
Capturing Term Dependencies using a Sentence Tree
based Language Model

Ramesh Nallapati and James Allan
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts

Amherst, MA 01003�
nmramesh, allan ✁ @cs.umass.edu

ABSTRACT

We describe a new probabilistic Sentence Tree Language Model-

ing approach that captures term dependency patterns in Topic De-

tection and Tracking’s (TDT) Story Link Detection task. New fea-

tures of the approach include modeling the syntactic structure of

sentences in documents by a sentence-bin approach and a compu-

tationally efficient algorithm for capturing the most significant sen-

tence level term dependencies using a Maximum Spanning Tree

approach, similar to Van Rijsbergen’s modeling of document-level

term dependencies.

The new model is a good discriminator of on-topic and off-topic

story pairs providing evidence that sentence level term dependen-

cies contain significant information about relevance. Although runs

on a subset of the TDT2 corpus show that the model is outper-

formed by the unigram language model, a mixture of the unigram

and the Sentence Tree models is shown to improve on the best per-

formance especially in the regions of low false alarms.

Keywords : Term dependencies, Language modeling, Proba-

bilistic approaches, Information retrieval, Story link detection, Word

co-occurrences, sentences, maximum spanning tree, Topic Detec-

tion and Tracking

1. INTRODUCTION
Language Models have been found to be very effective in several

information retrieval tasks. In the Language Modeling approach,

we measure relevance of a document to a topic by the probability

of its generation from the topic model [1]. One major assumption

made in the unigram language modeling is the independence of all

terms with respect to one another. This allows us to compute the

probability of generation of a document as the product of probabil-

ities of generation of each term in the document, as shown in the

following equation:

✂☎✄✝✆✟✞ ✠☛✡✌☞✎✍✑✏✒✂☎✄✔✓ ✏ ✞ ✠✕✡
(1)

where
✆

is the document in question,
✠

is the topic model and
✓ ✏

Submission for CIKM 2002. Please do not cite or distribute this draft paper.

is the i-th term in the document.

But to quote the famous probability theorist De Finetti, “depen-

dence is the norm rather than the contrary” [2]. From our own

understanding of natural language, we know that the assumption of

term independence is a matter of mathematical convenience rather

than a reality. For example, a document that contains the term ‘Bin

Laden’ is very likely to contain the terms ‘Al-Qaeda’, ‘Afghanistan’,

etc.

However, the ‘bag of words’ approach of the unigram language

modeling, as shown in equation 1, ignores all the dependencies and

any other positional information of terms in the document. Hence,

it seems desirable to have a more sophisticated model that is ca-

pable of capturing the semantics of documents rather than just the

term distributions. A first step towards achieving this objective is

capturing term dependencies, since dependencies establish associ-

ations between terms and may shed more light on the underlying

semantics of the document than unigram term distributions alone.

For example, if a document has strong dependencies between the

terms ‘white’, and ‘house’ it may help increase our belief that the

document speaks about the presidential residence rather than about

the color white or about houses in general.

The present work is an attempt to capture term dependencies us-

ing a new variation of the language modeling approach that models

a sentence, rather than a term as a single unit of occurrence.

The remainder of the report is organized as follows. In section

2, we present a brief description of Topic Detection and Tracking

paradigm and the Story Link Detection task. Section 3 summarizes

attempts made in the past in capturing dependencies and past work

done in the Story Link Detection task. We present the methodology

of the new Sentence Tree language modeling approach in section 4.

In this section, we describe the motivation behind the approach,

several modeling issues and also a short sketch of the intuitive un-

derstanding of the modeling of a sentence that we present in this

approach. Section 5 describes the implementation details including

the heuristic algorithm used in the sentence segmentation task. In

section 6, we describe the experiments performed and present the

results obtained on the training and test sets. Section 7 ends the dis-

cussion with a few observations and remarks on the performance of

the Sentence Tree model.

2. TOPIC DETECTION AND TRACKING
The new model we present in this work is expected to address

some of the issues in a body of research and evaluation paradigm

called Topic Detection and Tracking (TDT). This section presents

a brief overview of TDT and one of its core subtasks called Story

Link Detection (SLD), on which all our experiments are performed.



Topic Detection and Tracking (TDT) is a research program in-

vestigating methods for automatically organizing news stories by

the events that they discuss. TDT includes several evaluation tasks,

each of which explores one aspect of that organization–i.e., split-

ting a continuous stream of news into stories that are about a sin-

gle topic (“segmentation”), gathering stories into groups that each

discuss a single topic (“detection”), identifying the onset of a new

topic in the news (“new event detection”), and exploiting user feed-

back to monitor a stream of news for additional stories on a speci-

fied topic (“tracking”).

2.1 Story Link detection task
Another TDT evaluation task, Story Link Detection (SLD), re-

quires determining whether or not two randomly selected stories

discuss the same topic. Unlike the other tasks that have value in

and of themselves, SLD is a component technology: it can be used

to address each of the other tasks. For example, in order to recog-

nize the start of a new topic, a candidate story might be compared to

all prior stories to see whether the topic appeared earlier. Similarly,

tracking stories on a specified topic can be done by comparing each

arriving story to the user-supplied list of on-topic stories.

