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Abstract The explosion of content in distributed infor-
mation retrieval (IR) systems requires new mechanisms to
attain timely and accurate retrieval of unstructured text. In
this paper, we compare two mechanisms to improve IR sys-
tem performance: partial collection replication and caching.
When queries have locality, both mechanisms return results
more quickly than sending queries to the original collec-
tion(s). Caches return results when queries exactly match
a previous one. Partial replicas are a form of caching that
return results when the IR technology determines the query
is a good match. Caches are simpler and faster, but repli-
cas can increase locality by detecting similarity between
queries that are not exactly the same. We use real traces
from THOMAS and Excite to measure query locality and
similarity. With a very restrictive definition of query sim-
ilarity, similarity improves query locality up to 15% over
exact match. We use a validated simulator to compare their
performance, and find that even if the partial replica hit rate
increases only 3 to 6%, it will outperform simple caching
under a variety of configurations. A combined approach
will probably yield the best performance.

Keywords: Distributed IR architectures, partial replica,
cache

1 Introduction

The rapidly increasing content in distributed information re-
trieval (IR) systems for unstructured text has motivated per-
formance improving techniques such as partial replication
with replica selection [19], and confirmed the importance
of techniques, such as caching [23, 21]. Both techniques
seek to decrease query response time by searching less text,
while maintaining the same effectiveness (i.e., returning the
same number of relevant documents to each query). When
queries repeat or relate to the same set of documents, they
have locality. By separately storing the queries with the
most locality, caches and partial replicas seek to improve
performance by limiting the search to the cache or partial
replica, rather than searching the entire collection. We can
place either technique at a variety of locations to improve
availability, and to reduce network traffic and latency.
Caches have a simple organization and membership test.
They may store a set of queries, their responses, and the cor-
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responding documents. The membership test is simply: is
this query in the cache? If an IR system sees the same ex-
act query or document request repeatedly, it responds from
the cache rather than repeating query processing or fetching
from the original source.

Partial replicas are a form of caching, but are search-
able subcollections consisting of documents returned from
the most frequent queries [19]. Their membership test is:
is this query relevant to the partial replica? The replica se-
lection function chooses between replicas and the original
collection based on content and load. Our previous work de-
veloped a replica selection function that maintains accuracy
[19]. A replica selector can increase observed query local-
ity over simple caching, because it does not depend on ex-
act match. For example, given distinct queries such as these
from our logs, “Starr,” “Starr Report,” “Bill Clinton,” and
“Monica Lewinsky,” trying to access the Starr Report, the
replica selector will direct them to the same replica based
on content, while caches must see exactly the same query.

Although others report on query locality [10, 14], there
exits no widely available or standard query sets with locality
properties. We use real server traces from THOMAS [16]
for 40 days and Excite [11] for one day to analyze the lo-
cality properties, and find that locality remains high (above
20%) over time (weeks) which suggests infrequent or event
triggered updates will yield caches and replicas with suffi-
cient locality to satisfy many queries.

Most importantly, we are the first to show that exact
query match misses significant amounts of query locality
as compared with query similarity; between 3 and 15%, de-
pending on the replica size. We use a conservative definition
of similarity: queries form a fopic if their top 20 documents
completely overlap. Our previous results [19] presented a
replica selector that achieves accurate results when it sends
to the replica the queries that were used to build it, and ad-
ditional queries that are a good match. The combination of
these and the new trace results presented here demonstrates
that replicas can satisfy more queries than caches.

We demonstrate that partial replicas can significantly
outperform caches using a validated simulator [7, 18] which
closely matches our working prototype system with replica
selection. The prototype uses InQuery for the basic IR func-
tionality [8]. We compare performance for searching a ter-
abyte of data and find that partial replication begins to out-
perform caching when its hit rate increases by 3 to 6%. In
a heavily loaded system when the replica hit rate increases
15% over the cache, it attains almost a factor of 2 decrease
in query response time. A combined approach also achieves
good results, and is probably the system configuration of
choice. The additional complexity of partial replicas will
pay off in higher hit rates and consequent performance, es-



pecially when load is high and performance is most crucial
for distributed IR systems.

