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Abstract

Abstract: Building the digital libraries of the future

will require a number of different component technolo-

gies including the ability to retrieve multi-media infor-

mation. This paper will describe progress in this area at

the Center for Intelligent Information Retrieval (CIIR).

This includes:

1. Multi-modal retrieval using appearance based im-

age retrieval and text retrieval. This work has been

applied to a large database of trademarks con-

taining image and text data from the US Patent

and Trademark Office. 68,000 trademarks may

be searched using either image retrieval or image

and text retrieval while 615,000 trademarks may be

searched using text retrieval.

2. Indexing handwritten manuscripts. Recently we

have developed a scale-space technique for word

segmentation in handwritten manuscripts.

3. Other projects including color based image re-

trieval and the extraction of text from images.

1 Introduction

The Center for Intelligent Information Retrieval (CIIR)

has a number of projects to index and retrieve multi-

media information. We will describe some of the

progress made in these areas since the last SDIUT meet-

ing [20]. The projects include:

1. Image Retrieval: Work on indexing images using

their content continues using both appearance based✁
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and color based retrieval. In previous work on ap-

pearance based retrieval [20, 26] we focussed on

part image retrieval - whether a part of a query im-

age is similar to a part of a database image. Recent

work at the Center has focussed on “whole image

retrieval’ ’ i.e. whether two images are similar in

their entirety. In this work [27], two images are con-

sidered similar if their distributions of local curva-

ture and phase at multiple scales are similar.

The Center is also doing work on retrieving im-

ages, using color, from homogeneous databases.

[6]. Color retrieval ssytems are inappropriate for

heterogeneous databases. For example, a query im-

age of a red flower will retrieve not only red flow-

ers but also other red objects like cars and dresses.

Most users do not find this meaningful. If, however,

the database consisted only of flowers then a query

on the color red would only retrieve red flowers and

this is more meaningful to most users. This work

has been applied to indexing a small database of

flower patents. Another salient feature of this work

is that using domain constraints, we are able to seg-

ment flowers from the background and index only

the color of the flower rather than all the colors of

the entire image.

2. Multi-modal retrieval: A multi-modal retrieval

combining appearance based image retrieval and

text retrieval is being applied to retrieve trademark

images from a database provided by the US Patent

and Trademark Office. 68000 trademarks may be

searched using either image retrieval or image and

text retrieval while 615,000 trademarks may be

searched using text retrieval. A multi-modal pro-

vides many constraints so that the image search may

be constrained. In addition, our multi-modal system

solves the problem of how a query image is to be ob-

tained. An initial search is done using text and the

result is a list of trademarks with their associated

text and images which may then be used for image

or text retrieval.



3. Finding Text in Images: The conversion of scanned

documents into ASCII so that they can be in-

dexed using INQUERY (CIIR’s text retrieval en-

gine). Current Optical Character Recognition Tech-

nology (OCR) can convert scanned text to ASCII

but is limited to good clean machine printed fonts

against clean backgrounds. Handwritten text, text

printed against shaded or textured backgrounds and

text embedded in images cannot be recognized well

(if it can be recognized at all) with existing OCR

technology. Many financial documents, for exam-

ple, print text against shaded backgrounds to pre-

vent copying.

The Center has developed techniques to detect text

in images. The detected text is then cleaned up

and binarized and run through a commercial OCR.

Such techniques can be applied to zoning text found

against general backgrounds as well as for indexing

and retrieving images using the associated text.

The Center is continuing work in this area. Most

of this work has involved speeding up some of our

techniques in this area

4. Word Spotting: The indexing of hand-written and

poorly printed documents using image matching

techniques. Libraries hold vast collections of orig-

inal handwritten manuscripts, many of which have

never been published. Word Spotting can be used

to create indices for such handwritten manuscript

archives.

Our recent work in this area has involved develop-

ing new techniques for word segmentation based on

scale space methods. Old handwritten manuscripts

are challenging for word segmentation algorithms

for many reasons; ascenders and descenders from

adjacent lines touch, noise and ink bleeding are

present, the manuscripts show shine through and xe-

roxing and scanning have introduced additional ar-

tifacts. Our technique for word segmentation first

involves segmenting the lines out using a new pro-

jection profile technique and then detecting words

in each line by creating scale space blobs.

A discussion of the Center’s work on word segmenta-

tion of handwritten mansucripts and its work on appear-

ance based image retrieval and multi-modal retrieval now

follows.

2 Appearance Based Image Retrieval and

Multi-Modal Retrieval

The image intensity surface is robustly characterized

using features obtained from responses to multi-scale

Gaussian derivative filters. Koenderink [16] and others

[11] have argued that the local structure of an image

can be represented by the outputs of a set of Gaussian

derivative filters applied to an image. That is, images are

filtered with Gaussian derivatives at several scales and

the resulting response vector locally describes the struc-

ture of the intensity surface. By computing features de-

rived from the local response vector and accumulating

them over the image, robust representations appropriate

to querying images as a whole (global similarity) can be

generated. One such representation uses histograms of

features derived from the multi-scale Gaussian deriva-

tives. Histograms form a global representation because

they capture the distribution of local features (A his-

togram is one of the simplest ways of estimating a non

parametric distribution). This global representation can

be efficiently used for global similarity retrieval by ap-

pearance and retrieval is very fast.

The choice of features often determines how well the

image retrieval system performs. Here the task is to ro-

bustly characterize the 3-dimensional intensity surface.

A 3-dimensional surface is uniquely determined if the

local curvatures everywhere are known. Thus, it is ap-

propriate that one of the features be local curvature. The

principal curvatures of the intensity surface are invari-

ant to image plane rotations, monotonic intensity vari-

ations and further, their ratios are in principle insensi-

tive to scale variations of the entire image. However,

spatial orientation information is lost when constructing

histograms of curvature (or ratios thereof) alone. There-

fore we augment the local curvature with local phase, and

the representation uses histograms of local curvature and

phase.