In the language modeling approach to Story Link Detection, we

build a topic model
✠ ✄✝✆ ✁ ✡ from one of the stories

✆ ✁ in the pair✄✝✆ ✁✄✂ ✆✆☎ ✡ . A topic model, as the name indicates, is a mathemat-

ical representation of the topic and typically consists of estimates

of probability distributions of tokens such as unigrams, bigrams or

word pairs, etc. In the SLD task, the probability estimates are di-

rectly computed from the statistics of tokens in the story
✆ ✁ . We

then compute the probability that the second story
✆✝☎

is generated

from the topic model
✠ ✄✝✆ ✁ ✡ .

Sometimes we may compute a two-way score to add symmetry

to the formula, as shown below:

✞✠✟☛✡✌☞✎✍ ✄✝✆ ✁✄✂ ✆✆☎ ✡ ☞ ✏
✑ ✄✝✂☎✄✝✆✆☎ ✞ ✠ ✄✝✆ ✁ ✡ ✡✓✒ ✂☎✄✝✆ ✁ ✞ ✠ ✄✝✆✔☎ ✡ ✡ ✡

(2)

If the score exceeds a pre-determined threshold, the system de-

cides the two stories are linked. The system’s performance is eval-

uated using a DET curve [3] that plots miss rate against false alarm

at different values of decision-threshold. A Link Detection cost

function ✕✗✖
✏
✘✎✙ is then used to combine the miss and false alarm

probabilities into a single normalized evaluation score [4].

In the present work, our model is implemented and evaluated

entirely on the SLD task. We use ✕✚✖
✏
✘✛✙ as the primary measure of

effectiveness and show DET curves to illustrate the error trade-offs.

3. PAST WORK
In this section, we briefly summarize past work done on mod-

eling dependencies in various areas of Information Retrieval and

approaches used in the Story Link Detection task in specific.

3.1 Modeling dependencies
Van Rijsbergen tried to capture document level term dependen-

cies in his probabilistic modeling approach using Expected Mu-

tual Information Measure (EMIM) scores between terms [5] . A

maximum spanning tree is constructed, with the terms as the nodes

and the EMIM scores as the weighted edges. The tree captures the

maximum dependencies between terms in the document. These de-

pendencies are used in computing the similarity score between two

documents. However, the approach is computationally expensive

and also unfortunately did not show promising results.

Robertson and Bovey [6] tried including term pairs that have ob-

servable dependencies as separate terms with weights slightly dif-

ferent from the sum of weights or in some other way to allow for

specific dependencies.

Turtle and Croft [7] investigated the use of an explicit network

representation of dependencies by means of Bayesian inference

theory. The use of such network generalizes existing probabilis-

tic models and allows integration of several sources of evidence

within a single framework.

More recently, Fung and Crawford [8] have worked on concept

based information retrieval that captures dependencies between ‘con-

cepts’ using a Bayesian inference network. One drawback of this

approach is that the user has to identify the concepts manually in

each document.

Attempts were also made to capture word dependencies using

the vector space model. The generalized vector space model [9] is

one such example which showed encouraging results.

In a related work, Conrad and Utt [10] developed a system to dis-

cover relationships between features such as name, organization,

etc., based on the strength of their stochastic dependencies. This is

a good example of an application that addresses types of informa-

tion needs that typical information retrieval systems based on term

frequencies cannot handle.

In the area of language modeling, most attempts at capturing de-

pendencies have been in the form of multigram language models

[11]. Bigram and trigram models, though highly successful in the

speech recognition task, have not met with great success in the do-

main of information retrieval systems.

3.2 Past work on SLD
Story link detection is a fairly new task that, apparently because

it is not a compelling application itself, has been explored by very

few researchers. The primary technique that has been deployed

to date is based upon the vector space model [12, 13]. In that case,

both stories are converted to vectors in a high-dimensional space. If

the angle between the vectors is small enough (i.e., they are similar

enough stories) then the stories are declared to be on the same topic.

The threshold is determined empirically.

Most recently, some work has been done exploring the use of

language models to address SLD [14]. This work compared the

effectiveness of a simple unigram language model to a vocabulary

expansion device known as relevance modeling. That work did not

address any dependencies between terms, except indirectly to the

extent that the expanded vocabulary was implicitly based on word

co-occurrences within entire documents.

In the current work, we present a new Sentence Tree based Lan-

guage Model (SenTree) that attempts to capture term dependencies

within a sentence.

4. METHODOLOGY
Recall that our goal is to build a model of story

✆ ✁ and then

decide whether story
✆ ☎

is predicted by that model. This section

describes the process of constructing a model from
✆ ✁ . We begin

our discussion by presenting the motivation and ideas behind the

new model.

4.1 Exploiting sentence structure
A universal feature of all documents is the syntactic structure

of sentences. Webster’s dictionary defines a sentence as “a word,

clause, or phrase or a group of clauses or phrases forming a syn-

tactic unit which expresses an assertion, a question, a command, a

wish, an exclamation, or the performance of an action...”. In other

words, the semantics of a document are expressed through the syn-

tax of sentences. Hence, we believe that a language model that

reflects the syntactic structure of sentences in an explicit manner

may capture the underlying semantics of the document.



