
A New Hybrid Approach to Video Organization for Content-Based Indexing �
Madirakshi Das Shih-Ping Liou

Department of Computer Science Multimedia and Video Technology

University of Massachusetts Siemens Corporate Research

Amherst, MA Princeton, NJ

e-mail : mdas@cs.umass.edu liou@scr.siemens.com

Abstract

Video organization is a key step in the content-based in-

dexing of video archives. The objective of video organi-

zation is to capture the semantic structure of a video in a

form which is meaningful to the user. We present a hy-

brid approach to video organization which automatically

processes video, creating a video table of contents (VTOC),

while providing easy-to-use interfaces for verification, cor-

rection and augmentation of the automatically extracted

video structure. Algorithms are developed to solve the sub-

problems of shot detection, shot grouping and VTOC gener-

ation without making very restrictive assumptions about the

structure or content of the video. We use a nonstationary

time series model of difference metrics for shot boundary

detection, color and edge similarities for shot grouping and

observations about the structure of a wide class of videos

for the generation of the VTOC. The use of automatic pro-

cessing in conjunction with input from the user allows us to

produce meaningful video organization efficiently.

1. Introduction

For a multimedia information system to better meet the

users’ needs, it must capture the semantics and terminol-

ogy of specific user domains and allow users to retrieve in-

formation according to such semantics. This requires the

development of a content-based indexing mechanism that

is rich in its semantic capabilities for abstraction of multi-

media information and also able to provide canonical rep-

resentation of complex scenes in terms of objects and their

spatio-temporal behavior. A key initial stage in this content-

based indexing process is video organization. The objective

of the video organization is to capture the structure present

in the video, providing a video table of contents analogous

to the table of contents in a book.�This material is based on work done at Siemens Corporate Research,

Princeton, NJ.

Obtaining a video table of contents to a reasonable de-

gree of accuracy automatically, is a complex process. First,

video frames must be segmented into a set of units called

shots. A shot in a video refers to contiguous frames depict-

ing continuous action in time and space. Repeating shots

are then identified to detect parallel events in a scene and

this information is finally used to construct the video table

of contents. Since the generation of the table of contents

consists a sequence of dependent steps, even one mistake

could create completely useless results.

There have been two different approaches to video or-

ganization. The research in database systems has mostly

focussed on attribute-based indexing of multimedia infor-

mation which entails a level of abstraction that reduces the

scope for posing ad hoc queries to the database [4]. The

research in computer vision, offers an alternative approach

that relies on an integrated feature extraction/object recog-

nition subsystem [16, 18, 13] to segment the video into

meaningful semantic units.

Both approaches to video organization have their own

limitations. The attribute-based approach needs a human

operator to manually index the multimedia information. On

the other hand, the automatic approach is computationally

expensive, difficult, and tends to be very domain specific.

It is nearly impossible, in practice, to obtain useful video

organization based solely on automatic processing.

What we need is a hybrid approach, i.e., automatically

segmenting video and creating the video table of contents in

a preprocessing step, while providing an easy-to-use inter-

face for verification, correction and augmentation of the au-

tomatically extracted video structure. This paper describes

such a hybrid approach that includes three automatic index-

ing algorithms closely integrated with three graphic user in-

terface objects. The automatic indexing algorithms include

cut detection, shot grouping, and video table of contents

creation, whereas the graphic user interface objects consist

of the video player, browser, and table of contents viewer.

This paper is organized as follows. Section 2 reviews the

past literature and provides the motivation for this work. A

brief summary of the novel aspects of the proposed method

is given in section 3. Section 4 describes the algorithms

used in automatic generation of the table of contents from

the raw video. Section 5 describes the interactive aspects of

video organization, including the user interfaces. Finally, it

concludes with comments on future directions in section 6.

2. Literature review

There has been work in extracting the semantic struc-

ture of the video using strong domain knowledge. Zhang et

al [18] use known templates of anchor person shots to sepa-

rate news stories. Swanberg et al [13] use the known struc-

ture of news programs in addition to models of anchor per-

son shots to parse news videos. The presence of the chan-

nel logo, skin tones of the anchor person and the structure

of a news episode have been used in [6]. These approaches

only create a hierarchy with a few fixed number of levels.

