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The technique is shown to be applicable to intensity images as well as edge imagesand point sets. It is also shown how the method may be extended to detecting skewsymmetry of rotational patterns. Finally, a brief discussion of related psychophysicalwork is presented.
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1. IntroductionThe salience of symmetry for patterns in the human visual system has been noted by anumber of observers from Mach onwards. It has been speculated (theorized?) that symmetryplaces an important role in the perception of shape [19, 17]. Rock and others have arguedthat symmetry axes provide a local coordinate system which characterize a shape [19, 18].Marr [17], for example, uses symmetry axes to assign an object-based coordinate system inthe 2 1/2-D sketch. In computer vision, the role of (reection) symmetry in de�ning shapehas been explored by a number of researchers [3, 4, 5, 9]. Many of these methods [4, 3, 5]are based on point and line segment data that already correspond to a segmented object orpattern.The presence of symmetry, however, is often a strong cue for �gure-ground segre-gation in biological vision [21]. Symmetries can heavily inuence the distinctiveness of anobject/�gure in relation to its background and. For example, the bodies of many animals areoften characterized by a strong symmetry axis running from top to bottom. [18]. Symmetrymay therefore be useful in object identi�cation.In this paper, we approach the problem of �nding rotational and reectional symme-tries as an aid to detection of signi�cant structure in an image. Given that one cannot relyon pre-segmented data for computing symmetries if segmentation is the goal, we propose theuse of Gaussians and their derivatives at multiple scales as a way of detecting symmetries.This paper aims to demonstrate that symmetry axes can be detected using Gaussian deriva-tives. Their use in segmentation will be explored in a future paper. In general besides theuseful symmetry axes, a symmetry detector will respond to homogeneous regions - whichare trivially symmetric. Although broad homogeneous regions can be rejected with ease,narrow homogeneous regions are much harder to reject. This is because the edges of such3



a homogeneous region will lie within any �lter giving rise to a symmetric response. Thenarrow homogeneous region therefore gives rise to a ridge or valley. It is shown here thatridges and valleys are special kinds of symmetries and the symmetry detector will thereforerespond to them.Gaussian derivatives may be expressed in terms of Gaussian weighted moments. Theconditions for rotational and reectional symmetry using Gaussian weighted moments canbe derived in the same manner as for \ordinary" moments [1]. An important advantagegained is that the scale associated with the Gaussian derivatives automatically limits theextent of the signal over which the moments are derived.The importance of scale is demonstrated by the following example. Consider a 1-Dsignal which is symmetric over an interval [-a,a]. Outside of this interval the signal is notsymmetric (see �gure 1). \Ordinary" moments will not detect the symmetry because theentire signal is not symmetric. However, Gaussian weighted moments or Gaussian derivativeswill detect the symmetry over a set of scales, if the scales are chosen to make the contributionsof the asymmetric part negligible.There is considerable evidence that primate visual systems use spatial �lters at mul-tiple scales in the early stages of processing. These are often modelled as Gabor or Gaussianderivative �lters [20]. A number of di�erent visual processes have been modelled using Gaus-sian derivative �lters, for example, texture segmentation [15], blob detection [13], shape fromtexture [14]. The use of Gaussian derivative �lters at multiple scales is, therefore, consistentwith this paradigm and with data on the primate visual system. Further, psychophyicalstudies on symmetry show that [12, 18, 7]1. symmetry detection is pre-attentive.
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2. channel separation occurs before symmetry detection.3. symmetry detection is local.4. vertical and horizontal symmetry are detected most easily. Diagonal symmetry isdetected with less ease.The relationship of the scheme proposed here for detecting (reection) symmetry with thesepsychophysical facts will be discussed later in the paper.Since it is the Gaussians which are di�erentiated rather than the image itself, discon-tinuous images can be used for symmetry detection. Thus the method proposed to detectsymmetry will detect them in edge images and point sets also. In principle the technique willalso work on angle images - ie. images where the pixel values are replaced by the gradientangle. Thus a uni�ed framework to detect all kinds of symmetries is provided.Closely related to symmetry detection is the idea of detecting ridges and blobs. Ridgesmay be de�ned as reection symmetries characterized by a bright bar surrounded by adark background. Blobs are rotational symmetries characterized by a bright region whollyenclosed by a dark background.Another interesting notion in symmetry is the idea of detecting skewed symmetryi.e. the symmetric pattern lies on a plane which is not parallel to the image plane. In thecase of rotationally symmetric patterns, skewed symmetry imposes certain conditions on theGaussian derivatives and these are derived.This paper is organized as follows. First an intuitive notion of how symmetry can becharacterized by the derivatives of a function is derived. this is formalized using the momentsof an image is given. Since global moments over an image are rarely useful for detectingsymmetry, the derivation is adapted to use Gaussian weighted moments. This is essentially5



