A Comparison of Language Modeling and Probabilistic Text Information
Retrieval Approaches to Monophonic Music Retrieval

Jeremy Pickens
Department of Computer Science
University of Massachusetts
Ambherst, MA 01002 USA
Jjeremy@cs.umass.edu

Abstract

With interest in music information retrieval increasing the need for retrieval systems unique to
music is also growing. Despite its unique properties music shares many similarities with text. The
goal of this paper is to explore some of the capabilities and limitations of current text information
retrieval systems as applied to the task of music retrieval. Monophonic music is converted into text
and retrieval experiments are run using two different text information retrieval systems in various
configurations. Finally, we will discuss whether the techniques applied here are generalizable to the
larger problem of polyphonic music retrieval.

1 Introduction

The modern field of information retrieval (IR) began in the 1950s with the aim of using computers to
automatically search collections of unstructured online text. Since that time, and particularly in the last
decade with the popular arrival of the Internet, interest in varied, “multimedia” information retrieval
applications has exploded. Not only has text retrieval branched out by incorporating audio speech recog-
nition techniques, but image retrieval and video retrieval have received considerable attention. Music
information retrieval is a third.

Text IR has a large head start on these other retrieval systems. Techniques have been intensively studied
and refined for about four decades. Methods and models for music IR, on the other hand, are still in
their infancy (Byrd & Crawford, 2000). Music retrieval will continue to mature. However, rather than let
it mature in isolation, the attitude taken in this paper is that we should leverage traditional information
retrieval work and examine the extent to which techniques developed for text can be applied to music.

Two primary reasons we can take this approach have to do with the assumptions we make about our
music representation format. First, instead of digitized audio, we assume explicit knowledge of the
musical structure of a piece of music. In other words, the various notes and their pitches, start times, and
durations are known. (General audio music recognition, somewhat akin to speech recognition for text, is
an unsolved problem and will not be addressed here.) This structure, or “music text’, could be anything
from time-stamped MIDI to full music notation, such as the Nightingale music notation format (AMNS,
2000). Second, we assume that the music we are searching is monophonic. Only one pitch is “active” at
any given time slice. With these two assumptions, it will be possible to apply text retrieval techniques to
music.

2 Background and Related Work

2.1 Inference Networks (Inquery)

The first text retrieval system under consideration is Inquery (Callan, Croft, & Harding, 1992; Turtle &
Croft, 1991). This is a probabilistic retrieval system, based on the generalized framework of a Bayesian
inference network. A Bayesian net is a directed acyclic graph. The nodes in the graph represent propo-
sitional variables and the arcs represent dependencies between those variables.

Document
Natwork

Figure 1: An example inference network for document retrieval

As Callan et al., 1992 explain, the Inquery Bayesian net is divided into two principal components: the
document network and the query network. The document network has two layers. The first layer is
composed of document nodes (d;). The document nodes are the leaves, and are the only observables in
the entire system. There is one node for each document in a collection and the value of the node is the
proposition that this document satisfies a user’s information need. This value is always set to true for
every document. The internal nodes in the graph, on the other hand, are not directly observable and must
be inferred from the documents.

The second layer in the document network is composed of document content representation nodes (7),
which represent the proposition that a given concept has been observed. As a simple example, one
representation of one part of a document might be a word, a space- or punctuation-delimited sequence
of alphanumerics. Other possible representations include integer values, dates, named entities and so
on. One document can have multiple representations, and one representation can be shared by multiple
documents. For example, a string of numbers (such as “1225”) could be treated either as a text string or
as an integer value or both, in which case two representation nodes would be used. Keep in mind that the
concept in a representation node is not directly observable; it must be inferred from the document. The
arc between a document node (d;) and a representation node () is the conditional probability P(r|d;).
The prior probability of any document P(d;) is % where N is the number of documents in the collection.

The document content representation nodes connect with the first layer of the query network at the query
concept nodes. The query network is a representation of a user information need. A representation node
7, can take on two values, true or false. The arc between the 7, and a query concept node ¢; is the belief
in the proposition rg, the proposition that the concept 7, has been observed in the document. Bayes’
rule is used to infer beliefs about document representation nodes r from documents, then beliefs about
query concept nodes ¢ from document represenation nodes. Just as multiple arcs are allowed from docu-
ment nodes to document content representation nodes, multiple arcs are also allowed between document
content representation nodes and query concept nodes. This will be useful later in the construction of

phrases, in which multiple words are combined in some desired manner to create a single phrase query
concept node.