Content-based indexing at the level of shots using motion

is described in [3], without developing a high-level descrip-

tion of the video. Although domain knowledge, in general,

constrains the problem and makes it possible to provide a

reliable solution, it can never account for all possible sce-

narios even for a simple domain such as news video. For

example, it is not possible to define an anchor person image

model that is independent of broadcast stations.

Recently, Yeung and Yeo [15] presented a domain-

independent approach that extracts story units (the top level

in a hierarchy) for video browsing applications and creates a

scene transition graph (Fig 3). Such a graph leads to a com-

pact representation that serves as a summary of the story and

may also provide useful information for automatic classifi-

cation of video types. However, this representation reveals

little information about the semantic structure within a story

unit e.g. an entire news broadcast is classified as a single

story, making it difficult to browse through individual news

stories. The clustering strategy proposed in this work uses

temporal constraints, making it difficult to cluster similar

shots which are temporally far apart e.g. the anchor-person

shots in a news broadcast are usually scattered throughout

the video.

The problem of capturing the semantic structure in a

video also requires solution to both the cut detection and

the shot grouping problems. Most existing cut detection

algorithms are based on preset thresholds or assumptions

that reduce their applicability to a limited range of video

types [2, 7, 10]. For example, it is often assumed that

both the incoming and outgoing shots are static scenes and

the transition only lasts for a period less than half a sec-

ond. This type of model is too simple for modeling gradual

shot transitions that are often present in films/videos. An-

other frequent assumption is that the frame difference signal

computed at each individual pixel can be modeled by a sta-

 �� ��

Figure 1. The histogram of a typical inter­
frame difference that does not correspond
to a shot change. The shape of the curve
changes as the camera moves slowly (left)
versus fast (right).

tionary independent identically distributed random variable

which obeys a known probability distribution [17]. This as-

sumption is generally not true as shown in Figure 1. Neither

a Gaussian nor a Laplace distribution fits both curves well.

A Gamma function fits the curve on the left, but not the

one on the right. In addition, existing methods assume that

time-series difference metrics are stationary, when actually,

such metrics are highly correlated time signals.

Since many videos are converted from films and the two

media are played at different frame rates, creating videos

from films requires making every other film frame a little bit

longer. This process results in video frames that are made

up of two fields with totally different (although consecu-

tive) pictures in them. As a result, the digitization produces

duplicate video frames and almost zero inter-frame differ-

ences at five frame intervals. A similar problem occurs in

animated videos where almost zero inter-frame difference

is produced in as often as every other frame.

In grouping visually similar shots, most existing ap-

proaches use color histograms [12]. However, the com-

monly used RGB and HSV color spaces are sensitive to

the illumination to varying degrees and uniform quantiza-

tion of the color space is against the principles of human

perception [14].

3. Our approach

Our approach to the video organization problem is illus-

trated in Figure 2. This hybrid approach consists of a set

of automatic video organization algorithms and a collection

of interactive video organization interfaces. Our approach

differs from existing approaches in the following aspects.

First, none of the existing algorithms provide man-

ual feedback mechanisms during the automatic creation of

video structure. Mistakes made by either automatic cut de-

tection and/or shot grouping algorithms will ruin the final

2

Cut Detection

Video Table of Contents

Creation

Shot Grouping

Automatic Algorithms Interactive Interfaces

Browser

(Correct Shot Boundaries)

(Correct Grouping Results)

(Correct VTOC)

Tree View

Tree View Video Player

Figure 2. Our hybrid approach to video orga­
nization

video structure produced by the algorithm. Therefore, it is

important to provide interfaces so that a human operator can

verify and correct the results produced automatically at ev-

ery step of the processing.

Second, we use the observation that repeating shots

which are similar in some way, alternating or interleaving

with other shots, are often used to convey parallel events in

a scene or to signal the beginning of a semantically mean-

ingful unit. Since we do not use pre-defined models for sim-

ilar shots, this observation can be used for a wide variety of

videos for which organization is particularly relevant e.g.

news, sports events, interviews, documentaries etc. News

and documentaries have the anchor-person appearing before

each new segment of the story to introduce it. Interviews

have the interviewer appearing to ask each new question.

Sports events have sports action between shots of the sta-

dium or the commentator. So, it is possible to create a forest

structure directly from the list of identified recurring shots.

This forest structure (video table of contents) preserves the

time order among shots. It also captures the syntactic struc-

ture of the video which is a hierarchy composed of stories,

and, under stories, sub-plots, which may have further sub-

plots embedded in them. For most structured videos, it pro-

vides interesting insights into the semantic context of the

video and is therefore a more useful representation than the

scene transition graph. An example is shown in Fig 3.