The remainder of this paper is organized as follows. The
next section further compares our work to related work.
Section 3 describes our distributed IR system. Section 4
characterizes the locality and access patterns of the THOMAS
and Excite traces, our notion of query similarity, and the in-
creased hit rates due to similarity. Section 5 compares the
performance of searching a terabyte of text using partial
replication and caching. Section 6 summarizes our results
and concludes.

2 Related Work

Both research and commercial database systems (e.g., Ora-
cle, Informix, and Sybase) have used replication and caching
for a long time to improve performance and availability
[1, 2, 15, 28]. This work uses structured data, such as ob-
jects, and presents algorithms for updating read-write data
to ensure consistency of different copies of data. In a struc-
tured database, query logic is set membership, a straightfor-
ward test. Text IR systems instead return a user parameter-
ized range of responses with varying belief values, and thus
the system cannot summarize queries into set membership
tests since no single response is correct.

2.1 Caching

Caching in distributed IR systems also has a long research
history [24, 22, 23, 26]. The client caches data and per-
forms operations locally. The use of caching is most ben-
eficial for systems that are distributed over networks, that
evaluate queries slowly, or in which query locality is high.
Clearly, the commercial web search engines have server side
caching, but in order to maintain their market advantage,
they do not publish their techniques.

Markatos [21] reports on caching search engine results
using exact match. He caches for a short period of time
to match the dynamic nature of the web. Because search
engines update their databases as infrequently as a month,
caching for a day or less will not degrade precision much.
Markatos analyzes a trace from Excite and uses trace-driven
simulations to compare several cache replacement policies.
Medium-sized caches (up to 300 MB) can achieve a hit rate
of around 20%. Effective cache replacement policies take
into account both recency and frequency of access in their
replacement decisions. As far as we know, no other papers
on caching queries for web search engines exist, although
many systems cache documents and respond only to docu-
ment requests [3, 4, 27]. Generally, they store popular docu-
ments in a hierarchy of proxy servers placed between clients
and Web servers.

2.2 Partial Collection Replication

Searchable replicas speed up both query processing and
document access. We use a replica selector to select a par-
tial replica based on content and load, rather than exact
match [19, 18]. In previous work, we showed that the infer-
ence network model is very effective at selecting a relevant
replica [19]. We implemented the replica selection infer-
ence network as a pseudo InQuery database. Each pseudo
document corresponds to a replica or text database, and its
index stores the document and term frequency for terms
in the replicas. We compared the function we use here with
several others, and found it maintained the highest effective-
ness while searching the least data. For the queries used to
build the replicas, our replica selector directs 85% of queries
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Figure 1: Our Distributed Information Retrieval System

to a replica and retrieves only one less relevant document
for the top 200 documents on average. For unreplicated
queries, where typically only some or none of the top doc-
uments match the replica, we define replica precise queries
as those for which searching selected replica causes a preci-
sion loss less than 5% of the precision attained by searching
the original collection. Our replica selector directs more
than 80% of replica precise queries to a replica, and re-
trieves on average one less relevant document out of the
top 30 documents. Combining these results with the trace
results we report here demonstrates that selection based on
content increases locality, but that a combined cache and
replica approach is probably best. We further show that the
increase in locality corresponds to a magnified increase in
performance.

2.3 Scalable IR Architectures

A number of studies have investigated the performance of
distributed IR systems [5, 6, 9, 12, 20, 25]. Most of the pre-
vious work experiments with a text database less than 1 GB
and focuses on speedup when a text database is distributed
over more servers [5, 12, 17, 20]. Only Couvreur et al. [9],
and Cahoon et al. [6, 7] use simulation to experiment with
more than 100 GB of data. None of these previous studies
include partial replication or caching.

