
Sentence­Forest Language Model: A Graph­theoretic
Framework to Capture Local Term Dependencies

Ramesh Nallapati and James Allan
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts

Amherst, MA 01003�
nmramesh, allan ✁ @cs.umass.edu

ABSTRACT

We describe a new probabilistic graph-based language Model that

captures adaptively the local term dependencies in documents. The

new model works by boosting scores of documents that contain

topic-specific local dependencies and exhibits the behavior of the

unigram model in the absence of such dependencies. New features

of the approach include modeling the syntactic structure of sen-

tences in documents and a computationally efficient algorithm for

capturing the most significant within-sentence term dependencies

using a Maximum Spanning Tree approach, similar to Keith van

Rijsbergen’s [13] modeling of document-level term dependencies.

We evaluated our model on three different tasks of the Topic De-

tection and Tracking (TDT) research program, namely Story Link

Detection, Topic Tracking and New Event Detection. Our results

show that the Local dependency language model consistently out-

performs the basic unigram model on all three tasks.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval models -

language models, dependencies

General Terms

Algorithms

Key Words

Term dependencies, language modeling, probabilistic approaches,

graphical models, co-occurrences, sentences, maximum spanning

tree, story link detection, topic detection and tracking

1. INTRODUCTION
Language Models have been found to be very effective in several

information retrieval tasks. In the Language Modeling approach,

we measure relevance of a document to a topic by the probability

of its generation from the topic model [11]. One major assumption

made in the unigram language modeling is the independence of all

terms with respect to one another. This allows us to compute the

probability of generation of a document as the product of probabil-

ities of generation of each term in the document, as shown in the

following equation:

✂☎✄✝✆✟✞ ✠☛✡✌☞✎✍
✏✒✑✔✓

✂☎✄✖✕✗✞ ✠☛✡
(1)

where
✆

is the document in question,
✠

is the topic model and
✕

is a term in the document.

But to quote the famous probability theorist De Finetti, “depen-

dence is the norm rather than the contrary” [4]. From our own

understanding of natural language, we know that the assumption of

term independence is a matter of mathematical convenience rather

than a reality.

However, the ‘bag of terms’ approach of the unigram language

model, as shown in equation 1, ignores all the dependencies and

any other positional information of terms in the document. Hence,

it seems desirable to have a more sophisticated model that is ca-

pable of capturing the semantics of documents rather than just the

term distributions. A first step towards achieving this objective is

capturing term dependencies, since dependencies establish associ-

ations between terms and may shed more light on the underlying

semantics of the document than unigram term distributions alone.

The present work is an attempt to capture local term dependen-

cies using a new variation of the language modeling approach.

The remainder of the report is organized as follows. Section 2

summarizes attempts made in the past in capturing dependencies.

We present the methodology of the new Sentence-Forest language

modeling approach in section 3. In this section, we describe the

motivation behind the approach and several modeling issues in-

volved. We evaluate the complexity of Sentence-Forest model and

compare it with that of the unigram model in section 4. In section

5, we present a few interesting insights into why we think our new

model works better than the unigram model. Section 6 describes

some of the implementation details, while section 7 presents a brief

description of Topic Detection and Tracking paradigm and two sub-

tasks called Link detection and Topic tracking. In section 8, we de-

scribe the experiments performed and present the results obtained

on two different tasks. Section 9 ends the discussion with a few ob-

servations and remarks on the performance of the Sentence-Forest

model.

2. PAST WORK
A vast majority of IR models assume independence of terms be-

cause the assumption leads to a tractable representation and most

IR systems practically have worked well under this assumption.

There have been very few successful attempts at modeling depen-

dencies especially in the domain of formal probabilistic models.

Van Rijsbergen tried to capture document level term dependen-

cies in his probabilistic modeling approach using Expected Mu-

tual Information Measure (EMIM) scores between terms [13] . A

maximum spanning tree is constructed, with the terms as the nodes

and the EMIM scores as the weighted edges. The tree captures the

maximum dependencies between terms in the document. These de-

pendencies are used in computing the similarity score between two

documents. However, the approach is computationally expensive

and also unfortunately did not show promising results.

In other related work, Robertson and Bovey [14] tried including

term pairs that have observable dependencies as separate terms with

weights slightly different from the sum of weights or in some other

way to allow for specific dependencies.

Turtle and Croft [16] investigated the use of an explicit network

representation of dependencies by means of Bayesian inference

theory. The use of such a network generalizes existing probabilistic

models and allows integration of several sources of evidence within

a single framework.

Fung and Crawford [5] worked on concept based information

retrieval that captures dependencies between ‘concepts’ using a

Bayesian inference network. One drawback of this approach is that

the user has to identify the concepts manually in each document.

Attempts were also made to capture term dependencies using the

vector space model. The generalized vector space model [17] is one

such example which showed encouraging results.

In the area of language modeling, most attempts at capturing de-

pendencies have been in the form of multigram language models

[15]. Bigram and trigram models, though highly successful in the

speech recognition task, have not met with great success in the do-

main of information retrieval systems.

In a very recent work, Nallapati and Allan [10] have shown that

modeling sentences as maximum spanning trees, similar to Van Ri-

jsbergen’s [13] modeling of documents, holds some promise in cap-

turing local dependencies. Their SenTree model does not perform

as well as unigram model, but they found that a linear mixture of

SenTree and unigram models betters the unigram performance, but

only in regions of low false alarm.

The present work, the Sentence-Forest model, is an improvement

on the SenTree model. The Sentence-Forest model combines the

features of both unigram and SenTree models into a single frame-

work. We will show in our results section that the new model

consistently outperforms the unigram model on two different TDT

tasks.

3. METHODOLOGY
Our goal is to build a topic model from a story

✆✁�
or a set of sto-

ries
� ✆ � ✂☎✄✆✄✆✂ ✆✞✝ ✁ and then decide whether story

✆✞✝✠✟ �
is predicted

by that model. This section describes the methodology of the new

model.

3.1 Exploiting sentence structure
A universal feature of all documents is the syntactic structure

of sentences. Each sentence conveys a complete idea or a concept

through a specific ordering of terms sampled from the language

vocabulary. The sampling and ordering of terms depends on the in-

tended concept and the underlying grammar of the language. The

concepts or the semantics of the entire document are ultimately ex-

pressed as a grouping of such ordered samples of terms called sen-

tences. In other terms, the semantics of a document are expressed

through the syntax of sentences. Hence, we believe modeling sen-

tences, rather than terms as individual entities, better captures the

underlying semantics of the document.