equivalent to using Gaussian derivatives. Images are rarely perfectly symmetric, rather theryare approximately symmetric. The notion of approximate symmetry is discussed and isfollowed by a discussion of ridges and blobs. An algorithm for detecting symmetry in imagesis then provided and experiments on some real images are shown. The symmetry conditionsdiscussed above are not only valid for image intensities, but also for edges and points andthis is briey discussed. The remaining sections of the paper discuss skew symmetry andhow rotational skew symmetry can be detected.1.1 Brief Review of Previous Work in SymmetryA fair amount of previous work in symmetry [3, 4, 5] assumes that the object hasbeen previously segmented and an edge outline obtained. Local symmetry axes are thencomputed to obtain a shape description in terms of a line skeleton.Although there has been a considerable amount of literature on symmetry in computervision (see Zabrodsky [22] for a good review), very little has been concerned with usingsymmetry for segmentation in images. Reisfeld et al [8] developed a symmetry operator to�nd highly symmetric points in a face. They used this operator to detect faces. Zabrodsky[22] developed a general symmetry operator which she applied to detecting symmetry axesin faces. For an excellent review of previous work in computer vision on symmetry see1.2 ContributionsThe contribution of this paper is to show that Gaussian derivatives at multiple scalescan be used to detect reection and rotation symmetry without any apriori segmentation.The use of Gaussian derivatives to detect skew symmetry for rotationally symmetric patternsis also derived. Experiments on real images are shown to illustrate these ideas. It is shownthat ridges and valleys are special kinds of symmetries and they are also detected by the6



symmetry detector.2. Basic IdeasAn intuitive notion for characterizing symmetry can be obtained by looking at thederivatives of a function. Doing so provides an insight into the close connections betweensymmetry detection and �nding ridges in images.Consider a twice di�erentiable function F(x). Let F(x) have a maximum at a. Thenfrom elementary calculus rF (a) = 0 (1)and F 00(a) � 0 (2)Consider a 2D function f(x,y) which is mirror symmetric. Without loss of generality, assumethat it is mirror symmetric about the y-axis. Consider the 1-D function f(x,b) for a �xedvalue of b. By mirror symmetry, f(x,b) must be even and hence can be written asg(x) = f(x; b) = [f(x; b) + f(�x; b)]=2 (3)Now it is trivial to show that all the odd derivatives of g are odd functions and all the evenderivatives of g are even functions. This implies that all the odd derivatives of g at x = 0must be zero and all the even derivatives of g attain their maximum at x = 0. It followsthat all the odd derivatives have zero crossings at x = 0.An implied assumption here is that the direction of the symmetry axis is known. Thedirection can be derived by �nding the two principal second directional derivatives. Thesymmetry axis must lie along one of them. If the �rst derivative along the perpendiculardirection is zero, then there is declared to be a valid symmetry axis. i.e. if x' or y' is a7



symmetry axis [(x',y') = R (x,y)] thenRTrf = (0; k)or(k; 0) (4)RTf 00(x; y)R = � (5)where R = R(�) is a 2-D rotation matrix and � is a 2 by 2 diagonal matrix. This de�nitionis consistent with the symmetry conditions derived in the next section using moments. Thussymmetry is de�ned using the extremum values of the function f(x,y).One can deal with rotational symmetry in similar fashion. For example, let a functionf(x,y) have rotational symmetry of order n. This implies thatf(x) = f(Rx) (6)where R = R(�) is a 2D rotation matrix and � = 2�=n. Di�erentiating givesrf(x) = RTrf(Rx) (7)and further di�erentiating gives f 00(x) = RTf 0(Rx)R (8)Now the centers of rotational symmetries are �xed points and thereforerf(0) = RTrf(0) (9)f 00(0) = RTf 00(0)R (10)which implies that rf(0) = 0 and f"(0) = k I.The notion of symmetry dealt with here is an in�nitesmal one i.e. if f(x,y) is symmetricabout the y-axis at (0,y), then the neighbourhood over which this function is symmetric is(��; �)i:e:f(�; y) = f(��; y). This is not very useful for a number of reasons. An image8