As we have seen earlier, unigram language models completely

ignore the syntactic formation of sentences in documents. In the

present approach, we attempt to capture it by modeling a document

as a collection of sentences rather than as a ‘bag of words’. Figure 1

contrasts the view of a document as seen by the unigram model and

the new Sentence Tree based language model. The unigram model

views a document as a bin of words while the Sentence Tree model

views it as a collection of smaller bins, each of which represents a

sentence.

(b) 
(a)

Figure 1: A document as viewed by (a) the Unigram Language

Model and (b) Sentence Tree based Language model

In the unigram language model, one can think of the process of

document generation from the model as a random experiment in

which we pick up � terms with replacement from a bag of words

that represents the topic model, where � is the length of the docu-

ment. The relevance score of the document with respect to the topic

model is then given by the probability that the outcome contains all

the terms of the document.

In the Sentence tree language modeling approach, which we call

the SenTree model in short from now on, the process of document

generation is viewed as a random experiment in which we pick ✞
sentences with replacement from the model, where ✞ is the number

of sentences in the document. The relevance score of the docu-

ment is equal to the probability that the outcome contains all the

sentences in the document. Since a sentence represents a semantic

unit, we hope that computing the probability of generation of each

sentence rather than each term better captures the semantics of the

document. However, the probability of sentence generation is dif-

ficult to compute due to the sparse nature of data and hence we

must use certain assumptions and simplifications to compute this

probability.

4.2 Probability of a Sentence
In the SenTree approach, we assume each sentence to be inde-

pendent of the other sentences. This assumption is certainly not

valid but it is less stringent than the assumption of term indepen-

dence. The assumption allows us to compute the probability of

generation of a story from a topic model as follows:✂☎✄✝✆✟✞ ✠☛✡ ☞ ✍ ✏ ✂☎✄✂✁ ✏ ✞ ✠☛✡
(3)

where
✠

is a topic model and
✁
✏

is the i-th sentence in a story
✆

.

The tricky part is computing the probability of generation of each

sentence. Ideally, one would have to compute the probability of

generation of a sentence as follows:

✂☎✄✂✁ ✞ ✠✕✡ ☞✎✂☎✄✔✓ ✁✄✂ ✓ ☎ ✂☎✄✆✄✝✄✆✄✆✄ ✂ ✓ ✘ ✞ ✠✕✡ (4)

where
✓ ✏

is the i-th term and � is the number of terms in the sen-

tence
✁

. However, the data from the topic is typically very sparse

and it is almost impossible to compute to a reasonable level of ac-

curacy the joint probability of terms in a sentence. To overcome

this problem, we model the sentence as a maximum spanning tree

similar to the approach presented by Van Rijsbergen [5].

4.3 Maximum spanning tree representation of
a sentence

Using the chain rule, the joint probability in equation 4 can be

expressed as✂☎✄✔✓ ✁✠✂ ✓ ☎ ✂✞✄✆✄ ✂ ✓ ✘ ✞ ✠✕✡ ☞ ✂☎✄✔✓ ✁ ✞ ✠✕✡✠✟ ✂☎✄✔✓ ☎ ✞ ✓ ✁✄✂ ✠✕✡✡✟✂☎✄✔✓☞☛ ✞ ✓ ☎ ✂ ✓ ✁ ✂ ✠✕✡✌✟ ✄✆✄ ✟ ✂☎✄✔✓ ✘ ✞ ✓ ✁ ✂ ✓ ☎ ✂☎✄✆✄ ✂ ✓ ✘✎✍ ✁ ✂ ✠✕✡ (5)

As an approximation to this exact formula, we ignore the higher

order dependencies and select from the conditioning variables, one

particular variable that accounts for most of the dependence rela-

tion. In other words, we seek an approximation of the form✂☎✄✔✓ ✏ ✞ ✓ ✏ ✍ ✁ ✂✞✄✆✄✆✄ ✂ ✓ ✁ ✂ ✠✕✡✑✏✓✒✕✔✡✖✁✘✗✎✙☎✚
✏ ✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠✕✡ (6)

Note that the numbering of terms
✄ ✏ ✂ ✑ ✂☎✄✆✄✝✄ ✂ � ✡ need not be same

as the order in which they occur in the sentence. It could be any

permutation
✄✜✛ ✁ ✂☎✄✆✄✝✄✆✄ ✛ ☎ ✡

of the natural order. To summarize, the

approximate probability distribution is then given by

✂☎✄✂✁ ✞ ✠✕✡✢✏✎✂✤✣ ✄✂✁ ✞ ✠☛✡✌☞ ✘✍✏
✥ ✁
✂☎✄✔✓☞✦✌✧ ✞ ✓☞✦✩★✫✪ ✧✭✬ ✂ ✠☛✡✯✮✱✰✳✲ ✄✜✴ ✡✌✵✶✴

(7)

where
✄✜✛ ✁ ✂ ✛ ☎ ✂✞✄✆✄✆✄ ✂ ✛ ✘ ✡ is a permutation of the natural order✄ ✏ ✂ ✑ ✂☎✄✆✄✆✄✝✄ ✂ � ✡ , ✲ ✄ ✡ is a function mapping

✴
into integers less than

✴
,

and
✛✸✷

is defined such that✂☎✄✔✓ ✦ ✧ ✞ ✓ ✦✩✹ ✂ ✠✕✡✌☞✎✂☎✄✔✓ ✦ ✧ ✞ ✠✕✡ (8)

We need to choose a permutation and a function
✲ ✄ ✡

that gives

the best approximation to the probability in equation 5 and the ap-

proach we used is described in the following section.

