EXTRACTING AND USING RELATIONSHIPS
FOUND IN TEXT FOR TOPIC TRACKING

A Senior Honors Thesis Presented

By

Paul Ogilvie

Submitted May 2000

APPROVED

James Allan, Computer Science

David Jensen, Computer Science

Walter Rosenkrantz, Statistics

Abstract

We investigate the extraction of linked-object representations (LORs)
from text for use in topic tracking. LORs provide us a way to represent
relationships between objects found in text. We show the use of naive
coreference resolution during the extraction of objects does not provide
improvement over the absence of coreference resolution. We investigate
the creation of links, or relationships, between objects through closeness
of the objects in text for small and large window sizes. We present a new
algorithm, “centers”, for document comparison and evaluate its effective-
ness, showing that it approaches traditional cosine similarity when the
window size is large. It gives different answers when the window size is
small, but does not perform as well as cosine similarity where vectors con-
tain words as components. Also, the “centers” algorithm is able to provide

lower miss rates than when using vectors with LORs as components.

1 Introduction

The field of Information Retrieval relies heavily on “bag of words” techniques. These
techniques make use of the presence of words in a story but little other information.
They are called “bag of words” techniques because they treat text merely as a set, or
bag, of words, possibly with numbers associated with the words. Text contains much
more information, but it is difficult to make use of other information. In this paper
we try to make use of more information than just the presence of words.

We consider the problem of topic tracking, which is a task in the DARPA Topic
Detection and Tracking (TDT) program. In topic tracking, a system is given a few
example news articles of a topic and the system must then make decisions as to

whether other news articles are on the same topic as the example stories.

We investigate the extraction and use of linked object representations (LORs).
LORs allow representation of relationships between objects found in text. We consider
relationships based on proximity of objects in a story. We evaluate a variety of
methods for choosing objects and creating relationships. It is not obvious how the
LORs should be used for tracking, so we investigate a method similar to a “bag
of words” approach and also present a new method. The modified “bag of words”
approach we use is cosine similarity, or dot product, on vectors where the components
in the vector are relationships. The new method, called the “centers” method in this
paper, creates multiple vectors for a story from the LORs and compares the vectors
using cosine similarity. We compare these uses of LORs to a traditional information
retrieval method of cosine similarity on vectors with components of words with ¢ f - idf
weighting.

While we examine the use of relationships only in the context of topic tracking,
the techniques and evaluation of techniques are applicable to additional tasks. This
work is applicable to any task where there are document-to-document comparisonsm
including filtering with example documents, relevance feedback, and any of the other
tasks in TDT.

In the next section, we discuss extraction of LORs. In Section 3, we discuss the use
of LORs in topic tracking. Section 4 gives a brief description of implementation and
efficiency concerns. We present the evaluation methodology and results in Sections
5 and 6. We discuss related work in Section 7. Our conclusions and possible future

work are in Section 8.

2 Extraction

2.1 Common Information Retrieval Techniques

Before giving of linked object representations, we recall some useful standard informa-

tion retrieval techniques. These are stopping, stemming, and part-of-speech tagging.

Stopping is the removal of common words such as “the”, “and”, and so on. Stemming
is the conversion of words to their root form. For example, “marketing” has a stem

of “market”. Part-of-speech tagging labels each word with their part of speech.

2.2 Linked Object Representations

In an attempt to capture more information than current “bag-of-words” models, we
will extract linked object representations (LORs). Linked object representations are
a way to characterize relationships between objects. As objects, we will primarily
use people, organizations, locations, and other nouns. While we will focus on the use
of information found in nouns, objects could be constructed from other information.
The relationships created between objects can carry typing information or remain

without type.

2.3 Finding Objects

The objects we are interested in are people, organizations, locations, and sequences
of nouns (nounruns). We chose this set of objects because they seem to be intuitively
important to the story. That is, they are the “who” and the “where” of the events
reported in the story.

We extract people, organizations, and locations from text using a named-entity
tagger. Named-entities are specific references to people, organizations, and locations.
For example, “James Brown” is a named-entity, but “he” is not. Named-entity taggers
have been developed through work done for the Message Understanding Conference
(MUC, 1998). They tag the named-entities found in the text and also specify whether
the named-entity is a person, organization, or a location. Named-entity extractors
extract more named-entity types than people, organizations, and locations. Some of
the other types are dates and numbers. We choose to ignore these other object types,

as they do not seem as intuitively important to the story.

Since there is a lot of information present in stories not found in named-entities,
we will also extract nounruns. A nounrun is a sequence of one or more nouns. Some
examples of nounruns are “airport”, “credit card”, and “rock music station”. In order
to reduce the variations of form of equivalent nounruns, we construct them from the
stemmed version of the nouns. This way, the nounruns constructed for “rock music

station” and “rock music stations” would both be “rock music station”.