has a large number of extremum points at a small scale - i.e. a large number of possiblesymmetries. Most symmetries in images, however, have �nite extent and the interesting onesusually occur over much larger scales. It is, therefore, necessary to incorporate the notionof scale. It is also possible that a function, although even, may not be twice di�erentiable,so that the above symmetry conditions are not directly applicable. A third issue is thesensitivity of di�erentiation to noise at small scales. All these di�culties may be resolved bysmoothing the image �rst with a Gaussian of an appropriate scale.The notion of scale can be incorporated by smoothing with Gaussians at several scalesand then di�erentiating to check for symmetry. Equivalently this involves directly convolvingthe image with Gaussian derivatives. The above derivation for symmetry conditions wasbased on an intuitive argument. A more formal derivation can be established using momentsof the image. Moments provide global conditions on symmetry which are not very useful formany reasons. Most images are rarely globally symmetric, rather there are parts of themthat are symmetric. Further, for most purposes one would like to derive an axis of symmetrywhich cannot be derived using the global conditions on moments. However, the derivationfor moments can be adapted to use Gaussian weighted moments. Since Gaussian derivativescan always be expressed in terms of Gaussian weighted moments, symmetry conditions onGaussian derivatives can also be derived from them.3. Derivation Using MomentsSymmetry can be used to derive conditions on the moments of a function. The easiestway to do this is to use complex moments. We will follow the derivation of Abu-Mostafaand Psaltis [1] here.
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3.1 Derivation of the conditions for Rotational SymmetryDe�ne the complex moment Cpq of a function f(x,y) byCpq = Z (x+ iy)p(x� iy)qf(x; y)dxdy (11)This may be expressed in polar coordinates as followsCpq = Z rpeip�rqe�iq�f(r; �)rdrd�= Z rp+q+1ei�(p�q)f(r; �)drd� (12)Let the pattern f(x,y) be rotated by an angle � . Then the new moment C 0pq can be expressedin terms of Cpq as C 0pq = Cpqei�(p�q) (13)Both Cpq and C 0pq are complex numbers. Thus for (p - q) = 1 there is a unique value of �for which C 0pq is positive real. This may be state in the form of a Lemma.Lemma 1 For (p - q) = 1 there is a unique value of �; 0 � � � 2� such that C 0pq is positivereal.Lemma 2 Consider a k-fold rotationally symmetric pattern. By symmetry there must bek values of � for which C 0pq is positive real, where k is the order of symmetry.Lemma 3 Lemmas 1 and 2 can be consistent only if C 0pq = 0 for any rotationally symmetricpattern ( p - q = 1)The general form of Lemma 3 when (p - q) is any integer can now be stated.10



