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Abstract
The retrieval of images based on their visual similarity

to an example image is an important and fascinating area of

research. Here, a method to characterize visual appearance

for determining global similarity in images is described.

Images are filtered with Gaussian derivatives and ge-

ometric features are computed from the filtered images.

The geometric features used here are curvature and phase.

Two images may be said to be similar if they have simi-

lar distributions of such features. Global similarity may,

therefore, be deduced by comparing histograms of these

features. This allows for rapid retrieval and examples from

collection of gray-level and trademark images are shown.

1 Introduction
The advent of large multi-media collections and digi-

tal libraries has led to a need for good search tools to in-

dex and retrieve information from them. For text avail-

able in machine readable form (ASCII) a number of good

search engines are available. However, there are as yet no

good tools to retrieve images. The traditional approach to

searching and indexing images using manual annotations

is slow, labor intensive and expensive. In addition, textual

annotations cannot encode all the information available in

an image. There is thus a need for retrieving images us-

ing their content. The indexing and retrieval of images

using their content is a difficult problem. A person using

an image retrieval system usually seeks to find semanti-

cally relevant information. This entails solutions to such

hard problems as automatic segmentation, robust feature

detection and recognition, all of which are as yet unsolved.

However, many image attributes like color, texture, shape

and “appearance” are often directly correlated with the se-

mantics of the problem. For example, logos or product✄
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packages (e.g., a box of Tide) have the same color wher-

ever they are found. The coat of a leopard has a unique

texture while Abraham Lincoln’s appearance is uniquely

defined. These image attributes can often be used to index

and retrieve images.

A common model for retrieval, and one that is adopted

here, is that images in the database are processed and de-

scribed by a set of feature vectors. A priori these vectors

are indexed. During run-time, a query is provided in the

form of an example image and its features are compared

with those stored. Images are then retrieved in the or-

der indicated by the comparison operator. In this paper,

objects similar in visual appearance to a given query ob-

ject are retrieved by comparing with a set of database im-

ages using a characterization of their image intensity sur-

faces. Arguably an object’s visual appearance in an im-

age is closely related to several factors including, among

others, its three dimensional shape, albedo, surface texture

and the imaged viewpoint. It is non-trivial to separate the

different factors constituting an object’s appearance. For

example, the face of a person has a unique appearance that

cannot just be characterized by the geometric shape of the

’component parts’. In this paper a characterization of the

shape of the intensity surface of imaged objects is used for

retrieval. The experiments conducted show that retrieved

objects have similar visual appearance, and henceforth an

association is made between ’appearance’ and the shape of

the intensity surface.

Specifically, this paper focuses on a representation for

computing global similarity. That is, the task is to find

images that, as a whole, appear visually similar. The util-

ity of global similarity retrieval is evident, for example, in

finding similar scenes or similar faces in a face database.

In addition, practical applications such as finding similar

trademarks in a trademark database significantly benefit

from global similarity retrieval.

The image intensity surface is robustly characterized

using features obtained from responses to multi-scale

Gaussian derivative filters. Koenderink [8] and others [3]

have argued that the local structure of an image can be

represented by the outputs of a set of Gaussian derivative

filters applied to an image. That is, images are filtered



with Gaussian derivatives at several scales and the result-

ing response vector locally describes the structure of the

intensity surface. By computing features derived from the

local response vector and accumulating them over the im-

age, robust representations appropriate to querying images

as a whole (global similarity) can be generated. One such

representation uses histograms of features derived from

the multi-scale Gaussian derivatives. Histograms form a

global representation because they capture the distribution

of local features (A histogram is one of the simplest ways

of estimating a non parametric distribution). This global

representation can be efficiently used for global similarity

retrieval by appearance and retrieval is very fast.

The choice of features often determines how well the

image retrieval system performs. Here the task is to ro-

bustly characterize the 3 dimensional intensity surface. A

3-dimensional surface is uniquely determined if the local

curvatures everywhere are known. Thus, it is appropriate

that one of the features be local curvature. The principal

curvatures of the intensity surface are invariant to image

plane rotations, monotonic intensity variations and further,

their ratios are in principle insensitive to scale variations of

the entire image. However, spatial orientation information

is lost when constructing histograms of curvature (or ratios

thereof) alone. Therefore we augment the local curvature

with local phase, and the representation uses histograms of

local curvature and phase.