Third, we use a name-based color system, ISCC-

NBS [9], to describe the color of images during the shot

grouping process. The NBS color system divides the Mun-

sell color space into irregularly shaped regions and assigns

a color name to each region based on common usage. This

enables the use of color histograms with perceptually based

color space quantization and allows us to construct a color

description independent of the illumination of the image.

Finally, unlike existing cut detection methods which

have no notion of time series and non-stationarity, we treat

a sequence of difference metrics as nonstationary time se-

ries signals and model the time trend deterministically. The

sequence of difference metrics are just like any economic

Figure 3. Scene transition graph (left) and
video table of contents (right) of the same
video clip

or statistical data collected over time. In this view, shot

changes as well as the film-to-video conversion process will

both create observation outliers in time series, while the

gradual shot transition and gradual camera moves will pro-

duce innovation outliers. Fox [5] defines the observation

outlier to be the one that is caused by a gross error of ob-

servation or recording error and it only affects a single ob-

servation. Similarly, the innovation outlier is one that cor-

responds to the situation in which a single “innovation” is

extreme. This type of outlier affects not only the particular

observation but also subsequent observations.

4. Automatic organization of video

We have developed a set of automatic algorithms that

can produce an organized structure from a raw video. The

first task in the automatic organization of video is to recover

the shots present in the video. We have developed a scene

change detection algorithm which provides good shot detec-

tion in the presence of outliers and difficult shot boundaries

like fades and zooms. Each shot is completely defined by a

start and end frame and a list of all shots in a video is stored

in a shotlist. Each shot is represented by a single frame, the

representative frame, which is stored as an image (icon).

The more complex task is to organize the shots into a

higher level structure reflecting the semantics of the video.

We have automated the process of inferring the semantics of

the video using the grouping of shots by similarity and the

observation made in the earlier section about the relevance

of repetition of similar shots. In the following sub-sections,

we will describe the cut detection, shot grouping and video

table of contents creation algorithms respectively.

4.1. Cut detection

Pixel-based metrics (e.g. inter-frame difference) and

distribution-based difference metrics (e.g. statistics) re-

3

spond differently to different types of shots and shot transi-

tions. For example, the former are very sensitive to camera

moves but are a good indicator for shot changes; the lat-

ter are relatively insensitive to camera and object motion,

but can produce little response when two shots look quite

different but have similar distributions. We feel that it is

necessary to combine both measures in cut detection.

We model the sequence of difference metrics as non-

stationary time series signals. There are standard methods

[1, 5, 8] that detect both innovation and observation out-

liers based on the estimate of time trend and autoregres-

sive coefficients. These standard methods, however, cannot

be applied to the cut detection problem directly because of

the following three reasons. First, most methods require

intensive computation (e.g. least squares) to estimate time

trend and autoregressive coefficients. Second, the observa-

tion outliers created by slow motion and the film-to-video

conversion process could occur as often as one in every

other sample, making the time trend and autoregressive co-

efficient estimation an extremely difficult process. Finally,

since gradual shot transitions and gradual camera moves

are indistinguishable in most cases, location of gradual shot

transitions requires not only the detection of innovation out-

liers but also an extra camera motion estimation step.

In our solution, we use a zeroth-order autoregressive

model and a piecewise-linear function to model the time

trend. With this simplification, samples from both the past

and the future must be used in order to improve the ro-

bustness of time trend estimation. We also need to dis-

card more than half the samples because the observation

outliers created by slow motion and the film-to-video con-

version process could occur as often as one in every other

sample. Fortunately, these types of observation outliers are

least in value, and hence easily identifiable. After remov-

ing the time trend, the remaining value is tested against a

normal distribution N(0; �) in which � can be estimated

recursively or in advance.

To make the cut detection method more robust, we ap-

ply the Kolmogorov-Smirnov test to eliminate false posi-

tives. This test is chosen because it does not assume a priori

knowledge of the underlying distribution function. The tra-

ditional Kolmogorov-Smirnov test procedure compares the

computed test metric with a preset significance level (nor-

mally at 95%), and has been used [11] to detect cuts from

videos. This use of single pre-selected significance level ig-

nores the non-stationary nature of the cut detection problem.

We feel that the use of Kolmogorov-Smirnov test should

take into account the non-stationary nature of the problem

i.e. the significance level should be automatically adjusted

to different types of video contents.