The root of the tree, the node to which all arcs eventually lead, is the query node itself, g. This represents
the proposition that the user’s information need is met, and is always set to true. The various concept
nodes ¢ which comprise a query are combined using a weighted summation operator, summing the beliefs
at each of the query concept nodes. Documents are ranked by this sum. The higher the belief that a given
document meets the information need, the higher it is ranked.

2.2 Language Modeling

A second, less well-known probabilistic approach to text information retrieval is language modeling. The
primary difference in this approach is that, unlike most other models in which the document indexing and
document retrieval tasks are dissimilar, language modeling combines indexing and retrieval into a single
model. The language model is used not only as an index, but as a method of estimating the probability
of generating a query. Unlike the Inquery inference network approach, concepts are not inferred from
documents as an intermediate step. The language modeling approach deals with the probabilities of
generating the query words themselves, directly from the documents.

The language model we will use for music retrieval is the system developed by Ponte & Croft, 1998.
For a given user query, documents in the collection are ranked by their probability of generating that
query. This ranking formula, defined for each document model M in the collection, is a product of the
probabilities of generating each term in the query, times the product of the probabilities of not generating
all the terms that are not in the query:

p(QIMg) = [(¢ M) * J] 1.0 — p(¢[M) (1)
teQ tZQ

The probability of generating a term, given the model of the document, is given by:

p(t|Mq) = 2

Proa (1| M) -0~ Rea * Pavg (t)Fet if tf(yq) > 0

% otherwise

When the term is found within the document (¢f > 0), we can use the first probability estimate. There
are two part to this estimate: Pp;(t|Mg) and Payg(t). The first part, Py, is the maximum likelihood
estimate of the term given the distribution of that term in the current document, My. This is simply
the frequency of occurrence of the term in that document normalized by the length of the document.
The second part, Payg. is the average over all documents in which t occurs of the maximum likelihood
estimate of that term in each document. Finally, R is a risk function. Details are found in the Ponte &
Croft, 1998 paper, but it is enough to say that R estimates to what degree the frequency of the current
term ¢ in a document varies from the normalized mean across all documents. The more this frequency
differs from the mean, the riskier it is to use the maximum likelihood estimate, and the safer it is to use
the average estimate. Hence, R is a mixing parameter between py; (t| My) and paug (2).

When the term is not found within the document, the best we can do is to use an estimate based upon all

documents in the collection. Thus % is simply the number of times that term appears in the collection
as a whole, over the size of (number of documents in) the collection.

Our ranking formula Although the ranking formula used by Ponte & Croft, 1998 includes an estimate
for all terms which do not appear in the query, our experiment does not consider these terms important.
We are looking for specific melodies in our searches, and the notes that we are not looking for have
little bearing on whether or not a melody is present in a document. Preliminary results (not shown here)
indicate much better performance when the non-query terms are ignored, but further analyses need to be
done before we are confident of this. Nevertheless, this is the intuition we have developed and so we use
the following simplified language model ranking formula:

Q| Mg) =] p(t|Ma) 3)
teQ

3 Experimental Design
3.1 Meldex Collection

The music document collection we used consists of almost 9,400 North American, British, Irish and Ger-
man folksongs, German ballads, and Chinese ethnic and provincial songs (Schaffrath, 1995; DT, 1996;
McNab, Smith, Bainbridge, & Witten, 1997). These folksongs are all monophonic; notes are of various
durations, but not more than a single note is sounded at any given time slice. Ignoring durations, McNab
et al., 1997 show that seven contiguous note pitches (or six contiguous pitch intervals) are necessary, on
average, to uniquely identify a song.

We will not be working with contiguous notes of this length (as explained in Sections 3.2 and 4.1), but
it is important to note this limit and how it might affect our results. If we created sequences that were
too long, our evaluation might be useless; the very length of the sequences would be enough to achieve
good retrieval results. Interested readers can find a detailed analysis of the infometric properties of this
collection in Downie, 1999.