As we have seen earlier, unigram language models completely

ignore the syntactic formation of sentences in documents. In the

present approach, we attempt to capture it by modeling a document

as a collection of sentences rather than as a ‘bag of terms’. We

model each sentence graphically, as a forest of terms as we shall

see later.

3.2 Probability of Sentence Generation
In the Sentence Forest approach, we assume each sentence to be

independent of the other sentences. This assumption is certainly

not valid but it is less stringent than the assumption of term inde-

pendence. The assumption allows us to compute the probability of

generation of a story from a topic model as follows:

✂☎✄✝✆✟✞ ✠☛✡✌☞ ✍
✡ ✑ ✓

✂☎✄☞☛ ✞ ✠ ✡
(2)

where
✠

is a topic model and
☛

is a sentence in a story
✆

. The

tricky part is computing the probability of generation of each sen-

tence. Ideally, one would compute the probability of generation of

a sentence as follows:
✂☎✄☞☛ ✞ ✠☛✡ ☞ ✂☎✄✖✕✌� ✂ ✕✎✍ ✂✏✄✑✄✆✄✆✄✆✄✆✂ ✕ ✝ ✞ ✠☛✡

(3)

where
✕✓✒

is the i-th term and ✔ is the number of terms in the sen-

tence
☛

. We also assume that all the terms in the sentence are

unique, i.e., we ignore any repeated occurrences of terms within a

sentence. This assumption allows us to formulate our model in a

clean way.

The joint probability in the right hand side of equation 3 is almost

impossible to estimate due to the sparse nature of training data. To

overcome this problem, we model the sentence as a forest in an

approach motivated by Van Rijsbergen’s work. [13].

Given a sentence
☛

and a model
✠

, we first define the following

undirected, weighted graph ✕ ✄☞✖ ✂✘✗ ✡ as shown below.

✖ ☞ � ✕✗✞ ✕✚✙✛☛ ✁ (4)

✗ ☞ � ✄✖✕ ✒ ✂ ✕✢✜ ✡ ✞ ✕ ✒ ✂ ✕✢✜✣✙✤✖✦✥ ✂☎✄✖✕ ✒ ✂ ✕✢✜ ✞ ✠☛✡★✧✪✩ ✁ (5)

and
✫ ✄✖✕ ✒ ✂ ✕✢✜ ✡✬✙ ✗✦✂✮✭ ✄✖✕ ✒ ✂ ✕✢✜✔✡ ☞ ✂☎✄✖✕ ✒ ✂ ✕✢✜ ✞ ✠☛✡

(6)

where
✂☎✄✖✕✎✒ ✂ ✕ ✜ ✞ ✠☛✡

is the probability that
✕✎✒

and
✕ ✜

co-occur in

the same sentence given the model
✠

and ✭ ✄✖✕ ✒ ✂ ✕✢✜ ✡ is the weight

assigned to the edge
✄✖✕ ✒ ✂ ✕✢✜ ✡ .

In other words, the set of nodes
✖

in the graph ✕ corresponds

to the terms in the sentence
☛

and an edge exists between terms✕✓✒
and

✕ ✜
with a weight

✂☎✄✖✕✓✒ ✂ ✕ ✜ ✞ ✠☛✡
if and only if they have

a non-zero joint probability of within-sentence-co-occurrence with

respect to the model. An example sentence-graph ✕ is illustrated

in figure 1. The graph has three connected components ✯ � ✂ ✯ ✍ and

✯✱✰ as shown and corresponds to a sentence
☛

that consists of the

terms
� ✕✌� ✂✲✄✲✄✏✄✳✂ ✕✓✴ ✁ . The thickness of the edges is indicative of

the value of edge weight or the probability of within-sentence co-

occurrence with respect to the model.

The first assumption we make is that the generation of terms in

each connected component in the graph ✕ is independent of terms

in other connected components. If ✵✷✶ ☞ � ✕ ✞ ✕✚✙ ✯ ✁ is the set of

terms in a connected component ✯ of G, then we can write

✂☎✄☞☛ ✞ ✠☛✡✹✸ ✍
✶ ✑✠✺

✂☎✄ ✵✻✶ ✞ ✠☛✡
(7)

where
✂☎✄ ✵✷✶ ✞ ✠ ✡

is the joint probability of all the terms in the

connected component ✯ . In the example of figure 1, the probability

w2

w3
w4

w6

w7

w8

w1

w5

C1

C2

C3

Figure 1: A sentence Graph

of sentence generation can be approximated as shown below.

✂☎✄✖✕ � ✂✲✄✆✄✆✂ ✕ ✴ ✞ ✠ ✡✹✸ ✂☎✄ ✵ ✶✁� ✞ ✠☛✡ ✂☎✄ ✵ ✶✄✂ ✞ ✠ ✡ ✂☎✄ ✵ ✶✆☎ ✞ ✠ ✡
☞ ✂☎✄✖✕✌� ✂ ✕✎✍ ✂ ✕✞✝ ✂ ✕✓✴ ✞ ✠ ✡ ✂☎✄✖✕ ✰ ✞ ✠☛✡ ✂☎✄✖✕✠✟ ✂ ✕✞✡ ✂ ✕✠☛✔✞ ✠☛✡

(8)

Let’s now consider how to approximate the joint probability of

terms in a connected component ✯ of ✕ , given by
✂☎✄ ✵ ✶ ✞ ✠ ✡

. In

a nutshell, we approximate the joint probability of ✵✁✶ by the joint

probability computed with respect to a Bayesian Network defined

over the maximum spanning tree of ✯ . In the following discussion,

we first present the intuition behind such modeling and then present

the actual model stating the assumptions made.