4.4 Computing the best approximation
✂ ✣ ✄✂✁ ✡

Now, our problem is to find a probability function of the form✂ ✣ ✄✂✁ ✡
which is the best approximation to the true joint probability

function
✂☎✄✂✁ ✡

. For each sentence
✁

in the story , an undirected

graph is constructed with the terms as nodes and degree of depen-

dency between term pairs as edge weights. The degree of depen-

dency is measured by the Jaccard Coefficient (J) as shown below:

✺ ✄✔✓ ✏ ✂ ✓ ✙ ✡✌☞ � ✄✔✓
✏✼✻ ✓ ✙ ✡

� ✄✔✓
✏ ✡ ✒ � ✄✔✓ ✙ ✡✾✽ � ✄✔✓

✏✿✻ ✓ ✙ ✡ (9)

where �✤❀ is the total number of sentences and � ✄✔✓ ✡ is the number

of sentences in which the argument
✓

occurs, both values taken

from the story from which the topic model is generated, while

✻

should be read as ‘occurring in the same sentence as’.

The value of J is assumed to be zero for a word pair that does not

occur in the story from which the topic model is obtained. Note that

there also other measures such as the Pointwise Mutual Information

Measure PMIM [15] for measuring the degree of dependence. In

this work, we have used the Jaccard Coefficient for reasons of ease

in computation.

The best approximation
✂ ✣

is given by the Maximum Spanning

Tree (MST) on this graph. The MST incorporates the most signif-

icant of dependencies between the terms of the sentence subject to

the global constraint that the sum of them should be a maximum.

We compute the MST using a greedy approximation algorithm.

Once the MST has been computed, the approximating distribution✂✾✣
can be written down by traversing the tree in a breadth-first or

depth-first manner, starting with any of the leaf nodes as the root

node. It can be shown that the resulting distribution will be the



w1 w2

w3

w4

w5

w6

w7

Figure 2: Generating the approximate distribution
✂ ✣

from the

MST of a sentence

same irrespective of the root node chosen [5]. As an example, con-

sider the MST representation of a sentence
✄✔✓ ✁✄✂ ✄✝✄ ✂ ✓ ✁ ✡ as shown in

figure 2. The approximate probability distribution
✂ ✣ ✄✂✁ ✡

, obtained

by traversing the tree in a breadth-first manner starting from
✓ ✁ as

the root node is as follows.

✂✾✣ ✄✔✓ ✁ ✂ ✄✝✄ ✓ ✁ ✞ ✠✕✡ ☞ ✂☎✄✔✓ ✁ ✞ ✠☛✡✌✟ ✂☎✄✔✓☞☛ ✞ ✓ ✁ ✂ ✠✕✡✩✟✂☎✄✔✓ ☎ ✞ ✓ ☛ ✂ ✠☛✡✩✟ ✂☎✄✔✓✄✂ ✞ ✓ ☛ ✂ ✠☛✡✩✟✂☎✄✔✓✆☎ ✞ ✓ ✂ ✂ ✠☛✡✩✟ ✂☎✄✔✓✄✝ ✞ ✓ ✂ ✂ ✠☛✡
✟ ✂☎✄✔✓ ✁ ✞ ✓✄✂ ✂ ✠☛✡ (10)

We have thus far seen how to obtain a distribution
✂ ✣ ✄✂✁ ✡

that

approximates the joint probability of generation of a sentence. It

still remains to be shown how to compute the bigram probabilities

of the form
✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠☛✡ in equation 10. The next sections shows

how the topic model computes these probabilities using maximum

likelihood smoothed estimates.

4.5 Constructing the topic model
As mentioned in section 2.1, a topic model provides us with the

estimates of probabilities that we need in computing the relevance

score of a document with respect to the topic. As shown in section

4.3, we need conditional probabilities
✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠✕✡ for all pairs of

tokens that form edges in the MST representation of any sentence

in the story under consideration. The topic model estimates these

probabilities using the maximum likelihood estimate as shown be-

low:

✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠✕✡✑✏ � ✄✔✓
✏✼✻ ✓ ✙ ✡

� ✄✔✓ ✙ ✡ (11)

where the terms in the equation have their usual meaning.

