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EPIGRAPH

The theory of probability is no more than a calculus of good sense. By this theory,
we learn to appreciate precisely what a a sound mind feels through a kind of intuition
often without realizing it. The theory leaves nothing arbitrary in choosing opinions
or in making decisions, and we can always select, with the help of this theory, the
most advantageous choice on our own. It is a refreshing supplement to the ignorance
and feebleness of the human mind.

P. S. Laplace (1902), A Philosophical Essay on Probabilities. John Wiley & Sons,
New York. Translated from the 6th French Edition, 1812.
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ABSTRACT

MAXIMUM ENTROPY, WEIGHT OF EVIDENCE AND
INFORMATION RETRIEVAL

SEPTEMBER, 1999

WARREN R. GREIFF
B.Sc., CASE INSTITUTE OF TECHNOLOGY
M.Sc., UNIVERSITY OF PENNSYLVANIA
M.Ed., ANTIOCH COLLEGE
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

The central theme of this dissertation is the statistical analysis of retrieval data.
Features commonly used in modern retrieval systems are studied and modeled. The
product of this analysis is a methodology for the study of retrieval data and the
construction of probabilistic retrieval models. Model building is based on the formal
concept of weight of evidence, which is a measure of how much our belief in a hypoth-
esis (such as the relevance of a document) is increased as a result of the observation
of the value of a random variable (for example, the number of times a query term
appears in the document). Application of the methodology results in the develop-
ment of a probabilistic model from which a ranking formula is derived. The ranking

status value assigned to each document is equal to the weight of the evidence due to

vii



the combination of features that have been observed. The resulting formula has two
important properties: 1) it is decomposable, with each component corresponding to
observed statistical regularities of retrieval situations; and 2) the value produced has
a precise, empirically verifiable probabilistic interpretation. Experimental evidence is
reported indicating that the ranking formula derived from the data analysis is able
to produce retrieval performance comparable to that of a state of the art IR system.

In conjunction with the study of empirical data, a formal framework is developed
which supports the approach to modeling that is used. The formalism is founded
on the Maximum Entropy Principle. This principle states that the probability dis-
tribution that we attribute to an unknown stochastic process should be that which
assumes the least consonant with constraints embodying the knowledge we do possess.
Guided by this principle, a theory of weight of evidence is developed. In this theory
additivity of weight of evidence is proved to be a characteristic of the maximum en-
tropy distribution under general conditions on the form of the constraints. As well as
serving as a justification for the modeling strategy adopted in the dissertation, two

classical probabilistic retrieval models are shown to follow from the theory.
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CHAPTER 1
INTRODUCTION

the only physical quantities are those which can be
measured and for which a measuring operation can be stated.

L. Brillouin, considering a “viewpoint repeatedly emphasized
by Bridgman”, in Observation, Information and Imagina-
tion, [9, p. 11].

Information retrieval is a successful technology which is having an increasing im-
pact on both our professional and personal lives. Today, commercial and research
systems are used by librarians, legal scholars, and government intelligence personnel
at the same time that they see use as common tools by a burgeoning number of
individuals in their everyday activities.

Although information can be presented in diverse forms ranging from tabular
numeric data to graphical displays to photographic images to human speech, all of
which are available electronically in large quantities, the term information retrieval
(IR) as used in this dissertation shall refer specifically to the retrieval of textual
information.

The specific task of interest will be the return of documents from a previously
created, large collection of (digitally encoded) texts. The goal of the IR system will
be considered to be the ordered presentation of these documents in response to an
expression of a user’s information need. For our purposes, the user will be restricted
to represent the information need as a query in the form of a set of terms. So, for

example, someone interested in reviewing articles concerning the trial of the president
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Figure 1.1. Scoring and ranking of documents

of the United States from a collection of 1999 news articles might present that need as:
Clinton impeachment proceedings

The specific task of interest in this research is document ranking, where the goal of

the system is to order the documents of a collection. A successful system will, on

average, do a good job of placing documents that the user judges to be relevant to

the information need, high up in the ranking.