3.2.1 Intuition behind Maximum Spanning Tree Model

Let us assume that ✵✷✶ ☞ � ✕✌� ✂✲✄✲✄✏✄✳✂ ✕✠☞ ✁ for convenience. Us-

ing the chain rule, the joint probability in equation 7 can be ex-

pressed as

✂☎✄✖✕✌� ✂ ✕✎✍ ✂✲✄✆✄✆✂ ✕✠☞ ✞ ✠☛✡✌☞ ✂☎✄✖✕✌� ✞ ✠☛✡✍✌ ✂☎✄✖✕✎✍ ✞ ✕✌� ✂ ✠☛✡✎✌
✂☎✄✖✕ ✰ ✞ ✕✌� ✂ ✕✎✍ ✂ ✠ ✡✍✌ ✄✆✄ ✌ ✂☎✄✖✕✠☞ ✞ ✕✌� ✂ ✕✎✍ ✂☎✄✆✄✆✂ ✕✠☞✑✏✳� ✂ ✠☛✡

(9)

As an approximation to this exact formula, we may ignore the

higher order dependencies in each term in the right hand side of

equation 9 and select from the conditioning variables, one particu-

lar variable that accounts for most of the dependence relation. In

other words, we seek an approximation of the form

✂☎✄✖✕✓✒ ✞ ✕✓✒ ✏✳� ✂☎✄✑✄✆✄✆✂ ✕ � ✂ ✠ ✡✹✸✓✒✕✔✎✖✗✙✘ ✜✛✚ ✒ ✂☎✄✖✕✓✒ ✞ ✕ ✜ ✂ ✠☛✡
(10)

Let ✜ ✄✣✢ ✡ be the function that maps
✢

into integers less than
✢

such

that
✕ ✜✥✤ ✒✧✦

accounts most for the dependency of
✕ ✒

. In other words,

✜ ✄✣✢ ✡ is the value of ✜ that maximizes the probabilities in equation

10. Then, the approximate probability of sentence generation is

given by

✂☎✄ ✵ ✶ ✞ ✠☛✡✹✸
☞
✍
✒✩★ � ✂☎✄✖✕✓✒ ✞ ✕ ✜✛✤ ✒✧✦ ✂ ✠ ✡

(11)

where
✕ ✗ is defined such that

✂☎✄✖✕ ✒ ✞ ✕ ✗ ✂ ✠ ✡✌☞ ✂☎✄✖✕ ✒ ✞ ✠ ✡
(12)

If we imagine a dependency graph of relation 11 with terms as ver-

tices and conditional probabilities as directed edges (directed from

the conditioning variable to the conditioned variable), it is easy to

see that the relation represents a Bayesian Network in which each

node has at most one parent. Moreover, if we ignore the direction

of the edges, the network forms a spanning tree over the connected

component ✯ . These observations follow from the fact that there is

at least one edge connected to each node and a node’s dependence

is defined only on the nodes preceding it, i.e., ✜ ✄✣✢ ✡ is always less

than
✢
, thus preventing the formation of any dependency cycles.

At this point, let us reconsider the chain rule expansion of the

joint probability in equation 9. If we assume all orderings of terms

in the sentence to be indistinguishable, then the chain rule can be

defined in ✪✬✫ possible ways. For instance, we could have expanded

the joint probability as follows, too:

✂☎✄✖✕✌� ✂ ✕✎✍ ✂✲✄✆✄✆✂ ✕✠☞ ✞ ✠ ✡ ☞ ✂☎✄✖✕✠☞ ✂ ✕✠☞✑✏ � ✂✲✄✆✄✆✂ ✕✌� ✞ ✠ ✡
(13)

☞ ✂☎✄✖✕ ☞ ✞ ✠☛✡ ✂☎✄✖✕ ☞✞✏ � ✞ ✕ ☞ ✂ ✠ ✡ ✂☎✄✖✕ ☞✑✏ ✍ ✞ ✕ ☞ ✂ ✕ ☞✑✏ � ✂ ✠ ✡
✄✑✄ ✂☎✄✖✕✌� ✞ ✕✠☞ ✂ ✕✠☞✞✏ � ✂✲✄✆✄✆✂ ✕✎✍ ✂ ✠ ✡

(14)

If we use a similar approximation as above on the new expansion in

equation 14 ignoring the higher order dependencies and selecting

the best conditioning variable in each term, the set of dependen-

cies still forms a Bayesian network defined over a spanning tree of

the graph. It is easy to see if we renumber
✄✖✕✞☞ ✂ ✕✠☞✑✏✳� ✂✲✄✆✄✆✄✑✂ ✕✌� ✡

as
✄✖✕✞✭ � ✂ ✕✞✭ ✍ ✂✲✄✆✄✑✄ ✕✞✭☞ ✡

and substitute in the chain rule expansion. We

essentially end up with the same form as in equation 10.

Thus, the best approximation to the joint probability would be a

Bayesian network defined over one of a maximum of ✪✬✫ spanning

trees, that best captures the dependencies. Clearly this is given

by the Maximum Spanning Tree (MST) over the graph of ✯ . The

MST incorporates the most significant of dependencies between the

terms of a sentence subject to the global constraint that the sum of

them should be a maximum. Once the MST is computed, we can

define a Bayesian network of dependencies by traversing breadth-

wise or depth-wise on the MST starting from any leaf node and

defining the direction of the edges to be same as the direction of

traversal. Such definition of a Bayesian network ensures that every

node has at most one parent as required by our approximation of

first order dependencies. This follows from the fact that in depth-

wise or breadth-wise traversal, each node is visited exactly once.

Moreover, it can be easily shown using Bayes’ rule that the joint

probability remains the same irrespective of the starting node cho-

sen in the definition of the Bayesian network over the spanning

tree. Hence we can uniquely identify a Bayesian Network on each

spanning tree.

This suggests modeling the joint probability of ✵ ✶ as follows.

Form an undirected maximum spanning tree ✮✰✯✲✱✥✳ over ✯ and de-

fine a directed Bayesian network on the tree as explained above.

Then the joint probability
✂☎✄ ✵ ✶ ✞ ✮ ✯✲✱✥✳ ✂ ✠ ✡

can be computed triv-

ially over this network. The same idea is presented more formally

below.

3.2.2 Maximum spanning tree model

We first introduce the following relation that equates the joint

probability to a weighted summation over all spanning trees of the

component ✯ .