Lemma 4 If a pattern is rotationally symmetric, C 0pq = 0, whenever the order of symmetryk does not divide (p - q).3.1.1 Examples1. Let p = 1, q = 0. Then for any k � 1 (i.e. any rotational symmetry)C10 = Z Z (x + iy)f(x; y)dxdy = m10 + im01 = 0 (14)where mab denotes (ordinary) moments of order ab. Thus if the pattern is rotationallysymmetric m10 = m01 = 0. This is another way of stating that the centroid of arotationally symmetric pattern coincides with its center of symmetry.2. Let p = 2, q = 0. Then for rotational symmetries of order 3 or greater,C20 = Z Z (x + iy)2f(x; y)dxdy = m20 �m02 + i2m11 = 0 (15)Thus for rotational symmetry, m20 = m02; m11 = 0. De�ne the second moment matrixby " m20 m11m11 m02 #. Then it follows from the above that the second moment matrix mustbe the identity matrix times a constant.3.2 Derivation of the conditions for Reection SymmetryConsider reections about the x axis. Then Cpq = C�pq. This implies that Cpq mustbe real. Thus a reection about the x-axis implies that Cpq must be real.Reections about any arbitrary axis can be obtained by �rst rotating the coordinateaxis and then applying the above condition.
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3.2.1 Examples1. p = 1, q = 0 C10 = Z Z (x + iy)f(x; y)dxdy = m10 + im01 (16)must be real. Thus m01 = 0 for a reection about the x-axis. Similarly for a reectionabout the y-axis m10 = 0.2. p = 2, q = 0 C20 = Z Z (x + iy)2f(x; y)dxdy = m20 �m02 + i2m11 (17)must be real. Therefore m11 = 0 for a reection about the x-axis. The same conditionholds for a reection about the y-axis. Thus the second moment matrix for a reectionabout the x or y axes must be diagonal.The above derivations using moments were �rst noticed in the context of matchingpatterns under similarity transforms by Abu Mostafa and Psaltis [1]. They have not reallybeen used to �nd symmetry for a number of reasons. First, for a reection symmetry, oneneeds to derive a symmetry axis. However, all global moments do is show that whether theimage is symmetric globally or not. They do not determine a symmetry axis. Images arerarely globally symmetric. Rather they may be symmetric over local regions. The notionof scale is, therefore, important both for reection and rotation symmetries and this is notincorporated in the above derivations. This is, however, simple to do using Gaussian weightedmoments. The derivation stays the same in this case. The derivation may then be modi�edto use Gaussian derivatives rather than Gaussian weighted moments.
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4. Derivation Using Gaussian derivativesOne way to extend the above de�nitions is by �rst convolving the function f(x,y) witha Gaussian of an appropriate scale and then checking for the extrema. This is straightforwardto do. Alternatively, this may be derived by de�ning Gaussian weighted moments.A complex Gaussian weighted moment maybe de�ned asC 0pq = Z Z (x+ iy)p(x� iy)qG(x; y; �)f(x; y)dxdy (18)where G(x; y; �) is a Gaussian. This de�nition implies that the symmetry conditions forGaussian weighted moments remain the same as for regular moments.The advantage gained is that a function which has rotational or reection symmetrymust satisfy this at several scales. The second advantage is that for reection symmetries,symmetry axes will be obtained by computing the above moments at every point in theimage. A derivative of a Gaussian of any order may be expressed as a linear function ofGaussian weighted moments. Thus the symmetry conditions may now be modi�ed andextended to Gaussian derivatives. Note that from this point onwards, only moments uptothird order will be considered.The �rst derivative of a Gaussian with respect to the x-axis are given by@G(x; y; �)=@x = �x=�2G(x; y; �) (19)and a similar expression holds for the y-derivative. Consider a function �ltered with the �rstderivative of a Gaussian. This is equivalent to taking the �rst moments of the function atthe same point. Therefore, the symmetry conditions at the point remain unchanged.
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The second derivatives of a Gaussian are given by@2G(x; y; �)=@x2 = x2=�4G(x; y; �)�G(x; y; �)=�2 (20)@2G(x; y; �)=@x@y = xy=�4G(x; y; �) (21)@2G(x; y; �)=@y2 = y2=�4G(x; y; �)�G(x; y; �)=�2 (22)The second derivative matrix of a Gaussian may be de�ned as " Gxx GxyGxy Gyy # . The diagonalelements di�er from the second moment matrix by the additional Gaussian terms. Thesecond derivative matrix will be zero when the intensity is either constant or varies linearlywithin the support of the Gaussian. This follows from the linearity of convolution for thenwe have F �G00 = F 00 �G (23)Now F" is zero when F is either constant or linear, and hence it follows that F * G" iszero when F is constant or linear. Otherwise, the conditions for both reection and rotationsymmetry stay the same. This is useful, for it allows the elimination of patterns with uniformbrightness. However, a bright bar4.1 Edges and Points.Since it is the Gaussians that are di�erentiated rather than the image function itself,the above algorithm will detect symmetries in discontinuous images. Thus for example, itwill detect symmetries in edge images and sets of points. However, for edge images it willproduce symmetry axes at the edges. Although this is a symmetry axis for the edge image,it is not one for the original image. These extra axes are produced because the originalintensity image which would have di�erentiated them is no longer available. An example ofsymmetry detection on an edge image is shown in14