3.2 Document Creation

Now that we have a collection we must convert our collection documents and queries into a form suitable
for evaluation by our two text retrieval systems.

LAl ! I 1 l
B s S | I dl IF i HIJ IF HIH
o) o Ll —

Figure 2: Lucy in the Sky with Diamonds

As an example we have the piece of music given by Figure 2 (Lennon & McCartney, 1967). We start
with an abstract representation of this piece which includes the following information: time signatures,
key signatures, note pitches and note durations. From this representation we construct the graphic in
Figure 2. From this representation we also contruct a text document which represents this same piece.
We also use this abstract representation to construct text queries with which we will test the effectiveness
of our retrieval systems.

In order to convert music documents to text documents, some simplifying assumptions need to be made.
The main assumption is that, while important, note durations are not nearly as important as note pitches.
We therefore ignore duration as well as rests when converting music to text. Furthermore, we make
the same assumption as other researchers that pitch intervals are better features than absolute pitches,
because of possible transpositions from one key to another (Downie, 1999).

Unigrams The first type of pitch interval we use is interval unigrams. For example, the first note in
Figure 2 is an E. The second note rises to an A. Subsequent notes rise to an E, fall to a G, rise to an E,
then fall to an A. Pitch intervals are measured in semitones. So the sequence of pitch intervals begins:

{+57+7> _97+97_77' . } (4)

In the Meldex collection there are no intervals larger than +24 or smaller than -24. For simplicity and to
avoid working with “negative” text terms, we add 25 to each interval. Thus, the pitch interval unigrams
range from 1 to 49. The song in Figure 2 becomes the following text document:

< docl >30 32 16 34 18 ... < /docl > 5)

Bigrams The second type of pitch interval used is interval bigrams. Whereas unigrams only considered
two contiguous notes, bigrams turn three contiguous notes into a single “text” term. The song in Figure 2
begins with the following ordered pairs of unigrams:

{(+5,+7), (+7,-9),(=9,49), (+9,-7),(=7,...),...} (6)

Using the same convention for eliminating “negative” terms as we did with unigrams, this becomes:

{(30,32), (32,16), (16, 34), (34, 18), (18,...),...})

We can again take advantage of the fact that the vocabulary size of the collection is limited and known.
Consider an arbitrary ordered unigram pair (x,y). Neither x nor y are going to be larger than 49 or
smaller than 1. Thus, we can use the following formula to convert (z,y) into a unique single value
bigram:

bigram = 49x + y 8)

This finally yields the following bigram “text” document:

< docl > 1502 1584 818 1684 ... < /docl > C))

Note that even though these converted text terms are numbers, it is important not to think of them as
integers, in the sense that they can be ordered, added, subtracted and so on. The term “1226” = (25, 1)
might actually be more similar to “1177” = (24, 1) than itis to “1225” = (24, 49), even though the integer
1226 is closer to the integer 1225. The terms are simply an enumeration, a simple way of converting pitch
intervals to text.

4 Experiment One

4.1 Query Construction

The process for turning a music query into a text query is similar to that of turning a music document into
a text document. The query “wrapper”, the syntactic sugar, differs for each target system, but the basic

method is the same. In our experiments queries are composed of pitch interval unigrams or bigrams.
Note that this differs from the Downie, 1999 approach, which uses longer 4, 5 and 6-gram queries as
well as 4, 5 and 6-gram document terms. We want to see how well our approach does using these basic
units, ignoring the larger discriminatory power (but smaller flexibility and generalizability) that longer
n-grams afford.

For Inquery, each of our queries is a weighted sum of either unigrams or bigrams. For Language Mod-
eling, a query is a product of the estimate of each unigram or bigram probability, given the model of the
document. Essentially, our query has become a “grab bag”, a set of terms. The only sequentiality that
has been preserved is that of two contiguous notes (for interval unigrams) or three contiguous notes (for
inteval bigrams). For example:

Inquery query Language Model query
#ql = #WSUM(1.0 | p(Q|My) =

1.0 30 (30| My)

1.0 32 * o p(32|My)

1.0 16 * o p(16|My)

1.0 34 * o p(34|My)

1.0 18 * o p(18| My)
);

Additionally, we construct queries that are somewhere between unigrams and bigrams. Inquery allows
phrase operators which take as their argument multiple query terms (query content representation nodes)
and an integer, . The uwz (unordered window) operator look for query terms which appear in any order
within a size document window. The odx (ordered window) operator looks for phrase terms which
appear in the exact same order as in the phrase operator, within a size £ document window.