One way to represent video content is to use measure-

ment in both the spatial and the temporal domain together.

For example, image contrast is a good spatial domain mea-

surement and the amount of intensity changes across two

neighboring frames measures video content in the temporal

domain. The adjustment should be made such that,� the higher the image contrast is, the more sensitive the cut

detection mechanism should be, and� the more changes occur in two consecutive images, the

less sensitive the detection mechanism should be.

The traditional Kolmogorov-Smirnov test also cannot

differentiate the long shot from the close up of the same

scene. To guard against such transitions, we propose a hier-

archical Kolmogorov-Smirnov test. In this test, each frame

is divided into four rectangular regions of equal size and

the traditional Kolmogorov-Smirnov test is applied to ev-

ery pair of regions as well as to the entire image. This

test therefore produces five binary numbers that indicate

whether there is a change in the entire image as well as in

each of the four sub-images.

Finally, instead of directly using these five binary num-

bers to eliminate false positives, the significance of the test

result of a shot change frame is compared against that of its

neighboring frames.

4.2. Shot grouping

Similarity between shots is determined by comparing the

representative frame images for the shots. We have used

color to cluster the shots into initial groups, and then used

edge information within each group to refine the clustering

results.

4.2.1. Using color:

The use of color in computing image similarity has found

wide use in image retrieval systems, color histograms [12]

being especially popular. The ability of the color histogram

to detect similarity in the presence of illumination variations

is greatly affected by the color space used as well as how the

color space is quantized.

In our solution, we have selected a name-based color sys-

tem, ISCC-NBS [9], which is constructed from the human

perception of color. Since the color names are based on

common usage, the results are more likely to agree with the

user’s perception of color similarity and natural language

user interfaces can be developed in the future.

Each color name in the NBS system has two components

: the hue name and the hue modifier. Fig 4 shows a list of

hue names and Fig 5 shows the hue modifiers used in the

NBS system. e.g. ‘very deep purplish blue’ is a possible

color name. However, all combinations of hue name and

modifiers are not valid - there are a total of 267 valid color

names, obtained by dividing the Munsell color space into

irregularly shaped regions.

Since we would like to keep the description of an image

independent of the illumination, we use only the hue names

4

Figure 6. (top row) The original images (bottom row) Images labeled using 14 colors

red reddish orange reddish purple

reddish brown green bluish green

purplish red brown greenish blue

purplish pink yellow green orange

orange yellow blue yellowish brown

yellow purplish blue yellowish pink

olive brown pink greenish yellow

yellowish green violet brownish pink

olive purple brownish orange

Figure 4. ISCC­NBS hue names

very pale

grayish strong

blackish

dark deep

very deep

vivid

very light

light grayish

pale
light

moderate

dark grayish

very dark

brilliant

L
ig

h
tn

e
s
s
 (

M
u
n
s
e
ll

V
a
lu

e
)

Saturation (Munsell Chroma)

Figure 5. ISCC­NBS hue modifiers

instead of the full color names. In our experiments with

this color system, we have observed that replacing the color

names containing the modifiers specially marked in Fig 5 by

‘black’ or ‘white’ results in better classification of the color.

e.g. ‘very pale green’ is in fact closer to white and ‘very

dark green’ is closer to black than green. We have further

reduced the number of colors to 14, by merging some of the

colors into their more dominant component e.g. ‘reddish

orange’ is considered to be ‘orange’. Fig 6 shows images

labelled using 14 colors. Reducing the number of colors

improves the chances of two similar images being clustered

in the same group. Fig 7 shows the histograms obtained

from two images of a soccer match. There is variation in

the green color of the grass. Using 14 colors, all types of

green are labelled ‘green’ (color # 2) and therefore, the his-

tograms are very similar. However, when all hue names are

used, the green label is divided into ‘olive green’, ‘yellowish

green’, ‘bluish green’ etc. The histograms appear different

now since the proportions of the different shades of green

are not the same in both images.

(a) (b)

Figure 7. Effect of number of colors on simi­
larity: (a) 14 colors (b) All hue names

Figure 8. Color histograms of similar images

The normalized histogram bin counts are used as the fea-

ture vector to describe the color content of an image. Fig 8

shows the color histograms of the shots grouped together on

the basis of similar color distributions.