4.2 Scale Invariance of the Reection AxesAssume that the symmetry axis is invariant over a range of scales �0::::�m. Then allthe �rst and second derivatives of Gaussians need to be rotated by the same matrix R toobtain the axis of symmetry.Proof: The �rst derivative conditions state that y' is the symmetry axis if Gx0;sigma =0. But (x0; y0) = RT (x; y) where Ris the rotation matrix. Note that Rdoes not depend onthe scale but only the symmetry axis y' and the current coordinate system (x,y). Since byassumption the symmetry axis is the same for �0::::�m it follows that Rmust be the samefor �0::::�m.Corollary: Since the rotation matrix required to diagonalize the second derivativematrix is the same as required to diagonalize the �rst derivative matrix, it follows thatRmust be the same for the second derivative matrix too.5. Approximate SymmetryReal images are rarely exactly symmetric. For example, the human face shows approx-imate bilateral symmetry. It is, therefore, important that the notion of symmetry formulatedhere capture this. Consider a 1-D function f(x) again. Assume that f(x) is approximatelysymmetric at (x = 0). Convolve f(x) with a Gaussian G(x; �) and let F (x) = f(x) �G(x; �).Let the scale � be chosen such that F(x) is also approximately symmetric at (x = 0). Letthe even and odd parts of F(x) be E(x) and O(x). ThenrF (x) = rE(x) +rO(x): (24)At x = 0, rE(0) = 0, thus rF (0) = rO(0). Similarly, F"(0) = E"(0).Therefore, O'(0) and E"(0), in some sense, measure the deviation from symmetry.If they are large, F(x) is not symmetric at (x = 0) and if they are small, it is symmetric15



about (x = 0). Going to 2-D introduces another complicating factor - the orientation of thesymmetry axis. If the orientation of the symmetry axis is assumed known, for example itis assumed vertical, then the above considerations still apply. However, if the orientation ofthe symmetry axis is unknown, this must also be recovered at the same time as symmetryis tested. For exactly symmetric patterns, this can be done by �nding the rotation matrixwhich zeroes one of the components of rF (x; y) and diagonalizes F"(x,y) at the same time.We will assume that this applies also to approximately symmetric patterns.5.1 Ridges, Valleys and BlobsStructure in images can also be de�ned in terms of ridges, valleys and blobs at multiplescales. The detected ridges and blobs can be used [2, 10, 14, 11] to segment the image. Thereis a close relationship between ridges, blobs and symmetric patterns. Ridges may be regardedas reection symmetries de�ned by a single bright bar against a dark background (and valleysas dark bars against a light background). Circular blobs can be considered as special casesof rotationally symmetric patterns which are de�ned by a bright circular patch against adark background (or vice-versa). Thus the symmetry conditions above also apply to ridgesand valleys (a similar de�nition for ridges has been used by Burns et al [11]).The optimal scale of a �lter required to detect symmetry is hard to specify for generalsymmetries. However, for ridges and blobs, this can be speci�ed by considering the �lteroutputs over a set of scales. The lowest �lter which is useful for this purpose is the secondderivative of Gaussian �lter. This follows because a Gaussian convolution just produces theaverage value of the Gaussian weighted intensity while the �rst derivative �lter produceszero at a point of symmetry. However, the second directional derivative perpendicular to theridge must assume a maximum at some scale - and this scale can be assumed to be optimum.This scale therefore de�nes the extent of the symmetry (or ridge). The extent will depend on16