For example, if the song from Figure 2 is used as a query, it might be transformed into the following
weighted sum of Inquery phrase operators:

#ql =#WSUM(1.0
1.0 #0d3(30, 32)
1.0 #0d3(32, 16)
1.0 #od3(16, 34)
1.0 #0d3(34, 18)

We use four different Inquery phrase operators: #uwl, #od5, #0d3 and #od1. The purpose of the un-
ordered window (#uwl) is to examine the importance that sequencing has in music and what happens
when sequencing is ignored. The purposed of the ordered windows at various lexical distances (#od1,
#od3, #0d5) is to examine tighter and looser matching schemes, to see to what degree we are helped or
harmed by allowing, in effect, non-contiguous bigrams (non-contiguous ordered unigram pairs).

4.2 Results

Thanks to TREC, the text retrieval community has several large collections of documents along with
a fairly extensive relevance judgements on each collection (Harman, 1995). The music retrieval com-
munity does not yet have this same standardization and document-to-query relevance information. A
name-that-tune, or known-item search, is an alternative evaluation technique. A song is selected from
the collection, a query is created based on that song, and the system is evaluated by the ranking of this
item.

Fifty songs were selected at random from the Meldex collection and tranformed into queries of various
lengths. Full text queries contain an average of 50 notes (49 interval unigrams, or 48 interval bigrams).
12-note and 7-note incipits are queries constructed by using the initial 12 or 7 notes of a song.

Table 1 lists the Inquery and Language Modeling approaches using unigrams and bigrams, and the In-
query approach using unigram phrases (uw1, od5, od3 and od1). The value shown is the average rank
achieved by each retrieval approach over queries from 50 songs. The lower the rank, the better the system
performance.

Table 1: Average rank of known item over 50 queries

System Query Type | full-text 12-note incipit 7-note incipit
INQUERY unigram 259 717 1420
LANGMOD unigram 1377 1168 1578
INQUERY bigram 1 14 162
LANGMOD bigram 1 12 221
INQUERY Phrase uw1 2155 2916 3731
INQUERY Phrase od5 22 180 667
INQUERY Phrase od3 5 98 507
INQUERY Phrase odl 1 15 164

4.3 Discussion

Query Length One might question the efficacy of using the full text of a known item for query con-
struction. This was done because it gives an upper bound on the performance of each retrieval technique.
In text retrieval, if the full text of a document is used to create a query, performance would likely drop.
There are too many “noisy” words in a document, words which conceptually have little to do with the
aboutness of that document. On the other hand, intuition says that the longer a musical passage, the more
that passage will be about the song from which it is taken. The results in table 1 show that this intuition
holds for all these retrieval systems and queries, except Language Modeled unigrams. The larger the size
of the query, the better the system performs, on average.

Inquery versus Language Modeling For unigrams, the Inquery approach does much better than the
Language Modeling approach. Neither system, however, has an absolute performance level anywhere
near acceptable. This is not surprising, since unigrams contain so little sequential information necessary
for music. With bigrams, on the other hand, the difference between the two approaches narrows. For
full-text queries, Language Modeling does worse than Inquery in only 2 of 50 instances, and equal to
Inquery in the remaining 48 instances. It is not currently known why language modeling fails with uni-
grams, relative to Inquery, but succeeds with bigrams. Unigrams do not discriminate very well between
songs, and perhaps Inquery’s inverse document frequency weighting handles this problem better than

the language modeling approach. A bigram encapsulates a longer sequence of notes than a unigram,
increasing implicit term discrimination perhaps to a point where Inquery’s weighting scheme no longer
provides significant improvement over the Language Modeling scheme.

Inquery Phrases One main difference between the language modeling approach and Inquery is that
the former does not contain the notion of phrases, or term non-contiguity, while the latter does. The
first phrase experiment, #uw1, performs as expected: poorly. The unordered window size 1 simulates
contiguity between unigrams, increasing the discrimination power of the term, but the disregard for the
order of the contiguity destroys any discrimination we might have gained. The #uw1 phrases do even
worse than unigrams by themselves, on average.