4.2.2. Using edges:

When images are grouped only on the basis of their color

histograms, visually different images with similar color dis-

tribution may be grouped together. Edge information is

used as a filter to remove shots which have incorrectly been

5

grouped using color alone.

We use a straightforward global measure of the edge in-

formation in an image. Each edge pixel is classified as be-

longing to one of four directions based on the sign and rela-

tive magnitude of its response to edge operators along x and

y directions. The histogram of pixel counts along each of

the four directions is used as a feature vector to describe the

edge information in the image. The gross edge information

is computed after simplifying the image by quantizing it to

a few levels (4 or 8) and converting the quantized image to

an intensity image. This edge information is sufficient to

filter out most of the false shots in a group.

4.2.3. Clustering strategy:

We are constrained in the choice of clustering strategy by

having no a priori knowledge of the number or the nature

of the clusters. We cannot make the assumption that similar

images will be temporally close to each other in the video,

since the repeating shots are likely to be scattered through-

out the video. Therefore, clustering strategies which involve

comparisons among all points in a limited window [15] are

not suitable in our case. We also do not know the number of

potential clusters a priori, so K-means clustering and other

strategies using this a priori information are also not use-

ful. Moreover, it would be advantageous if the clustering

strategy was not offline i.e. did not require all the shots to

be present before starting. This would allow us to process

shots as they are generated.

The clustering algorithm we have used is based on near-

est neighbor classification, combined with a threshold cri-

terion. The initial clusters are generated based on the color

feature vector of the shots. Each cluster is specified by a

feature vector which is the mean of the vectors of its mem-

bers. When a new shot is available, the city block distance

between its color feature vector and the means of the exist-

ing clusters is computed. The new shot is grouped into the

cluster with the minimum distance from its feature vector,

provided the minimum distance is less than a threshold. If

an existing cluster is found for the new shot, the mean of

the cluster is updated to include the feature vector of the

new shot. Otherwise, a new cluster is created with the fea-

ture vector of the new shot as its mean. The threshold is

selected based on the percentage of the image pixels that

need to match in color, in order to call two images similar.

Shots are deleted from the clusters produced above if the

distance of their edge feature vector from the mean edge

vector of the group is greater than a threshold, starting with

the shot furthest from the mean. The mean is recomputed

each time a member is deleted from the cluster. This is con-

tinued till all the edge feature vectors of the members in the

cluster are within the threshold from the mean of the cluster,

or there is a single member left in the cluster. The threshold

in this case is a multiple of the variance of the edge vectors

of the cluster members. So, the final clusters are based on

color as well as edge similarity, allowing the color feature

to be the main criterion in determining the clusters.

A mergelist is produced by automatic clustering, identi-

fying the group number for each shot in the shotlist. This

information is used for the automatic construction of the

video structure.

4.3. VTOC creation

We have found that a hierarchical tree structure captures

the organization of the video adequately and is easy for the

user to understand and work with. The whole video is the

root node, which can have a number of child nodes, each

corresponding to a separate ‘story’ in the video. A story

is a self-contained unit which deals with a single or related

subject(s). Sub-plots are different elements in a story unit

or sub-plot unit. The tree structure has nodes of different

types to provide semantic information about its contents.

Each node also has a representative icon visible to allow

browsing without having to unravel the full structure. Each

new story starts with a story node, which consists of sub-

plot nodes for each sub-plot. Similar nodes are used to bind

together all consecutive frames found to be in the same clus-

ter. Frequently, these nodes may be replaced by any one of

its members by merging the other shots. The leaf nodes

contain the shots from the shotlist.

The algorithm contains two major functions. A mod-

ified version of the algorithm presented in [15], finds all

story units, creates a story node for each story and calls the

second function Find-structure to find structure within each

story. Each story unit extends to the last re-occurance of a

shot within the body of the story. Find-structure is a func-

tion that takes a segment of shot indices, traverses through

the segment to create a node for each shot until it finds one

shot that reoccurs later. At this point, it divides the rest of

the segment into sub-segments each of which is lead by the

recurring shot as a sub-plot node and recursively calls itself

to process each sub-segment. If consecutive shots are found

to be similar, they are grouped under a single similar node.

The structure produced by Find-structure is attached as a

child of the story node for which it was called.

5. Interactive organization

We now describe the tools provided to the user to modify

the results of automatic organization at both the shot and

VTOC levels. The steps in the interactive generation of the

final organized video can be summarized as follows :

1. Automatic construction of shotlist from raw video.

6

2. * Viewing and editing the shot structure to add new

shots or merge shots.