Local principal curvatures and phase are computed at

several scales from responses to multi-scale Gaussian

derivative filters. Then histograms of the curvature ra-

tios [15, 7] and phase are generated. Thus, the image is

represented by a single vector (multi-scale histograms).

During run-time the user presents an example image as a

query and the query histograms are compared with the

ones stored, and the images are then ranked and dis-

played in order to the user.

2.1 The choice of domain

There are two issues in building a content based image

retrieval system. The first issue is technological, that is,

the development of new techniques for searching images

based on their content. The second issue is user or task

related, in the sense of whether the system satisfies a user

need. While a number of content based retrieval systems

have been built ([10, 9]), it is unclear what the purpose

of such systems is and whether people would actually

search in the fashion described.

Here, we describe how the techniques described here

may be scaled to retrieve images from a database of about

63000 trademark images provided by the US Patent and

Trademark Office. This database consists of all (at the

time the database was provided) the registered trade-

marks in the United States which consist only of designs

(i.e. there are no words in them). Trademark images are



a good domain with which to test image retrieval. First,

there is an existing user need: trademark examiners do

have to check for trademark conflicts based on visual ap-

pearance. That is, at some stage they are required to look

at the images and check whether the trademark is similar

to an existing one. Second, trademark images may con-

sist of simple geometric designs, pictures of animals or

even complicated designs. Thus, they provide a test-bed

for image retrieval algorithms. Third, there is text associ-

ated with every trademark and the associated text maybe

used in a number of ways. One of the problems with

many image retrieval systems is that it is unclear where

the example or query image will come from. In this pa-

per, the associated text is used to provide an example or

query image. In future papers, we will explore how text

and image searches may be combined to build more so-

phisticated systems. Using trademark images does have

some limitations. First, we are restricted to binary im-

ages (albeit large ones). As shown later in the paper,

this does not create any problems for the algorithms de-

scribed here. Second, in some cases the use of abstract

images makes the task more difficult. Others have at-

tempted to get around it by restricting the trademark im-

ages to geometric designs [13].

2.2 Global representation of appearance

Three steps are involved in order to computing global

similarity. First, local derivatives are computed at sev-

eral scales. Second, derivative responses are combined to

generate local features, namely, the principal curvatures

and phase and, their histograms are generated. Third, the

1D curvature and phase histograms generated at several

scales are matched. These steps are described next.

A. Computing local derivatives: Computing deriva-

tives using finite differences does not guarantee stability

of derivatives. In order to compute derivatives stably, the

image must be regularized, or smoothed or band-limited.

A Gaussian filtered image
✂☎✄✝✆✞✂✠✟☛✡

obtained by con-

volving the image I with a normalized Gaussian
✡✌☞✎✍✑✏✓✒✕✔

is a band-limited function. Its high frequency compo-

nents are eliminated and derivatives will be stable. In

fact, it has been argued by Koenderink and van Doorn

[16] and others [11] that the local structure of an image

I at a given scale can be represented by filtering it with

Gaussian derivative filters (in the sense of a Taylor ex-

pansion), and they term it the N-jet.

However, the shape of the smoothed intensity surface

depends on the scale at which it is observed. For ex-

ample, at a small scale the texture of an ape’s coat will

be visible. At a large enough scale, the ape’s coat will

appear homogeneous. A description at just one scale

is likely to give rise to many accidental mis-matches.

Thus it is desirable to provide a description of the im-

age over a number of scales, that is, a scale space de-

scription of the image. It has been shown by several

authors [18, 14, 32, 30, 11], that under certain general

constraints, the Gaussian filter forms a unique choice for

generating scale-space. Thus local spatial derivatives are

computed at several scales.

B. Feature Histograms: The normal and tangential

curvatures of a 3-D surface (X,Y,Intensity) are defined

as [11]:✖✗☞✙✘✚✏✓✒✕✔✛✆ ✜✢ ✂✤✣✥ ✂✧✦✧✦✩★✪✂✤✣✦ ✂ ✥✫✥✭✬✯✮ ✂ ✥ ✂✧✦✰✂ ✥ ✦✱ ✂ ✣✥ ★✪✂ ✣✦✳✲✵✴✶
✷✸ ☞✹✘✺✏✻✒✕✔

✼✽☞✎✘✚✏✓✒✕✔✾✆ ✜✢ ✱ ✂✤✣✥ ✬ ✂✿✣✦✳✲ ✂ ✥ ✦ ★❀☞❁✂ ✥❂✥ ✬ ✂ ✦✧✦ ✔✳✂ ✥ ✂ ✦✱ ✂ ✣✥ ★✪✂ ✣✦ ✲✵✴✶
✷✸ ☞✎✘✚✏✓✒✕✔

Where
✂ ✥ ☞✎✘✚✏✓✒✕✔ and

✂☎✦❃☞✎✘✚✏✓✒✕✔
are the local derivatives

of Image I around point
✘

using Gaussian derivative at

scale
✒

. Similarly
✂ ✥✫✥ ☞❅❄❆✏✫❄ ✔ , ✂ ✥ ✦❃☞✓❄❆✏✫❄ ✔ , and

✂☎✦✧✦❃☞❇❄❈✏☎❄❉✔
are the

corresponding second derivatives. The normal curvature✖
and tangential curvature

✼
are then combined [15] to

generate a shape index as follows:❊ ☞✙✘✺✏✻✒✕✔✾✆●❋✿❍❇❋✿■❑❏ ✖▲★▼✼✖ ✬ ✼❖◆ ☞✹✘✚✏✓✒✕✔
The index value

❊
is P ✣ when

✖◗✆❀✼
and is undefined

when either
✖

and
✼

are both zero, and is, therefore, not

computed. This is interesting because very flat portions

of an image (or ones with constant ramp) are eliminated.