InQuery, our base system, is not the fastest text retrieval
system available today [13]. We model and validate against
a 3 processor 250MHz Alpha which can maintain response
times of under 10 seconds with 4 to 5 disks on a collection
size of up to 16 GB for a heavily loaded system. Other
multiprocessor systems [13] have recently reported results
for a single query (rather than a loaded system) that are less
than a second on a 100 GB collection. We simulate such
response times, and find similar trends. We report some of
these results in Section 5. We thus believe our results on
replication, caching, and the combination are applicable to
these systems.

3 Our Distributed IR System Organization

In our distributed IR system, illustrated in Figure 1, clients,
InQuery servers, and the connection broker reside on dif-
ferent machines. Clients are user interfaces to the retrieval
system. InQuery servers store the original text database
and partial replicas, and perform IR service such as query
evaluation, obtaining summaries, and document retrieval.
A text database or a replica may be distributed over sev-
eral InQuery servers. The connection broker keeps track of
all the InQuery servers for replicas or otherwise, outstand-



ing client requests, and organizes responses from InQuery
servers. For partial replication, the connection broker main-
tains a replica selection database and performs replica se-
lection based on both relevance and load. For caching, the
connection server maintains a cache for the hottest queries,
their results, and the documents. We also investigate the
case when each InQuery server maintains a cache.

We focus on the query, summary, and document com-
mands. A query command consists of a set of stemmed
words or phrases (terms), such as “distributed system.”
Query responses consist of a list of document identifiers
ranked by belief values which estimate the probability that
the document satisfies the information need. For each query,
a client may obtain one or several summaries by sending
summary commands. A summary response typically con-
sists of the titles and the most relevant passages of the re-
lated documents. It may also include information such as
source and organization. A client may also retrieve com-
plete documents by sending a document command which
consists of a document and database identifier. In response,
the system returns the complete text of the document.

When the connection broker maintains a cache, for any
command, it checks the cache first. If the cache does not
contain the response, the connection broker directs the com-
mand to the InQuery servers. When the system has repli-
cas, for a query command, the connection broker first uses
a replica selector to determine whether there is a partial
replica that is not only relevant to the query, and is not
overloaded. If there is one, the connection broker sends
the query to the InQuery server(s) that maintain the relevant
replica, otherwise it sends the query to the InQuery servers
that maintain the original database. After each involved
server returns results, the connection broker merges results
and returns them to the client. For a summary command,
the connection broker sends the command to the specified
InQuery servers. The connection broker merges summary
information responses and sends a single message back to
the client. For a document command, the connection broker
sends the command to the InQuery server that contains the
document, and then forwards it when the server responds.
We also configure the system to check the cache first, and
then use the replica selector as described above.

In our system, if query locality is high, the replica selec-
tor may send too many queries to a replica which results in
load imbalance. We load balance by predicting the response
time of each replica and the original text database using
the average response time and the number of the outstand-
ing commands. When the replica selector chooses a replica
based on relevance, we calculate the predicted response time
p-resp; of the replica, the larger replicas, and the original
text database using ave_resp; - (1 + num_wait_mes;),
where ave_resp; is the average response time for the last
200 responses for either the replica or the original text
database, and num_watt_mes; is the number of the out-
standing commands to which neither the original database
or the replica have responded. We send the command to
the one with the least p_resp;. The connection broker ob-
tains information on the response time as it receives queries
responses and tracks the number of outstanding messages.

We use a very optimistic model of the cache; we assume
the match takes a couple cycles, and the summary response
or document is always resident in memory. However, for
partial replication, we assume the replica selection database
resides in the disk space of the connection broker. Searching
the replica selection database involves disk access.

We evaluate the performance of our distributed infor-
mation retrieval system with a simulator that uses a perfor-
mance model driven by measurements of InQuery running
on DEC Alpha Server 2100 5/250 with 3 CPUs (clocked
at 250 MHZ) and 1024 MB main memory, running Digital
Unix V3.2D-1 (Rev 41). The servers are connected by a
10 Mbps Ethernet. In previous work, we showed the sim-
ulator closely matches a multithreaded implementation of
InQuery [18].

