
Scale-Space Matching and Image Retrieval�S. Ravela and R. Manmatha and E. M. RisemanComputer Vision Research LaboratoryandCenter for Intelligent Information RetrievalUniversity of Massachusetts, Amherst, MA 01003fravela,manmathag@cs.umass.eduAbstractThe retrieval of images from a large database of im-ages is an important and emerging area of research.Here, a technique to retrieve images based on ap-pearance that works e�ectively across large changesof scale is proposed. The database is initially �lteredwith derivatives of a Gaussian at several scales.A user de�ned template is then created from animage of an object similar to those being sought.The template is also �ltered using Gaussian deriv-atives. The template is then matched with the �l-ter outputs of the database images and the matchesranked according to the match score. Experimentsdemonstrate the technique on a number of imagesin a database. No prior segmentation of the imagesis required and the technique works with viewpointchanges up to 20 degrees and illumination changes.1 IntroductionThe advent of multi-media and large image col-lections in several di�erent domains brings fortha necessity for image retrieval systems. Thesesystems will respond to visual queries by retriev-ing images in a fast and e�ective manner. Theapplication potential is enormous; ranging fromdatabase management in museums and medicine,architectural and interior design, image archiv-ing, to constructing multi-media documents orpresentations[Gudivada 95].Simple image retrieval solutions have been pro-posed, one of which is to annotate images with textand then use a traditional text-based retrieval en-gine. While this solution is fast, it cannot howeverbe e�ective over large collections of complex im-ages. The variability and richness of interpretationis quite enormous as is the human e�ort requiredfor annotation.To be e�ective an image retrieval system should ex-� This work was supported in part by the Centerfor Intelligent Information Retrieval, NSF Grants IRI-9208920, CDA-8922572 and ARPA N66001-94-D-6054

Figure 1: Construction of a query begins with a usermarking regions of interest in an image, shown bythe rectangles.ploit image attributes such as color distribution,motion, shape [Flickner 95], structure, texture orperhaps user drawn sketches or even abstract tokensets (such as points, lines etc.). Representations ofthese attributes can be matched to gauge similarityand perhaps also be used to index the images. Im-age retrieval can be viewed as an ordering of matchscores that are obtained by searching through thedatabase. Therefore, the key challenges in buildinga retrieval system are the choice of attributes, theirrepresentations, query speci�cation methods, matchmetrics and indexing strategies.In this paper a method for retrieving images basedon appearance is presented. Without resorting totoken feature extraction or segmentation, imagesare retrieved in the order of their similarity in ap-pearance to a query.Query construction begins with the user selectingregions in an image. An example is shown in Fig-ures 1 and 2. Here, the user wishes to retrieve im-ages similar in view and shape (appearance) to thecar shown in Figure 1. In order to do so, the user



Figure 2: The regions of interest and their spatialrelationships de�ne a query.outlines salient regions (in his or her opinion) onthe image(shown as rectangles in Figure 1). Theseregions along with their spatial relationship are con-junctively called as the query( Figure 2)1.Similarity of appearance is quite simply the simil-arity of shape under small view variations. Whilethe proposed de�nition constrains view variations,there is however, no constraint imposed on scalevariations. That is, the image of an object in thedatabase can be very di�erent in size from the im-age of the object in the query. This could happendue to variations in resolution of the image or dueto the object or scene being imaged from di�erentdistances. The variation in scale is particularly im-portant in image databases since no control can beexerted over the image acquisition process. Any ap-pearance based retrieval system must therefore ad-dress this fundamental issue. In order to measurethe similarity of appearance between a query andan image, two issues must be addressed. First, ap-propriate representations of images must be chosenand second, a mechanism for matching these repres-entations must be developed.Filtered versions of images are used as representa-tions of appearance. In particular a vector repres-entation(VR) of an image is obtained by associatingeach pixel with a vector of responses to Gaussian de-rivative �lters of several di�erent orders. A singleVR is the basic representation that can be used toretrieve images but, under a �xed scale. To retrieveimages under varying scale a representation over thescale parameter is required and scale-space repres-entations [Lindeberg 94] are a natural choice. Listsof VRs generated using banks of Gaussian derivative�lters at several di�erent scales form a scale-spacerepresentation of the object. This scale-space rep-resentation is used to retrieve objects under large(but not arbitrary) scale variations. In particular,this paper demonstrates retrieval for scale changesup to a factor of 4 (1/4 to 4 times the query size).The choice of Gaussians and their derivatives to de-1The retrieved images for this case are shown in Fig-ure 4.