1.1 Basic Retrieval Strategies

In essence, the strategy employed by modern retrieval systems is straightforward.
In response to an unstructured query such as Clinton impeachment proceedings, we
can conceive of an IR system as assigning a score to each document, as shown in
Figure 1.1. The score assigned to a document is often referred to as the ranking
status value (RSV). In practical implementations, of course, only a small fraction of
the documents are actually processed. The documents are then sorted according to
the assigned scores, and presented to the user in order, highest scores first.

The score assigned to each document is some function of the query/document pair
under consideration. Typically the score is a sum of values, with each value corre-
sponding to one of the query terms appearing in the document. For the most part we

may, for the purposes of this report treat term as synonymous with word. Here, term



shall be used because it encompasses something more general than simple words. For
instance a term might be a phrase. If the representation of the information need were,
White House scandal

an IR system might treat White House as a single phrasal term rather than as two
independent single-word terms. Presumably the user is interested in documents con-
taining the phrase White House and not in documents containing both words white
and house individually. The determination as to what is to be treated as a phrase
can either be made by the user in the specification of the query, or automatically by
the system based on some query modification algorithm.

By using a scoring function that adds values across all query terms appearing
in a document, each query term that is present gets to contribute something to
increasing the overall document score. Over the years, two things have become clear:
1) the contribution of a term that appears in the document being evaluated, but
appears in few, if any, other documents of the collection should be greater than that
of a term that is found in a large fraction of documents in a collection, and 2) the
contribution of a term should be greater the more often it occurs in the document.
That is, a contribution should increase inversely with document frequency and directly
with term frequency. Here, document frequency (df) is understood as the number
of documents in which the term occurs, and term frequency (tf) is the number of

occurrences of the term in a given document.

1.2 Approaches to Information Retrieval

Information retrieval systems work because, for most information needs, they are
able to order documents of a collection in such a way that documents relevant to the
user’s query appear, on average, much higher in the ranking than could be expected by
chance. They work because they exploit statistical regularities of document collections

and user queries.



In response to a query, the earliest systems returned the documents that contained
the largest number of query terms. This was effective because a document that
contains a query term is more likely to be relevant to the user. A document that
contains many of the query terms is more likely to be relevant than a document that
contains fewer of them. More modern systems also take into consideration the rarity
of a query term and its frequency of occurrence in a document. All other things being
equal, a document that contains rare query terms is more likely to be relevant than a
document containing more common terms. In the same way, a document containing
more occurrences of a query term is more likely to be relevant than a document with
fewer occurrences of the same term. Out of four decades of research have evolved IR
systems that take advantage of these statistical characteristics.

While modern retrieval systems have developed sophisticated means for exploiting
statistical regularities, IR research has not, as a rule, tended to focus directly on
the study of these regularities. Although research in IR is varied and a diversity of
philosophies, strategies and techniques have been employed, two major trends may be
discerned. For the purposes of this discussion, we may refer to these as the engineering
and the a priori modeling approaches to IR research and system development.

In the engineering approach, intuitions concerning the nature of document col-
lections and the behavior of users posing queries to an IR system are encoded in
a (typically parameterized) retrieval algorithm. Experiments are run comparing a
system incorporating this algorithm to a benchmark system; the result of varying
parameter settings is studied; alternate versions of the algorithm are tried. If the re-
search is successful, robust improvement to previous retrieval practice is realized and
a better understanding of what is needed for effective retrieval performance results.
Even in the absence of improved retrieval performance, new insight is often gained
into the nature of the IR problem. Much of the progress of information retrieval is

due to research of this nature.



The a priort modeling approach adopts a more theoretical, formal line of attack.
In this case, the researcher attempts to formalize her intuitions in the form of a prior:
assumptions, and a theory, typically a probabilistic theory, of information retrieval
is developed. From this theory an information retrieval strategy is usually derived.
This strategy can then be implemented and tested. The proponents of this approach
believe that the field of information retrieval is well served by the development of
formal theoretical foundations. Formal theories promote precision in discourse and
permit the application of deductive reasoning to the analysis of information retrieval
questions. In Cooper’s words, probabilistic theories “bring to bear ...a high degree
of theoretical coherence and deductive power” [18, p. 242]. Cooper also emphasizes
that a formal approach assists investigators to articulate their important underlying
assumptions. “When the underlying theoretical postulates are known and clearly
stated,” he tell us, “their plausibility can be subjected to analysis” [p. 244].