4 Access Characteristics in Real Systems

We examine query locality from two real system logs in this
section. We measure query similarity versus exact match,
how locality changes over time, and its effect on replica size.
We also suggest mechanisms for keeping replicas up to date.
Since no widely available, shared, or standard set of queries
with locality properties exists, we obtained query logs from
THOMAS [16] and Excite [11]. The THOMAS system is a
legislative information service of the U.S. Congress through
the Library of Congress. THOMAS contains the full text
the Congressional Records and bills introduced from the
101st Congress to 105th Congress. We analyze the logs of
THOMAS between July 14 and September 13, 1998, dur-
ing which the Starr Report became available. We obtained
40 full day logs, and 22 partial day logs due to lack of disk
space in the mailing system of the Library of Congress. The
Excite system provides online search for more than 50 mil-
lion Web pages. The Excite log contains queries for one
day, September 16, 1997.

Since the logs do not contain document identifiers re-
turned from query evaluation, we built our own test databases
to cluster similar queries. Each of our test databases uses
a subset of data that THOMAS or Excite searches. For
queries from the THOMAS log, we reran all queries against
a test database that uses the Congress Record for 103rd
Congress (235 MB, 27992 documents). For queries from
the Excite log, we reran all queries against a test database
using downloads of the websites operated by ten Australian
Universities intended to represent the web at large (725 MB,
81334 documents). To facilitate discussion, we introduce
the following definitions.

distinct queries — queries that are not identical.

exact query match — a query is identical to a previous
query.

topic — a set of distinct queries whose resulting top 20 doc-
uments completely overlap.

topic match — a query’s resulting top 20 documents com-
pletely overlaps with the top 20 documents of a topic.

the occurrence of a distinct query — the total times the dis-
tinct query occurs in the log.

the occurrence of a topic — the total times that all distinct
queries of the topic occur in the log. A “singleton
topic” has one distinct query. If “a topic occurs multi-
ple times,” it contains one distinct query and the query
occurs multiple times, or it contains multiple distinct
query and each occurs one or more times.

4.1 Query Locality

Table 1 shows query locality statistics for the THOMAS
and Excite logs. We collect the average number of queries,
distinct queries, topics, singleton topics, topics occurring
multiple times, and topics that contain multiple distinct
queries. We present the percent of the top m topics and
distinct queries among all observed queries in the log as