For example in Figure 2(middle-row), the background in

most of these face images does not contribute to the cur-

vature histogram. The curvature index or shape index is

rescaled and shifted to the range ❘ ❙ ✏✫❚✧❯ as is done in [7].

A histogram is then computed of the valid index values

over an entire image.

The second feature used is phase. The phase is sim-

ply defined as ❱ ☞✎✘✚✏✓✒✕✔✌✆❲❋✿❍❇❋✿■ ✮ ☞✎✂☎✦❃☞✙✘✚✏✓✒✕✔❳✏✓✂ ✥ ☞✙✘✺✏✻✒✕✔✓✔ .
Note that ❱ is defined only at those locations where

❊
is

and ignored elsewhere. As with the curvature index ❱ is

rescaled and shifted to lie between the interval ❘ ❙ ✏✫❚✧❯ .
At different scales different local structures are ob-

served and, therefore, multi-scale histograms are a more

robust representation. Consequently, a feature vec-

tor is defined for an image
✂

as the vector ❨❬❩ ✆❭✙❪✌❫ ☞✙✒❬❴☎✔❬❵✫❵☎❵ ❪❖❫ ☞✹✒✵❛❜✔❬✏ ❪❞❝ ☞✙✒❬❴☎✔❬❵✫❵☎❵ ❪❞❝ ☞✙✒✵❛❡✔❅❢
where

❪❞❝
and

❪✌❫
are the curvature and phase histograms respec-

tively. We found that using 5 scales gives good results

and the scales are
❚✛❄✫❄☎❄❇❣

in steps of half an octave.

C. Matching feature histograms: Two feature vectors

are compared using normalized cross-covariance defined

as ❤ ❩❥✐ ✆ ❨❖❦❆❧❃♠❩ ❄ ❨✌❦❆❧❃♠✐♥♥♥ ♥♥♥ ❨♦❦❆❧❃♠❩ ♥♥♥ ♥♥♥ ♥♥♥ ♥♥♥ ❨✌❦❆❧❃♠✐ ♥♥♥ ♥♥♥
where ❨ ❦❆❧❃♠❩ ✆ ❨✵❩ ✬q♣sr ❋✿■✛☞ ❨✵❩ ✔ .

Retrieval is carried out as follows. A query image is

selected and the query histogram vector ❨❳t is correlated



with the database histogram vectors ❨ ❩ using the above

formula. Then the images are ranked by their correlation

score and displayed to the user. In this implementation,

and for evaluation purposes, the ranks are computed in

advance, since every query image is also a database im-

age.

2.2.1 Experiments

The curvature-phase method is tested using two

databases. The first is a trademark database of 2048 im-

ages obtained from the US Patent and Trademark Office

(PTO). The images obtained from the PTO are large, bi-

nary and are converted to gray-level and reduced for the

experiments. The second database is a collection of 1561

assorted gray-level images. This database has digitized

images of cars, steam locomotives, diesel locomotives,

apes, faces, people embedded in different background(s)

and a small number of other miscellaneous objects such

as houses. These images were obtained from the Internet

and the Corel photo-cd collection and were taken with

several different cameras of unknown parameters, and

under varying uncontrolled lighting and viewing geome-

try.

In the following experiments an image is selected and

submitted as a query. The objective of this query is stated

and the relevant images are decided in advance. Then

the retrieval instances are gauged against the stated ob-

jective. In general, objectives of the form ’extract im-

ages similar in appearance to the query’ will be posed to

the retrieval algorithm. A measure of the performance of

the retrieval engine can be obtained by examining the re-

call/precision table for several queries. Briefly, recall is

the proportion of the relevant material actually retrieved

and precision is the proportion of retrieved material that

is relevant [31]. It is a standard widely used in the in-

formation retrieval community and is one that is adopted

here.

Queries were submitted each to the trademark and as-

sorted image collection for the purpose of computing

recall/precision. The judgment of relevance is qualita-

tive. For each query in both databases the relevant im-

ages were decided in advance. These were restricted

to 48. The top 48 ranks were then examined to check

the proportion of retrieved images that were relevant.

All images not retrieved within 48 were assigned a rank

equal to the size of the database. That is, they are not

considered retrieved. These ranks were used to interpo-

late and extrapolate precision at all recall points. In the

case of assorted images relevance is easier to determine

and more similar for different people. However in the

trademark case it can be quite difficult and therefore the

recall-precision can be subject to some error. The re-

call/precision results are summarized in Table 1 and both

databases are individually discussed below.

Figure 1 shows the performance of the algorithm on

the trademark images. Each strip depicts the top 8 re-

trievals, given the leftmost as the query. Most of the

shapes have roughly the same structure as the query.

Note that, outline and solid figures are treated similarly

(see rows one and two in Figure 1). Six queries were

submitted for the purpose of computing recall-precision

in Table 1.

Experiments are also carried out with assorted gray

level images. Six queries submitted for recall-precision

are shown in Figure 2. The left most image in each row is

the query and is also the first retrieved. The rest from-left

to right are seven retrievals depicted in rank order. Note

that, flat portions of the background are never considered

because the principal curvatures are very close to zero

and therefore do not contribute to the final score. Thus,

for example, the flat background in Figure 2(second row)

is not used. Notice that visually similar images are re-

trieved even when there is some change in the back-

ground (row 1). This is because the dominant object con-

tributes most to the histograms. In using a single scale

poorer results are achieved and background affects the

results more significantly.