In contrast to these, the research described in this dissertation may be considered
a data driven approach. The goal of this research is the development of a model of IR
document ranking based on observed statistical regularities of retrieval situations. It
is similar to much work in probabilistic information retrieval in that the objective is
to formally model the probability of a document being judged relevant to a query
conditioned on the available evidence. It is significantly different from both the
engineering and a priori modeling approaches in the emphasis that is placed on the

study of existing retrieval data.

1.3 Research Statement

This dissertation research involves a detailed study of the statistical patterns on
which modern information retrieval systems are based. The goal of this research is the
development of a statistical model of IR document ranking. Techniques of exploratory

data analysis (EDA) are employed to analyze how the probability of a document being



judged relevant is related to factors that are normally incorporated in the ranking
formulas of modern IR systems. More formally, the goal will be to model the weight
of evidence in favor of relevance given by the values of features associated with a

[4

query/document pair. Here the term “weight of evidence” is used in a formal sense
which will be described fully in Section 3.1.

The significant research contributions that come out of this work are:

Data driven methodology: The principal contribution of this work is a data driven
methodology for the analysis of evidence that may be considered for inclusion
in a document ranking strategy. The methodology involves the adaptation of
techniques of exploratory data analysis to the specific conditions encountered
with regard to document ranking in information retrieval. These techniques

include:

e the preparation of graphical displays
e the study of residuals
e smoothing of data

e transformation of variables

The data driven methodology centers on the analysis of the weights of evidence
in favor of relevance given by various sources of evidence. The end product is
a model for weight of evidence from which a ranking formula can be derived

directly.

Formal theoretical framework: The data driven methodology and the modeling
process are supported by a formal framework in terms of weight of evidence.
The theory presented depends on a modeling principle based on the information
theoretic notion of the entropy of a probability distribution. The keystone of

this framework is a theorem in which it is proven that additivity of weight of



evidence follows from a general set of conditions respecting what is known about

the sources of evidence.

Application of the methodology: The data driven methodology has been applied
to the analysis of existing retrieval data and a probabilistic model has been

produced.

Ranking formula: The result of the data analysis is a model of the weight of
evidence in favor of relevance for the totality of evidence associated with a
query/document pair being evaluated. This weight of evidence is converted

directly into a formula for ranking. This formula has two significant properties:

Decomposable formula: The formula can be decomposed. Both the form of
the decomposition and the details of the constituent parts correspond to

observable statistical regularities.

Probabilistically interpretable RSV: The ranking status value has a pre-

cisely defined interpretation in terms of weight of evidence.

1.4 Organization of Dissertation

The remainder of the dissertation is organized as follows.

The following chapter reviews research spanning the last four decades that has
focused on the probabilistic modeling of information retrieval. Emphasis is placed on
efforts that are most closely related to the approach that is taken here. Chapter 3
gives brief descriptions of weight of evidence and exploratory data analysis, both of
which are central to this research.

Chapter 4 presents an initial stage of the research in which attention was focused
on the relationship between the document frequency for a term and the weight of
evidence associated with its occurrence in a document. The course of the analysis is

fully described. The result of the analysis is a novel theory for why inverse document



frequency weighting is useful for document ranking. Also resulting from this analysis
is an hypothesis regarding how the classical inverse document frequency formula may
be modified to improve retrieval performance. Substantial experimental evidence is
given to support the hypothesis.

Chapter 5 describes the Maximum Entropy Principle and, based on it, derives a
strong theoretical result concerning the additivity of weights of evidence. This result
can be used to understand two classical probabilistic retrieval models in terms of
the Maximum Entropy Principle. It also serves as a theoretical foundation for the
modeling that is described in the succeeding chapter.