✂☎✄ ✵ ✶ ✞ ✠☛✡✹✸ ✴
✵ ✑ spanning trees of ✯

✂☎✄ ✮ ✞ ✠☛✡ ✂☎✄ ✵ ✶ ✞ ✮ ✂ ✠☛✡

(15)

where
✂☎✄ ✮ ✞ ✠ ✡

is the generative probability of tree ✮ from model✠
and

✂☎✄ ✵ ✶ ✞ ✮ ✂ ✠☛✡
is the joint probability of terms in ✯ given

the tree structure of dependencies. We now assume that the proba-

bility mass of
✂☎✄ ✮ ✞ ✠☛✡

is concentrated at the maximum spanning

tree ✮ ✯✲✱✥✳ of ✯ . This assumption allows us to write:

✂☎✄ ✵✷✶ ✞ ✠ ✡ ✸ ✂☎✄ ✵✻✶ ✞ ✮ ✯ ✱✥✳ ✄ ✯ ✡ ✂ ✠☛✡
(16)

We estimate the right hand side of 16 by assuming a Bayesian net-

work over ✮ ✯ ✱✥✳ obtained by traversing ✮ ✯ ✱✥✳ breadth-wise start-

ing from any leaf node. We know that the joint probability thus

defined is independent of the leaf node chosen, hence we can as-

sociate a unique Bayesian network with each ✮ ✯ ✱✥✳ . Given the

Bayesian network, the joint probability is simply reduced to a prod-

uct of first order conditional probabilities. For example, let’s con-

sider the graph in figure 1. For each component, we build a maxi-

mum spanning tree and define a Bayesian Network over the tree as

shown in figure 2. As the figure indicates, we chose vertex
✕ ✍

as

the starting leaf node in defining the Bayesian network over ✮✰✯ ✱ ✳
of component ✯ � . Similarly,

✕ ✟
is the starting node of component

✯✱✰ . Component ✯ ✍ is a singleton node, hence there is no Bayesian

network associated with it. Next, the joint probability of terms in

each component is defined as follows.

w2

w3
w4

w6

w7

w8

w1

w5

C1

C2

C3

Figure 2: Bayesian networks defined on each connected com-

ponent’s maximum spanning tree

✂☎✄ ✵✷✶✄� ✞ ✠ ✡ ✸ ✂☎✄ ✵✷✶✁� ✞ ✮ ☞ ✱✥✳ ✄ ✯ � ✡ ✂ ✠ ✡
☞ ✂☎✄✖✕✞✝ ✞ ✕✌� ✂ ✠ ✡ ✂☎✄✖✕✓✴✔✞ ✕✌� ✂ ✠ ✡✍✌

✂☎✄✖✕ � ✞ ✕ ✍ ✂ ✠ ✡ ✂☎✄✖✕ ✍ ✞ ✠☛✡
✂☎✄ ✵✷✶✆✂ ✞ ✠ ✡ ☞ ✂☎✄✖✕ ✰ ✞ ✠ ✡
✂☎✄ ✵ ✶✰☎ ✞ ✠ ✡ ✸ ✂☎✄ ✵ ✶✆☎ ✞ ✮ ☞ ✱✥✳ ✄ ✯ ✰ ✡ ✂ ✠ ✡

☞ ✂☎✄✖✕✞✡ ✞ ✕✠☛ ✂ ✠ ✡ ✂☎✄✖✕✠☛✔✞ ✕✠✟ ✂ ✠ ✡ ✂☎✄✖✕✠✟ ✞ ✠ ✡
(17)

Thus, we see that each sentence is modeled as a forest consist-

ing of acyclic trees and singleton nodes, hence the name Sentence-

Forest model.

3.3 Estimating the model parameters
As we have seen in section 3.2, to estimate the probability of sen-

tence generation, all we need are the conditional probabilities of the

form
✂☎✄✖✕ ✒ ✞ ✕✢✜ ✂ ✠☛✡

for the dependencies in the Bayesian networks

and unigram probabilities of the form
✂☎✄✖✕✎✒ ✞ ✠☛✡

for the leaf nodes

in the Bayesian nets and singleton nodes that have no dependencies

associated with them. Typically these parameters of the model are

estimated from a single document or a set of documents. Let
✆

be

the document from which we estimate the model parameters. We

use the maximum likelihood estimates for the model parameters as

shown below:

✂☎✄✖✕✓✒ ✞ ✠ ✡✹✸ ✁ ✯ ✄✖✕ ✒ ✂ ✆ ✡✂ ✏✒✑ ✓ ✯ ✄✖✕ ✂ ✆ ✡☎✄
✄✝✆✟✞ ✁ ✡ ✯ ✄✖✕ ✒ ✂ ✕ ✗ ✡✂ ✏✒✑✡✠☞☛ ✯ ✄✖✕ ✂ ✕ ✗ ✡

(18)

where ✯ ✄✖✕ ✂ ✆ ✡ is the number of occurrences of term
✕

in docu-

ment
✆

and ✕ ✗ is a large corpus of general English. We have used

a smoothing parameter
✁

to prevent zero probabilities of unigrams.

The following maximum likelihood estimates are used to com-

pute the joint and conditional probabilities:

✂☎✄✖✕✓✒ ✂ ✕ ✜ ✞ ✠ ✡ ✸ ✔ ✓ ✄✖✕ ✒ ✂ ✕✢✜ ✡
✔ ✓ (19)

✂☎✄✖✕ ✒ ✞ ✕✢✜ ✂ ✠ ✡ ✸ ✔ ✓ ✄✖✕ ✒ ✂ ✕✢✜ ✡
✔ ✓ ✄✖✕✢✜✔✡ (20)

where ✔ ✓ is the number of sentences in
✆

and ✔ ✓ ✄✖✕ ✡ is the num-

ber of sentences in document
✆

that the argument
✕

occurs in.

Note that we have not used any smoothing in estimating the joint

and conditional probabilities.

3.4 Likelihood ratio
Finally, the story’s relevance score with respect to a model is

given in terms of likelihood ratio which is defined by the following

equation:

☛✍✌✏✎✒✑✔✓ ✄✝✆ ✂ ✠ ✡ ☞ ✂☎✄✝✆✟✞ ✠☛✡
✂☎✄✝✆✟✞ ✕ ✗ ✡

☞ ✕ ✡ ✑ ✓ ✂☎✄☞☛ ✞ ✠ ✡
✕ ✏✒✑ ✓ ✂☎✄✖✕✗✞ ✕ ✗ ✡

(21)

Note that in computing the probability of document generation

with respect to the general English model
✂☎✄✝✆✟✞ ✕ ✗ ✡ , we use the

unigram model. Computing the likelihood ratio with respect to the

general English model provides a sound basis for comparison of

relevance and also serves as a normalizing factor to sentence and

document lengths.

4. COMPUTATIONAL COMPLEXITY
In this subsection we discuss the time and space complexity of

implementing the Sentence-Forest model with respect to a single

story as the input. We will assume that the story contains ✖ sen-

tences and at most ✮ terms per sentence.