However, since the data that makes up a topic model is typically

sparse, we encounter the problem of zero probabilities. If the term✓ ✙ does not occur in the story that the topic model is generated

from, the probability
✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠☛✡ is assumed to be zero. It is

also possible that there is no instance of
✓ ✏

and
✓ ✙ occurring in

a single sentence in the topic model. In such scenarios, the con-

ditional probability would vanish, forcing the entire probability of

sentence generation to zero. In our model, we smooth every con-

ditional probability term with the probability from a background

model as shown below:

✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠ ❀ ✦✟✞✠✞☛✡✌☞✎✍✑✏ ✡ ☞ ✒✔✓ ✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠☛✡✓✒✄ ✏ ✽✕✒ ✓ ✡ ✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠✗✖ ✡
✮✱✰✘✒✔✓ ✰ ✏

(12)

where
✠✗✖

is a background model of general English. The back-

ground model computes the background conditional probabilities

as follows: If the terms
✓ ✏

and
✓ ✙ co-occur in at least one sentence

in the database of the background model, we use

✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠✗✖ ✡ ☞ � ✖ ✄✔✓ ✏ ✻ ✓ ✙ ✡
� ✖ ✄✔✓ ✙ ✡ (13)

Else, if
✓ ✙ occurs in the database but

✓ ✏
and

✓ ✙ are not found to

co-occur, we use the following approximation:✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠ ✖ ✡ ☞ ✏
� ✖ ✄✔✓ ✙ ✡ (14)

In the worst case, if neither
✓ ✏

nor
✓ ✙ is found in the database, we

use the following approximation:✂☎✄✔✓ ✏ ✞ ✓ ✙ ✂ ✠✗✖ ✡ ☞ ✏
� ❀✚✙ (15)

where � ✖ ✄✔✓ ✡
is the number of sentences in the background database

in which the argument
✓

occurs and �✤❀ ✙ is the total number of sen-

tences in the background database.

The value of
✒✔✓

is determined by performing a parameter sweep

over its entire range of values. This involves running the model on

a training set of data for several values of
✒ ✓

and measuring the

performance of the model each time. The best performing value is

then chosen as the default system value of
✒ ✓

.

4.6 Likelihood ratio and Mixture model
Finally, the story’s relevance score with respect to a topic is given

in terms of likelihood ratio which is defined by the following equa-

tion:

✁ ✟☛✡✌☞✛✍ ✄✝✆ ✂ ✠✕✡ ☞ ✂☎✄✝✆✟✞ ✠ ❀ ✦✛✞☛✞☛✡✌☞✎✍✑✏ ✡✂☎✄✝✆✟✞ ✠ ✖ ✡
☞ ✜

✏ ✂☎✄✂✁ ✏ ✞ ✠ ❀ ✦✟✞✠✞✢✡✣☞✤✍✥✏ ✡
✜
✏ ✂☎✄✂✁ ✏ ✞ ✠✦✖ ✡

☞ ✍ ✏ ✂☎✄✂✁
✏ ✞ ✠ ❀ ✦✟✞✠✞✢✡✣☞✤✍✥✏ ✡✂☎✄✂✁ ✏ ✞ ✠✗✖ ✡ (16)

Note that in computing the probability of sentence generation

with respect to the background model, we use the same approxi-

mate probability distribution function
✂ ✣

that we generated from

the topic model. Computing the likelihood ratio with respect to

the background model provides a sound basis for comparison of

relevance and also serves as a normalizing factor to sentence and

document lengths.

Another variation in Language Modeling that is often employed

is combining two different models. In the Story Link Detection

task, unigram language models have been found be very effective

discriminators. Hence, it makes sense to use the SenTree model

as a sort of enhancement to the unigram approach. One way to

accomplish this is a linear combination of the unigram and SenTree

scores as shown below:

✁ ✟ ✡✛☞✛✍✤✧
✏
★ ✡✌✩✤✪☛✍ ✄✝✆ ✂ ✠✕✡ ☞ ✄ ✏ ✽✕✫ ✡✌✟ ✁ ✟☛✡✌☞✎✍ ✓✬✍ ✘✤✭ ✪✠✍✮✍ ✄✝✆ ✂ ✠✕✡ ✒

✫ ✟✸✁ ✟ ✡✛☞✛✍✰✯ ✘
✏
✱ ✪✘✣☎✦ ✄✝✆ ✂ ✠✕✡

✮✱✰✲✫✱✰ ✏
(17)



Again,
✫

is determined by empirical experiments.

4.7 Algorithm of the SenTree model
In this subsection we summarize the model description with a

step-by-step algorithm of the process of computing the relevance

score of story
✆✆☎

with respect to a topic model of the story
✆ ✁ .

1. Segment both the stories
✆ ✁ and

✆✔☎
into sentences.

2. Remove punctuation, perform case folding, remove stop words

and stem all the word-tokens.

3. Index terms in both the stories with frequency counts as well

as the indices of the sentences in which they occur. The topic

model of
✆ ✁ is now readily accessible from the index.

4. For each sentence in
✆✝☎

(a) Build a fully-connected undirected graph of the sen-

tence with the terms as nodes and Jaccard coefficient

between each pair of terms measured from the topic

model of
✆ ✁ as weighted edges as described in section

4.4.

(b) Construct an approximate maximum spanning tree of

the graph using a greedy algorithm. (See section 4.4.)

(c) Generate a probability distribution function
✂ ✣ ✄✂✁ ✡

that

approximates the joint probability of the sentence.

(d) Evaluate the probability of the sentence using smoothed

probability estimates (see section 4.5) from the topic

model of
✆ ✁ .

(e) Evaluate the same probability of the sentence genera-

tion with respect to a background model and compute

the likelihood ratio (see section 4.6).