In Chapter 6, the methodology used for the study of inverse document frequency
in Chapter 4 is extended to deal with multiple sources of evidence. Retrieval data
is analyzed and a stochastic model is developed. From the model, a ranking formula
is derived with the properties mentioned above. Experimental results are given for
tests of the ranking formula which indicate the viability of the overall approach to IR
research and system development.

In the final chapter, we return to discuss the contributions of this research. The
major contributions are analyzed in greater depth and detailed contributions are
itemized. The chapter closes with a discussion of possible research directions that
may be explored as continuations of this work. The possibilities for extension of the
work emanate from a vision of the data driven approach as a fundamentally sound,
pragmatic methodology applicable to all aspects of information retrieval research,
and that the work reported here is only the initiation of a far more extensive and

encompassing research agenda.



CHAPTER 2
RELATED WORK

The great mistake of the Greek Philosophers was that they
spent so much time in theory, so little in observation. But
thought should be the aide of observation, not its substitute.

Will Durant in discussion of Francis Bacon, in The Story
Of Philosophy: The Lives And Opinions Of The Great
Philosophers, 28, p. 142]

The work discussed in this document is a natural outgrowth of IR research con-
ducted over the last forty years. Much of previous thought and experimentation
on the IR problem directly motivated early stages of the work. The relationship to
other lines of research only became apparent after the main thrust of this disserta-
tion project had taken form. This section reviews the major research directions in
information retrieval that are related to this dissertation, with the explicit objective

of placing it in the context of past and current information retrieval research.

2.1 Binary Independence Models

It is generally agreed that the seminal paper on probabilistic information retrieval
was “On Relevance, Probabilistic Indexing and Information Retrieval”, written in
1960 by Maron and Kuhns [78]. In this paper, the idea of probabilistic indexing is
introduced. The authors point out that it is not certain that a document assigned a
given index term will be deemed relevant when that index term is given as the subject
of a search. Rather, there is a probability that the document will be found relevant to

a search using the term. They propose that having an indexer weight the association



of an index term with her estimate of this probability will result in an index that “can
characterize more precisely the information content of a document” [p. 220]. They go
on to develop search strategies based on a combination of heuristic techniques, sta-
tistical estimation assumptions and probabilistic reasoning. The resulting algorithm
is able to respond to information needs expressed as Boolean combinations of index

terms and order retrieved documents by probability of relevance.

2.1.1 Binary Independence given Relevance Information

In 1972, Sparck Jones, convincingly demonstrated that the weighting of query
terms can significantly improve retrieval performance compared to unweighted coor-
dination match ranking [103]. The weighting formula she proposed was an approxi-

mation of:
N

n
ws; = — log N log o (2.1)

where n is the document frequency of the term (the number of documents in which
the term appears); and N is the number of documents in the entire collection. Ever
since, some formulation of what has come to be called inverse document frequency
(idf), has been used as part of the ranking formula of modern information retrieval
engines.

In a letter to the Journal of Documentation later that year, Robertson pointed out
that, viewed as a function of the probability of term occurrence, the sum of weights
could be interpreted as the probability of mutual occurrence of multiple query terms
[87]; thus providing theoretical arguments for the use of w,;. Together, in 1976,
Robertson and Sparck Jones presented the Binary Independence Model [89], in which

terms are weighted by:

p(occ | rel) - (1 — p(oce | rel))

wrsj = log (2.2)

(1 = p(occ | rel)) - p(oce | rel)
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where p(occ | rel) is the probability of the term occurring in relevant documents’,
and p(occ | rel) is the corresponding probability for non-relevant documents. Use of
the model depends on the availability of relevance feedback information, on which

estimates of the two conditional probabilities can be based.