The running time of each step in the algorithm is presented be-

low:

1. Constructing the graph ✕ of a sentence
☛

with weighted

edges: This requires computing the joint probability for all

pairs of terms in the sentence, each of which can be done in

constant time using hash tables. Thus, this step has a com-

plexity of ✗ ✄ ✮
✍ ✡

.

2. Building a maximum spanning tree for each of the compo-

nent. The worst case arises when ✕ is a fully connected

graph. We use a greedy algorithm to build the MST. The run-

ning time of this step is ✗ ✄ ✮
✍✙✘ ✎✛✚ ✄ ✮ ✡ ✡ if we use disjoint-set

forest implementation with union by rank and path compres-

sion heuristics [2].

3. Defining a Bayesian network over the MST. This involves

breadth-wise traversal starting from one of the leaf nodes.

Data set Unigram Sentence Forest

Train Set (6,361 pairs) 3 15

Test Set (27,538 pairs) 10 70

Figure 3: Comparison of average runtime of unigram and

Sentence-Forest models on training and test sets in the link de-

tection task: All values are in seconds.

The running time is ✗ ✄ ✮ ✄ ✞ ✗ ✞ ✡ . Since the number of edges

in an MST spanning the entire graph is ✮ ✞ ✆
, breadth-wise

traversal costs us only ✗ ✄ ✮ ✡ time.

4. Computing the probability of occurrence of the sentence from

the topic model and the background models: This requires

generating the conditional probabilities of each edge in the

MST and the unigram probabilities of the start node and any

other singleton nodes, each of which can be done in constant

time. Hence, this step has a complexity of ✗ ✄ ✮ ✡ , which is

the size of the MST.

Thus, the overall running time per sentence is ✗ ✄ ✮
✍✏✘ ✎✛✚ ✄ ✮ ✡ ✡ .

Thus, for the entire document, the complexity is simply given by✗ ✄ ✖ ✡✞✌ ✗ ✄ ✮
✍ ✘ ✎✛✚ ✄ ✮ ✡ ✡ ☞ ✗ ✄ ✮

✍
✖
✘ ✎✛✚ ✄ ✮ ✡ ✡ . In comparison, the

unigram model has a time complexity of only ✗ ✄ ✮☎✖ ✡ .
In practice, we notice that the run time of the Sentence-Forest

model is only about 5-7 times higher than that of the unigram model

as figure 3 indicates. We believe that despite the slightly lower

speed, it is still fast enough for most real time applications, consid-

ering the fact that the Sentence-Forest model can process as many

as 24,000 story pairs a minute.

Let us now look at the space-complexity of the model. Clearly,

we need to index the joint and conditional probabilities for each

pair of terms
✄✖✕ ✒ ✂ ✕✢✜ ✡ in a sentence

☛
in order to build the graph

✕ (equation 5) and evaluate the joint probability of a sentence over

the maximum spanning tree of each component in ✕ (equation 16).

Thus each sentence needs a space of ✗ ✄ ✮
✍ ✡

, hence each document

needs a space of ✗ ✄ ✮
✍
✖ ✡ . The unigram model, on the other hand,

has a space-complexity of only ✗ ✄ ✖ ✮ ✡ .
5. DISCUSSION

In this section we will try to justify modeling within-sentence

dependencies and explain the intuition behind why we expect the

new model to perform better than the traditional unigram model.

Apart from effectiveness, we will also discuss the features of the

algorithm that makes it efficient.

5.1 Why model sentences?
We believe that the most significant dependencies between terms

occur within a sentence in the form of noun-phrases (e.g., gray-

whale, balloon-adventure, Navy-sailor), proper names (e.g., Timothy-

McVeigh, Bill-Clinton), associations (e.g., Glenn-NASA, asteroid-

earth, Schindler-Oscar, Bush-Washington), etc. Dependencies do

exist outside sentence boundaries too, but we posit that they do not

tend to be as strong. This intuition explains several attempts in the

past to incorporate noun phrases, proper name associations, etc. ex-

plicitly in retrieval models [3]. We believe our model includes all

of those localized dependencies naturally into a unified probabilis-

tic framework. From a computational viewpoint, modeling only

within-sentence dependencies saves us considerable computational

costs in comparison to modeling dependencies over the entire doc-

ument (section 4), at the same time hopefully not compromising

too much on effectiveness.

5.2 How might it help improve effectiveness?
Recall that our task is to compute the probability of generation

of story
✆✦✍

with respect to a model
✠ ✄✝✆✁� ✡

estimated from story✆ �
. We will focus on the generative probability

✂☎✄☞☛ ✞ ✠ ✄✝✆ � ✡ ✡
of

a particular sentence
☛

in
✆✻✍

for illustration.

Consider examine the graph ✕ of
☛

defined with respect to the

model of
✆✁�

. Let
✕ ✒

and
✕✢✜

be two terms in
☛

. As shown in

equation 5, an edge
✄✖✕ ✒ ✂ ✕✢✜ ✡ exists in ✕ if and only if the proba-

bility of within-sentence-co-occurrence
✂☎✄✖✕✎✒ ✂ ✕ ✜ ✞ ✠ ✡

is non-zero.

Since we estimate
✂☎✄✖✕ ✒ ✂ ✕✢✜ ✞ ✠☛✡

(see equation 19) entirely from✆ �
’s statistics, it follows that an edge

✄✖✕✎✒ ✂ ✕ ✜ ✡ exists in ✕ only if

the terms
✕ ✒

and
✕✢✜

co-occur in at least one sentence in
✆ �

. Call

all term pairs
✄✖✕✓✒ ✂ ✕ ✜ ✡ of

☛
that co-occur within a sentence bound-

ary in
✆✁�

‘active’ term pairs. Thus all edges in ✕ correspond to ac-

tive term pairs of
☛

. If the edge
✄✖✕✎✒ ✂ ✕ ✜ ✡ happens to be a part of the

maximum spanning tree of one of the components ✯ in ✕ , then, the

approximate generative probability of the sentence
✂☎✄☞☛ ✞ ✠ ✄✝✆ � ✡ ✡

will contain a term of the form
✂☎✄✖✕✎✒ ✞ ✕ ✜ ✂ ✠ ✡

(see equation 17 for

example). Thus in effect, the Sentence-Forest model searches for

active term pairs in
☛

and computes their conditional probabilities,

while computing unigram scores for all other terms. In the absence

of any active term pairs, the Sentence-Forest model smoothly col-

lapses to a unigram generative model since the graph ✕ would then

only consist of independent singleton nodes.