5. Compute the product of the likelihood ratios of all the sen-

tences. This is done on a log scale to avoid numerical under-

flow.

6. Return the product as the relevance score of story
✆ ☎

with

respect to the model of story
✆ ✁ .

4.8 Computational complexity
In this subsection we discuss the complexity of implementing the

SenTree Model. Let the story contain � sentences and at most ✁
terms per sentence. The running time of each step in the algorithm

is presented below:

1. Constructing the graph of a sentence with weighted edges:

This requires computing the Jaccard coefficient for all pairs

of terms in the sentence, each of which can be done in con-

stant time using hash tables. Thus, this step has a complexity

of ✂ ✄ ✁ ☎ ✡ .
2. Building a maximum spanning tree: A greedy algorithm is

used to build the MST. The running time of this step is

✂ ✄ ✁ ☎☎✄ ✡✝✆ ✄ ✁ ✡ ✡ if we use disjoint-set forest implementation

with union by rank and path compression heuristics [16].

3. Computing the probability of occurrence of the sentence from

the topic model and the background models: This requires

generating the probability distribution function of the sen-

tence using Breadth First Search. The probabilities of each

edge in the MST can be computed in constant time. Hence,

this step has a complexity of ✂ ✄ ✁ ✡ , which is the size of the

MST.

Thus, the overall running time per sentence is ✂ ✄ ✁ ☎ ✄ ✡✞✆ ✄ ✁ ✡ ✡ .
Thus, for the entire document, the complexity is simply given by

� ✟ ✂ ✄ ✁ ☎✟✄ ✡✞✆ ✄ ✁ ✡ ✡✌☞ ✂ ✄ ✁ ☎ � ✄ ✡✞✆ ✄ ✁ ✡ ✡ . In comparison, Van Ri-

jsbergen’s algorithm [5] of building a document level spanning tree

has a complexity of ✂ ✄ ✄ ✁✠� ✡ ☎☎✄ ✡✝✆ ✄ ✁✠� ✡ ✡ . We have thus been able

to reduce the run time by a factor of ✂ ✄ � ✡ ✞ ✱✝☛✌☞✎✍✡ ✞ ✱✝☛ ✭✏✍ ✡ by building only

sentence level spanning trees.

4.9 An intuitive understanding of the MST
representation of a sentence

WORLD

TWIN

TOWER

RAM

JET

TERRORISTTRADE

CENTER

COLLAPSE

Figure 3: Maximum dependence tree of an on-topic sentence

Before we end the discussion on the methodology of the Sen-

Tree model, we will try to present an intuitive understanding of

the MST representation of a sentence with the help of an exam-

ple. We first note that the MST representation of any sentence in

a story is topic dependent, since the edge weights are computed

from the topic data. One may visualize this phenomenon as the

topic-model’s ‘understanding’ of the semantics of a sentence from

its own knowledge of the topic. We expect the topic model to build

a ‘meaningful’ representation only when the sentence is about the

topic.

As an example, we have built the MST representation of the sen-

tence “Twin towers collapse as terrorists ram jets into the World

Trade Center” with respect to the topic model ‘Terrorist attacks

in America’ constructed from a set of three stories collected from

www.cnn.com published on September 12th, 2001. We have fol-

lowed the usual procedure outlined in section 4.4, i.e., building a

sentence graph using Jaccard Coefficients first and then building an

MST of the graph using a greedy algorithm. The MST represen-

tation of this sentence with respect to the model is shown in figure

3. The edge widths roughly represent the degree of dependence be-

tween the nodes as measured by the Jaccard Coefficient. We notice

that the edges (world, trade) and (trade, center) have strong depen-

dency weights. This is expected, as the terms together form a single

phrase and occur frequently in any document concerning the WTC

attacks. The same is true with the pair (twin, tower). The edge (jet,

ram) also has a strong weight as the terms together contain very



vital information on the event.

Thus we see that the MST representation of a sentence assigns

strong weights to phrases as well as word pairs that are illustrative

of the information content of the document. Such ‘understanding’

of a sentence may not be expected from a model that discusses a

completely different topic.

5. SYSTEM DETAILS
In this section we present a brief overview of the system we used

in our experiments. Figure 4 is a flow chart of the several stages in

the process of computation of the relevance score of story
✆✝☎

with

respect to the model of story
✆ ✁ . Each block in the chart represents

a stage and the arrows indicate the sequence in which the operations

are performed.

all sentences in 

Story 2 w.r.t to the

topic model

Building MSTs of

Indexing and building 

story 1

the topic model from

Sentence segmenter

Computing the 

likelihood

score of story 2

Stopping

and

Stemming

De-punctuation

and

Case folding

Story 2

Story 1

Output score

Figure 4: System overview

In the following subsections, we discuss some of the system

implementation details that are not covered in the discussion on

methodology of the model.

5.1 Sentence segmentation
We have used a simple heuristic-rule based sentence segmenter

to segment sentence boundaries in the stories. The algorithm of the

segmenter is as follows.

1. Remove quotes and replace repeated occurrences of periods,

question marks or exclamation marks with just one occur-

rence.

2. Remove periods in the following abbreviations: Mr., Ms.,

Dr., St., Sr., Jr., etc.