Avg. Num. Avg. Num. Avg. Num. Topics
queries distinct queries total | singleton T distinct query repeats | multiple distinct queries
8143 (7703) 4876 (4651) 4069 | 2888 (71%) | 1181 (29%) | 412
percent occurrence of the top 7 topics
n [ 100 [ 200 ] 500 1000 2000
% | 21.2% | 287% | 41.5% 54.1% | 73.0%
percent occurrence of the top n distinct queries
n [ 100 [ 200 ] 500 [ 1000 [ 2000
% | 18.1% | 245% | 36.4% | 49.4% | 64.5%
(a) Average Daily Query Locality in THOMAS log
Num. Num. Num. Topics
queries distinct queries total | singleton [ distinct query repeats | multiple distinct queries
499836 (444899) | 365276 (320987) | 249405 | 196672 (79%) | 52733 (21%) | 32750
percent occurrence of the top n topics
n [ 500 [ 1000 ] 5000 10000 [ 20000
% | 12.3% | 16.0% | 27.9% 34.4% | 42.0%
percent occurrence of the top n distinct queries
n [ 500 [ 1000 ] 5000 [ 10000 [ 20000
% | 7.9% [ 104% ] 18.4% | 23.0% | 28.2%
(b) Query and Topic Locality in Excite log
Table 1: Query and Topic locality in THOMAS and Excite
Topic match with the top n topics
the previous day 7714 the week on 7/14-7/20
date all top 500 | top 1000 all top 500 | top 1000 all top 500 | top 1000
715 || 43.3% | 24.8% 30.1% 433% | 24.8% 30.1% n/a n/a n/a
716 || 44.4% | 24.4% 30.4% 42.6% | 24.0% 29.2% n/a n/a n/a
7123 || 45.0% | 27.3% 31.5% 41.4% | 23.4% 28.7% 60.8% | 29.0% 35.9%
7/31 n/a n/a n/a 38.5% | 21.9% 26.4% 58.0% | 26.0% 32.3%
8/14 || 36.6% | 21.9% 26.1% 38.1% | 21.3% 26.0% 549% | 25.6% 31.0%
8/28 || 32.9% 19.1% 23.0% 34.3% 18.3% 23.4% 51.9% | 22.8% 28.4%
9/11 78.1% | 69.2% 71.7% 44.0% 8.7% 22.2% 58.6% 11.2% 27.0%
Exact query match with the top n distinct queries
the previous day 7714 the week on 7/14-7/20
date all top 500 | top 1000 all top 500 | top 1000 all top 500 | top 1000
7/15 33.1% 18.9% 23.3% 33.1% 18.9% 23.3% n/a n/a n/a
7116 || 34.5% 19.3% 23.0% 32.9% 18.1% 22.4% n/a n/a n/a
7123 || 364% | 21.1% 24.6% 32.3% 17.9% 22.3% 49.4% | 23.7% 28.6%
7/31 n/a n/a n/a 29.4% 16.9% 20.3% 46.5% | 20.8% 25.1%
8/14 || 28.2% 16.3% 20.0% 29.0% 16.4% 20.0% 43.4% | 20.2% 24.1%
8/28 || 25.4% 14.5% 17.6% 25.9% 14.0% 17.5% 41.2% 18.2% 22.2%
9/11 71.8% | 63.6% 65.2% 24.9% 6.6% 18.7% 43.2% 8.2% 19.3%
Table 2: Query and Topic Locality over time in THOMAS

a function of the number of top topics or distinct queries,
respectively. Table 1(a) shows the average for THOMAS
over the full 40 day logs. The average number of matching
queries from our test database is in parentheses in columns
1 and 2. Some queries do not find any matches, due to
misspelling, or because the query terms do not exist in the
test database. On the average, 29% of topics occur multi-
ple times, and they account for 63% ((7703-2888)/7703) of
queries. Among the topics occurring multiple times, 35%
contain multiple distinct queries. The top 500 topics (12%)
and 1000 topics (25%) are 41.5% and 54.1% of all queries,
while the top 500 and 1000 distinct queries drop to 36.4%
and 49.4% of all queries.

The Excite log on September 16, 1997 in Table 1(b)
also demonstrates high query locality: 21% of topics oc-
cur multiple times, and they account for 56% ((444899-
196672)/444899) of queries. Since the Excite log is one
day, the numbers are not averages as in the Thomas results.
Among the topics occurring multiple times, 62% contain
multiple distinct queries. For example, the top 5000 and
10000 topics are 27.9% and 34.4% of all queries. Exact
match drops locality between 3 and 14%.

Our definition of fopic match is arbitrary and restrictive,
but it simplifies our analysis and gives a lower bound of per-
formance improvement due to replica selection based on rel-
evance. A looser definition would further improve the topic
locality we observe. In our previous work [19], we instead
use the InQuery inference network to determine relevance
and the top 20 documents need not overlap. This previous
work shows that the replica selector gets accurate results
when it sends the replica both the queries that were used to
build it, and additional queries that are good matches. That
replica selector thus results in further increases to locality
over exact match than those we report here.