2.1.2 Binary Independence in the Absence of Relevance Information
Applying the probabilistic approach of Robertson and Sparck Jones, Croft and

Harper worked, in 1979, with an equivalent formulation of w,,; [23]:

s = log plocc | rel) log p(occ | E& 2.3)
" 1 —p(occ | rel) 1 — p(occ | rel) '

Their goal was the development of a probabilistically justified weighting formula that
could be used in a retrieval setting in the absence of, or prior to, relevance feedback.

They make two assumptions:

e there “is no information about the relevant documents and we could therefore
assume that all the query terms had equal probabilities of occurring in the

relevant documents” [23, p. 287]; and

e the probability, p(occ | rel), of a term occurring in a non-relevant document can
be estimated by , the proportion of documents that contain the term in the

entire collection.

With these two assumptions, the Combination Match formula:

Wep, = k + log (2.4)

is derived. In this formula, & is an experimentally determined constant, corresponding

to the log-odds of a term occurring in a relevant document. The second component is

'For the purposes of exposition, the original notation used by the authors discussed in this
document has been replaced by the notation used later in this document.

11



essentially equivalent to eq. 2.1 for all but very high frequency terms. They note that
wep, of eq. 2.4 encompasses the Sparck Jones idf weight, w,; of eq. 2.1, as a special
case, and report experimental results indicating that the inclusion of a constant term
can significantly improve retrieval performance.

A more detailed mathematical treatment of both the Binary Independence and
Combination Match models will be given in Chapter 5 where its relationship to the

Maximum Entropy Principle will be shown.

2.1.3 Combination Match Anomalies

Robertson and Walker [90] have recently looked anew at the Combination Match
weight, w.,. They point out two “anomalies” of the Croft/Harper weights. One is
that the probability of a term occurring in a relevant document must go to zero as
the probability of a term occurring in the collection as a whole goes to zero. More
important, they state, is that the weight, w., of eq. 2.4, will assume negative values
for high frequency terms. These anomalies cause them to modify the assumption of
equal probability of occurrence in relevant documents, in favor of an assumption that
this probability “increases from a non-zero starting point to reach unity” [p. 19] for

a term that appears in all documents.

2.1.4 Relation of Binary Independence Models to this Dissertation
Central to the Combination Match model of Croft and Harper is the assumption
of constant p(occ | rel) for all terms. In the absence of any pertinent prior knowledge
concerning these terms, this is a quite reasonable assumption; essentially an appli-
cation of the Laplacian “law of insufficient reason”. In Chapter 5 we will see that
the Combination Match Model follows from a reasonable set of constraints and the
Principle of Mazimum Entropy [47]. This principle, enunciated by Jaynes, states that
the probability distribution that has the maximum entropy of all those that conform

to a given set of constraints is “the least biased estimate possible on the given infor-
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mation; i.e. it is maximally noncommittal with regard to missing information” [60,
pg. 620]. In this context, the entropy of a distribution is to be understood in the
information theoretic sense defined by Shannon [97].

The Robertson/Walker adjustment of the Combination Match formula allows for
an increase in p(occ | rel) that grows linearly with p(occ). This is intuitively appealing,
at the same time that it resolves an anomaly in the Combination Match Model.
What’s more, the data confirm that p(occ | rel) does rise monotonically with p(occ).
However, the increase is not at all linear, at least not for the greater portion of the
document frequency range. Also, the data indicate that the positive value that should
be assumed for p(occ | rel) for the lowest frequency terms must be very very small.
Unfortunately Robertson and Walker find themselves restricted to values above 0.5.
The data indicate that only fairly high frequency terms can be expected to appear in

as many as half of the relevant documents.

2.2 Probabilistic Indexing

For the most part, the idea of ranking by an estimation of the probability of
relevance, introduced by Maron & Kuhns in 1960, lay dormant for the rest of the
decade. Research in this period tended to focus on automating the indexing process.
Inspired by the research and writings in the late 1950’s by H. P. Luhn [74, 75],
statistical approaches were taken in much of this work. This included the application
of statistical techniques such as factor analysis, discriminant analysis and latent class

analysis [5].