Local principal curvatures and phase are computed

at several scales from responses to multi-scale Gaussian

derivative filters. Then histograms of the curvature ra-

tios [7, 1] and phase are generated. Thus, the image is

represented by a single vector (multi-scale histograms).

During run-time the user presents an example image as

a query and the query histograms are compared with the

ones stored, and the images are then ranked and displayed

in order to the user.

The rest of the paper is organized as follows. Section 2

surveys related work in the literature. In section 3, the no-

tion of appearance is developed further and characterized

using Gaussian derivative filters and the derived global

representation is discussed. Comparisons are made in the

context of trademark retrieval with the traditional moment

invariants. A discussion and conclusion follows in Sec-

tion 4.

2 RELATED WORK

Several authors have tried to characterize the appear-

ance of an object via a description of the intensity surface.

In the context of object recognition [14] represent the ap-

pearance of an object using a parametric eigen space de-

scription. This space is constructed by treating the image

as a fixed length vector, and then computing the principal

components across the entire database. The images there-

fore have to be size and intensity normalized, segmented

and trained. Similarly, using principal component repre-

sentations described in [5] face recognition is performed

in [19]. In [17] the traditional eigen representation is aug-

mented by using most discriminant features and is applied

to image retrieval. The authors apply eigen representation

to retrieval of several classes of objects. The issue, how-

ever , is that these classes are manually determined and

training must be performed on each. The approach pre-

sented in this paper is different from all the above because

eigen decompositions are not used at all to characterize

appearance. Further, the method presented uses no learn-

ing and, does not require constant sized images. It should

be noted that although learning significantly helps in such

applications as face recognition, however, it may not be

feasible in many instances where sufficient examples are

not available. This system is designed to be applied to a

wide class of images and there is no restriction per se.

In earlier work we showed that local features computed

using Gaussian derivative filters can be used for local sim-

ilarity, i.e. to retrieve parts of images [12]. Here we argue

that global similarity can be determined by computing lo-

cal features and comparing distributions of these features.

This technique gives good results, and is reasonably toler-

ant to view variations. Schiele and Crowley [16] used such

a technique for recognizing objects using grey-level im-

ages. Their technique used the outputs of Gaussian deriva-

tives as local features. A multi-dimensional histogram of

these local features is then computed. Two images are con-

sidered to be of the same object if they had similar his-

tograms. The difference between this approach and the

one presented by Schiele and Crowley is that here we use

1D histograms (as opposed to multi-dimensional) and fur-

ther use the principal curvatures as the primary feature.

The use of Gaussian derivative filters to represent ap-

pearance is motivated by their use in describing the spatial

structure [8] and its uniqueness in representing the scale

space of a function [9, 6, 21, 18] The invariance properties

of the principal curvatures are well documented in [3].

In the context of global similarity retrieval it should be

noted that representations using moment invariants have

been well studied [13]. In these methods global representa-

tion of appearance may involve computing a few numbers

over the entire image. Two images are then considered

similar if these numbers are close to each other (say using

an L2 norm). We argue that such representations are not

able to really capture the “appearance” of an image, par-

ticularly in the context of trademark retrieval where mo-

ment invariants are widely used. In other work [12] we

compared moment invariants with the technique presented

here and found that moment invariants work best for a sin-

gle binary shape without holes in it, and, in general, fare

worse than the method presented here.

Texture based image retrieval is also related to the ap-

pearance based work presented in this paper. Using Wold



modeling, in [10] the authors try to classify the entire Bro-

datz texture and in [4] attempt to classify scenes, such as

city and country. Of particular interest is work by [11] who

use Gabor filters to retrieve texture similar images.

The earliest general image retrieval systems were de-

signed by [2, 15]. In [2] the shape queries require prior

manual segmentation of the database which is undesirable

and not practical for most applications.

3 Global representation of appearance

Three steps are involved in order to computing global

similarity. First, local derivatives are computed at several

scales. Second, derivative responses are combined to gen-

erate local features, namely, the principal curvatures and

phase and, their histograms are generated. Third, the 1D

curvature and phase histograms generated at several scales

are matched. These steps are described next.