rive representations of appearance (VRs) is motiv-ated by a number of considerations. It has been ar-gued by Koenderink and others that the structure ofan image may be represented using Gaussian deriv-atives [Koenderink 87]. Hancock et al [Hancock 92]have shown that the principal components of aset of images containing natural structures may bemodeled as the outputs of a Gaussian and its deriv-atives at several scales. That is, there is a naturaldecomposition of an image into Gaussian derivativesat several scales. Gaussians and their derivativeshave, therefore, been successfully used for match-ing images of the same object under di�erent view-points [Bergen 92, Werkhoven 90a, Werkhoven 90b,Kass 88, Manmatha 94, Rao 95]. This paper is anextension to matching \similar" objects using Gaus-sian derivatives.Images are matched by correlating their vector-representations. VR matching is robust to lightingvariations and tolerates small variations in view. Inaddition, well-designed queries have yielded signi-�cant variation in retrieved shapes(see Section 6).It is quite likely that structures similar to that ofa query are present in the database at a di�erentscale. As described, the VR matching cannot ac-count for gross changes in scale. VRs generatedfrom �lters at several scales are used to search overscale-space for possible scale variations of the query.The range of scale variation as well as the step sizeis a user-controlled parameter. Scale-space match-ing is described in detail in Section 4. The entireprocess of retrieval can be viewed as the followingthree-step process. The �rst is an o�-line compu-tation step that generates vector-representations ofdatabase images for matching. The second is con-struction of queries and their VRs. The third is anordering of images ranked by the correlation of theirVRs with that of the query.While one is tempted to argue that retrieval andrecognition problems have a lot in common, oneshould also note the sharp contrasts between thetwo paradigms. First, putting a user in the \loop" ,shifts the burden of the determination of feature sa-liency to the user. For example, only regions of thecar in Figure 1 (namely, the wheels, side-view mirrorand mid-section) considered salient by the user arehighlighted. Second, user interaction can be used ina retrieval system of su�cient speed to evaluate theordering of retrieved images and reformulate quer-ies if necessary. Thus, in the approach presentedin this paper, alternate regions could be marked ifthe retrieval is satisfactory. Third, a hundred per-cent accuracy of retrieval is desirable but not atall critical (for comparison the best text-based re-



trieval engines have retrieval rates less than 50%).The user ultimately views and evaluates the results,allowing for tolerance to the few incorrect retrievalinstances.The remainder of this paper is organized as follows.In Section 2 other related approaches are examined.In Section 3 VR matching is described. In Section 4VR matching is extended to account for scale vari-ations. Then, in Section 5 query construction isdiscussed. In Section 6 a retrieval is demonstratedon a database with over 300 images containing auto-mobiles, locomotives (steam and diesel), apes andhouses. These images obtained mainly over the in-ternet have uncontrolled lighting and viewing geo-metry.2 Related WorkThis paper is related to a number of threads in theliterature. The �rst concerns matching with Gaus-sian derivative �lters at multiple scales.The idea of using Gaussian derivatives for match-ing and recovering local structure was sugges-ted among others by Koenderink [Koenderink 87].Among �lter representations, Gaussian derivativeshave a number of advantages - they are steerable[Freeman 91] and separable. The use of multiplederivative �lters requires that correlation be per-formed between vectors. This is discussed by Gran-lund et al [Granlund 95].Some of the earliest uses of scale in matching goback to the Gaussian and Laplacian pyramids con-structed by Burt and Adelson [Burt 83] and Crow-ley [Crowley 87]. These pyramids have been usedto do coarse to �ne matching under translation, af-�ne or more general transforms (see [Bergen 92]).The pyramids speed up the computation as wellas performing matching at the appropriate scales.However, as Lindeberg [Lindeberg 94] points out inhis extensive discussion of scale space and its prop-erties they do not form a true scale space.Kass [Kass 88] used the Gaussian and its derivat-ives at multiple scales for stereo matching. Thenotion of matching across Gaussians of di�erentscales was used by Manmatha [Manmatha 94] formatching image patches under similarity and a�netransforms. He also used the idea of comparingthe outputs of Gaussians at di�erent standard devi-ations to compute large scale changes. Rao and Bal-lard [Rao 95] used Gaussian derivatives at multiplescales to match a moving object when the viewpointchange was small.The second thread to which our work is related isthe area of image indexing and retrieval. To the

