cales (and stringing them together) provides a sufficiently

rich representation of the image.

Figure 2: Examples of the FERET(first pair) and ORL(next

four pairs) sets.

Matching feature histograms: Two representations

are compared using normalized cross-covariance defined

as ❣ ❪●❤ ✕ ✐✟❥❧❦❄♠♥♣♦ ✐q❥●❦✟♠rs●s ✐ ❥❧❦❄♠♥ s●s●s●s ✐ ❥●❦✟♠r s●s Where ❭✍t✈✉❚✇❪ ✕■❭ ❪ ✦✽① ✢ ❑◆P ✌ ❭ ❪ ✓ .
There are other possible measures, such as the Kulback-

Leibler [1] and Mahalanobis [13] distances which could

be used. The query histogram vector ❭③② is compared with

each database histogram vector ❭ ❪ . The corresponding im-

ages are ranked by their score. We call this algorithm the

1D curvature/orientation or CO-1 algorithm.

3 Face Recognition

Two variations of the algorithm are compared for face

recognition. The first is CO-1, where histograms are built

over the entire image (CO-1). The second is PCO-1, where

the image is partitioned into three tiles roughly covering a

third of the image and histograms for each tile are gener-

ated separately and concatenated (PCO-1). Assuming the

images are roughly face segmented to begin with, the top

tile corresponds to the forehead region, the middle tile to

the mid-face and the bottom tile corresponding to the chin

region.

Datasets: The following three datasets are used for

evaluations. 1. ORL Set [17]: the ORL (Olivetti Re-

search Lab) collection is a publicly available collection of

400 faces. This collection contains 40 individuals. The

database contains small view, gesture, and intensity varia-

tion. See the second through fourth face pair of Figure 2.

2. FERET Set [19]: The FERET dataset is maintained by

NIST and the CDROM contains 3737 images. However,

our tests were repeated in exactly the same configuration

as Sim [30] and therefore we only used 275 images of 40

individuals. These images contain bust photographs with

varying bust coverage, and small facial gesture and image

illumination changes. See first face pair in Figure 2. 3.

UMASS TeaCrowd Set [20]: The UMass Tea Crowd set

consists of 119 images of faces extracted from a live video

feed of cameras monitoring a Tea Party. There are total of

15 people in this collection. These faces contain gesture, il-

lumination, and view variations, in addition to motion blur

and occlusion. See Figure 3.

Evaluation: The evaluation methodology follows the

one described by Sim et. al. [30]. During each trial a

database is randomly split into a training set and a test set.

The configurations of training set per trial uses either 5 ex-

emplars per person or the greatest number less than half

the number of faces available for that person, whichever is

smaller . The remaining faces for the person become the

test set. Each of these test set images becomes a query. A

query is matched with all of the training set and the identi-

ty of the best matching training set image is ascribed to the

query. Over a large (100) number of trials the proportion

of correctly identified people is reported as the recognition

rate. For example, in the ORL set a trial will consist of 200

training and test images each. Thus, over 100 trials 20,000

queries (test set) are matched with a random training/test

pick at every trial.

Examples: In Figure 2, queries and corresponding ex-

emplar images (selected during some trial) they match to

are shown. The first face pair is drawn from the FERET

set. Note that these images were not processed to localize

the face portion alone. The remaining four pairs in Figure 2

show results from the ORL set. Note that the second pair

in the second row in Figure 2 is a mismatch. The correct

identity is not recovered, but qualitatively both these faces

share a significant similarity in appearance.

In Figure 3, several examples from the TeaCrowd set

are shown from a retrieval perspective. Each ”row” of this

Figure contains six images, the first being the query and the



Figure 3: Examples of the Tea Crowd set from a retrieval point of view.

remainder being the images matched in rank order. Each

image is labeled by its match score to the query (1.0 is max-

imum). These examples show recognition from a retrieval

point of view. The queries include gesture variations, scale

variations, occlusions, motion blur and view variations.

Analysis: The performance of the algorithm is de-

picted in Table 1. On all three sets the performance is

very good and comparable to other algorithms, specifical-

ly, those based on Principal component analysis [32] and

CMUs [30] technique. The reader is referred to Sim’s pa-

per [30] for additional comparisons with other techniques

(they perform worse than CMUs technique). In Table 1,

column 2 indicates the evaluation parameters used. In al-

l methods 5 exemplars are used and when it is not pos-

sible to do so, only half the available are used. In our

technique nothing is done to the images in terms of in-

tensity stretching, warpings, face extraction or generating

synthetic images. In contrast in Sim’s technique based on

matching thumbnails, synthetic images are generated from

exemplars (rotated and slightly scaled versions) and these

become part of the training set. A query’s score against a

database individual is the mean over the scores that it gets

for all training samples of the individual. We pick the max-

imum. The implementation of Eigenfaces reported in the

same paper also uses synthetic images from the exemplars,

40 Eigen values and the L2 norm to compare the query vec-

tor. In this case, like our method, the identity of the best

matching image is ascribed to the query. Note that the re-

sults reported here for Eigenfaces are the best of the results

reported by Sim et. al. [30](also see Lawrence’s compar-

isons [10]).

The algorithm presented here has two principal param-

eters; scales and the bin sizes of the histograms. The graph

in Figure 4, depicts the performance of the system with

variation in scale for the ORL set using the CO-1 algorith-

m (other sets have similar results). For this graph the num-

ber of curvature and orientation bins were each fixed at 40.