The results of these examples are discussed below,

with the precision over all recall points depicted in paren-

theses. For comparison the best text retrieval engines

have an average precision of 50%:

1. Find similar cars(65%). Pictures of cars viewed

from similar orientations appear in the top ranks be-

cause of the contribution of the phase histogram.

This result also shows that some background vari-

ation can be tolerated. The eighth retrieval although

a car is a mismatch and is not considered.

2. Find same face(87.4%) and find similar faces: In the

face query the objective is to find the same face. In

experiments with a University of Bern face database

of 300 faces with a 10 relevant faces each, the av-

erage precision over all recall points for all 300

queries was 78%. It should be noted that the system

presented here works well for faces with the same

representation and parameters used for all the other

databases. There is no specific “tuning” or learning

involved to retrieve faces. The query “find similar

faces” resulted in a 100% precision at 48 ranks be-

cause there are far more faces than 48. Therefore, it

was not used in the final precision computation.

3. Find dark textured apes (64.2%). The ape query re-

sults in several other light textured apes and country

scenes with similar texture. Although these are not

mis-matches they are not consistent with the intent

of the query which is to find dark textured apes.

4. Find other patas monkeys. (47.1%) Here there are

16 patas monkeys in all and 9 within a small view

variation. However, here the whole image is being

matched so the number of relevant patas monkeys is

16. The precision is low because the method cannot



Figure 1: Trademark retrieval using Curvature and Phase

Figure 2: Image retrieval using Curvature and Phase

distinguish between light and dark textures, leading

to irrelevant images. Note, that it finds other apes,

dark textured ones, but those are deemed irrelevant

with respect to the query.

5. Given a wall with a Coca Cola logo find other Coca

Cola images (63.8%). This query clearly depicts

the limitation of global matching. Although all

three database images that had a certain texture of

the wall (also had Coca Cola logos) were retrieved

(100% precision), two other very dissimilar images

with coca-cola logos were not.

6. Scenes with Bill Clinton (72.8%). The retrieval in

this case results in several mismatches. However,

three of the four are retrieved in succession at the

top and the scenes appear visually similar.

While the queries presented here are not “optimal”



Table 1: Precision at standard recall points for six Queries

Recall 0 10 20 30 40 50 60 70 80 90 100

Precision(trademark) % 100 93.2 93.2 85.2 76.3 74.5 59.5 45.5 27.2 9.0 9.0

Precision(assorted) % 100 92.6 90.0 88.3 87.0 86.8 83.8 65.9 21.3 12.0 1.4

average(trademark) 61.1%

average(assorted) 66.3%

with respect to the design constraints of global similar-

ity retrieval, they are however, realistic queries that can

be posed to the system. Mismatches can and do occur.

The first is the case where the global appearance is very

different. The Coca Cola retrieval is a good example of

this. Second, mismatches can occur at the algorithmic

level. Histograms coarsely represent spatial information

and therefore will admit images with non-trivial defor-

mations. The recall/precision presented here compares

well with text retrieval. The time per retrieval is of the

order of milli-seconds. In the next section we discuss the

application of the presented technique to a database of

63000 images.

2.3 Trademark Retrieval

The system indexes about 68,000 trademarks from the

US Patent and Trademark office in the design only cate-

gory. These trademarks are binary images. In addition,

associated text consists of a design code that designates

the type of trademark, the goods and services associated

with the trademark, a serial number and a short descrip-

tive text.

The system for browsing and retrieving trademarks is

illustrated in Figure 3. The netscape/Java user interface

has two search-able parts. On the left a panel is included

to initiate search using text. Any or all of the fields can

be used to enter a query. In this example, the text “Mer-

riam Webster’ is entered and all images associated with

it are retrieved using the Inquery [4] text search engine.

The user can then use any of the example pictures to

search for images that are similar. In the specific exam-

ple shown, The second image is selected and retrieved

results are displayed on the right panel. The user can

then continue to search using any of the displayed pic-

tures as the query.

In this section we adapt the curvature/phase his-

tograms to retrieve visually similar trademarks. The fol-

lowing steps are performed to retrieve images.

Preprocessing: Each binary image in the database is

first size normalized, by clipping. Then they are con-

verted to gray-scale and reduced in size.

Computation of Histograms: Each processed image

is divided into four equal rectangular regions. This is

different than constructing a histogram based on pixels

of the entire image. This is because in scaling the images

to a large collection, we found that the added degree of

spatial resolution significantly improves the retrieval per-

formance. The curvature and phase histograms are com-

puted for each tile at three scale. A histogram descriptor

of the image is obtained by concatenating all the individ-

ual histograms across scales and regions.

These two steps are conducted off-line.

Execution: The image search server begins by load-

ing all the histograms into memory. Then it waits on a

port for a query. A CGI client transmits the query to the

server. Its histograms are matched with the ones in the

database. The match scores are ranked and the top
✖

requested retrievals are returned.

2.3.1 Examples

In Figure 3, the user typed in Merriam Webster in the

text window. The system searches for trademarks which

have either Merriam or Webster in th associated text and

displays them. Here, the first two trademarks (first two

images in the left window) belong to Merriam Webster.

In this example, the user has chosen to ’click’ the second

image and search for images of similar trademarks. This

search is based entirely on the image and the results are

displayed in the right window in rank order. Retrieval

takes a few seconds and is done by comparing histograms

of all 63,718 trademarks on the fly.

The original image is returned as the first result (as

it should be). The images in positions 2,3 and 5 in the

second window all contain circles inside squares and this

configuration is similar to that of the query. Most of the

other images are of objects contained inside a roughly

square box and this is reasonable considering that sim-

ilarity is defined on the basis of the entire image rather

than a part of the image.