2.4 Coreference Resolution

Coreference resolution is often desirable in situations when information is extracted
from text. Coreferences are variations in the phrase used to refer to an object. The
construction of LORs is an information extraction task. Grishman (1997) includes
coreference resolution as an important step in information extraction, and we consider
coreference resolution’s importance in our system. There are several types of corefer-
ences of interest. One is the use of pronouns to refer to a named-entity. For instance,
if “James Brown” is mentioned in text, the object may later be referred to as “he”
in the text. Another type consists of variations on named-entities or nounruns. An
example of this type of coreference is “James Brown” and “Mr. Brown”. There are
other types of coreferences that we do not attempt to resolve. One type similar to
pronouns is the use of phrases such as “the musician” or “the company” to refer to
a named-entity. Acronyms are another type we do not consider. Performing corefer-
ence resolution perfectly is a difficult task, as it would require some degree of natural
language parsing and perhaps understanding. However, we will investigate simple
techniques that we conjecture perform reasonably and evaluate their use. We only
consider coreference resolution within one story, as opposed to performing coreference

resolution across stories.

2.4.1 Pronouns

We use a simple approach to resolve pronoun coreferences. The pronouns of “he”,

k2

“she”, “I”, “me”, “him”, “her”, and “my” are mapped to the previous person named-

[43 [43

entity found in the text. The pronouns of “we”, “us”, “they”, “our”, and “their”
are mapped to the previous organization named-entity found in the text. This can
give both good and bad results. Consider the sentences “James Brown was recently
interviewed by Craig Kilborn. He answered questions about his musical influences.”
We would incorrectly replace “He” and “his” in the second sentence with “Craig
Kilborn”. On the other side of the coin, consider these sentences: “Craig Kilborn
said ‘I recently interviewed James Brown. He discussed his musical influences.”’
In this case, we would replace “I” with “Craig Kilborn” and “He” and “his” with

“James Brown,” all of which would be correct replacements. We will investigate the

performance of this approach in the evaluation section.
2.4.2 Substring Matching

We attempt to resolve variations in object references through substring matching.
Within a named-entity type, we treat all objects of that type where one is a substring
of the others as the same object. For example, if “James Brown”, “Mr. Brown”,
and “Brown” all occurred in a story, we would consider them to be the same object:
“Brown”. However, if “James Brown” and “Mr. Brown” occurred in a story, but
“Brown” did not, we would not treat “James Brown” and “Mr. Brown” as the same
object. We do not do the substring match for objects of different types (the types
are people, organizations, locations, and nounruns). Or if we encounter the phrase
“Brown, founder of Brown Publishing”, we would not treat “Brown Publishing” as
“Brown” because “Brown Publishing” is an organization and “Brown” is a person.
We also use this method for nounruns. In a story about credit cards, credit cards

may be referred to as both “credit cards” and simply “cards”. This resolution method

Original Resolved
type ‘ object type ‘ type
person James Brown person Brown
person Brown person Brown
person Craig Kilborn person Craig Kilborn
person Mr. Kilborn person Mr. Kilborn
nounrun | credit card nounrun | card
nounrun | busines card nounrun | card
nounrun | card nounrun | card
location | Washington location | Washington
location | Washington DC location | Washington DC
person George Washington || person George Washington

Table 1: Good and bad examples of substring matching.

would treat the “credit card” and the “card” nounruns as the same objects (“card,”
not “cards,” because we use the stem in nounrun construction). Table 1 shows some
examples where the substring matching works and fails. The first example is likely
to be a correct resolution. The “Craig Kilborn” example is a case where substring
matching misses a coreference, and the “card” example is a case where substring
matching produces undesirable replacements. The final example illustrates that the

resolution is not performed across object types.

2.5 Relationship Creation

After we have extracted the objects of interest, we create the relationships between
the objects. We focus on extracting relationships based on distance of objects in text.
This will not give us any type information on the relationships. However, creating
relationships based on distance of objects is easy to compute. Also, it is unclear
how to use typed links. We define the distance between two objects as the number
of words and objects between the objects. Table 2 helps illustrate this. We treat
the “James Brown” object as taking only one position. The words “to” and “a” are

stopped, so they do not take any positions. To find the distance between “James

Brown” and “audience”, we subtract the position of the “audience” object from the

Position | Word Object

1 James James Brown (1 of 2)
1 Brown James Brown (2 of 2)
2 sang

- to

- a

3 large

4 audience. | audience (1 of 1)

Table 2: Computing the distance of two objects.

position of the “James Brown” object, getting a distance of 4 - 1 = 3. Whenever we
compute a distance between objects, we subtract the lower position from the higher
position, giving us positive distance at all times. In most of our tests, we will only
create a relationship if the objects have a distance of five or less. We will keep track

of the distance when we create a relationship.

3 Topic Tracking
3.1 Topic Detection and Tracking

Topic Detection and Tracking (TDT) is a project with the goal of better organizing
information found in a stream of news. See the summary article (Allan et al., 1998)

for more information. We will consider the task of topic tracking.

3.2 Approaches to Tracking

The goal in topic tracking is to track a known topic. That is, the system is given a
few example stories of a topic, and as more news stories are presented to the system,
the system makes a judgment as to whether or not each story is on the same topic
as the example stories. The number of example stories is denoted N;. In addition
to providing a hard YES/NO judgment for each story, the system also provides a
number corresponding to the whether the story is on-topic. The higher the number

associated with an story, the more certain the system is that the story is on the same

topic as the example stories. There is no fixed range for these numbers. The hard
YES/NO judgments are chosen by setting a threshold, #, and marking an story as

YES if the score for the story is greater than # and marking an story NO otherwise.