The X-axis of this graph is a byte-encoded number that in-

dicates the scales used. The LSB means a scale value of 1,

the next least significant bit corresponds to a scale value of④ ✘
and so on through steps of

④ ✘
, to an MSB value rep-

resenting ⑤ ④ ✘
. The valid numbers for this byte are 1-255,



Technique Evaluation Parameters ORL FERET TeaCrowd

UMASS PCO1 5 samples, 0 synthetic 98% 96% 96%

CMU L0, 5 samples,10 synth 97% 96% .IP.

UMASS CO1 5 samples, 0 synth 95% 90% 90%

Eigen-face 40 vector, L2, 5 samples,10 synth 95% 90% .IP.

Table 1: The performance of MGDF methods with PCA and CMUs techniques

Figure 4: The performance on the ORL set. For this graph

40 bins were used in the histogram.

1 implying the use of only scale 1, 255 implying the use

of all 8 scales. The Y-axis of this graph depicts recogni-

tion rate over 100 trials. Thus the recognition performance

with respect to scales is exhaustively plotted. There are

three plots in Figure 4. The lower one corresponding to

the use of 1 exemplar, the middle one corresponding to 3

exemplars, and the top one corresponding to 5 exemplars.

Several conclusions can be drawn from this figure.

First, the performance improves categorically with in-

crease in exemplars, and this is true for all variations of the

algorithms presented here. Second, a single scale, which is

characterized by large dips in the plot is indicative of poor

performance, and shows the necessity for multiple scales.

Third, all eight scales are not necessary. It can be observed

for example that a packed set of scales of smaller extent

(such as bit code 96) give approximately the same perfor-

mance as using all scales (such as bit code 255). Finally, a

dense packing of scales is not essential either. A sequence

of scales that is densely packed, such as
✎✵✎✵✎ ✗✳✗⑥✗✳✗ ✎✷✎✵✎ , caus-

es only marginal changes in accuracy in relation to one

that is coarser, such as
✎✵✎✵✎ ✗ ❊ ✗ ❊ ✎✵✎✷✎✿✎ In most cases we find

that an octave spacing is sufficient, and two octave separa-

tion results in less than ✗✶⑦ drop in recognition accuracy.

This suggests that the multi-scale representation can have

a somewhat large sample width across scales. This is good

news because it implies that significant ”compression” in

the representation is possible. The shape of this graph re-

peats itself for various bin combinations.

Figure 5: Recognition Performance with variation in Bin

sizes for CO-1 on ORL set. All scales were used.

Figure 6: Recognition Performance with variation in Bin

sizes for PCO-1 on ORL set. All scales are used.

The second factor that was varied is the bin size. For

the experiments conducted all the scales were used with

5 exemplars and the bin sizes were systematically varied

from 10 to 100 for curvature and orientation independent-

ly, therefore giving a matrix of 100 combinations. Surpris-

ingly, the recognition rates held very stable: PCO-1 varied

between 97.2% and 98.2% (see Figure 6; and CO-1 (see

Figure 5) between 94.1% and 95.2%. The variance for any

given observation over the trials was less than 1%. Final-

ly, in terms of computation, it takes a few milli-seconds

to recognize approximately 200 images from the database,

and in contrast it takes about 0.4 seconds on a ⑧⑥❊⑥❊⑥⑨ ❴✰⑩



Figure 7: Face localization and rectification for recognition in a kiosk.

Pentium II processor with sufficient memory.

4 Summary and Conclusions
The results presented in this paper are very exciting for

the following reasons. First, the curvature and orientation

based method performs well; especially because there is

no learning involved with respect to any of the parameters.

Arguably, a representation based on the differential decom-

position of the image at multiple scales is giving compara-

ble performance to one based on learning a compact repre-

sentation from the data, namely PCA. Thus, we find these

features to be good from an appearance similarity point of

view. Second, while scale is important, it seems in faces,

the change of the feature (blur) with scale is rather slow.

This is why dense sampling of scales is not necessary. This

is good for a multi-scale representation. Third, the appli-

cation of a ”spatial” partition dramatically improves the re-

sults, suggesting that explicit representation of space may

be necessary and might be the principal reason why the

recognition rates improve. In conclusion, we believe that

the representation presented here is turning out to be quite

versatile.

We are extending this work towards constructing a kiosk

that can be used for authentication using inexpensive cam-

eras (QuickCams). Our present approach is to pre-process

acquired images by localizing faces and detecting facial

features. Once detected facial features can be used to es-

tablish a coordinate basis from which partitions can be

computed for PCO-1. One way to do this is to simply

rectify the face for orientation and scale. Further, facial

feature detection provides coarse inference of facial view

and thus, matching can be speeded up to nearby views in

the database. For example, in Figure 7 three images taken

at the kiosk are shown. The first is the full image taken by

the camera, the second the detected face with an overlay of

facial features, and boxes around the (final) localization of

eyes. The third is the orientation rectified view of the face

that simultaneously uses the orientation histogram and the

inter-eye angle to rectify the face. While complete exper-

imentation is forthcoming, in the context of this paper, it

may be noted that facial features are localized using multi-

scale differential features with natural scale selection.
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