A. Computing local derivatives: Computing deriva-

tives using finite differences does not guarantee stability

of derivatives. In order to compute derivatives stably, the

image must be regularized, or smoothed or band-limited.

A Gaussian filtered image ☎✝✆✟✞✠☎☛✡✌☞ obtained by con-

volving the image I with a normalized Gaussian ☞✎✍✑✏✓✒✕✔✗✖
is a band-limited function. Its high frequency components

are eliminated and derivatives will be stable. In fact, it has

been argued by Koenderink and van Doorn [8] and others

[3] that the local structure of an image I at a given scale

can be represented by filtering it with Gaussian derivative

filters (in the sense of a Taylor expansion), and they term

it the N-jet.

However, the shape of the smoothed intensity surface

depends on the scale at which it is observed. For exam-

ple, at a small scale the texture of an ape’s coat will be

visible. At a large enough scale, the ape’s coat will appear

homogeneous. A description at just one scale is likely to

give rise to many accidental mis-matches. Thus it is desir-

able to provide a description of the image over a number

of scales, that is, a scale space description of the image. It

has been shown by several authors [9, 6, 21, 18, 3], that un-

der certain general constraints, the Gaussian filter forms a

unique choice for generating scale-space. Thus local spa-

tial derivatives are computed at several scales.

B. Feature Histograms: The normal and tangential cur-

vatures of a 3-D surface (X,Y,Intensity) are defined as [3]:

✘ ✍✑✙✚✒✕✔✗✖✛✞ ✜✢ ☎✤✣✥ ☎✧✦★✦✪✩✫☎✬✣✦ ☎ ✥✭✥✯✮✱✰ ☎ ✥ ☎★✦✲☎ ✥ ✦✳ ☎ ✣✥ ✩✴☎ ✣✦✓✵✷✶✸
✹✺ ✍✻✙✼✒✽✔✗✖

✾ ✍✿✙✚✒✕✔✗✖✼✞ ✜✢ ✳ ☎✬✣✥ ✮ ☎✤✣✦ ✵ ☎ ✥ ✦ ✩❀✍✻☎ ✥✭✥ ✮ ☎ ✦✧✦ ✖✓☎ ✥ ☎ ✦✳ ☎ ✣✥ ✩✫☎ ✣✦❁✵ ✶✸
✹✺ ✍✿✙✚✒✕✔✗✖

Where ☎ ✥ ✍✿✙✚✒✕✔✗✖ and ☎ ✦ ✍✑✙✼✒✽✔✗✖ are the local derivatives of

Image I around point ✙ using Gaussian derivative at scale✔ . Similarly ☎ ✥✭✥ ✍❃❂❄✒★❂❅✖ , ☎ ✥ ✦✪✍❆❂❇✒✝❂ ✖ , and ☎★✦✧✦✪✍❃❂❄✒★❂❅✖ are the corre-

sponding second derivatives. The normal curvature
✘

and

tangential curvature
✾

are then combined [7] to generate a

shape index as follows:❈ ✍✿✙✚✒✕✔✗✖✼✞❊❉✤❋❃❉✤●■❍ ✘ ✩ ✾✘ ✮ ✾❑❏✌✍✻✙✼✒✽✔✗✖
The index value

❈
is ▲ ✣ when

✘ ✞ ✾
and is undefined

when either
✘

and
✾

are both zero, and is, therefore, not

computed. This is interesting because very flat portions of

an image (or ones with constant ramp) are eliminated. For

example in Figure 2(middle-row), the background in most

of these face images does not contribute to the curvature

histogram. The curvature index or shape index is rescaled

and shifted to the range ▼ ◆❁✒✝❖✧P as is done in [1]. A histogram

is then computed of the valid index values over an entire

image.