3.3 Comparing Stories to Topics

In order to generate a score for whether the story is on-topic, the system needs to
compare the story to some representation of the topic. Since the system is given only
N; example stories of the topic, the representation is constructed from the N; example
stories. If a system can produce a similarity score for any two stories, that scoring
method can be used in several ways. Two of the common approaches are centroid
(agglomerative clustering) and k-nearest neighbor (Allan et al., 1998). We use the
centroid approach in our evaluation.

In the centroid approach, we build a representation of a story that is the “middle”
of the example stories. One way to do this is to concatenate the stories together,
making one story out of the examples. Another way is to take the system’s repre-
sentation of the example stories and average them. This requires knowledge of the
system’s representation and of how the system compares two stories. The system
then compares the centroid to the new story to generate a score that the new story
is on-topic. We compute the centroid by averaging the representations. The system
may additionally normalize the score by dividing it by the average of the scores that
each example story is on-topic. This helps to normalize scores across system runs for
different topics.

One criticism of the centroid approach is that averaging the representations of
several stories may not make sense. For instance, one could assign each month of
the year with a number, and compute the average birth month of a group of people.
However, there is some evidence to show that averaging a document does not behave

poorly compared to other techniques.

3.4 Comparison Measures

The similarity function is a very important component to a topic tracking system.
Not only does it generate similarity measures between stories, it gives constraints on
what information in the stories is used and how that information is used. We consider

the cosine similarity measure and a new approach that attempts to make better use

of LORs.
3.4.1 Cosine Similarity and t¢f - idf Weighting

Cosine similarity is a standard measure used in information retrieval for comparing
stories (van Rijsbergen, 1979). In this approach, a story is treated as a vector. Each
of the components in the vector is assigned a weight. The weights are chosen so that
the higher the weight, the more important the component is to the story. The cosine
similarity between two stories is the inner product of the two vectors normalized to
unit length. If p and ¢ are vectors representing two stories, and p; is the weight of

the feature ¢ in p, then the formula for cosine similarity is:

> Didi
VEriYq

The components in the vector are traditionally words present in the story. These

cossim(p, q) =

words are stopped and stemmed. The weights on components are given using a
scheme called ¢ f - idf. There are many variations on exactly how ¢ f - idf is computed.
We will use the formulas used by UMass for TDT (Allan et al., 2000). This is the
Okapi weighting scheme (Robertson et al., 1996). The ¢f component is a measure
that indicates the importance of each term, or stemmed word, to the story. The
abbreviation tf is short for term frequency. Frequency typically means the number
of times an event can be observed during a period of time. We do not make use strict
interpretation of the word frequency. Term frequency loosly means the number of

times a word occurs in a story. The idea is that the more times a word occurs in a

story, the more important it is to the story. The formula for ¢f that we will use is
given by:

f rawt f
" rawtf + 0.5+ 1.5-tene

lenaug

where rawt f is the number of times the term occurs in the story, leny is the length of
the story (number of words excluding stopped words), and leng,, is the average length
of the stories in the story set. This gives a tf score that ranges from zero to one, with
more commonly occurring words receiving a higher weight. The l:%:f; component
helps to normalize the weights across stories of different lengths. The abbreviation
idf stands for inverse document frequency. Again, we use the word frequency loosly.
This component gives higher weights to words that aren’t common in the story set

and lower weights to words that occur often in the set of stories. The idf is defined

as:

_ log(N/df)
~ log(N +1)

wdf
where df is the number of stories the term occurs in and N is the number of stories.
The tf - «df weight for a term is simply ¢f times idf.

In the context of tracking, lengyq, IV, and df are not known, as we do not know
information about stories that have not come in yet. One method of accommodating
for this is to calculate these numbers for the stories the system has seen up to the
current story. Alternatively, lensy, and idf can be computed on a set of stories
independent from the tracking set. In our tests, we use the true values of lengy,,

N, and df. Since we are treating the tf - idf weighting scheme as a baseline to our

performance, it is acceptable for us to use the true values.
3.4.2 Relationships in a Vector

In our system, we wish to evaluate the quality of relationships extracted from text.

One way to do this would be to treat the relationships as features in a vector. Then,

10

we could take the cosine similarity of the vectors for stories and centroids as a simi-
larity function. Instead of using tf - idf as weights in the vector, we will make use of
the distance between objects in our weighting scheme. When creating a relationship
between two objects, we kept track of the distance between the objects. To calcu-
late the weight for a relationship feature in a story, we treat the distances, d;, on
the relationships as resistors. We then take the net resistance if the resistors were
in a parallel circuit. This gives a net resistance ranging from zero to the maximum
distance, maxdist, allowable on a relationship, with more frequent and close relation-
ships having a resistance closer to zero. In order to adjust this number to be usable
in the cosine similarity function, we need higher weights to be more important. To
do this, we subtract the net resistance from maxdist. The formula for this is:

1
1 1 1
atat ot

maxdist —

where n is the number of that type of relationship. For example, if the relationships
were created with maxdist = 5 and the objects “Bill Gates” and “Microsoft” occurred
in a story twice, both times with four words between them, the weight on the feature
for “Bill Gates is related to Microsoft” in the vector for that story would be 5 —
(1/(1/4+1/4)) = 5—(1/(1/2)) = 5 — 2 = 3. Note that this sets a weight of zero
on a link if it occurs only once with d = maxdist. This approach to weighting
the features gives results similar to ¢tf. It does not capture any notion of inverse
document frequency. This method does not make much use of the relationships.
It requires the presence of specific relationships to exist. This greatly reduces the
number of similarities across stories. We create a vector for the topic by averaging

the vectors of the example stories.