The second example is shown in Figure 4. Here the

user has typed in the word Apple. The system returns

trademarks associated with the word Apple. The user

queries using Apple computer’s logo (the image in the

second row, first column of the first window). Images

retrieved in response to this query are shown in the right

window. The first eight retrievals are all copies of Ap-

ple Computer’s trademark (Apple used the same trade-

mark for a number of other goods and so there are mul-

tiple copies of the trademark in the database). Trade-

marks number 9 and 10 look remarkably similar to Ap-

ple’s trademark. They are considered valid trademarks

because they are used for goods and services in areas

other than computers. Trademark 13 is another version

of Apple Computer’s logo but with lines in the middle.

Although somewhat visually different it is still retrieved



Figure 3: Retrieval in response to a “Merriam Webster” query

in the high ranks. Image 14 is an interesting example

of a mistake made by the system. Although the image

is not of an apple, the image has similar distributions of

curvature and phase as is clear by looking at it.

The third example demonstrates combining text and

visual appearance for searching. We use the same apple

image obtained in the previous image as the image query.

However, in the text box we now type “computer” and

turn the text combination mode on. We now search for

trademarks which are visually similar to the apple query

image but also have the words computer associated with

them. The results are shown in Figure 5 on the right-

hand side. Notice that the first image is the same as the

query image. The second image is an actual conflict. The

image is a logo which belongs to the Atlanta Macintosh

User’s Group. The text describes the image as a peach

but visually one can see how the two images may be con-

fused with each other (which is the basis on which trade-

mark conflicts are adjudicated). This example shows that

it does not suffice to go by the text descriptions alone

and image search is useful for trademarks. Notice that

the fourth image which some people describe as an ap-

ple and others as a tomato is also described in the text as

an apple.

The system has been tried on a variety of different

examples of both two dimensional and three dimen-

sional pictures of trademarks and had worked quite well.

Clearly, there are issues of how quantitative results can

be obtained for such large image databases (it is not fea-

sible for a person to look at every image in the database to

determine whether it is similar). In future work, we hope

to evolve a mechanism for quantitative testing on such

large databases. It will also be important to use more of

the textual information to determine trademark conflicts.

3 Word Segmentation in Handwritten

Archival Manuscripts

There are many single author historical handwritten

manuscripts which would be useful to index and search.

Examples of these large archives are the papers of

George Washington, Margaret Sanger and W. E. B

Dubois. Currently, much of this work is done manu-

ally. For example, 50,000 pages of Margaret Sanger’s

work were recently indexed and placed on a CDROM.

A page by page index was created manually. It would

be useful to automatically create an index for an his-

torical archive similar to the index at the back of a

printed book. To achieve this objective a semi-automatic

scheme for indexing such documents have been proposed

in [23, 22, 21]. In this scheme known as Word Spot-

ting the document page is segmented into words. Lists



Figure 4: Retrieval in response to the query “Apple”

of words containing multiple instances of the same word

are then created by matching word images against each

other. A user then provides the ASCII equivalent to a

representative word image from each list and the links to

the original documents are automatically generated. The

earlier work in [23, 22, 21] concentrated on the matching

strategies and did not address full page segmentation is-

sues in handwritten documents. In this paper, we propose

a new algorithm for word segmentation in document im-

ages by considering the scale space behavior of blobs in

line images.

Most existing document analysis systems have been de-

veloped for machine printed text. There has been lit-

tle work on word segmentation for handwritten docu-

ments. Most of this work has been applied to special

kinds of pages - for example, addresses or “clean” pages

which have been written specifically for testing the doc-

ument analysis systems. Historical manuscripts suffer

from many problems including noise, shine through and

other artifacts due to aging and degradation. No good

techniques exist to segment words from such handwrit-

ten manuscripts. Further, scale space techniques have not

been applied to this problem before.

We outline the various steps in the segmentation algo-

rithm below.

The input to the system is a grey level document im-

age. The image is processed to remove horizontal and

vertical line segments likely to interfere with later opera-

tions. The page is then dissected into lines using projec-

tion analysis techniques modified for gray scale image.

The projection function is smoothed with a Gaussian fil-

ter (low pass filtering) to eliminate false alarms and the

positions of the local maxima (i.e., white space between

the lines) is detected. Line segmentation, though not es-

sential is useful in breaking up connected ascenders and

descenders and also in deriving an automatic scale se-

lection mechanism. The line images are smoothed and

then convolved with second order anisotropic Gaussian

derivative filters to create a scale space and the blob like

features which arise from this representation give us the

focus of attention regions (i.e., words in the original doc-

ument image). The problem of automatic scale selection

for filtering the document is also addressed. We have

come up with an efficient heuristic for scale selection

whereby the correct scale for blob extraction is obtained

by finding the scale maxima of the blob extent. A con-

nected component analysis of the blob image followed

by a reverse mapping of the bounding boxes allows us

to extract the words. The box is then extended vertically

to include the ascenders and descenders. Our approach

to word segmentation is novel as it is the first algorithm

which utilizes the inherent scale space behavior of words



Figure 5: Retrieval in response to the query “Apple” limited to text searches

in grey level document images.

3.1 Related Work

Most recognition systems mask the issue of segmenta-

tion by considering well segmented patterns [2] or us-

ing words written in boxes whose location is known

[8]. However, correct segmentation is crucial in full

page document analysis and directly relates to the per-

formance of the entire system. We present some of the

work in word and character segmentation.

3.1.1 Word and character segmentation

Character segmentation schemes proposed in the lit-

erature have mostly been developed for machine printed

characters and work poorly when extended to handwrit-

ten text. An excellent survey of the various schemes has

been presented in [5].