3. Automatic clustering of shots into visually similar

groups.

4. * Viewing and editing the clusters generated automat-

ically to create new clusters and modify existing clus-

ters.

5. Automatic generation of tree structure to describe the

high level units in the video using the cluster infor-

mation from the earlier step.

6. * Viewing and modifying the tree structure to reorga-

nize the video.

The steps marked with an asterix in the above list need

user interaction and therefore, an interface needs to be pro-

vided with the required functionality. Since these interfaces

work with higher level representations of the video, a sep-

arate component is also provided to view the raw video

accompanied by its audio. The interactive video organiza-

tion environment provides three main interfaces to the user

which communicate with each other so that changes made

using one component produce the appropriate updates in the

other interfaces.� Browser : This interface is used to view and mod-

ify the shot list. The video stream is represented as a

composite image making it easy to detect shot bound-

aries visually. The results of automatic shot detection

are displayed alongside using colored bars, and can

be altered easily.� TreeView : This interface serves a dual purpose. Be-

fore the creation of the tree structure of the video, it

is used to view and alter the automatic clustering of

shots based on visual similarity. Once the similarity-

based grouping results have been finalized, it is used

as an interface to organize the video into a tree struc-

ture.� VideoPlayer : This interface is used for playing the

video, with audio, from any point in the video. It

has the functionality of a VCR including fast forward,

rewind, pause and step.

These components allow easy manipulation of the results

obtained by automatic processing to fit the user’s interpre-

tation of the video. Fig 9 shows the components of this

system along with the interactions between them. Fig 11

shows the graphical interface presented to the user by each

component.

If the steps in the construction of the tree structure were

followed sequentially, there would be very little interac-

tion between the interfaces in the environment. However, it

Play video with full

VCR functions

V i d e o P l a y e r

View and manipulate View and manipulate

shots of video in a

hierarchical structure

T r e e V i e w

the division of shots

into similar groups

play video

play video

track video

track video
reload browser

reload tree

shot change

B r o w s e r

View and manipulate

the grouping of frames

into shots

Figure 9. System Overview

would be very useful for the user to see the effect of changes

made at one level propagate to the other levels and be able

to move between levels. Our environment aims to provide

a fully integrated system where change is reflected through-

out the system, wherever possible.

The environment is designed so that each of the three in-

terfaces can run individually or in combination with others.

Each interface has the capability of starting up the other in-

terfaces. Any one of them can be started first, provided the

required files are present. The shotlist is needed to start the

Browser. TreeView starts with the group structure if only the

mergelist is present, otherwise it starts with the tree struc-

ture which is stored in the treelist. When more than one

interfaces are running simultaneously, the issue of interac-

tions has to be considered. Fig 9 shows the communica-

tions between the interfaces in this case. Each interface and

its communications with the other interfaces is described in

greater detail in the following sections.

5.1. Browser

The browser is used to view and alter the grouping of

frames into shots. The video is presented to the user in

the form of a composite image which is constructed by in-

cluding a horizontal and a vertical single pixel slice from

the center line of each frame in the video along the time

axis. This form makes it easier to check the shots produced

automatically which are depicted visually by colored bars

alongside the composite image as shown in Fig 11(d).

Automatic shot boundary detection may produce unsat-

isfactory results in the case of slow wipes from one shot

to the next, momentary changes in illumination (flashes),

zoom etc. Changes may be neccessary in the shotlist gener-

ated automatically to include additional shots or merge two

shots. Any changes made in the shot boundaries changes

the shotlist and the set of representative icon images. The

following operations are implemented to make it simple to

7

modify the shot boundaries.� Split : A shot can be split into two shots by marking the

point of split. A representative frame for the new shot is

generated and the internal shot structure of the Browser is

updated. This operation is used to incorporate shots which

were not detected automatically.� Split Ahead : When there is a gradual shot change, it

may not be easy for the user to locate the point where the

shot should be split to get a good representative icon for the

new shot created. Using this operation, any point selected

in the transition region produces a correct split. The point

where the transition is completed is detected by processing

the region following the point selected by the user.