3.4.3 “Centers” Approach

In an attempt to use the relationships in a more flexible manner than treating reach

relationship as a feature in a vector, we developed a new comparison measure. LORs

11

NOUNRUN:animal_health_product NOUNRUN:network

NOUNRUN:bring NOUNRUN:check ORGANIZATION:91fm-whyy

PERSON:joe_pizuto_pimaco
ORGANIZATION:public_radio

G‘NCM\I@RUN:show

PERSON:charlie_rose
NOUNRUN:part NOUNRUN:communicate_solution
ORGANIZATION:public_radio_international

NOUNRUN:service

NOUNRUN:world ORGANIZATION:lucent_technologies
ORGANIZATION:pri

ORGANIZATION

NOUNRUN:word
PERSON:kingsley_smith
NOUNRUN:time PERSON:marty_moss-coane NOUNRUN:listenermember
o—FOo——o .
NOUNRUN:program ORGANIZATION:whyy

Figure 1: Graphical representation of an LOR.

can be viewed of as a graph where the nodes are objects and lines exist between
objects if they are related, or linked. Figure 1 is the graph of a LOR for a story.
Viewing LORs as graph leads us to think about social network analysis. The “centers”
method compares two stories by comparing the objects, or nodes on a graph, within
the stories. Rather than just looking at the objects themselves, we look at what the
objects are connected to. That is, we try to capture some notion of role equivalency
among two objects. Role equivalency in social network analysis tries to measure how
well one node in a graph could replace another node (Wasserman & Faust, 1994).
Instead of using a social network analysis measure of role equivalency, we use the dot
product, or cosine similarity, to determine role equivalency. Since we do not wish
to rely solely on the role equivalency of two objects, we provide a little weight to
what the objects themselves are. The weights we place on the importance of role
equivalency and matching objects are somewhat arbitrarily chosen, and as of yet we
have not been able to investigate the use of different weights. We place most of the
importance on the role equivalency, because we feel that it captures more information

about the object than the object value or type itself.

12

We now go into the specifics of the “centers” method. We represent story by a
set of object-vector pairs. The objects in the pairs are the objects in the LOR we
create for the document. The vector paired with an object is constructed from the
objects linked to the object. The weights on the objects in the vector are taken from
the weights on the links, as calculated using the resistance technique in Section 3.4.2.
We call an object-vector pair a center. Figure 2 may help clarify the construction
of a vector paired with an object. The nodes in the chart are objects, while the
lines between nodes indicate a link between two objects. The arrow points to the
object of type nounrun with the value of plan. We build the vector for the center
with object nounrun:plan using the connected objects. We have circled them on the
graph. Objects with no relationships are discarded. If C is the set of centers for a
story, we call ¢; a center. The object associated with c; is denoted as c;.object, and the
vector paired with the object is c;.vector. Figure 3 gives a graphical representation
a story and its components. In the figure, whenever a word or number field is used,
we provide example values. In order to generate the topic representation, we average
the weights on the relationships present in the example stories and create the vectors
as above.

To compare the representation of a story to that of a topic, let ¢ and d be the sets
of centers constructed for the topic and the story, respectively. For each c¢;, compare
its vector, c;.vector using cosine similarity to each d;.vector. Multiply that by one
minus the weight of the center, 1 — w. Calculate the similarity of the center objects
c;-object and dj.object, multiplying it by w. Take the max of this sum over all c;.

Then average the maximum similarities across all d;. The formula for this is:

>5-1 maz(csim(ci, d;), csim(cz, dj), . . ., csim(cm, d;))

sim(c,d) = -

where

csim(cy, ca) = (1 — w)cossim(cy.vector, ca.vector) + w - osim(c;.object, ca.object)

13

.y

|

-« DATEzHow_1T

HRIHRES IR

Figure 2: Vector construction for a center.

Story Center Vector
center 1 object object 1 |weight 1
center 2 vector object 2 | weight 2
center 3 object 3 | weight 3
center 4 object4 |weight 4
Object
type PERSON
center n val Clinton objectk |weight k

Figure 3: Story representation in “centers” algorithm.

14

0sim(o1, 02) =
1 if 01.type equals os.type and o;7.val equals 0y.val

0.1 if o1.type equals os.type but o;.val does not equal 0y.val

0 otherwise.
m is the number of centers in ¢, n is the number of vectors in d. Figure 4 shows
the computation of sim(c,d). For every center in ¢ and d, we compute their center
similarity using csim and store the value in a table. We then select the max csim
score for each center in d. In the figure, that means taking the max in each row.
We have circled the max scores in the figure. Notice that this allows more than one
center in d to be paired with one center in ¢. sim(c,d) is then the average of the
circled scores. Since the similarity measure is not symmetric, if we were to compare

a story to another story we might wish to average sim(c, d) with sim(d, c).