Very few papers have dealt exclusively with issues of

word segmentation in handwritten documents and even

they have focussed on identifying gaps using geometric

distance metrics between connected components. Seni

and Cohen [28] evaluate eight different distance mea-

sures between pairs of connected component for word

segmentation in handwritten text. In [19] the distance be-

tween the convex hulls is used. Srihari et all [29] present

techniques for line separation and then word segmenta-

tion using a neural network. However, the existing word

segmentation strategies have certain limitations

✉
Almost all the above methods require binary images.

Also, they have been tried only on clean white self-

written pages and not manuscripts.✉ Most of the techniques have been developed for ma-

chine printed characters and not handwritten words. The

difficulty faced in word segmentation is in combining

discrete characters into words.✉ Most researchers focus only on word recognition algo-

rithms and considered a database of clean images with

well segmented words, [1] is one such example.

Only a few [29] have performed full, handwritten page

segmentation. However, we feel that schemes such

as [29] are not applicable for page segmentation in

manuscript images for the reasons mentioned below.✉ Efficient image binarization is difficult on manuscript

images containing noise and shine through.✉ Connected ascenders and descenders have to be sepa-

rated.✉ Prior character segmentation was required to perform

word segmentation and accurate character segmentation

in cursive writing is a difficult problem. Also the exam-

ples shown are contrived (self written) and do not handle

problems in naturally written documents.

3.2 Word Segmentation

Modeling the human cognitive processes to derive a

computational methodology for handwritten word seg-



mentation with performance close to the human visual

system is quite complex due to the following character-

istics of handwritten text.✉
The handwriting style may be cursive or discrete. In

case of discrete handwriting characters have to be com-

bined to form words.✉ Unlike machine printed text, handwritten text is not

uniformly spaced.✉ Scale problem. For example, the size of characters in

a header is generally larger than the average size of the

characters in the body of the document.✉ Ascenders and descenders are frequently connceted

and words may be present at different orientations.✉ Noise, artifacts, aging and other degradation of the doc-

ument. Another problem is the presence of background

handwriting or shine through.

We now present a brief background to scale space and

how we have applied it to document analysis.

3.3 Scale space and document analysis

Scale space theory deals with the notion and importance

of scale in any physical observation i.e. objects or fea-

tures are relevant only at particular scales and meaning-

less at other scales [14, 11, 18]. In scale space, starting

from an original image, successively smoothed images

are generated along the scale dimension. It has been

shown by several researchers [14, 11, 18] that the Gaus-

sian uniquely generates the linear scale space of the im-

age when certain conditions are imposed.

We feel that scale space also provides an ideal frame-

work for document analysis. We may regard a document

to be formed of features at multiple scales. Intuitively, at

a finer scale we have characters and at larger scales we

have words, phrases, lines and other structures. Hence,

we may also say that there exists a scale at which we may

derive words from a document image. We would, there-

fore, like to have an image representation which makes

the features at that scale (words in this case) explicit :

i.e. no further processing should be required to locate

the words.

3.3.1 Formal definition

The linear scale space representation of a continuous

signal with arbitrary dimensions consists of building a

one parameter family of signals derived from the origi-

nal one in which the details are progressively removed.

Let f : ✈❃✇❲①②✈ represent any given signal. Then, the

scale space representation I : ✈ ✇④③ ✈❃⑤●①⑥✈ is defined

by letting the scale space representation at zero scale be

equal to the original signal I
☞❇❄❈⑦❂⑧❬✔✛✆

f and for
✒⑩⑨ ❙ ,❶❬☞❅❄❆⑦✻✒✕✔✾✆✗❷❸☞❇❄❈⑦✓✒✕✔❺❹✺❻❼✏

(1)❷❞☞✎❽❼✏❅❾❬⑦✓✒✕✔✚✆ ❚✮➀❿ ✒ ✣ r❼➁✿➂❥➃ ✶✓➄✤➅❇✶➇➆➂ ✶➉➈ ✶ ➆ (2)

where G is the Gaussian kernel in two dimensions and✒
is the scale parameter. We now describe the various

stages in our algorithm.

3.4 Preprocessing

These handwritten manuscripts have been subjected to

degradation such as fading and introduction of artifacts.

The images provided to us are scanned versions of the

photocopies of the original manuscripts. In the process

of photocopying, horizontal and vertical black line seg-

ments/margins were introduced. Horizontal lines are also

present within the text. The purpose of the preprocessing

step is to remove some of these margins and lines so that

they will not interfere with the blob analysis stage. The

details of the pre-processing step are omitted here.

3.5 Line segmentation

Line segmentation allows the ascenders and descenders

of consecutive lines to be separated. In the manuscripts

it is observed that the lines consist of a series of hori-

zontal components from left to right. Projection profile

techniques have been widely used in line and word seg-

mentation for machine printed documents [12]. In this

technique a 1D function of the pixel values is obtained

by projecting the binary image onto the horizontal or ver-

tical axis. We use a modified version of the same algo-

rithm extended to gray scale images. Let ➊ ☞✎❽➋✏✓❾❜✔ be the

intensity value of a pixel
☞✎❽❼✏❅❾❜✔

in a gray scale image.

Then, we define the vertical projection profile as

❱ ☞✙❾❜✔✛✆➍➌➎✥❂➏❳➐ ➊ ☞✙❽➋✏❅❾❜✔ (3)

where W is the width of the image. Figure 6 shows a sec-

tion of an image (rotated by 90 deg.) in (a) and its pro-

jection profile in (b). The distinct local peaks in the pro-

file corresponds to the white space between the lines and

distinct local minima corresponds to the text (black ink).