4.2 Locality as a Function of Time

We examine locality as a function of time (days and weeks)
in the THOMAS logs. Table 2 shows that for days between
7/15 and 9/11, the percent of queries that match a top topic
or distinct query on a previous day or week. Columns 2
through 4, columns 5 through 7, and columns 8 through 10
list the percentage of queries that match one of the top n top-
ics or top n distinct queries on the previous day with daily
updates; on July 14, 1998, without an update; and from July



Top % of Replica Size (data file plus index) Top % of Cache size (all commands) Cache Size
topics | queries 2 KB 3KB 9 KB distinct | queries 2KB 3 KB 9KB (only query
per doc per doc per doc queries per doc per doc per doc command)
1000 | 16.0% | 520MB | 780 MB 2.3GB 1000 | 10.4% | 420MB | 620 MB 1.8 GB 20 MB
5000 | 27.9% 2.6 GB 39GB 11.7 GB 5000 | 18.4% 2.1GB 3.1GB 9.1GB 120 MB
10000 | 34.4% 5.2GB 7.8 GB 23.4GB 10000 | 23.0% 42GB 6.2 GB 18.2GB 240 MB
20000 | 42.0% | 104GB | 15.6GB | 46.8GB 20000 | 28.2% 8.5GB 125GB | 36.5GB 480 MB

Table 3: The Replica/Cache Size Based on the Excite log (top 200 documents per query)

14 to July 20, 1998, without an update. Topic match in-

database can take hours.

Some mechanism must react to

creases the hit rate up to 15% over exact match. For exam-
ple, for the top 1000 topics or distinct queries between 7/14
and 7/20, topic match on 7/23 increases the hit rate to 35.9%
from 28.6% for exact match. Replicating more topics fur-
ther widens this difference.

4.3 Estimating the Replica and Cache Size

Since our replicas serve both query processing and docu-
ment access, they include the documents and their index.
The replica size is a function of average document size,
query locality, number of top documents per query we chose
to return, and the corresponding index. The average docu-
ment size varies from source to source. For example, the
average document sizes of the USENET News, Wall Street
Journal, and the websites operated by 10 Australia Univer-
sities are 2, 3, and 9 KB, respectively [13]. The average
document size of the 20 GB TREC VLC text database is 2.8
KB [13]. We assume an average document size of 2, 3, and
9 KB. For query locality, we use the statistics obtained from
the Excite log, since its workloads are at the level of the
systems we investigate. We obtain the top 200 documents
for each query. We overestimate because we assume there
is no overlap among the documents, although as we showed
above, the results of distinct queries often overlap. We as-
sume the index size adds 30% to the replica size based on
our experience with InQuery index files. In our system, the
average size of a summary is 120 bytes.

In Table 3, columns 1 and 2, and columns 6 and 7 show
the query locality from the Excite log for topic and distinct
queries, respectively; columns 3 through 5, and columns
8 through 10 show the estimated replica and cache size
when we vary the average document size. Column 11 shows
the cache size when we only cache queries and summaries.
When the average document size is 2, 3, and 9 KB, a replica
needs 5.2, 7.8, and 23.4 GB of disk space, respectively, to
satisfy 34.4% of Excite queries and document requests; a
cache needs less space 4.2, 6.2, and 18.2 GB, respectively,
to satisfy 23.0% of Excite queries and document requests.
Replicas also need a replica selection database which stores
term frequency for the entire collection and each individual
collection. Its size is determined by the number of unique
terms in the largest replica. Based on our observations,
the size of the replica selection database is approximately
6 MB for every 100,000 unique terms. The 20 GB TREC
VLC database has 13,880,064 unique terms. If our largest
replica is 20 GB, the estimated size of the replica selection
database is around 1.2 GB. We estimate the replica selection
database for 1 terabyte of text is between 1 and 2 GB.