4 Implementation and Efficiency

The methods we have developed require more computation than the traditional tech-
niques. Thus we are concerned not only with the quality of the results, but also the
feasibility of running the algorithm on large amounts of information. In this section

we will discuss the efficiency of the algorithms for performing extraction and tracking.

4.1 Extraction

The data set we worked with for evaluation already had stopping, stemming, part-
of-speech tagging, and named-entity extraction performed on it. However, as this
is not always the case, we will discuss the efficiency of performing these tasks. For
each of these tasks, we use existing systems. Stopping, stemming, and part-of-speech
tagging can be done on a story in time linear to the number of words in the story.

The extraction system can use any named-entity recognizer that outputs according

15

Story d

Story ¢

csim cl c2 c3 c4 c5 c6
dl 0.3 0 0 0.1 0
d2 0 0 0.25 0 0.1
d3 0 0 0.5 0.1 0
d4 0.1 0 0 0.1 0
d5 0 0.3 0 0 0.1
d6 0 0.1 0.1 0 0

Figure 4: Computing sim(c, d)

16

to the format developed in the Message Understanding Conference. We have success-
fully used both BBN’s named-entity recognizer and one developed at UMass.

Finding nounruns in text is a simple task once we have the part-of-speech tagging
information included with the story. It requires only one pass through the story. We
do not outline the algorithm we use here, as it is a straightforward task.

We wrote our own code to perform the simple coreference resolution techniques
we discussed earlier. Our code does pronoun coreference resolution in a single pass
of the story. As the code progresses through the story, it remembers the last person
and organization seen in the text. When it encounters a singular pronoun, it marks
the pronoun with the previous person. When it finds a plural pronoun it marks the
pronoun with the previous organization.

The substring method of coreference resolution takes somewhat more time than
the pronoun resolution technique. In the worst case, a naive algorithm could take
O(n®) time, where n is the number of words in the story, to fully resolve the objects.
We do not do complete resolution. The algorithm we use is given below.

For each object in the story, set resolve{object} = object.

resolve is a hashtable where the key is the object that we wish to resolve
and the value is the object we resolve the key to.

For every object o; in the set of keys of resolve,

For every object o, in the set of keys of resolve,
if o;.type equals o0q.type, and
02.val is a substring of o;.val, and
resolve{o; }.val is longer than os.val
then set resolve{o;} = resolve{os}.

In an effort to save time, our algorithm does at most n? steps. While this may

not fully resolve the objects, the objects generally consist of only a few words, so this

algorithm should at worst miss a few possible resolutions.

17

The time it takes to construct the relationships is dependent on more than just
the length of the story. It also depends on maxdist. If maxdist is close to the length
of the story, it can require around n? steps. If maxdist is constant and small, then it

only requires around maxdist - n steps.

4.2 Tracking

The time for performing a tracking run is ¢ - d - ¢ where ¢ is the number of topics, d
is the number of stories, and c is the time it takes to compare a story to a topic. For
cosine similarity of vectors, ¢ is the number of features in the two vectors, which is
at worst linearly related the lengths of the stories in the topic and the story being
compared. The time for the “centers” algorithm is O(kf?), where k is the average
number of objects an object is related to (or the connectivity of the node) and f is
the number of objects (or features). k is influenced by maxdist; as maxdist grows,
so will k. f is related to the lengths of the stories in the topic and the story being
compared. f and k are also influenced by the method of LOR creation used. If
maxdist is large, the ¢ could be cubicly related to the lengths of the stories. In order
to run the “centers” algorithm in a reasonable amount of time, we need to work with
a small mazdist.

Getting efficient performance for the “centers” algorithm requires very quick
lookup of values. For the operations we have to perform, it is simplest to store
stories and topics in separate files.! During a tracking run, all of the topics are
loaded into memory. Stories are then loaded one at a time to be compared to topics.
Normalization of scores is performed after the tracking run is completed, but takes

very little time.

'We spent a large amount of time examining various LOR storage techniques. We found that
storing LORs database was not appropriate for storing LORs to be used in either vector comparison
or “centers” comparison.

18

truth
on-topic | off-topic
system on-topic false alarm
off-topic miss

Table 3: False alarm and miss.
5 Evaluation

5.1 Evaluation Set

For evaluation, we use the TDT2 train.ccap set. It is a set of 8032 stories compiled
from closed-captioned text of news broadcasts of ABC, CNN, and PRI. We track 37
topics over the set of stories. The number of training stories per topic, IVy, is set at

four. We ignored the topics with less than four on-topic stories in the set.

5.2 DET curves

In our evaluation, we want to examine how well our systems match the true answers.
We know the underlying distribution of on/off-topic status for all stories for each
topic in our evaluation set. We can do this by measuring the false alarm rate and
miss rate. A false alarm occurs when a system reports a story as on-topic when it
is off-topic. A miss occurs when a system declares a story as off-topic when it is
on-topic. Table 3 illustrates this. For a given topic, false alarm rate is the number
of off-topic stories that a system declared on-topic divided by the number of stories
the system declared off-topic. Miss rate is the number of on-topic stories the system
declared off-topic divided by the number of on-topic stories. The formulas for the
error rates for a given topic ¢ are:

number off-topic judged on-topic

false alarm(t) = number off-topic

number on-topic judged off-topic

miss(t) = :
®) number on-topic
Our systems do not give hard judgments as to whether an story is on-topic or

off-topic. Instead, we output a number: the higher the number, the more certain we

19

are that the story is on-topic. On order to convert a number into a strict on-topic or
off-topic judgment, we set a threshold. If the score is higher than the threshold, we
say that the story is on-topic. Otherwise, we say the story is off-topic. The threshold
we choose affects the false alarm and the miss rate. Higher thresholds can decrease
the false alarm rate but it will increase the miss rate. We find it desirable to construct
a graph of false alarm and miss rates over all thresholds. This way, we can illustrate
the tradeoff between false alarm rate and miss rate.