Line segmentation, therefore, involves detecting the po-

sition of the local maxima. However, the projection pro-

file has a number of false local maxima and minima. The

projection function ❱ ☞✎❾❜✔ is therefore, smoothed with a

Gaussian (low pass) filter to eliminate false alarms and

reduce sensitivity to noise. A smoothed profile is shown

in (c). The local maxima is then obtained from the first

derivative of the projection function by solving for
❾

such

that : ❱➒➑ ☞✎❾❜✔✛✆ ❱ ☞✙❾❜✔❡❹➓✡ ✦ ✆ ❙ (4)

The line segmentation technique is robust to variations

in the size of the lines and has been tested on a wide range

of handwritten pages. The next step after line segmenta-

tion is to create a scale space of the line images for blob

analysis.

3.6 Blob analysis

Now we examine each line image individually to extract

the words. A word image is composed of discrete char-



Figure 6: (a) A section of an image, (b) projection pro-

file, (c) smoothed projection profile (d) line segmented

image

acters, connected characters or a combination of the two.

We would like to merge these sub-units into a single

meaningful entity which is a word. This may be achieved

by forming a blob-like representation of the image. A

blob can be regarded as a connected region in space. The

traditional way of forming a blob is to use a Laplacian

of a Gaussian (LOG) [17] as the LOG is a popular op-

erator and frequently used in blob detection and a vari-

ety of multi-scale image analysis tasks [3, 25, 17]. We

have used a differential expression similar to a LOG for

creating a multi-scale representation for blob detection.

However, our differential expression differs in that we

combine second order partial Gaussian derivatives along

the two orientations at different scales. In the next sec-

tion we present the motivation for using an anisotropic

derivative operator.

3.6.1 Non uniform Gaussian filters

In this section some properties which characterize

writing are used to formulate an approach to filtering

words. In [17] Lindeberg observes that maxima in scale-

space occur at a scale proportional to the spatial dimen-

sions of the blob. If we observe a word we may see that

the spatial extent of the word is determined by the fol-

lowing :

1. The individual characters determine the height (
❾

dimension) of the word and

2. The length (
❽

dimension) is determined by the num-

ber of characters in it.

A word generally contains more than one character and

has an aspect ratio greater than one. As the
❽

dimension

of the word is larger than the
❾

dimension, the spatial fil-

tering frequency should also be higher in the
❾

dimension

as compared to the
❽

dimension. This domain specific

knowledge allows us to move from isotropic (same scale

in both directions) to anisotropic operators. We choose

the
❽

dimension scale to be larger than the
❾

dimension

to correspond to the spatial structure of the word. There-

fore, our approach for word segmentation, is based on

the idea of a directional scale (i.e. generating an image

representation by using Gaussian derivative operators at

different scales for each of the two Cartesian coordinate

axes) is in agreement with Lindeberg’s observation that

spatial dimensions are related to the scale. We define our

anisotropic Gaussian filter as❷❞☞✎❽❼✏❅❾❬⑦✓✒ ✥ ✏✻✒❡✦➔✔✛✆ ❚✮✰❿ ✒ ✥ ✒ ✦ r✤→ ❦ ➃ ✶✶❁➈ ✶➃ ⑤ ➅❇✶✶❁➈ ✶➅ ♠ (5)

We may also define the multiplication factor ➣ as➣ ✆ ✒ ✥✒ ✦ (6)

In the scale selection section we will show that the

average aspect ratio or the multiplication factor ➣ lies

between three and five for most of the handwritten

documents available to us. Also the response of the

anisotropic Gaussian filter (measured as the spatial ex-

tent of the blobs formed) is maximum in this range. For

the above Gaussian, the second order anisotropic Gaus-

sian differential operator ↔ ☞✙❽➋✏✓❾❺⑦✻✒ ✥ ✏✻✒❡✦➔✔ is defined as↔ ☞✎❽❼✏❅❾❬⑦✓✒ ✥ ✏✻✒❡✦➀✔✛✆↕✡ ✥✫✥ ☞✎❽➋✏✓❾❬⑦✓✒ ✥ ✔➋★✪✡➒✦✧✦✳☞✎❽❼✏❅❾❬⑦✓✒✵✦➀✔
(7)

A scale space representation of the line images is con-

structed by convolving the image with equation 7 Con-

sider a two dimensional image ➊ ☞✎❽❼✏❅❾❜✔ , then the corre-

sponding output image is✂❺☞✎❽❼✏❅❾❬⑦✓✒ ✥ ✏✻✒❡✦➀✔②✆ ✡ ✥✫✥ ☞❇❄❈⑦✓✒ ✥ ✔✵❹ ➊ ☞✙❽➋✏❅❾❜✔★➙✡➒✦✧✦✑☞❇❄❈⑦✓✒✵✦➔✔✵❹ ➊ ☞✎❽❼✏❅❾❜✔ (8)✆ ✡ ✥✫✥ ☞❇❄❈⑦✓✒ ✥ ✔✵❹ ➊ ☞✙❽➋✏❅❾❜✔★➙✡➒✦✧✦✑☞❇❄❈⑦ ➣ ✒ ✥ ✔✵❹ ➊ ☞✙❽➋✏❅❾❜✔ (9)

The main features which arise from a scale space rep-

resentation are blob-like (i.e., connected regions either

brighter or darker than the background). The sign of
✂

may then be used to make a classification of the 3-D

intensity surface into foreground and background. For

example consider the line image in Figure 7(a). The fig-

ures show the blob images
✂✵☞✙❽➋✏✓❾❺⑦✻✒ ✥ ✏✻✒ ✦ ✔ at increasing

scale values. Figure 7(b) shows that at a lower scale the

blob image consists of character blobs. As we increase



the scale, character blobs give rise to word blobs (Fig-

ure 7(c) and Figure 7(d)). This is indicative of the phe-

nomenon of merging in blobs. It is seen that for certain

scale values the blobs and hence the words are correctly

delineated (Figure 7(d)). A further increase in the scale

value may not necessarily cause word blobs to merge to-

gether and other phenomenon such as splitting is also

observed. These figures show that their exists a scale at

which it is possible to delineate words. In the next sec-

tion we present an approach to automatic scale selection

for blob extraction.