There are exceptions. A query-by-query analysis shows that #uw1 succeeds with (approximately three)
queries that have a large proportion of contiguous notes with the same pitch: #uw1(25, 25). In such
cases, the first and second term in a phrase are the same, and the symmetry is not broken by an unordered
window. A #uwl phrase effectively behaves like an #od1 phrase, so performance improves. In the vast
majority of instances, however, the unigrams are not the same and results are hurt significantly; too many
spurious matches are found.

By paying attention to the ordering of contiguous unigrams, recapturing the original sequentiality of a
song, od phrases provide better performance. The #od1 phrases are extremely similar to bigrams. When
the distance between the ordered unigrams is looser (#0d3 and #o0d5), perhaps to allow more flexibility
in matching, performance drops; more spurious matches are found. (More relevant songs might be found
as well, but we cannot test this without better collections and relevance judgements.) The amount of
the drop appears to be inversely proportional to the size of the query. The longer the query, the less the
ranking is affected by spurious matches due to larger window sizes.

5 Experiment Two

5.1 Query Construction

We cannot control the length of the user query, but we can control how that query is used. This leads to
a second experiment, based on Inquery’s flexible phrase operators. (We do not continue with Language
Modeling because current text-based approaches do not allow for non-contiguous n-grams, or phrases.)

Recall that Inquery’s phrase operators take as their arguments query content representation nodes (sec-
tions 2.1 and 4.1). In the previous experiment, these nodes were pitch interval unigrams and bigrams.
However, phrase operators are themselves query content representation nodes. Phrase concept nodes can
therefore be inferred from other phrase concept nodes. Simply put, phrases can be nested.

A sample query with nested phrases is this #od3 phrase of #od5 phrases:

#ql = #WSUM(1.0
#od3(#0d5(30, 32)
#0d5(32, 16)
#0d5(16, 34)
#0d5(34, 18)

An exponential number of phrase combinations and nestings are possible. Phrases can be nested to an
arbitrary depth, phrase distance arguments can be varied at arbitrary nodes, indeed the entire shape of the
query content node network can be modified and rearranged. For simplicity, we only test #odz phrases
of #ody phrases. Trials are run for queries of each length: full-text, 12-note incipits, and 7-note incipits.

5.2 Results

Table 2: Average rank of known item over 50 queries

System Query Type full-text 12-note incipit 7-note incipit
INQUERY Phrase od5 of od5 1 9 218
INQUERY Phrase od5 of od3 1 4 116
INQUERY Phrase od5 of od1 1 1 18
INQUERY Phrase od3 of od5 1 2 99
INQUERY Phrase od3 of od3 1 2 84
INQUERY Phrase od3 of od1 1 1 13
INQUERY Phrase od1 of od5 1 1 13
INQUERY Phrase od1 of od3 1 1 11
INQUERY Phrase od1 of od1 1 1 8

5.3 Discussion

The results are encouraging for the nested odx operators. For any given query at a specified query length,
the nested phrase equals or outperforms the unigram, bigram, and straight #od5, #od3, and #od1 forms
of that query. The only exception is the #od5 of #0d5s on 7-note queries; the phrase windows are too
loose and the query length too short. Otherwise, every other query construct outperforms straight #od1
phrases and bigrams.

Query size still matters, but using nested phrase operators in a manner which attempts to recapture
the original sequentiality of the song produces more precise results. The advantage is that these looser
matching schemes (#0d5 of #0d3s, and so on) allow potentially better recall without sacrificing too much
precision. When doing a known-item search this is not interesting. However, once larger collections and
relevance judgements become available (once multiple documents are judged relevant to a single query),
the ability to allow for more flexible matching without hurting precision is important. It is the author’s
opinion that there are benefits in different query formulations and shapes. Different music features and
variations could be emphasized or ignored, based on how the query is constructed.

6 Conclusion

The goal of this paper was to evaluate current text information retrieval systems as applied to the mono-
phonic music retrieval task. Although other probabilistic methods such as the Inquery system have been
tried, the Language Modeling approach, to the best of the author’s knowledge, has never been applied to
music. This latter approach did not yield impressive results.