Detection error tradeoff (DET) curves give an appropriate way to graph this in-
formation. See (Martin et al., 1997) for a more thorough description of DET curves.
The TDT program uses DET curves as a standard evaluation tool. DET curves place
false alarm probability along the x-axis and miss probability along the y-axis. As in
(Martin et al., 1997), instead of fixing the scale along the axes to the units of proba-
bility, we use the normal deviates of the probabilities to fix the scale. This does a few
things to the DET curves. First, if the distributions of scores given to on-topic and
off-topic stories are relatively normal, the curve will appear fairly straight. Second,
this stretches out the lower ends of the graph. This enables easy distinction in regions
of low error levels.

So far, we have described how to generate a DET curve for one topic. However, we
are interested in the system performance across many topics. There are two common
ways to construct a DET curve for multiple topics: macro averaging and pooled
averaging. For a given threshold, the two methods construct false alarm and miss
rates as follows:

Macro:
> false alarm(t)

false alarm =
AT number of topics in T

YT miss(t)
number of topics in T

MiSSmacro =

20

Pool:

2T number off-topic judged on-topic for topic ¢

false alarmy,y, =
poct > T number off-topic for topic ¢

> T number on-topic judged off-topic for topic ¢

misSpoor = 2 :
poct >4 T number on-topic for topic ¢

where T is the set of topics. Macro averaging gives equal weight to every topic, while
pooled averaging give more weight to topics with larger numbers of on-topic stories.
In the evaluation, we will only use pooled averaging as the code for macro averaging,

meaning that large topics will be heavily weighted.?

5.3 Scatter Plots

We are also interested in whether two systems give similar answers. We will use
scatter plots to visually investigate correlation of scores among systems. If we plot
every judgment the systems make for the evaluation set we are using, a scatter plot
would have close to 300,000 data points. In order to reduce the number of points on
the plots, we will randomly sample approximately 5% of the off-topic stories and 10%
of the on-topic stories to display. We sample a larger percentage of on-topic stories
because there are many more off-topic stories then on-topic stories. If we presented
only 5% of the on-topic stories, we would not get a good sense of the correlation of

scores given for on-topic stories.

6 Results

In this section we present the results of our tests. We first present some baseline tests
using vectors and cosine similarity. We then present results using the centers method
of comparing stories. We discuss the usefulness of various extraction techniques in the

context of the ”centers” method. Finally, we compare the “centers” method to the

2Tt is preferable to use macro averaging because all topics are given equal weight and it is possible
to create 90% confidence intervals for the curves. We did not do this in our evaluation because the
evaluation code for macro averaging was unavailable to us at the time.

21

baselines. In all of our tests, topics are created by the centroid method by averaging

the representations of the example stories.

6.1 Baselines

We first examine tracking runs performed with cosine similarity and Okapi tf - idf
weighting. Figure 5 shows the results for various methods of feature selection. It
is not surprising that the best performing system is the one that uses all words as
features. The other two lines show the feature selection using named-entities and
nounruns. No coreference resolution was performed for these tests. The difference
between the use of named-entities and nounruns verses the use of just nounruns is
somewhat surprising. While the feature selection for both make use of only nouns,
the difference between the lines can be explained by the fact that grouping of nouns
is different. It is likely that there are better matches of named-entities across stories

than nounruns.

6.2 “Centers” Algorithm and Variations on Extraction

We now analyze different extraction techniques in the context of the “centers” algo-
rithm. Unless stated otherwise all relationships are created with maxdist = 5. First,
we investigate whether the simple coreference resolution techniques described earlier
impact tracking. All of the tests shown in Figure 6 use relationships constructed us-
ing named-entities and nounruns. Relationships with both objects as nounruns were
removed. We tested use of substring method, pronoun method, and both methods of
coreference resolution. The graph shows that we get no gain performing coreference
resolution. For the rest of the evaluation we will not use coreference resolution.
Next, we investigate removing relationships where both objects are nounruns.
The intuitive thought behind removing them is that named-entities seem more im-

portant to the story. Additionally, there will be much fewer relationships, reducing

22

vectors with cosine similarity Random — —

T ¥ =
words =———
nounruns —

VU
i

Miss probability (in %)

1

.0102.05.1 .2 5 2 5 10 20 40 60 80 90

False Alarms probability (in %)
Figure 5: Vectors with ¢f - idf weighting.

the running time of a tracking run. Figure 7 shows that there is little difference in
the performance when relationships with both objects as nounruns are removed. The
figure also has a line for using only nounruns. Note that the light blue “no coreference
resolution” line of Figure 6 is the same as the purple “named entities and nounruns
with trimming” line in this figure. As with the vector based approach, the use of
named-entities improves over the use of part-of-speech tags in the construction of
objects.