(a) A line image

(b) Blob image at scale ➛➀➜✚➝➟➞➡➠❁➛✰➢✩➝s➤

(c) Blob image at scale ➛ ➜ ➝s➤❂➠❁➛ ➢ ➝➦➥

(d) Blob image at scale ➛ ➜ ➝➧➥➨➠➉➛ ➢ ➝➩➞❅➫

(e) Blob image at scale ➛ ➜ ➝➭➫❂➠✹➛ ➢ ➝➭➯➡➫
Figure 7: A line image and the output at different scales

3.7 Choice of scale

Scale space analysis does not address the problem of

scale selection. The solution to this problem depends on

the particular application and requires the use of prior in-

formation to guide the scale selection procedure. Some

of our work in scale selection draws motivation from Lin-

deberg’s observation [17] that the maximum response in

both scale and space is obtained at a scale proportional

to the dimension of the object. A document image con-

sists of structures such as characters, words and lines at

different scales. However, as compared to other types

of images, document images have this unique property

that a large variation in scale is not required to extract a

particular type of structure. For example, all the words

are essentially close together in terms of their scale and

therefore, can be extracted without a large variation in

the scale parameter. Hence, there exists a scale where

each of the individual word forms a distinct blob. The

output (blob) is then maximum at this value of the scale

parameter. We show elsewhere [24] that this scale is a

function of the vertical dimension of the word if the as-

pect ratio is fixed.

Our algorithm requires selecting ➲❬➳ and the multiplica-

tion factor ➵ for blob extraction.

A base scale is obtained by using the height of the line:

i.e., an estimate of ➲❺➳ is obtained as a fraction of the line

height. ➲ ➳➒➸➻➺➧➼ Line height (10)

where ➽⑩➾ ➺ ➾➪➚ , the nearby scales are then examined

to determine the maximum over scales. For our specific

implementation we have used ➺✌➸ ➽❜➶❈➚ and sampled ➲ ➳ at

intervals of ➽❜➶ ➹ . The two values were determined exper-

imentally and worked well over a wide range of images.

The scales are then picked.

The details of the scale selection process are given

elsewhere [24]. Breifly, by plotting a graph which shows

the extent of the blobs versus the ➘❂➴❇➷ for a constant ➲❳➳ ,
we have shown that the maximum usually occurs for val-

ues of ➵ between 3 and 5 (see [24]) for a large number of

images. Thus, we choose ➵ ➸❀➬ .

3.8 Blob extraction and post processing

After the word blobs have been obtained at the correct

scale they define the focus of attention regions which

correspond to the actual words. Hence, these blobs have

to be mapped back to the original image to locate the

words. A widely used procedure is to enclose the blob

in a bounding box which can be obtained through con-

nected component analysis. In a blob representation of

the word, localization is not maintained. Also parts of

the words, especially the ascenders and descenders, are

lost due to the earlier operations of line segmentation and

smoothing (blurring). Therefore, the above bounding

box is extended in the vertical direction to include these

ascenders and descenders. At this stage an area/ratio fil-

ter is used to remove small structures due to noise.

3.9 Results

The technique was tried on ➹➔➽ randomly picked images

from different sections of the George Washington cor-

pus of ➮❜➱ ➬ ➽➔➽ images and a few images from the archive

of papers of Erasmus Hudson. This allowed us to test

on algorithm on wide range of handwritten documents

such as letters, notebook pages etc. To reduce the run-

time, the images have been smoothed and sub-sampled

to a quarter of their original size. The algorithm takes

120 seconds to segment a document page of size 800 x



600 pixels on a PC with a 200 MHz pentium processor

running LINUX. A segmentation accuracy ranging from✃➔✃ ✬●❐✤❒ percent with an average accuracy around ❮ ✃✑❵ ❒
percent was observed. Figure 8 shows a segmented im-

age with bounding boxes drawn on the extracted words.

The method worked well even on faded, noisy images

and Table 1 shows the results averaged over a set of 30

images.

The first column indicates the average no. of distinct

words in a page as seen by a human observer. The sec-

ond column indicates the % of words detected by the al-

gorithm i.e, words with a bounding box around them,

this includes words correctly segmented, fragmented and

combined together. This measure is required as some of

the words may be sufficiently small or faint to be mis-

taken for noise or an artifact. The next column indicate

the % of words fragmented. Word fragmentation oc-

curs if a character or characters in a word have separate

bounding boxes or if ❰➔❙ percent or greater of a charac-

ter in a word is not detected. Line fragmentation occurs

due to the dissection of the image into lines. A word is

line fragmented if ❰➀❙ percent or greater of a character lies

outside the top or bottom edges of the bounding box. The

sixth column indicates the words which are combined to-

gether. These are multiple words in the same bounding

box and occur due to the choice of a larger scale in seg-

mentation. The last column gives the percentage of cor-

rectly segmented words.

Avg. % % frag- % % words

words words mented words correctly

per dete- words comb- segmen-

image cted +line ined ted

220 99.12 1.75 8.9 87.6

+0.86

Table 2: Table of segmentation results

4 Conclusion

This paper has described the multimedia indexing and

retrieval work being done at the Center for Intelligent In-

formation Retrieval. We have described work on a sys-

tem for multi-modal retrieval combining text and image

retrieval as well as word segmentation for handwritten

archives. The research described is part of an on-going

research effort focused on indexing and retrieving mul-

timedia information in as many ways as possible. The

work described here has many applications, principally

in the creation of the digital libraries of the future.
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Figure 8: Segmentation result on a image 1670165.tif from the George Washington collection