The second feature used is phase. The phase is simply

defined as ◗❘✍✻✙✼✒✽✔✗✖❙✞❚❉✤❋❃❉✤● ✰ ✍✿☎★✦✪✍✿✙✚✒✕✔✗✖❯✒✽☎ ✥ ✍✑✙✼✒✽✔✗✖✕✖ . Note

that ◗ is defined only at those locations where
❈

is and ig-

nored elsewhere. As with the curvature index ◗ is rescaled

and shifted to lie between the interval ▼ ◆❁✒✝❖✧P .
Although the curvature and phase histograms are in

principle insensitive to variations in scale, in early ex-

periments we found that computing histograms at mul-

tiple scales dramatically improved the results. An ex-

planation for this is that at different scales different lo-

cal structures are observed and, therefore, multi-scale his-

tograms are a more robust representation. Consequently,

a feature vector is defined for an image ☎ as the vector❱✷❲ ✞❨❳✑❩✎❬❭✍✑✔❫❪★✖❫❴✝❴★❴✽❩❑❬❵✍✻✔✷❛❁✖❫✒✕❩❝❜❞✍✻✔❫❪✧✖❯❴✝❴★❴❆❩❝❜❡✍✑✔✷❛❁✖✕❢ where❩❝❜ and ❩✎❬ are the curvature and phase histograms respec-

tively. We found that using 5 scales gives good results and

the scales are ❖✛❂✝❂★❂❃❣ in steps of half an octave.

C. Matching feature histograms: Two feature vectors

are compared using normalized cross-covariance defined

as ❤ ❲❅✐ ✞ ❱✎❥❇❦✪❧❲ ❂ ❱☛❥❇❦✪❧✐♠♠♠ ♠♠♠ ❱✎❥❇❦✪❧❲ ♠♠♠ ♠♠♠ ♠♠♠ ♠♠♠ ❱❑❥❇❦✪❧✐ ♠♠♠ ♠♠♠
where

❱✎❥❇❦✪❧❲ ✞ ❱ ❲ ✮♦♥q♣ ❉✤●✛✍ ❱ ❲ ✖ .
Retrieval is carried out as follows. A query image is se-

lected and the query histogram vector
❱❯r

is correlated with

the database histogram vectors
❱ ❲

using the above formula.

Then the images are ranked by their correlation score and

displayed to the user. In this implementation, and for eval-

uation purposes, the ranks are computed in advance, since

every query image is also a database image.

3.1 Experiments

The curvature-phase method is tested using two

databases. The first is a trademark database of 2048 im-



ages obtained from the US Patent and Trademark Office

(PTO). The images obtained from the PTO are large, bi-

nary and are converted to gray-level and reduced for the

experiments. The second database is a collection of 1561

assorted gray-level images. This database has digitized

images of cars, steam locomotives, diesel locomotives,

apes, faces, people embedded in different background(s)

and a small number of other miscellaneous objects such

as houses. These images were obtained from the Internet

and the Corel photo-cd collection and were taken with sev-

eral different cameras of unknown parameters, and under

varying uncontrolled lighting and viewing geometry.

In the following experiments an image is selected and

submitted as a query. The objective of this query is stated

and the relevant images are decided in advance. Then the

retrieval instances are gauged against the stated objective.

In general, objectives of the form ’extract images similar

in appearance to the query’ will be posed to the retrieval

algorithm. A measure of the performance of the retrieval

engine can be obtained by examining the recall/precision

table for several queries. Briefly, recall is the proportion

of the relevant material actually retrieved and precision is

the proportion of retrieved material that is relevant [20].

It is a standard widely used in the information retrieval

community and is one that is adopted here.

Queries were submitted each to the trademark and as-

sorted image collection for the purpose of computing re-

call/precision. The judgment of relevance is qualitative.

For each query in both databases the relevant images were

decided in advance. These were restricted to 48. The top

48 ranks were then examined to check the proportion of re-

trieved images that were relevant. All images not retrieved

within 48 were assigned a rank equal to the size of the

database. That is, they are not considered retrieved. These

ranks were used to interpolate and extrapolate precision at

all recall points.In the case of assorted images relevance is

easier to determine and more similar for different people.

However in the trademark case it can be quite difficult and

therefore the recall-precision can be subject to some error.

The recall/precision results are summarized in Table 1 and

both databases are individually discussed below.

Figure 1 shows the performance of the algorithm on the

trademark images. Each strip depicts the top 8 retrievals,

given the leftmost as the query. Most of the shapes have

roughly the same structure as the query. Note that, out-

line and solid figures are treated similarly (see rows one

and two in Figure 1). Six queries were submitted for the

purpose of computing recall-precision in Table 1.