best of our knowledge, retrieval on the basis ofappearance or shape is almost entirely based onprior segmentation of the object. Examples in-clude the QBIC project at IBM [Flickner 95], thephoto book project [Pentland 94] and shape re-trieval [Mehrotra 95]. These methods all requireknowledge of the contour or binary shape of the ob-ject. For speci�c objects like faces, principal com-ponent analysis has been used successfully for rep-resentation [Kirby 90] and retrieval [Turk 91]. Us-ing texture measures, Picard et al [Picard 94] areable to classify images into a few distinct categories(e.g. city scene, country scene).3 Matching Vector RepresentationsThe key processing involves obtaining and matchingvector-representations of a sample gray level imagepatch S and a candidate image C. The steps in-volved in doing this will now be described:Consider a Gaussian described by it's coordinate rand scale � G (r; �) = 1p2��e� r22�2 (1)A vector-representation ~V of an image I is ob-tained by associating each pixel with a vector ofresponses to partial derivatives of the Gaussian atthat location. Derivatives up to the second orderare considered. More formally, ~V takes the formhIx; Iy; Ixx; Ixy; Iyyi where Ix, Iy denote the the �l-ter response of I to the �rst partial derivative of aGaussian in direction x and y respectively. Ixx,Ixyand Iyy are the appropriate second derivative re-sponses.In this paper, only the �rst and second derivativesof Gaussians are used. Let us consider 1-D Gaus-sian derivatives. The odd derivatives are all cor-related with each other. This also holds true forthe even derivatives which are correlated with eachother. However, for the same �, the �rst derivativeof a Gaussian is uncorrelated with the second de-rivative of a Gaussian [Kass 88]. Thus picking onlythe �rst and second derivatives of Gaussians insuresthat maximal information is extracted from the im-age. Gaussian (as opposed to Gaussian derivatives)�lters are not used because they are sensitive to theactual intensity value.The correlation coe�cient � between images ~C and~S at location (m;n) in ~C is given by:� (m;n) =Xi;j ĈM (i; j) � ŜM (m � i; n� j) (2)



Figure 3: I1 is half the size of I0. To match pointsp0 with p1, Image I0 should be �ltered at point p0by a Gaussian of a scale twice that of the Gaussianused to �lter image I1 (at p1). To match a templatefrom I0 containing p0 and q0, an additional warpingstep is required. See text in Section 4.where ŜM (i; j) = ~S (i; j)� SM������~C (i; j)� CM������and SM is the mean of ~S (i; j) computed over S.ĈM is computed similarly from ~C (i; j). The meanCM is in this case computed at (m,n) over a neigh-borhood in C (the neighborhood is the same size asS).Vector correlation performs well under small viewvariations. It is observed [Ravela 96] that typicallyfor the experiments carried out with this method, in-plane rotations of up to 20o, out-of plane rotation ofup to 300 and scale changes of less than 1:2 can betolerated. Similar results in terms of out-of-planerotations were reported by [Rao 95].4 Matching Across ScalesThe database contains many objects imaged at sev-eral di�erent scales. For example, the database usedin our experiments has several diesel locomotives.The actual image size of these locomotives dependson the distance from which they are imaged andshows considerable variability in the database. Thevector correlation technique described in Section 3cannot handle large scale changes, and the matchingtechnique, therefore, needs to be extended to handlelarge scale changes.In Figure 3 image I1 is half the size of image I0(otherwise the two images are identical). Thus,I0(r) = I1(sr) (3)where r is any point in image I0 and sr the corres-ponding point in I1 and the scale change s = 0.5.In particular consider two corresponding points p0and p1 and assume the image is Gaussian �ltered atp0 Then by substituting for I0 using equation 3 we