4.4 When to Build or Update a Replica

Query locality decreases very gradually with time in our
logs, as illustrated in Table 2. Even in the dynamic envi-
ronment of the Web, search engines routinely return URLs a
few month old [21] which implies daily updates are not nec-
essary. Nor are they practical because rebuilding a replica

bursty events like the Starr Report, as shown by the sharp
decrease in locality on 9/11. Regular daily updating would
catch this event, but may react too slowly, or unnecessar-
ily degrade performance when the system experiences the
expected gradual degradation of locality. We propose the
following two updating strategies:

Event triggered: trigger updates for bursty events.
Automatic: trigger updates when the cache or replica hit
rate falls below a given threshold.

The system manager can anticipate or observe a special
event and perform an update. (Automatic event detection
would be better, but is an on-going research topic.) Auto-
mated performance triggered updates also work for bursty
events, if the hit rate falls enough. We could also add doc-
uments into replicas without deleting others, and thus re-
spond quickly to bursty events as well as gradual changes
in locality.

5 Performance of Partial Replication versus Caching

In this section, we compare the performance of partial repli-
cation to caching when searching a terabyte of text. We
model command arrival as a Poisson process. We use short
queries with an average of 2 terms per query, and set the
ratio of query commands, summary commands, and docu-
ment commands to 1:1.5:2, as we found in the THOMAS
log. As our baseline, we use 32 servers to store 1 terabyte
of text, and each server handles 32 GB of text using 8 disks.
This configuration supports an average response time of un-
der 10 seconds when commands arrive at approximately 6
per second on our working prototype. We then add one ad-
ditional server. We either use it for a cache or replica, which
store 32 GB of text and is sufficient to satisfy more than 30%
of queries in the Excite log. We build a cache either in the
connection broker or in each InQuery server. We vary the
hit rate (HR) which represents the percent of queries and
the corresponding summary and document commands that
the replica and cache satisfy. We also compare further parti-
tion data over the additional server. We perform two sets of
sensitivity experiments: placing 4 times as much data on a
single server using bigger fast disks, and doubling the server
speed.

5.1 Partial Replication versus Caching

In this set of experiments, we compare the performance of
partial replication to caching in the following configurations
with the baseline (partitioning 1 TB of text over 32 servers):

FPartitioning: partition 1 TB of text over one additional
server (33 servers in total), each of which stores 31
GB of data.

Connection broker caching: partition 1 TB of text over 33
servers and build a cache in the main memory of the
connection broker.

Server caching: partition 1 TB of text over 33 servers and
build a cache in the main memory of each InQuery
server.
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Figure 2: Partial replication versus caching as a function of command arrival rate

Partial Replication: partition 1TB of text over 32 servers
and use one additional server to build a partial replica.

Fartial replication and connection broker caching: parti-
tion 1TB of text over 32 servers and use one addi-
tional server to build a partial replica, and also build a
cache in the main memory of the connection broker.
When a command comes in, first check the cache, if
it is not in the cache, then use the replica selector to
select the relevant replica. We assume that the con-
nection broker cache satisfies 10% of commands, and
the replica satisfies HR — 10% of commands.

For caching, we present an upper bound of its performance;
we only count the time for cache lookup and assume cache
replacement takes no time. We assume the documents and
query summaries are in memory, although not many ma-
chines have several to several tens of GB worth of memory.
For the partial replica, we assume the summaries and docu-
ments must be fetched from disk. We thus give the cache a
large advantage.

Figures 2(a) and (b) compare connection broker caching
and partial replication. They illustrate the average query
response time versus the command arrival rate when the
connection broker cache satisfies 20% and 30% of com-
mands, as we found in our logs. The results show that if
the partial replica and the connection broker cache satisfy
the same amount of commands, partial replication results
in slightly worse performance as compared with connec-
tion broker caching. But when the replica hit rate increases
by just 3%, partial replication performs better than connec-
tion broker caching; it performs almost a factor of 2 better
when the replica hit rate increases by 15% for high com-
mand arrival rates. Searching the replica is so much faster
than searching the entire collection, even small amounts of
locality have a significant impact on performance.