While it is certainly not guaranteed by theory, it turns out that

the maximum likelihood estimate of the conditional probability✂☎✄✖✕✓✒ ✞ ✕ ✜ ✂ ✠ ✡
is almost always an order of magnitude higher than

the corresponding unigram estimate
✂☎✄✖✕ ✒ ✞ ✠ ✡

. This can be at-

tributed to the fact that co-occurrence of any pair of terms is typ-

ically a much rarer event than each of their occurrences. Thus,

if the sentence
☛

contains many active term pairs, the Sentence-

Forest model boosts the generative probability
✂☎✄☞☛ ✞ ✠☛✡

via the

conditional probabilities.

We expect that the sentence
☛

contains considerable number of

active term pairs if
✆✻✍

, the document that contains
☛

, is on the

same topic as that of
✆ �

and none otherwise. In such a scenario,

if
✆✦✍

is on-topic, the score assigned by Sentence-Forest model

is typically much higher than unigram score. If
✆ ✍

is off-topic

with respect to
✆✁�

, the generative probability computed by the

Sentence-Forest model corresponds to unigram score. Thus we ex-

pect that on-topic pairs and off-topic pairs are well-separated by the

Sentence-Forest model resulting in better performance.

5.3 What makes it efficient?
A simple unigram model has proven not only very effective in

most IR tasks, but is also one of the most efficient algorithms in

terms of its time and space complexity, mainly owing to its sim-

plicity. Any model that incorporates more information than simple

term distributions alone seems to invariably loses out to unigram

model on efficiency. We believe that we have managed to improve

on the effectiveness of the unigram model considerably while limit-

ing the loss in efficiency within reasonable bounds for all practical

purposes.

As we have seen in section 4, the time complexity of the Sentence-

Forest model is only a factor of ✗ ✄ ✮
✘ ✎✛✚ ✮ ✡ higher than that of the

unigram model, while the space complexity is higher only by a

factor of ✗ ✄ ✮ ✡ , where ✮ is the maximum number of terms in a

sentence.

One of the reasons for its efficiency being almost comparable

with that of the unigram model is the fact that we take into account

only within-sentence co-occurrences as dependencies, thereby re-

ducing the number of first-order dependencies to evaluate from a

maximum of ✗ ✄ ✄ ✮☎✖ ✡
✍ ✡

to just ✗ ✄ ✮
✍
✖ ✡ , a reduction by a factor

of ✗ ✄ ✖ ✡ .
Another important reason that makes the model suitable for most

real-life systems is the fact that the model does not require one to

estimate the conditional probabilities
✂☎✄✖✕✎✒ ✞ ✕ ✜ ✂ ✠ ✡

over the entire

space
✞ ✖ ✞ ✌ ✞ ✖ ✞

, where
✞ ✖ ✞

is the vocabulary size of the topic of✠
. Recall that a necessary (but not sufficient) condition that we

compute conditional probabilility
✂☎✄✖✕✎✒ ✞ ✕ ✜ ✂ ✠☛✡

for a pair of terms✄✖✕ ✒ ✂ ✕✢✜ ✡ is that they are active (see subsection 5.2) in document
✆

from which we estimate the model
✠

. Thus, for each document✆
from which we estimate a model

✠ ✄✝✆ ✡
, it is enough for us to

index a priori the conditional probabilities of only those term pairs

that co-occur in the same sentence in
✆

. The number of these term

pairs is much less than the entire space resulting in considerable

savings.

There is another factor that keeps our model very efficient: as

equation 21 indicates, we compute only unigram probabilities to

estimate the generative probability of a document from the general

English model ✕ ✗ . Note also that we do not use smoothing in

estimating the conditional probabilities
✂☎✄✖✕ ✒ ✞ ✕✢✜ ✂ ✠☛✡

(see equa-

tion 20). This effectively means that we never have to compute a

conditional probability distribution with respect to the general En-

glish model, which results in a big saving in terms of both time

and space. Note that since conditional probabilities are evaluated

only for active term-pairs, there is no zero-probability problem and

hence smoothing is rendered unnecessary. Nevertheless, smooth-

ing is found to improve effectiveness in many applications. In

our experiments, we have observed that smoothing the estimates

of conditional probabilities with estimates from a general English

model did not result in any significant improvement in effective-

ness. Hence we have abandoned smoothing the conditional proba-

bility estimates in return for huge savings in time and space.

5.4 Comparison with the Sentree model
The current model is an improvement on the SenTree model [10].

In the SenTree model, for any sentence
☛

, we construct a maximum

spanning tree (MST) over the fully-connected sentence graph with

respect to the statistics of the topic model
✠

. Thus, even when

topic-related dependencies may exist only among a small fraction

of term-pairs in a sentence, the MST imposes a dependency struc-

ture over the entire sentence. As a result, most of the dependencies

evaluated by the SenTree model turn out to be spurious, resulting

in degraded performance [10]. The Sentence-Forest model seeks

to overcome this drawback by adaptively modeling only topically

relevant dependencies and exhibiting a unigram-like behavior by

default. Thus it combines the best properties of both the SenTree

and the unigram model into a single theoretical framework.

In terms of efficiency too, the Sentence-Forest model outper-

forms the Sentree model. The Sentree model requires smooth-

ing of the conditional probabilities with the general English esti-

mates to overcome the zero-probability problem, which involves

huge time and space overheads. The Sentence-Forest model, on

the other hand, computes conditional probabilities only for ‘active’

term pairs and hence does not require smoothing.

6. IMPLEMENTATION DETAILS
In this section, we discuss some of the system implementation

details that are not covered in the discussion on methodology of the

model.

During the process of training the model, we noticed that our ex-

pectation that active term pairs occur only in on-topic story pairs

(see section 5) is not strictly valid. In fact, our data analysis re-

vealed that many common term pairs such as ‘people say’, ‘offi-

cials stated’ co-occur within a sentence boundary in both stories

in many off-topic story-pairs. Such term co-occurrences do not

carry much information about the topical content of the stories, but

the Sentence-Forest model incorrectly assigns edges between such

terms. These ‘spurious’ edges ultimately creep in as conditional

probabilities and boost the scores of off-topic pairs. This results

in a large number of false alarms resulting in a degradation in the

performance of the model.

To suppress the effect of these spurious term pairs, we modified

the definition of edges in equation 5 to include the following extra

condition.