2.2.1 DPoisson Models
More pertinent to this dissertation is work during this period that investigated the
relationship between distribution characteristics of word occurrences and the value

of words for the purpose of indexing. = Some years later, Bookstein and Swanson
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conjecture that the distribution of word occurrence in a collection might be well
modeled as a mixture of Poisson distributions. The assumption is that with respect
to a specific word, documents are partitioned into k classes [7]. Given that a document
isin a given class, the distribution of word occurrences are assumed to follow a Poisson
distribution, with a mean specific to that document class. The probability of finding
j occurrences of a word in a randomly selected document of the collection is then
given by:

k k ehi )\g

p(tf =j) =Y p(Class =1)-p(tf =j | Class =1i) = ZWT

i=1

(2.5)

where 7; is the probability that the document will belong to class ¢, and ); is the
mean of the associated Poisson distribution.

In a two-part paper [55, 56|, Harter concentrates on mixtures of two Poisson
distributions as models for the distribution of specialty words. Using the method
of moments to estimate values of the parameters, 7, Ay, and Ay (79 is restricted to
1 — 1), models were fit for specialty terms from a collection of Freud’s works. Once
the parameters were fit, x? goodness-of-fit tests for each word were performed. He
found that for 80% of the 183 terms tested, the null hypothesis that Ay = 0 (i.e.
that terms were generated from a simple Poisson distribution) was rejected at the .05
level. Using an ad-hoc variant of the y? test, he concludes that, with a confidence
level of .95, a 2-Poisson distribution provides a close fit to the observed frequencies
for between 65% and 95% of 36 randomly selected specialty words. Harter goes on
to introduce the measure:

AL — Ao

= VAL+ Ay (26)

which he believes to be a plausible measure of “the effectiveness of a word as a poten-
tial index term” [p. 204]. Comparison of histograms of z for the classes of specialty

and non-specialty words indicates that z is “reasonably successful in identifying spe-
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cialty words” [p. 205]. In Part II of the paper, Harter analyzes the effectiveness
of:

B=p(deClass1|j)+z2 (2.7)

where “the first, p(d € Class 1 | j) is an estimate of the relative level of treatment
of the concept w in the document d, while the second, z is an estimate of the overall
effectiveness of w as a potential index term” [p. 284]. Exactly what is meant by
“overall effectiveness as a potential index term” is not quite clear, and no attempt
is made to justify the summing of these two numbers. By analyzing recall/precision
graphs, based on a manually prepared index as the standard of correct indexing, he
shows that ranking by 3 is superior to ranking by the raw term frequency, j, and that
the difference is statistically significant.

Years later, Srinivasan and then Margulis continued this line of investigation.
Srinivasan considered 2-Poisson and 3-Poisson models [104]. Data analysis using the
much larger INSPEC collection showed that 43% of the terms were well fit by a 2-
Poisson distribution. Allowing for 3-Poisson distributions did not extend the number
of words that could be modeled, however. Margulis examined the hypothesis that the
occurrence distributions of high frequency words follows an n-Poisson distribution,
where n is permitted to vary from 2 to 8 [76]. He repeats the pattern of the Harter and
Srinivasan experiments, but expands the family of mixture distributions he considers;
examines full length documents from larger collections; uses maximum likelihood
estimates in place of the method of moments; and does not restrict his study to

known specialty terms.

2.2.2 Relation of Poisson Modeling to this Dissertation
The research on characteristics of term frequency distributions for the purposes
of automatic indexing, particularly the investigation of Poisson distributions, raises

points that may be compared and contrasted with this dissertation. A major point of
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comparison is the emphasis placed in this work on the examination of available data
for the generation and verification of hypotheses. Harter, Srinivasan and Margulis
concern themselves first and foremost with the question of how term frequencies are
distributed. They rely heavily on established statistical procedures for both fitting
parameters and determining goodness of fit. The statistical assumptions with regard
to the random generation of the sample from a presumed population are explicitly
specified in Harter’s paper.

The work reported in this dissertation emulates the attitude adopted by these
researchers with respect to the exploration and statistical analysis of available data.
The concentration on statistical characteristics of retrieval can be contrasted with
other probabilistic IR work, in which a priori assumptions lead to models which are
immediately tested via retrieval experiments, without direct examination of the data.