3. If a period, a question mark or an exclamation mark is not

immediately preceded by a string consisting of a period or

a white-space character followed by any letter of the alpha-

bet and succeeded by a white-space character, then mark the

period, question mark or the exclamation mark as a sentence

boundary.

Over a large number of observations, we have found that the

algorithm correctly identifies the boundaries of most of the syn-

tactically correct sentences. However, we have not yet done any

quantitative evaluation on the algorithm. We also feel that we may

need a more intelligent system with some background knowledge

of the language to identify boundaries of sentences that may have

incorrect punctuation. Incorrect punctuation are a common occur-

rence in stories obtained from automatic speech recognition sys-

tems. Such stories form a substantial part of the TDT2 corpus but

are filtered out from the training and test sets used in the present

evaluation.

Since the performance of the present algorithm is found satis-

factory for syntactically correct sentences, the authors feel that any

marginal improvement in its performance may not significantly im-

prove the overall performance of the SenTree model.

5.2 Corpus and other information
The present evaluation is run on a subset of TDT2 English corpus

that include six months of material drawn on a daily basis from

six English news sources. The subset we collected is divided into

training and test sets. The training set comprises 6300 story pairs

while the test set comprises 2749 story pairs. Expert judgments are

included with the corpus for all the story pairs in the training as

well as the test sets.

A list of 423 high-frequency words is used to eliminate stop

words. Stemming is done using the Porter stemmer [17] while the

indexer and the MST algorithm are built using Java.

6. RESULTS AND DISCUSSION
This section presents the results of the experiments performed

using the SenTree model. For all the experiments described be-

low, the DET curve obtained from the best performing unigram

language model is used as a baseline. The system is first trained

using the training set of stories until the best performing values of

parameters such as the smoothing parameter
✒

and the mixing pa-

rameter
✫

are found. Once the values are set, the performance of

the system is evaluated on the test set. The following subsections

present the results of the experiments performed on the training and

test sets.

6.1 Training the system
Training essentially involves searching for the values of various

parameters that deliver the best performance. In our training ex-

periments, we trained our system using the SenTree only first and

compared the performance with that of the baseline. Next, a system

that implements a mixture model is trained on the training set. The

observations of the experiments are presented below.

6.1.1 SenTree Model only

As a first step, the SenTree model alone is run on the corpus.

A parameter sweep is performed on the value of
✒ ✓

, the smooth-

ing parameter. The DET curve of the best performing value of✒ ✓ ✄ ✮ ✄ ✮✁� ✡
is shown in figure 5. It is clear from the plot that the un-

igram model outperforms the SenTree model since, the former has

lower values of miss rate and false alarm in the entire range and a

✕✗✖
✏
✘✎✙ that is also much lower. This suggests that the frequencies of

occurrence of terms is a more important feature of relevance than

sentence level dependencies. Notwithstanding this fact, it is noted

that the SenTree model is still encouraging and it is hoped that the

best performance can be improved by a mixture of both the models.

6.1.2 Mixture model

As described in section 4.6, a simple parametric linear combi-

nation of the unigram model and the SenTree model is run on the

corpus. In the mixture model, we need to learn the values of the

smoothing parameter for the unigram model
✒ ✯ , smoothing param-

eter for the SenTree model
✒ ✓

and the mixture parameter
✫
. Hence

we performed a three dimensional parameter sweep on the entire



1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

Random Performance

SenTree model

SenTree model Normalized Cost = 0.1783

Unigram LM

Unigram LM Cost = 0.1191

Figure 5: Best performing SenTree model on the training set

range of the values of the three parameters. The best performing

values on the training data are found to be
✒ ✯ ☞ ✮ ✄ ✮✁� ✂ ✒✔✓ ☞ ✮ ✄ ✂ �

and
✫ ☞ ✮ ✄ ✄ � ✄ The performance of the system that uses these values

is shown in comparison to the same baseline in figure 6.

1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

Random Performance

Topic Weighted Curve

Mixture Model Normalized Cost = 0.1148

Unigram LM

Unigram LM Normalized Cost = 0.1191

Figure 6: Best performing mixture model on the training set

We note that the mixture model performs better than the unigram

model in the regions of low false alarm. For example, at 0.1% false

alarm, the miss rate is reduced by around 15% compared to the

baseline performance of the unigram model. However at low miss

rates, the combination performs worse than the baseline. Hence

the mixture model may be preferred to the unigram model if the

application demands operation in the region of low false alarms.

6.2 Testing the system
Having found the best performing values of various parameters,

we now run the system on the test set. As before, we run the sen-

tence based language model alone as well as the mixture model

separately. The results are summarized in the following subsec-

tions.

6.2.1 SenTree model only

The system is first run on the test set using the SenTree model

only. The performance of the system is shown in 7. Once again,

we notice that the SenTree model does not perform as well as the

unigram model.

1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

Random Performance

Unigram LM

Unigram LM Normalized Cost = 0.1390

SenTree Only

SenTree only Normalized Cost = 0.2125

Figure 7: Best performing SenTree model on the test set

6.2.2 Mixture model

Now the mixture model is run on the test set with the parame-

ters fixed at values presented in section 6.1.2. We notice that the

results are consistent with those from the training set. The mix-

ture model outperforms the unigram model in regions of low false

alarm. We also note that the mixture model has succeeded in lower-

ing the normalized cost function from 0.1390 to 0.1179. The DET

curve of this run is shown in figure 8.