✗ ☞ � ✄✖✕ ✒ ✂ ✕✢✜ ✡ ✞ ✕ ✒ ✂ ✕✢✜ ✙✛✖✦✥✂☎✄✖✕✓✒ ✂ ✕ ✜ ✞ ✠ ✡★✧ ✩ ✥ ✘ ✄✖✕✓✒ ✡ ✘ ✄✖✕ ✜ ✡★✧ ✯ ✁ (22)

where ✘ ✄✖✕ ✡✌☞ ✂☎✄✖✕ ✞ ✠ ✡
✂☎✄✖✕✗✞ ✕ ✗ ✡ (23)

✘ ✄✖✕ ✡
is the likelihood ratio of the probability of term

✕
given the

model with respect to a general English model. It is similar to the

familiar tf-idf weight and tells us the relative importance of the term

with respect to the topic model. Thus, the modified definition of an

edge in equation 22 requires the model to form an edge
✄✖✕✎✒ ✂ ✕ ✜ ✡

only if the ‘relative importance’ of both the terms exceeds a thresh-

old ✯ . We empirically determined the best value of ✯ to be 2500

and fixed it at this value on all our runs.

6.1 Tools
Clearly, the sentence-Forest model requires us to identify the

boundaries of sentences in documents. We have used a simple

heuristic-rule based sentence segmenter to detect sentence bound-

aries. We refer the reader to [10] for more information on the

heuristic rules used.

Additionally, we have used a list of 423 most frequent words to

remove stop words from stories. Stemming is done using the Porter

stemmer [12] while the indexer and the Sentence-Forest model are

implemented using Java.

7. TOPIC DETECTION AND TRACKING
The new model we present in this work is expected to address

some of the issues in Topic Detection and Tracking (TDT) [1]. TDT

is a research program investigating methods for automatically or-

ganizing news stories by the events that they discuss. It includes

several evaluation tasks, each of which explores one aspect of that

organization. In this section, we describe two tasks called Link

Detection and Topic Tracking.

7.1 Link Detection task
Link Detection requires determining whether or not two ran-

domly selected stories discuss the same topic. In the language mod-

eling approach to link detection, we build a topic model
✠ ✄✝✆ � ✡

from one of the stories
✆✁�

in the pair
✄✝✆✁� ✂ ✆✦✍ ✡ . We then compute

the generative probability of the second story
✆✻✍

from the model✠ ✄✝✆✁� ✡
as shown below.

☛✍✌✏✎✒✑ ✓ ✄✝✆✷� ✂ ✆✦✍ ✡ ☞ ✂☎✄✝✆✦✍✔✞ ✠ ✄✝✆✁� ✡ ✡
(24)

Sometimes we may compute a two-way score to add symmetry

to the formula, as shown below:

� ✌✏✎✒✑ ✓ ✄✝✆✷� ✂ ✆✦✍ ✡ ☞
✆

✁
✄✝✂☎✄✝✆✞✍✔✞ ✠ ✄✝✆✷� ✡ ✡ ✄ ✂☎✄✝✆✁� ✞ ✠ ✄✝✆✦✍ ✡ ✡ ✡

(25)

If the score exceeds a pre-determined threshold, the system de-

cides the two stories are linked. The system’s performance is eval-

uated using a topic-weighted DET curve [9] that plots miss rate

against false alarm over a large number of story pairs, at different

values of decision-threshold. A Link Detection cost function ✯✁� ✒ ✝✄✂
is then used to combine the miss and false alarm probabilities at

each value of threshold into a single normalized evaluation score

[18]. We use the minimum value of ✯✁� ✒ ✝✄✂ as the primary measure

of effectiveness and show DET curves to illustrate the error trade-

offs.

7.2 Topic Tracking
The TDT topic tracking task is defined to be the task of associat-

ing incoming stories with topics that are known to the system. Each

target topic is defined by a set of training stories. The tracking task

is then to classify correctly all subsequent stories as to whether or

not they discuss the target topic.

Similar to the link detection task, we estimate a model
✠ ✵ for

topic ✮ from the set of its training stories. Given any subsequent

story
✆

, we measure the probability of its generation with respect

to the model
✂☎✄✝✆✟✞ ✠ ✵ ✡ . The system decides that the story is on-

topic if the score exceeds a pre-defined threshold. We use topic

weighted DET curves and a minimum cost value to evaluate the

system’s performance, as in link-detection task.

8. EXPERIMENTS AND RESULTS
In this section, we describe the experiments we performed on

link-detection and topic-tracking and present the results we ob-

tained.

8.1 Story Link Detection
The training set we used is a subset of the TDT2 corpus that

includes six months of material drawn on a daily basis from six

English-only news sources that are manually transcribed (when the

source is audio). The collection comprises 6,361 story pairs and

relevance judgments for each of them. The test set is the TDT3

corpus consisting of the 27,538 manually transcribed story pairs

from multiple languages. If the source is non-English, we have

used machine translations that are made available in the corpus. To

derive the general English unigram model, we have used the same

corpora as we performed experiments on.

We first trained the unigram model on the training set and used

its best performance (at
✁ ☞ ✩ ✄ ✁

) as the baseline for all the exper-

iments. In our training experiments on the Sentence-Forest model,

we performed a search for the best performing values of the pa-

rameters
✁

and

✘
. The DET curve of the best performing values

of
✁ ☞ ✩ ✄ ✁

and

✘ ☞ ✁✄☎ ✩ ✩
is shown in figure 4. It is clear from

the plot that the Sentence-Forest model outperforms the unigram

model. This is reflected in the fact that we were able to bring down

the minimum cost ✯✆� ✒✑✝✝✂ by 7% from that of the unigram model as

shown in the same figure.

Having found the best performing values of various parameters,

we now ran the system on the test set with the parameters set to

the best training values. The performance of the system on the test

set is shown in figure 5. Once again, we notice that the Sentence-

Forest model consistently outperforms the unigram model resulting

in a reduction of about 4% in the minimum cost.

8.2 Topic Tracking
We used the multi-lingual TDT3 corpus in our tracking experi-

ments. The general English unigram model is derived from about

40,000 stories in the TDT2 corpus. We used manual transcriptions

and machine translations to English wherever necessary. There

were 38 topics to track and we provided one English training story

per topic (✖✟✞ ☞ ✆
). The topic model of each topic is computed

1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

Random Performance

Sentence-Forest

Sentence-Forest TW Min DET Norm(Cost) = 0.1102

Unigram

Unigram TW Min DET Norm(Cost) = 0.1184

Figure 4: Performance of Sentence-Forest model on the train-

ing set (Link detection task)

1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

Random Performance

Sentence-Forest Topic Weighted Curve

Sentence-Forest TW Min DET Norm(Cost) = 0.3689

Unigram

Unigram Norm(Cost) = 0.3828

Figure 5: Performance of Sentence-Forest model on the test set

(Link detection task)

from the single training story and remains static (no adaptation is

used) during the entire run. We used the best parameters obtained

from training in the link detection task in our runs of unigram and

Sentence-Forest models.