4800

5000

5200

5400

5600

5800

6000

6200

6400

5132 5134 5136 5138 5140 5142 5144 5146 5148 5150 5152

T
o
ta

l
In

te
n
s
it
y

Frame Number

’transition.out’

(a) (b)

Figure 10. Split Ahead Operation: (a) Example
icons (b) Corresponding intensity plot

As an example, the middle icon image in Fig 10(a) shows

the frame selected by the user based on visual inspection

of the shot boundary displayed in the browser. This im-

age does not represent the next shot as it still contains an

overlap from the earlier shot. The last icon image in Fig

10(a) shows the frame correctly picked by the split ahead

operation in which the dissolve process is complete. This

is achieved by following the gradient along the smoothed

intensity plot [Fig 10(b)] till the gradient direction changes

or the gradient becomes negligible.� Merge : This operation is used to merge a shot into ei-

ther of its adjoining shots. A shot to be merged is specified

by selecting any frame within it. The icon representing the

merged shot is deleted by this operation.� Play video : The actual video can be played on the Video-

Player from any selected frame. This playback may be

needed to determine the content of the shots and detect sub-

tle boundaries. While the video is playing, the Browser may

track the video to keep the frame currently playing at the

center of the viewing area.� Interactions : The Browser can produce a change in the

shotlist. This information is provided to the TreeView via

a message and the change becomes visible immediately i.e.

a new shot appears at the specified location or a shot gets

deleted automatically. This helps the user to actually see

the icons representing the shots that are being created or

deleted. In fact, the visual information from the tree can be

used to determine actions taken in the browser e.g. when

two consecutive representative icons shown in the TreeView

cover very similar subject matter, the user may choose to

merge them using the Browser.

The user may opt to reload the TreeView interface us-

ing the new shotlist to redo the clustering, when there have

been enough changes in the shotlist to make the earlier tree

organization obsolete. The Browser can store the modified

shotlist containing the changes made by the user and trigger

the automatic clustering of shots in the shotlist, to produce

a mergelist which is used by TreeView.

5.2. TreeView : correction of VTOC

The TreeView interface is used to interact with the tree

description of the video generated from the mergelist. The

user is allowed full freedom in restructuring the tree since

semantic information can often be missed or misinterpreted

by automatic processing. The following operations are pro-

vided to facilitate changes in the structure of the tree.� Move nodes : Nodes can be moved either one at a time

or in groups by selecting the node(s) to be moved and the

destination node. The moved node(s) are added as siblings

of the destination node selected.� Add nodes : New leaf nodes can only be added through

changes in the shotlist using Browser. However, all types of

non-leaf nodes can be added as parents of existing nodes.� Update : This operation is an utility to make it easier to

move large number of nodes. It repeats the previous oper-

ation on all siblings of the node which was selected for the

previous operation. For example, if a subplot node is to be

deleted by moving all its children to another subplot node,

just one child needs to be explicitly moved - the others can

be forced to move by using the update operation.� Interactions : When changes are made in the order of

the shots using TreeView and the user wants to see these

changes reflected in the Browser, (s)he can opt to send a

signal to the Browser to reload the rearranged shotlist after

saving it from TreeView. The VideoPlayer can be played

from this interface exactly as in the Browser interface.

No explicit delete function is provided in this interface

since leaf nodes can only be deleted through changes in the

shotlist using the Browser. All other (non-leaf) nodes are

deleted automatically when they have no children.

The user can invoke these operations to regroup the shots

into more meaningful stories and sub-plots. The order of

shots can also be changed from their usual temporal or-

8

der to a more logical sequence. When used along with the

Browser, all possible changes to the content and organiza-

tion of the tree are supported.

The tree structure is stored as a treelist file so that or-

ganized videos can display the tree structure without going

through the processing steps again. Modifications made by

the user in the tree structure are also saved in the treelist.

5.3. TreeView : modifying shot groups

Though the primary function of the TreeView interface

is to interact with the high-level structure, the same inter-

face can also be used to view and modify the groups gener-

ated by the automatic clustering process. In this case, there

are only two types of nodes attached to the root node. If

the group contains a single member, the member shot is at-

tached as a leaf node to the root. For groups containing

more than one member, an intermediate Group node is at-

tached, which contains the member shots as its children.

The tree operations described in the earlier section can

be used to move shots out of existing groups or create new

groups. A modified mergelist can be generated which re-

flects the changes made by the user. This step needs to be

performed before the tree structure is loaded since the tree

structure is constructed from the mergelist.