However, the framework offered by Language Modeling is still useful. In most current text retrieval
systems, a separate model is used for document represenation and for query-to-document-representation
matching. Additional layers of abstraction are added, “concepts” are inferred from documents and from
queries, and then these concepts are retrieved. For text, this additional abstraction does not always
pose a significant problem. There is often high correlation between tokenized alphanumeric sequences
(words) and concepts. With music, on the other hand, concepts are much more difficult to find. Where
is meaning found in music? In a single note? In a note interval? In six contiguous note intervals? In
six non-contiguous note intervals (i.e.: because of improvisation or some other variation)? The answer

remains elusive, and a retrieval system which bases its effectiveness on its ability to extract some sort
of musical terms or concepts from a music document will have to solve this problem before tackling the
actual retrieval task.

The Language Modeling framework bypasses this intermediate step and goes directly from document
to query. It asks how likely it is that a given document could have generated a query, regardless of the
“concepts” that are found in either the document or the query. This framework thus becomes very useful
for music, where concept extraction is difficult.

Despite these rantings about the difficulty of finding or inferring musical concepts from documents, this
paper also shows that an adequate workaround is possible. While other approaches to music indexing
have concentrated on longer n-grams, we find that it is possible to index seemingly meaningless terms,
pitch interval unigrams, and still get good results. The Inquery phrase operators let a user construct a
query which takes into account the ordered distance of unigrams, creating a semblance of the original
sequence. A configurable window size as well as the ability to nest phrases to an arbitrary depth allows
for flexibility in precision and recall.

However, this Inquery phrase technique is strictly limited to monophonic music. For polyphonic music,
it is unclear how one might index interval unigrams. If polyphonic music consisted exclusively of chords,
the task would be much simpler. But most interesting music has multiple voices, multiple parallel threads,
all of which are not always easily resolved into a single one-dimensional sequence. Other techniques
need to be developed.

7 Acknowledgements

This material is based on work supported in part by the National Science Foundation, Library of Congress
and Department of Commerce under cooperative agreement number EEC-9209623, and NSF grant num-
ber I11S-9905842. Any opinions, findings and conclusions or recommendations expressed in this material
are the author(s) and do not necessarily reflect those of the sponsor(s).

References

AMNS (2000). Nightingale music notation software. http://www.ngale.com.

Byrd, D. & T. Crawford (2000). Problems of information retrieval in polyphonic music. Submitted for
publication.

Callan, J., W. Croft, & S. Harding (1992). The inquery retrieval system. In Proceedings of the 3rd
International Conference on Database and Expert Systems Applications, pp. 78-83.

Downie, J. S. (1999). Evaluating a Simple Approach to Music Information Retrieval: Conceiving
Melodic N-grams as Text. Ph. D. thesis, University of Western Ontario.

DT (1996). Digital tradition folk song database. @ The Digital Tradition.
http://web2.xerox.com/digitrad.

Harman, D. (1995). The trec conferences. In R. Kuhlen & M. Rittberger (Eds.), Hypertext - Informa-
tion Retrieval - Multimedia; Synergieeffekte Elektronischer Informationssysteme, Proceedings of
HIM 95, pp. 9-28. Universitaetsforlag Konstanz.

Lennon, J. & P. McCartney (1967). Lucy in the sky with diamonds. Recording, from the album ”’Sgt.
Pepper’s Lonely Hearts Club Band”.

McNab, R. J.,, L. A. Smith, D. Bainbridge, & I. H. Witten (1997). The
new zealand digital library melody index. In D-Lib Magazine. Available at:
http://www.dlib.org/dlib/may97/meldex/05witten.html.

Ponte, J. M. & W. B. Croft (1998). A language modeling approach to information retrieval. In Pro-
ceedings of ACM SIGIR, pp. 275-281.

Schaffrath, H. (1995). The essen folksong collection. (Four computer disks containing
6,255 folksong transcriptions and 34-page research guide. http://www.musicog.ohio-

state.edu/Huron/publications.html). Center for Computer Assisted Research in the Humanities
(Stanford, CA).

Turtle, H. & W. B. Croft (1991). Evaulation of an inference network-based retrieval model. ACM
Transactions on Information Systems 9(3), 187-222.