the exact shape of the ridge. Here, it is derived for a ridge de�ned by a rectangular window.In a similar vein, Blostein and Ahuja [2] used the maximum of the Laplacian over scales tode�ne circular blobs and Lindeberg and Garding [14] used the maximum of the trace of thehessian to specify the extent of elliptical blobs.5.2 Derivation of the Extent of a RidgeConsider a bright bar against a dark background. Let the ridge be in�nite along onedirection (say the y direction ) and in the perpendicular direction let it be de�ned byF (x) = 1 �k � x � k (25)= 0 otherwise (26)Then consider the convolution of F with Gxx. At x = 0, the value of this convolution isZ k�k(x2=�2 � 1)=�2G(x; �) (27)This can be shown to attain a minimum with respect to scale (by di�erentiating the expres-sion with respect to �) at k = q(3)�. Thus the ridge has an extent of 2k = 2q(3)� whenthe convolution with respect to Gxx is a minimum with respect to scale.Similar derivations can be carried out for other assumped shapes for the ridge.6. Algorithm for �nding Reection SymmetryThe algorithm for detecting reection symmetry will use the �rst two Gaussian deriva-tives. In general, the angle of the symmetry axis is unknown and therefore the second deriva-tives of the Gaussians are used to derive the angle. The zeroes of the �rst derivatives canthen be used to locate the symmetry axes. The zeroes of the �rst derivatives are, however,not well localized for a couple of reasons. First, detection of a zero response requires some17



kind of threshold and cannot therefore be well localized. Second, if a pattern is homoge-neous in intensity, it will give zero responses over a large area. As discussed in section 2.,a function which is exactly symmetric will have a zero crossing in its �rst derivative. Thuszero crossings can be used instead of zero responses. Zero crossings have the advantage oflocalization. A threshold on their slope is still needed to reject noise, but this threshold isnot critical.The algorithm for �nding reection symmetry may now be stated.1. Convolve the image with �rst and second derivatives of Gaussians with standard de-viation �.2. Diagonalize the second derivative matrix G" i.e.G00 = RT(�)�R(�) (28)where R(�) is a 2 by 2 rotation matrix and � is a diagonal matrix (this follows fromthe symmetry of G").3. Now rotate the �rst derivative vector G10 by the rotation matrix Rderived from theabove diagonalization. i.e G0 = RTG10 (29)4. Now look for zeroes in either of the �rst partial derivatives of G'.As discussed above, it is useful to modify the last step. Thus instead of looking for zeroes, welook for zero-crossings. Since noise could cause false zero crossings, these are then thresholdedbased on their slope - zero crossings which have small slope are rejected.
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7. ExperimentsOn the top left in Figure 1 is a picture of a diskhead slider that has been twicereduced using a Gaussian pyramid. The lighting is almost but not completely uniform.The image was then �ltered with Gaussian derivatives with � = 5. On the top right isdisplayed the y derivative of the Gaussian while on the bottom right the y derivative isthresholded to show the zero crossings. The bottom left displays the detected symmetriesusing the above algorithm after thresholding the slope at 3. The detected symmetry axes areall local. No global curves have been �tted. As can be seen the symmetry axes are not allstraight, but bend and curve around (the cross labels the corner of one of the bars). Notethat the background between the metal strips also has symmetry axes. Figure and grounddiscrimination can be done by noting that the axes for the �gure will have a positive secondderivative along the direction of the symmetry axis.Figure 2 shows the Lenna image frequently used in image processing. On the top lefthand side is the original image reduced twice using a Gaussian pyramid. The image wasagain �ltered with Gaussian derivatives with � = 5. On the top right is the x derivative ofthe image and on the bottom right the zero crossings of the x derivative are shown. On thebottom left are the symmetry axes detected by the algorithm after thresholding the slope at2. Many of these correspond to narrow homogeneous regions - in fact these are ridges andvalleys and as discussed above ridges and valleys are special kinds of symmetries. (Sincethey are narrow, the edges of these regions lie within the �lter. Thus they consist of abright bar surrounded by a darker region which is the de�nition of a ridge (or dark againstbright for valleys). The �lters will ,therefore, have a non-zero response to them. Broadhomogeneous regions on the other hand will not respond to the �lter. One of the symmetryaxes corresponds to Lenna's face. This is indicated by the a line.
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Figure 3 is almost identical except that the scale used is � = 10. Note, that thenumber of axes is much reduced, but the axis de�ning the face is still present.8. Determination of Skew SymmetryConsider a symmetric pattern on a plane. If this plane is not parallel to the imageplane, under weak perspective projection, the pattern's image will be skew symmetric. Skewsymmetry causes the slant and tilt of the planes to be confounded with the symmetryconditions. For symmetric patterns, it can therefore be used to measure both the slantand tilt of the plane on which the pattern lies as well as for checking for symmetry.Under weak perspective projection, the Gaussian derivatives on the plane and theimage are related as follows [16]:G01(:; ATA�) = ATG00(:; �) (30)G001(:; ATA�) = ATG000(:; �)A (31)where symmetric projection matrix A = sRTMR. s is the scale, Ris a 2-D rotation matrixand M is the slant matrix given by M = " cos� 10 1 # (32)Note that the Gaussian derivatives on the left hand side are elliptical while those on the rightare circular. As a �rst approximation, it will be assumed that the Gaussians on the left-handside can be approximated by circular Gaussian derivatives. The main problem (at least as faras detecting rotational skew symmetry) will be that the a�ne parameters will be estimatedincorrectly. One can use an iterated procedure where the estimated a�ne parameters areused to re�lter using elliptical Gaussians and the a�ne parameters reestimated.20