Figure 6 compares the performance of the Sentence-Forest model

with that of the unigram model. We notice trends similar to the link

detection task. The minimum cost of the Sentence-Forest model is

about 6.4% lower than that of the unigram model. In both figures 5

and 6, we note that the Sentence-Forest DET curve dominates the

unigram curve, so it’s even better than reducing the minimum cost:

false alarm rate is reduced at all miss rates.

8.3 Comparison to state­of­the­art TDT sys­
tems

The experiments we have performed on the link detection task do

not correspond to any official conditions, but the tracking run does

correspond to the standard evaluation conditions of TDT 2001. The

best system in that evaluation was Limsi [7] which achieved a min-

imum cost of 0.0959 (compared to the unigram cost of 0.2498 and

Sentence-Forest minimum cost of 0.2339). We note that the state-

1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

Random Performance

Sentence Forest Nt=1

Sentence-Forest SW Min DET Norm(Cost) = 0.2339

Unigram Nt=1

Unigram SW Min DET Norm(Cost) = 0.2498

Figure 6: Performance of Sentence-Forest model on Tracking

task

of-the-art TDT systems like Limsi [7] and Relevance Models [6]

typically rely on elaborate boosting techniques such as document

expansion and unsupervised adaptation while employing unigram

model as their core technology.

The goal of the present work is to demonstrate that incorporat-

ing local dependencies within the language modeling framework

improves effectiveness. Hence we have used the unigram model

as our baseline in all our runs. Although the performance of our

system is well short of the state-of-the-art systems, we believe our

model is a contribution at a fundamental level, and it can be easily

extended to accommodate several boosting techniques used in the

state-of-the-art systems.

9. CONCLUSIONS AND FUTURE WORK
In this work, we have presented a new approach of modeling a

document by capturing local dependencies in documents through

adaptive Bayesian networks. Although this approach is built to-

wards addressing a specific TDT task, we believe that the general-

ity of the model permits one to apply it to any text classification or

retrieval task.

Our experiments show that the Sentence-Forest model outper-

forms the baseline unigram model on different data sets and on two

different TDT tasks. To the best of our knowledge, this is the only

probabilistic model that performs better than unigram model using

statistics from the document alone. As such, we think the most im-

portant contribution of this study is the evidence we have provided

that the performance of the existing IR systems can be improved by

employing more sophisticated language models that capture posi-

tional and other syntactic information in documents.

As part of our future work, we would like to test the performance

of our model on other IR tasks such as ad-hoc retrieval. We also

envision building a query or document expansion device using the

Sentence-Forest model as the basic framework. Our hope is that the

new expansion device may better other expansion models based

on the unigram approach since our basic model outperforms the

unigram model.

Acknowledgments

We would like to thank Andrew McCallum and Victor Lavrenko

for their valuable comments. This work was supported in part

by the Center for Intelligent Information Retrieval and in part by

SPAWARSYSCEN-SD grant numbers N66001-99-1-8912 and N66001-

02-1-8903. Any opinions, findings and conclusions or recommen-

dations expressed in this material are the author(s) and do not nec-

essarily reflect those of the sponsor.

10. REFERENCES
[1] Allan, J., Lavrenko, V. and Swan, R. Explorations Within

Topic Tracking and Detection, Topic Detection and

Tracking: Event-based Information Organization, James

Allan, Editor, Kluwer Academic Publishers, 197-224, 2002.

[2] Cormen, T. H., Leiserson, C. E. and Rivest, R. L.

Introduction to Algorithms, MIT Press, 1990.

[3] Croft, W. B., Turtle, H. R. and Lewis,D. D. The use of

phrases and structured queries in information retrieval, ACM

SIGIR, 32-45, 1991.

[4] De Finetti, B. Theory of Probability, 1:146-161, Wiley,

London 1974.

[5] Fung, R. M., Crawford, S. L., Appelbaum, L. A. and Tong,

R. M. An architecture for probabilistic concept-based

information retrieval, ACM SIGIR, 455-467, 1990.

[6] Lavrenko, V., Allan, J., DeGuzman, E., LaFlamme,D.,

Pollard, V. and Thomas, S. Relevance models for Topic

Detection and Tracking, Proceedings of the Conference on

Human Language Technology (HLT), 2002.

[7] Lo, Y. and Gauvain, J., The Limsi Topic Tracking System for

TDT 2001, Proceedings of TDT 2001 workshop.

[8] Manning, C. D. and Schutze, H. Foundations of Statistical

Natural Language Processing, MIT Press, 1999.

[9] Martin, A., Doddington, G., Kamm, T. and Ordowski, M.

The DET curve in assessment of detection task performance,

EuroSpeech, 1895–1898, 1997.

[10] Nallapati, R. and Allan, J. Capturing Term Dependencies

using a Language Model based on Sentence Trees, ACM

CIKM 383-390, 2002.

[11] Ponte, J. M. and Croft, W. B. A Language Modeling

Approach to Information Retrieval, ACM SIGIR, 275-281,

1998.

[12] Porter, M. F. An algorithm for suffix stripping, Program,

14(3):130-137, 1980.

[13] Rijsbergen, V. Information Retrieval, Butterworths, 1979.

[14] Robertson, S. E. and Bovey, J. D. Statistical Problems in the

Application of Probabilistic Models to Information Retrieval,

Technical Report, Center for Information Science, City

University, 1982.

[15] Song, F. and Croft, W. B. A General Language Model for

Information Retrieval, Information and Knowledge

Management, 1999.

[16] Turtle, H. R. and Croft, W. B. Inference Networks for

Document Retrieval, ACM SIGIR, 1-24, 1990.

[17] Wong, S. K. M., Ziarko, W. and Wong, P. C. N. Generalized

Vector Space Model in Information Retrieval, ACM SIGIR

18-25, 1985.

[18] The Topic Detection and Tracking evaluation phase 2 plan,

http://www.nist.gov/speech/tests/tdt/tdt98/doc/tdt2.eval

.plan.98.v3.7.pdf.