have: Z I0(r)G(r� p0; �)dr =Z I1(sr)G(sr � p1; s�)d (sr) � s�1 (4)But it can be shown that G(r; �) = G(sr; s�)[Manmatha 94]. Thus,Z I0(r)G(r� p0; �)dr = Z I1(sr)G(r� p1; �)d (sr)(5)In other words, the output of I0 �ltered with a Gaus-sian of scale � at p0 is equal to the output of I1�ltered with a Gaussian of scale s� i.e. the Gaus-sian has to be stretched in the same manner as theimage if the �lter outputs are to be equal. This isnot a surprising result if the output of a Gaussian�lter is viewed as a Gaussian weighted average ofthe intensity. A more detailed derivation of this res-ult is provided in [Manmatha 94].The derivation above does not use an explicit valueof the scale change s. Thus, equation 5 is validfor any scale change s. The form of equation 5resembles a convolution and in fact it may be re-written as a convolutionI0(r) ? G(:; �) = I1(sr) ? G(:; s�) (6)Similar derivations may also becarried out for higher derivatives of Gaussians (see[Manmatha 94]). Here the results for the �rst andsecond derivatives of Gaussians are listed. De�nethe normalized �rst derivative of Gaussian byG0(r; s�) = s� dG(r; s�)=dr (7)The �rst derivative of the Gaussian has been energynormalized by the term s� so that its energy is thesame as that of the Gaussian �lter [Werkhoven 90a].The normalized second derivative of Gaussian maybe similarly de�ned byG00(r; s�) = (s�)2 d2G(r; s�)=d(rrT) (8)where the term (s�)2 again ensures that the energyof the second derivative Gaussian �lter is the sameas the energy of the �rst derivative Gaussian �lterand the Gaussian �lter.Note that the �rst derivative of a Gaussian is a vec-tor and the second derivative of a Gaussian a 2 by2 matrix.Then the Gaussian derivatives are related by (see[Manmatha 93])Is ?G0(:; �) = I0 ?G0(:; s�) (9)



and, Is ?G"(:; �) = I0 ?G"(:; s�) (10)The above equations are su�cient to match the �l-ter outputs (in what follows assume only Gaussian�ltering for simplicity) at corresponding points (forexample at p0 and p1). A further complication isintroduced if more than one point is to be matchedwhile preserving the relative distances (structure)between the points. Consider for example the pairof corresponding points p0;q0 and p1;q1. The �l-ter outputs at points p0;q0 may be visualized asa template and the task is to match this templatewith the �lter outputs at points p1;q1. That is, thetemplate is correlated with the �ltered version of theimage I1 and a best match sought. However, sincethe distances between the points p1;q1 are di�er-ent from those between p0;q0 the template cannotbe matched correctly unless either the template isrescaled by a factor of 1/2 or the image I1 is res-caled by a factor of 2. The matching is, therefore,done by warping either the template or the image I1appropriately.Thus, to �nd a match for a template from I0, in I1,the Gaussians must be �ltered at the appropriatescale and then the image I1 or the template shouldbe warped appropriately. Now consider the problemof localizing a template T , extracted from I0, inI1(see Figure 3). For the purpose of subsequentanalysis, assume two corresponding points (p0,q0)of interest in T and I1 (p1;q1) respectively. Tolocalize the template the following three steps areperformed.1. Use appropriate Relative Scale: Filter the tem-plate and I1 with Gaussians whose scale ratiois 2. That is, �lter T with a Gaussian of scale2� and I1 with �.2. Account for size change: Sub-sample T by half.At this point the spatial and intensity rela-tionship between the warped version (�lteredand sub-sampled) of template points p0 andq0 should be exactly same as the relationshipsbetween �ltered versions of p1 and q1.3. Translational Search: Perform a translationalsearch over I1 to localize the template.This three step procedure can be easily extended tomatch VRs of T and I1 using Equations 9 and 10.In step(1) generate VRs of T and I1 using the men-tioned �lter scale ratios. In step(2) warp the VRof T instead of just the intensity. In step(3) usevector-correlation(Equation 2 at every step of thetranslational search.

Without loss of generality any arbitrary template Tcan be localized in any I1 that contains T scaled bya factor s.4.1 Matching Queries overUnknown ScaleThe aforementioned steps for matching use the as-sumption that the relative scale between a templateand an image is known. However, the relative scalebetween structures in the database that are similarto a query cannot be determined a priori. That is,the query could occur in a database image at someunknown scale. A natural approach would be tosearch over a range of possible relative scales, theextent and step size being user controlled paramet-ers.One way of accomplishing this is as follows. First,VRs are generated for each image in the databaseover a range of scales, say 14�, 12p2�,...,4�. Then, aVR for the query is generated using Gaussian de-rivatives of scale �. The query VR is matched witheach of the image VRs, thus traversing a relativescale change of 14 ...4, in steps of p2. For each scalepairing the three step procedure for matching VRsis applied. In the warping step of this procedureeither the query or the image is warped dependingon the relative scale. If the relative scale betweenthe query and a candidate image is less than 1 thecandidate VR is warped and if it is greater than 1the query VR is warped. After the query is matchedwith each of the image VRs, the location in the im-age which has the best correlation score is returned.In practice, VR lists are generated both for thequery and database images to save computationalcost, memory, and to avoid running in to �lter dis-cretization problems. For the experiments carriedout in this paper the scales of the �lters used forboth the query and database images are in the range[0:8 � � �3:2] in steps of p2.It is instructive to note that VR lists over scale arescale-space representations in the sense describedby Lindeberg [Lindeberg 94] and by [Granlund 95].By smoothing an image with Gaussians at severaldi�erent scales Lindeberg generates a scale-spacerepresentation. While VR lists are scale-space rep-resentations, however, they di�er from Lindeberg'sapproach in two fundamental ways. First VRs aregenerated from derivatives of Gaussians and second,an assumption is made that smoothing is accompan-ied by changes in size (i.e. the images are scaledversions rather than just smoothed versions of eachother). This is the reason warping is required dur-ing VR matching across scales.