It seems wasteful to not use information found in verbs, so we have tests where
we created relationships using words. We do not perform named-entity extraction
or part-of-speech tagging. All words are considered objects. The words we use are
stopped and stemmed. Using words improves results some (Figure 8), but it creates

more relationships and takes longer for the tracking test to run. Similarly to the

23

T 189] 1 U BUUOSUTTTT T =
substring ——
pronoun ——

Miss probability (in %)

—

.0102.05.1 .2 .5

5 10 20 40 60 80 90
False Alarms probability (in %)

Figure 6: Variations of coreference resolution used for the “centers” algorithm.

pruning done with nounrun relationships, we have a test where we use named-entities,
words, and remove relationships where both objects are words. Again, we see that
doing this does not hurt performance.

We next compare the “centers” algorithm to the vector model with relationships
as features. Figure 9 shows the performance for two methods of relationship cre-
ation. One method creates relationships between named-entities and nounruns with
nounrun-to-nounrun links trimmed. The other method creates relationships between
named-entities and words with word-to-word links trimmed. We also include the cor-
responding “centers” algorithm performance. The lines for the vector representations
end abruptly because there are many vectors with no overlap, even with on-topic
stories. We see that performance for the “centers” comparison method is worse than

the vector representation with cosine similarity. As with the “centers” comparison

24

Random ——

NV F T T T TR S ' ' ' ' =
AN U med entities and nounruns ——
_nounruns with trimming ———

80 _ neimed entities a

Miss probability (in %)

1

.0102.05.1 .2 5 2 5 10 20 40 60 80 90

False Alarms probability (in %)

Figure 7: Trimming and named entity information.

method, the named-entities and words is better than named-entities wand noun-
runs using the vector representation and cosine similarity. This suggests that the
conclusions made about extraction and coreference resolution would hold for cosine
similarity where the features in the vector are relationships. Figure 10 shows us that
the “centers” comparsion method gives answers different than using the relationships
components in a vector using cosine similarity.

Similarly, Figure 11 illustrates that the “centers” method gives answers different
from using the objects as features in a vector with ¢f - idf weighting. The objects
used were named-entities and nounruns and the relationships used had nounrun-to-
nounrun links trimmed. If we increase maxdist to the length of the story, it seems
plausible that the system would give answers similar to the vector based method with

tf - idf weighting. This could happen because as maxdist approaches, the vectors

25

Randpm _—

90

1y
words =——t—

80 _ ,,,,,,,, ,,,,,,,, __ named entities\and words with timming ———

60

40

20

Miss probability (in %)

1

0
5
2
1

— I
N
(&)]
—
(e)
N
o
IRV . T N S S
o
(o))
o
(0]
o
O
(e)

.0102.05.1 .2 .5
False Alarms probability (in %)

Figure 8 Words as objects.

created for the centers will have the same features as a single vector for the story.
To investigate this, Figure 12 is a scatter plot where the vector based method is on
the horizontal axis and the “centers” approach with maxdist = 100 is placed on
the vertical access. In both cases, nounruns were used as features/objects. On-topic
stories are marked by plus signs and off-topic stories are dots. We see that there is

some correlation of scores between the two methods.

7 Related Work

There has been work on the use of named-entities for first-story detection (Allan
et al., 1999), another TDT task. They find, as do we, that use of only named-
entities harms performance, as other important words found in text are disregarded.

Additionally, they discuss the use of pairs of named-entities. This is very similar to

26

vectors with LORs compared to centers algorilgpamn dom

90 T TN TR EApr Frameu entiisg ancr " B ' 7
™ \vegtors - named entities and words with trimming ——
80 | W\ . centers - named entities ang nounruns with trimming ———

Miss probability (in %)

.0102.05.1 .2

False Alarms probability (in %)

Figure 9: “Centers” algorithm compared to vector with features of relationships.

LORs where maxzdist is large. Their use of the named-entity pairs is specific to first
story detection, and would not necessarily be directly applicable to topic tracking.
Our construction of LORs is different than the named-entity pairs because we allow
relationships where an object is not a named-entity. We also place weights on the
relationships, while the named-entity pairs had no weights.

Other forms of information extraction have been used for text classification. Riloff
& Lehnert (1994) discuss the use of more sophisticated information extraction for high
precision text classification within a specific domain. This work is reliant on manually
engineered information for domains narrower than information found in news. We
use extraction in a domain independent manner, so that manual engineering is not

required.

27

named entities and words with trimming

! ! ! !
T —\————— e — e — .
I T e .
1 e O s O A -
£
g : : : :
N L e e 1
© : : : :
2
2 a 3 3 3
@ 0.6 | T e o .
© § f 3 3 3
T T R— e — e — :
0L : : : :
0 0.05 0.1 0.15 0.2 0.25

vectors with cosine on relationships

Figure 10: Scatter plot of “centers” algorithm verses vector with features of relationships.