8.1 Rotational Skew SymmetryFor rotational symmetry, G00 = 0 and G000 = kI for some constant k. Thus theaboveequations reduce to: G01 = 0 (33)G001 = kATA (34)The eigenvalues of the second derivative matrix give the slant and tilt of the pattern [6].Thus the slant and tilt of the plane are given by:
cos� = vuuutGxx +Gyy �q(Gxx �Gyy)2 + 4GxyGxx +Gyy +q(Gxx �Gyy)2 + 4Gxy (35)

tan2� = 2GxyGxx �Gyy (36)8.1.1 Algorithm for Detecting Rotational Skew Symmetry1. Mark those places in the image where G01 = 0.2. At those places compute the slant and tilt using the second derivative matrix.3. Warp the image using the slant and tilt parameters and recompute.9. Consistency with psychophysical dataThe computational theory for detecting symmetry that is proposed here is consistentwith the psychophysical data on symmetry detection by humans. Consider �rst the experi-ments of Julesz and Chang [12]. They argued that separation into frequency channels occurs21



before symmetry detection. They found that if two random dot patterns, one verticallysymmetric and the other horizontally symmetric are added together, the resulting patternis not perceived as symmetric. However, they found that if one of the patterns is low pass�ltered and the other high pass �ltered and the patterns are again added together, bothsymmetries are still perceived. If Gaussian derivatives of several di�erent sigma's are used,the channel separation observed by Julesz and Chang will occur. The algorithm describedhere does �ltering before symmetry detection which is consistent with the observations ofJulesz and Chang [12]. Again, symmetry detection is considered local an pre-attentive whichis consistent with the mechanisms suggested here.There is considerable neurophysiological and psychophysical evidence that in the earlystages of the primate visual system the input is �ltered using spatial �lters [20]. These havebeen modelled using gabor functions or Gaussian derivatives. The scheme proposed here istherefore, consistent with the available evidence in the use of such �lters.Corballis and Roldan [7] found that the time it took to verify that bilateral patternsare symmetric increased as the axis of symmetry was rotated from the vertical. The algorithmproposed, here, takes the same time for all rotational angles and is therefore not consistentwith their evidence. However, a modi�ed version of the algorithm would be consistent withsuch a scheme. A modi�ed scheme could be generated as follows, the image is rotated by aset of discrete angles (say at steps of 15 deg). The �rst derivative of the Gaussian is thenchecked to see if it is close to zero - or has zero crossings. These are labelled as possiblesymmetries. Figure 4 shows an example of an image for which only the zero crossings in thevertical direction are displayed. Note that the faces are all detected as well as other ridges.Such a scheme would take time proportional to the rotational angle.
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TOp left: Slider image 2 reduced. Top Right:d/dy image. Bottom  left: the
detected bilateral symmetry Bottom right: d/dy showing the zero crossings.

Figure 1:
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Top left: Lenna image 2 reduced. Top Right:d/dx image. Bottom  left: the
detected bilateral symmetry Bottom right: d/dx showing the zero crossings.

Figure 2:
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Top left: Lenna image 2 reduced. Top Right:d/dx image. Bottom  left: the
detected bilateral symmetry Bottom right: d/dx showing the zero crossings.

Figure 3:
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Left: Image, Right: x derivative threholded

Figure 4:
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