On the other hand, the VR list approachshould not be confused with pyramidal represent-ations [Burt 83]. While pyramidal representationsare also generated by �ltering and sub-sampling im-ages, there is an important distinction. Pyramidsare generated as a translational search reductionmechanism for use in coarse-to-�ne matching. Pyr-amid matching assumes that the scale of the tem-plate and the image within which it is being local-ized is the same. Therefore, matching the coarsestlevel of the image and template �rst followed suc-cessively by the �ner representations yields reduc-tions in translational search. However, the relat-ive scale between the query and the image is neverknown, forcing a true search across the scale para-meter. As Lindeberg points out recursive applica-tion of �lters and sub-sampling as is done in pyram-idal schemes is not in general a scale-space repres-entation [Lindeberg 94]. VR lists, which are notgenerated recursively, are proper scale-space rep-resentations and the matching occurs across scale-space.5 Constructing Query ImagesThe query construction process begins with the usermarking salient regions on an object. VRs gen-erated at several scales within these regions arematched with the database in accordance with thedescription in Section 4. Unselected regions are notused in matching. One way to think about this is toconsider a composite template, such as one shown inFigure 2. The unselected regions have been maskedout. The composite template preserves inter-regionspatial relationships and hence, the structure of theobject is preserved. Warping the composite willwarp all the components appropriately, preservingrelative spatial relationships. That is, both the re-gions as well as distances between regions are scaledappropriately. Further, there are no constraints im-posed on the selection of regions and the regionsneed not overlap.Careful design of a query is important. It is inter-esting to note that marking the entire object doesnot work very well. Marking extremely small re-gions has also not worked with this database. Thereare too many coincidental structures that can leadto poor retrieval.Many of these problems are, however, simpli�ed byhaving the user interact extensively with the system.Letting the user design queries eliminates the needfor detecting the saliency of features on an object.Instead, saliency is speci�ed by the user. In addi-tion, based on the feedback provided by the resultsof a query, the user can quickly adapt and modify

the query to improve performance.6 ExperimentsThe choice of images used in the experiments wasbased on a number of considerations. It is expec-ted that when very dissimilar images are used thesystem should have little di�culty in ranking theimages. For example, if a car query is used with adatabase containing cars and apes, then it is expec-ted that cars would be ranked ahead of apes. Thisis borne out by the limited number of experimentsdone. Much poorer discrimination is expected ifthe images are much more 'similar'. For example,man-made vehicles like cars, diesel and steam loco-motives should be harder to discriminate. It wastherefore decided to primarily use images of cars,diesel and steam locomotives as part of the data-base.The database used in this paper has digitized im-ages of cars, steam locomotives, diesel locomotives,apes and a small number of other miscellaneous ob-jects such as houses. Over 300 images were ob-tained from the internet to construct this database.About 215 of these are of cars, diesel locomotivesand steam locomotives. There are about 80 apesand about 12 houses in the database. These pho-tographs, were taken with several di�erent camerasof unknown parameters, and, under varying but un-controlled lighting and viewing geometry. The ob-jects of interest are embedded in natural scenes suchas car shows, railroad stations, country-sides and soon.Prior to describing the experiments, it is import-ant to clarify what a correct retrieval means. A re-trieval system is expected to answer questions suchas '�nd all cars similar in view and shape to thiscar' or '�nd all steams similar in appearance to thissteam engine'. To that end one needs to evaluate ifa query can be designed such that it captures theappearance of a generic steam engine or perhapsthat of a generic car. Also, one needs to evaluatethe performance of VR matching under a speci�edquery. In the examples presented here the followingmethod of evaluation is applied. First, the objectiveof the query is stated and then retrieval instancesare gauged against the stated objective. In general,objectives of the form 'extract images similar in ap-pearance to the query' will be posed to the retrievalalgorithm.Questions of this form are interesting to answer inthe context of the types of images present in thedatabase. Diesel locomotives, steam engines andcars are all man made objects and can be expectedto be similar. From several experiments performed