1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

Random Performance

Unigram LM

Unigram LM Normalized Cost = 0.1390

Mixture Model

Mixture Model Normalized Cost = 0.1179

Figure 8: Best performing Mixture model on the test set

7. CONCLUSIONS
In this work, we have presented a new approach of modeling a

document by exploiting the syntax of sentences. The approach cap-

tures within-sentence dependencies by modeling each sentence as

a maximum spanning tree of dependence. Although this approach

is built towards addressing a specific TDT task, we believe that the

generality of the model permits one to apply it to any text classifi-

cation task.



Our experiments indicate that sentence level dependency alone

is not a better measure of relevance than simple unigram approach,

but is still a good discriminator between on-topic and off-topic

story pairs. We have also seen that the performance of the unigram

models can be enhanced by supplementing the unigram model with

the sentence model.

We believe that, apart from a slight improvement in performance,

the most important contribution of this work is the evidence we pro-

vided that capturing the sentence level dependencies can be a good

measure of relevance. We hope that this encouraging result paves

the way towards building more sophisticated models that eventu-

ally achieve the ultimate goal of capturing the exact semantics of

natural language.

Acknowledgments

We would like to thank Victor Lavrenko for his valuable comments

and suggestions. This work was supported in part by the Center for

Intelligent Information Retrieval and in part by SPAWARSYSCEN-

SD grant number N66001-99-1-8912. Any opinions, findings and

conclusions or recommendations expressed in this material are the

authors’ and do not necessarily reflect those of the sponsor.

8. REFERENCES

[1] J. M. Ponte and W. B. Croft, A Language Modeling

Approach to Information Retrieval, ACM SIGIR, 275-281,

1998.

[2] B. De Finetti, Theory of Probability, 1:146-161, Wiley,

London 1974.

[3] A. Martin, G. Doddington, T. Kamm and M. Ordowski, The

DET curve in assessment of detection task performance,

EuroSpeech, 1895–1898, 1997.

[4] The Topic Detection and Tracking evaluation phase 2 plan,

http://www.nist.gov/speech/tests/tdt/tdt98/doc/tdt2.eval

.plan.98.v3.7.pdf.

[5] Van Rijsbergen, Information Retrieval, Butterworths, 1979.

[6] S. E. Robertson and J. D. Bovey, Statistical Problems in the

Application of Probabilistic Models to Information Retrieval,

Technical Report, Center for Information Science, City

University, 1982.

[7] H. R. Turtle and W. B. Croft, Inference Networks for

Document Retrieval, ACM SIGIR, 1-24, 1990.

[8] R. M. Fung, S.L. Crawford, L.A. Appelbaum and R.M.

Tong, An architecture for probabilistic concept-based

information retrieval, ACM SIGIR, 455-467, 1990.

[9] S.K.M. Wong, W. Ziarko, and P.C.N. Wong, Generalized

Vector Space Model in Information Retrieval, ACM SIGIR

18-25, 1985.

[10] J. G. Conrad and M. H. Utt, A System for Discovering

Relationships by Feature Extraction from Text Databases,

ACM SIGIR, 260-270, 1994.

[11] F. Song and W.B. Croft, A General Language Model for

Information Retrieval, Information and Knowledge

Management, 1999.

[12] J. Allan, V. Lavrenko and R. Swan, Explorations Within

Topic Tracking and Detection, Topic Detection and

Tracking: Event-based Information Organization, James

Allan, Editor, Kluwer Academic Publishers, 197-224, 2002.

[13] Y. Yang, J. Carbonell, R. Brown, J. Lafferty, T. Pierce and T.

Ault, Multi-strategy Learning for TDT, Topic Detection and

Tracking: Event-based Information Organization, James

Allan, Editor, Kluwer Academic Publishers, 85-114, 2002.

[14] V. Lavrenko, J. Allan, E. DeGuzman, D. LaFlamme, V.

Pollard and S. Thomas, Relevance models for Topic

Detection and Tracking, Proceedings of the Conference on

Human Language Technology (HLT), 2002, Forthcoming.

[15] C. D. Manning and H. Schutze, Foundations of Statistical

Natural Language Processing, MIT Press, 1999.

[16] Thomas H. Cormen, Charles E. Leiserson and Ronald L.

Rivest, Introduction to Algorithms, MIT Press, 1990.

[17] M.F. Porter, An algorithm for suffix stripping, Program,

14(3):130-137, 1980.

[18] H. Jin, R. Schwartz, S. Sista and F. Walls, Topic Tracking for

Radio, TV Broadcast, and Newswire, DARPA Broadcast

news Workshop, 199-204, 1999.

[19] J. Yamron, I. Carp, L. Gillick, S. Lowe and P. van Mulbregt,

Topic Tracking in a New Stream, DARPA Broadcast news

Workshop, 133-138, 1999.

[20] W. Bruce Croft, Howard R. Turtle, and David D. Lewis, The

use of phrases and structured queries in information retrieval,

ACM SIGIR, 32-45, 1991.