6. Conclusion and future work

We have proposed a hybrid video organization method-

ology which combines the benefits of automatic processing

with human input. Algorithms for producing a table of con-

tents automatically from the raw video have been developed

by solving the sub-problems of cut detection, shot grouping

and generation of table of contents. Automatic processing

reduces the user’s work from going through the whole pro-

cess manually to just providing error checking and higher

level semantics. We have constructed an environment which

provides effective tools to the user to guide the video organi-

zation process. The system has been tested on news stories

and sports videos and produces reasonable organization of

the videos requiring only small alterations from the user.

An important direction of future work is to have the sys-

tem utilize the feedback from the user in an intelligent way.

When the user merges two groups which were found to be

different at the color or edge level, this may be due to the

fact that some parts of the images from both groups match.

Partial match templates could be generated from this in-

formation. Instead, the similarity may be based on audio,

which could be found by comparing the audio streams as-

sociated with the merged shots. Using the cues from the

user will further reduce the work which is needed from the

user to modify the index structure produced automatically.

References

[1] B. Abraham and A. Chuang. Outlier detection and time se-

ries modeling. Technometrics, 31(2):241–248, May 1989.

[2] P. Aigrain and P. Joly. The automatic real-time analysis of

film editing and transition effects and its applications. Com-

puter and Graphics, 18(1):93–103, 1994.

[3] F. Arman, R. Depommier, A. Hsu, and M. Y. Chiu. Content-

based browsing of video sequences. ACM Multimedia, pages

97–103, Aug 1994.

[4] P. England, R. B. Allen, S. M, and H. A. I/browse: The

bellcore video library toolkit. Storage and Retrieval for Still

Image and Video Databases, SPIE, IV:254–264, Feb 1996.

[5] A. J. Fox. Outliers in time series. Journal of the Royal

Statistical Society, Series B(34):350–363, 1972.

[6] B. Gunsel, A. M. Ferman, and A. M. Tekalp. Video indexing

through integration of syntactic and semantic features. IEEE

Multimedia Systems, pages 90–95, 1996.

[7] H. Hampapur, R. Jain, and T. Weymouth. Digital video seg-

mentation. Proc. of ACM Multimedia Conference, pages

357–363, 1994.

[8] L. K. Hotta and M. M. C. Neves. A brief review of

tests for detection of time series outliers. ESTADISTICA,

44(142):103–148, 1992.

[9] K. L. Kelly and D. B. Judd. The iscc-nbs method of des-

ignating colors and a dictionary of color names. National

Bureau of Standards Circular, (553), Nov 1 1955.

[10] J. Meng, Y. Juan, and S. F. Chang. Scene change detection

in a mpeg compressed video sequence. Digital Video Com-

pression Algorithms and Technologies, SPIE, pages 14–25,

Feb 1995.

[11] I. K. Sethi and N. Patel. A statistical approach to scene

change detection. Storage and Retrieval for Image and Video

Databases, SPIE, III:329–338, Feb 1995.

[12] M. J. Swain and D. H. Ballard. Indexing via color his-

tograms. Third International Conference on Computer Vi-

sion, pages 390–393, 1990.

[13] D. Swanberg, C. F. Shu, and R. Jain. Knowledge guided

parsing in video databases. Storage and Retrieval for Image

and Video Databases, SPIE, 1908:13–25, Feb 1993.

[14] G. Wyszecki and W. S. Stiles. Color Science: Concepts and

Methods, Quantitative Data and Formulae. John Wiley &

Sons, Inc., 1982.

[15] M. M. Yeung and B. L. Yeo. Time-constrained clustering for

segmentation of video into story units. International Con-

ference on Pattern Recognition, pages 375–380, 1996.

[16] M. M. Yeung, B. L. Yeo, W. Wolf, and B. Liu. Video brows-

ing using clustering and scene transitions on compressed

sequences. Multimedia Computing and Networking, SPIE,

2417:399–413, 1995.

[17] H. Zhang, A. Kankanhalli, and S. W. Smoliar. Automatic

parsing of full-motion video. ACM Multimedia Systems,

1:10–28, 1993.

[18] H. J. Zhang, Y. H. Gong, S. W. Smoliar, and S. Y. Liu. Au-

tomatic parsing of news video. International Conference on

Multimedia Computing and Systems, pages 45–54, 1994.

9

Figure 11. Interfaces: (a) TreeView showing group structure (b) TreeView showing tree structure (c)
Video player (d) Browser

10