Figure 3 demonstrates the effect of the hit rate more
clearly. It plots the average query response time versus the
hit rate when commands arrive at 10 commands per sec-
ond. Figure 3 shows that the performance of server caching
is slightly worse than connection broker caching, since the
connection broker cache eliminates the coordination time
of multiple servers and reduces network traffic between the
connection broker and InQuery servers. Partial replication
outperforms connection broker caching when the replica
satisfies 3% or more of commands until partial replication
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Figure 3: Partial replication versus caching as a function of
hit rate at A = 10

needs load balancing (which occurs when the hit rate is
around 40%). After this point, partial replication performs
significantly worse than connection broker caching, since
it redirects significant amount of commands to the origi-
nal servers, while caching does not. The log analysis in
Section 4 shows that the cache achieves a hit rate between
20% - 30%, or less in most cases. However, combining
the connection broker cache and partial replication further
improves performance; an unsurprising result at this point.
In the remaining two sections, we present sensitivity re-
sults that indicate the above results will most likely hold on
servers with larger, but just as fast disks, and faster CPUs.

5.2 Using larger disks

In this set of experiments, we assume disks that are 4 times
bigger and just as fast as our measured results. Each server
thus handles 128 GB of text on 8 disks. We repeat the com-
parison experiments in Section 5.1, but with 9 servers, each
of which stores up to 128 GB of text. For caching, we
still present the upper bound of its performance, where we
only count the time for cache lookup. For partial replica-
tion, since a server can hold 128 GB in total and we build
a replica that stores 32 GB of text, we put four copies of
the replica on this server. Figure 4 compares the average
query response time. Figure 4(a) illustrates average query
response time versus the command arrival rate when the
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Figure 4: Partial replication versus server caching with larger disks (each server holds up to 128 GB of text)
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Figure 5: Partial replication versus caching with faster servers and 128 GB collections per server

server cache satisfies 30% of commands. Figure 4(b) illus-
trates average query response time versus the hit rate when
commands arrive at 10 commands per second.

Compared with results in Section 5.1, these results fol-
low the same trend except that the load balancing point for
partial replication shifts to the hit rate of 70%, and partial
replication outperforms caching when the replica hit rate in-
creases by 6% or more. The load balancing point shifts be-
cause we have four copies, and thus the load balancer sends
the replicas more commands than it does when a server has
only one copy. The effect of a connection broker cache is
larger for fewer servers because each server is busier now.
Thus, the partial replicas need to satisfy more commands to
match the performance of caching.

5.3 Using faster servers

In this set of experiments, we assume servers are two times
faster than the configurations in Section 5.2. Figure 5(a)
illustrates average query response time versus the hit rate
when commands arrive at 10 commands per second. Fig-
ure 5(b) illustrates average query response time versus the
command arrival rate when the server cache satisfies 30%
of commands.

Compared with results in Section 5.2, these results fol-
low the same trend except that faster servers obviously re-
sult in quicker response time. The gap between caching

and partial replication is actually reduced. The performance
advantage of the faster server has a larger effect on partial
replication because the performance of the cache is already
very optimistic due to the assumption that all its documents
and summaries are found in memory.

6 Conclusions

This paper investigated how to improve IR system perfor-
mance using partial replication and caching. We examine
queries from THOMAS [16] and Excite [11] to find local-
ity patterns in real systems. These traces have sufficient
query locality that enables partial replication and caching
to maintain effectiveness and significantly improve perfor-
mance. Query exact match misses significant amounts of
query locality in these traces, whereas partial replication
with an effective replica selection function [19] can increase
hit rates by up to 15%. We believe these trends will hold
for other query sets, including web queries, but this point
should be investigated further. We demonstrate the perfor-
mance of our system searching a terabyte of text using a
validated simulator. The performance of partial replication
with a connection broker exceeds that of client side caching
as well as server caching under a variety of configurations
when the partial replica increases the hit rate by at least 3
to 6%. Although the simplicity of caching is appealing, a
combined approach that incorporates partial replication will



yield both an effective and better performing system.
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