Experiments are also carried out with assorted gray

level images. Six queries submitted for recall-precision

are shown in Figure 2. The left most image in each row is

the query and is also the first retrieved. The rest from-left

to right are seven retrievals depicted in rank order. Note

that, flat portions of the background are never considered

because the principal curvatures are very close to zero and

therefore do not contribute to the final score. Thus, for

example, the flat background in Figure 2(second row) is

not used. Notice that visually similar images are retrieved

even when there is some change in the background (row

1). This is because the dominant object contributes most

to the histograms. In using a single scale poorer results are

achieved and background affects the results more signifi-

cantly.

The results of these examples are discussed below, with

the precision over all recall points depicted in parenthe-

ses. For comparison the best text retrieval engines have an

average precision of 50%:

1. Find similar cars(65%). Pictures of cars viewed from

similar orientations appear in the top ranks because

of the contribution of the phase histogram. This re-

sult also shows that some background variation can

be tolerated. The eighth retrieval although a car is a

mismatch and is not considered.

2. Find same face(87.4%) and find similar faces: In the

face query the objective is to find the same face. In

experiments with a University of Bern face database

of 300 faces with a 10 relevant faces each, the average

precision over all recall points for all 300 queries was

78%. It should be noted that the system presented

here works well for faces with the same representa-

tion and parameters used for all the other databases.

There is no specific “tuning” or learning involved to

retrieve faces. The query “find similar faces” resulted

in a 100% precision at 48 ranks because there are far

more faces than 48. Therefore, it was not used in the

final precision computation.

3. Find dark textured apes (64.2%). The ape query re-

sults in several other light textured apes and country

scenes with similar texture. Although these are not

mis-matches they are not consistent with the intent of

the query which is to find dark textured apes.

4. Find other patas monkeys. (47.1%) Here there are

16 patas monkeys in all and 9 within a small view

variation. However, here the whole image is being

matched so the number of relevant patas monkeys is

16. The precision is low because the method cannot

distinguish between light and dark textures, leading

to irrelevant images. Note, that it finds other apes,

dark textured ones, but those are deemed irrelevant

with respect to the query.

5. Given a wall with a Coca Cola logo find other Coca

Cola images (63.8%). This query clearly depicts the

limitation of global matching. Although all three

database images that had a certain texture of the wall



Figure 1: Trademark retrieval using Curvature and Phase

Figure 2: Image retrieval using Curvature and Phase

(also had Coca Cola logos) were retrieved (100% pre-

cision), two other very dissimilar images with coca-

cola logos were not.

6. Scenes with Bill Clinton (72.8%). The retrieval in this

case results in several mismatches. However, three of

the four are retrieved in succession at the top and the

scenes appear visually similar.

While the queries presented here are not “optimal” with

respect to the design constraints of global similarity re-

trieval, they are however, realistic queries that can be posed

to the system. Mismatches can and do occur. The first



Table 1: Precision at standard recall points for six Queries

Recall 0 10 20 30 40 50 60 70 80 90 100

Precision(trademark) % 100 93.2 93.2 85.2 76.3 74.5 59.5 45.5 27.2 9.0 9.0

Precision(assorted) % 100 92.6 90.0 88.3 87.0 86.8 83.8 65.9 21.3 12.0 1.4

average(trademark) 61.1%

average(assorted) 66.3%

is the case where the global appearance is very different.

The Coca Cola retrieval is a good example of this. Sec-

ond, mismatches can occur at the algorithmic level. His-

tograms coarsely represent spatial information and there-

fore will admit images with non-trivial deformations. The

recall/precision presented here compares well with text re-

trieval. The time per retrieval is of the order of milli-

seconds. In on going work we are experimenting with a

database of 63000 images and the amount of time taken

to retrieve is still less than a second. The space required

is also a small fraction of the database. These are the pri-

mary advantages of global similarity retrieval. That is, to

provide a low storage, high speed retrieval with good re-

call/precision.

4 Conclusions and Limitations
This paper demonstrates retrieval of similar objects on

the basis of their visual appearance. Visual appearance

is characterized using filter responses to Gaussian deriva-

tives over scale space. In addition, we claim that global

representations are better constructed by representing the

distribution of robustly computed local features. Cur-

rently we are investigating two issues. First is to scale the

database up to about 100000 images and second is to pro-

vide a mechanism for combining global and local similar-

ity matching in a single framework.
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