No. Retrieved ImagesQuery 1-10 11-20 21-30 31-40 41-50Car 8 6 1 0 1Steam 7 2 1 0 2Diesel 7 5 5 6 4Table 1: Correct retrieval instances for the Car,Steam and Diesel queries in intervals of ten. Thenumber of \similar" images in the database as de-termined by a human are 16 for the Car query, 12for the Steam query and 30 for the Diesel query.with this database it is observed that queries can beconstructed, such that vector-matching does a goodjob of ordering the dissimilarities in appearance ofthese objects. For example, a car query that intuit-ively captures distinguishing features on a car rankscars of similar appearance higher than other objects.Additionally, good discrimination is easily obtainedbetween fairly dissimilar objects such as apes andengines for example. Several di�erent queries wereconstructed to retrieve objects of a particular type.It is observed that under reasonable queries at least60% ofm objects underlying the query are retrievedin the top m ranks. Best results indicate retrievalresults of up to 85%.Several experiments were carried out with the data-base [Ravela 96]. The results of the experimentscarried out with a car query, a diesel query and asteam query are presented in table 6. The numberof retrieved images in intervals of ten is charted inTable 6. The table shows, for example, that thereare 16 car images \similar" in view to the car in thequery and 14 of these are ranked in the top 20. Forthe steam query there are 12 \similar" images (asdetermined by a person), 9 of which are ranked inthe top 20. Finally, for the diesel query there are 30\similar" images, 12 of which are found in the top20 retrievals.Due to space limitations only the results of the Carretrieval are displayed (Figure 4) and analyzed indetail (for the others see [Ravela 96]).The car image used for retrieval is shown in the topleft picture of Figure 4. The objective is to 'obtainall similar cars to this picture'. Towards this enda query was marked by the user, highlighting thewheels, side view-mirror and mid section. The res-ults to be read in text book fashion in Figure 4 arethe ranks of the retrieved images. The white spotsindicate the location of the centroid of the compositetemplate at best match. In the database, there areexactly 16 cars within a close variation in view tothe original picture. Fourteen of these cars were re-

trieved in the top 16, resulting in a 87.5% retrieval.All 16 car pictures were picked up in the top 50.The results also show variability in the shape ofthe retrieved instances. The mismatches observedin pictures labeled '15.tif' and '19.tif' occur in VRmatching when the relative scale between the queryVR and the images is 14 .Wrong instances of retrieval are of two types. The�rst is where the VR matching performs well but theobjective of the query is not satis�ed. In this casethe query will have to be redesigned. The secondreason for incorrect retrieval is mismatches due tothe search over scale space. Most of the VR mis-matches result from matching at the extreme relat-ive scales.Overall the queries designed were also able to dis-tinguish steam engines and diesel engines from carsprecisely because the regions selected are most sim-ilarly found in similar classes of objects. As waspointed out in Section 5 query selection must faith-fully represent the intended retrieval, the burden ofwhich is on the user. The retrieval system presentedhere performs well under it's stated purpose: that isto extract objects of similar shape and view to thatof a query.7 Conclusions and LimitationsAmethod to retrieve images based on shape proper-ties of images was presented. The vector-correlationalgorithm is robust to lighting changes and smalldeformations. Vector-Correlation was extended toincorporate gross scale changes. Thus, the result-ing representation of images is a proper scale-spacerepresentation and matching is performed over thisspace.Using this technique objects of similar appearancewere retrieved. There are several factors that a�ectretrieval results, including query selection, and therange of scale-space search. The results indicatethat this method has su�cient accuracy for imageretrieval applications.One of the limitations of our current approach isthe inability to handle large deformations. The �ltertheorems described in this paper hold under a�nedeformations and a current step is to incorporate itin to the vector-correlation routine.While these results execute in a reasonable time theyare still far from the high speed performance de-sired of image retrieval systems. Work is on-goingtowards building indices of images based on localshape properties and using the indices to reduce theamount of translational search.



Figure 4: Retrieval results for Car.
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