Bigrams are similar to our LORs in a few ways. Bigrams can refer to two-word
phrases, a pair of words found in the same passage, or a pair of words found in
the same document. When bigrams refer to a pair of words in the same passage or
document, this is highly related to LORs. A generalization of bigrams that refer to a
pair of words in the same passage or document is called multi-word concepts. Multi-
word concepts is a set of words that appear (or are required to appear in document,
if the concept is in a query) within a n word window. The use of multi-term concepts
for information retrieval has been investigated. The LORs presented in this paper
are two-term concepts with a window size of mazdist. Papka & Allan (1998) show
that for retrieval of documents, the use of multi-term concepts with small windows
performs worse than with larger windows. We take the work further by including

named-entities in multi-term concepts.

28

named entities and nounruns with trimming

T T T T

£

£

S

k=)

©

o

2

c

(0]

(&]

i i
0.4 0.6
vector with cosine similarity

Figure 11: “Centers” algorithm gives different answers than vector with objects as fea-
tures.

8 Conclusions and Future Work

We have learned about what information is useful in LORs. The use of named-entities
with words allows the removal of word-to-word relationships without greatly changing
the quality of the performance. Also, the use of naive coreference resolution does not
improve performance. We also introduced a new text comparison measure that makes
use of LORs. The “centers” method of comparison performs better than random and
gives answers that are different than using cosine similarity on vectors.

It is not clear whether more accurate forms of coreference resolution would im-
prove performance. Also, we did not look at resolution across documents, which might
provide better resolution. We do not evaluate any methods for resolving phrases such

as “the musician” or “the company”. It would be possible to do a coreference resolu-

29

centers algorithm with nounruns and maxdist = 100

; ; ;
0.4 0.5 0.6
vector with cosine similarity

Figure 12: “Centers” algorithm approaches vector based techniques with large mazdist.

tion for this type in a manner similar to what we do for pronouns. We could keep a
list of nouns that refer to a person and a list of nouns that refer to an organization.
When we encounter a noun in either list, we could associate the appropriate per-
son/organization with the noun in text according to which list the noun was found
in. Another coreference type we do not consider is the use of acronyms in text.
For instance, IBM may be referred to as both “International Business Machines”
and “IBM” in a document. To resolve these types of coreferences, one could use an
acronym database for assistance . If an acronym occurs in text, then one could look
up the acronym in the database and check to see if any of the acronym’s definitions
also occur in the text (Larkey et al., 2000). Then the acronym and definition could

be treated as the same object.

30

The “centers” method for comparing text did not perform as well as existing
techniques. However, we did little fine-tuning of the algorithm. One variation we
would like to consider is instead of taking the maximum of the center similarity for
an object in a document with the objects in the topic, force a match where an object
in the topic can only be paired with one object in the document. Another variation
would be to place more weight on the center similarity of objects with a large number
of related objects. We did not test different parameters much. We could change
the weights on the center object matching or change mazdist. We could impose
restrictions on which objects are centers.

DET curves give us a way to visually compare the results of one system with
another, but the DET curves we presented do not have confidence levels or test
whether two systems perform significantly different. Confidence intervals can be

computed when using macro averaging of topics.

9 Acknowledgments

This material is based on work supported in part by the National Science Founda-
tion, Library of Congress and Department of Commerce under cooperative agreement
numbers EEC-9209623 and ETA-9820309. Any opinions, findings and conclusions or
recommendations expressed in this material are the authors’ and do not necessarily

reflect those of the sponsor.

31

References

Allan, J., J. Carbonell, G. Doddington, J. Yamron, & Y. Yang (1998). Topic de-
tection and tracking pilot study final report. In Proceedings of the DARPA

Broadcast News Transcription and Understanding Workshop.

Allan, J., H. Jin, M. Rajman, C. Wayne, D. Gidea, V. Lavrenko, R. Hoberman, &
D. Caputo (1999). Topic based novelty detection. Final Report (1999 Summer
Workshop at CLSP.

Allan, J., V. Lavrenko, D. Malin, & R. Swan (2000). Detections, bounds, and
timelines: UMass and TDT-3. In Proceedings of Topic Detection and Tracking
Workshop (TDT-3).

Grishman, R. (1997). Information extraction: Techniques and challenges. Informa-

tion Extraction (International Summer School SCIE-97).

Larkey, L., P. Ogilvie, M. A. Price, & B. Tamilio (2000). Acrohpile: An automated

acronym extractor and server. In Proceedings of Digital Libaries 2000.

Martin, A., G. Doddington, M. Ordowski, & M. Przybocki (1997). The DET curve
in assessment of detection task performance. In Proceedings of EuroSpeech ‘97,

pp. 1895-1898.

MUC (1998). http://www.muc.saic.com/proceedings/muc_7 toc.html - Proceedings
of MUC 7.

Papka, R. & J. Allan (1998). Document classification using multiword features. In
Proceedings of the 7th International Conference on Information and Knowledge

Management (CIKM).

Riloff, E. & W. Lehnert (1994). Information extraction as a basis for high precision

text-classification. ACM Transactions on Information Systems 12(3), 296-333.
Robertson, S. E.,; S. Walker, S. Jones, M. M. Hancock-Beaulieu, & M. Gatford

32

(1996). OKAPI at TREC-3. In D. Harman (Ed.), Proceedings of the 3rd Text
REtrieval Conference (TREC-3).

van Rijsbergen, C. J. (1979). Information Retrieval (Second ed.). Butterworths.

Wasserman, S. & K. Faust (1994). Social Network Analysis: Methods and Applica-

tions, pp. 487-491. Cambridge University Press.

33