Pertinent also are Harter’s studies of the relationship between raw term frequencies
and document length. He uses visual inspection of scatterplots, corroborated by
analysis of the product-moment coefficient of correlation, to justify his use of raw, as
opposed to normalized, term frequencies. With respect to the careful scrutiny of the
form of variables to be used for the purposes of modeling, the work presented in this
document once again follows the example set in this earlier research.

On the other hand, the approach taken here may be contrasted with Harter’s
attempts to use his Poisson analysis as the basis of an automatic indexing procedure
that will support probabilistic retrieval. In this phase of his work, the hypothesized
relationship between the two classes of documents, and relevance to a search, is left
unexamined. Evaluation of the formula for ranking potential index terms is based
solely on comparative recall/precision curves, with no direct statistical analysis of (3
(eq. 2.7) interpreted probabilistically.

Harter uses decision theoretic arguments to motivate the use of § for ranking

candidate indexing terms. Unfortunately, expected values for the costs of retrieving a
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plocc|rel)

p(occ)

Figure 2.1. Term precision theory of p(occ | rel) as a function of p(occ) for a)
random term; b) perfect term; c) linear combination of a and b.

non-relevant document, and failing to retrieve a relevant document, are not available.
Nor are the probabilities, u; and us, that a searcher will find a class 1, respectively
class 2, document to be relevant to a request. So Harter, replaces a function of
these four parameters with the z measure of eq. 2.6. and then goes on to eliminate
the decision procedure, in favor of ranking. This brings into question the purpose
served by the decision theoretic machinery, given that in the end it is used neither for
the derivation of the 3 measure, nor its evaluation in terms of the cost of erroneous
decisions.

This dissertation extends the methodology employed by Harter in the first phase
of his work to the direct study and explicit modeling of relevance as a function of

observable, statistically analyzable features of a search situation.

2.3 Term Precision
In a series of papers in this same period, Salton and co-workers reported both
theoretical and empirical work on a ranking formula based on what they called term

precision. In earlier papers, term precision was defined as [95]:
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p(occ | rel) ploce | rel)

(2.8)

Y =7 —p(occ | rel) © 1 —p(oce | rel)
Later, term precision was defined as the log of this quantity [96, 115], yielding the
same weight as given by Robertson and Sparck Jones (eq. 2.2). The form they adopt
for what amounts to p(occ | rel) differs from that of both Croft/Harper and Robert-
son/Walker. The term precision model assumes a two-piece piecewise linear function
with: p(oce | rel) = 0 at p(occ) = 05 p(oce | rel) =1 at p(occ) = 1; and a change in
slope at p(occ) = p(rel) as shown in Figure 2.1. This function is chosen based on the
assumption that “the user will pick terms with properties somewhere between those
obtaining for the random and perfect terms” [115, p. 159], sustained by theoretical
arguments as to what the probability of occurrence conditioned on relevance must be

for both perfect and random terms as a function of document frequency.

2.3.1 Relation of Term Precision Model to this Dissertation

There is much similarity between the term relevance work and the research with
regard to term weights presented in Chapter 4. Both are concerned with log rela-
tive odds as a weight; both result in an explanation of why idf weighting should be
effective; and the relationship that is found in Chapter 4 between probability of oc-
currence in relevant documents vs. probability of occurrence in the whole collection
is similar in general form, although significantly different in detail, to that assumed
by Salton, et al. At the same time, there are major distinctions.

The major difference is one of approach. The term precision research starts from
reasonable assumptions and goes on from there. The work here starts from the data.
Techniques of exploratory data analysis are used to to look at the data to try to
understand what it is that makes idf such a useful term weighting factor.

The model that results from exploratory analysis is different from that proposed in

the term precision model. Term precision assumes that the probability of a query term
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occurring in a relevant document can be modeled as a two-piece linear function of its
probability of occurring in the collection as a whole. We will show in Chapter 4 that
what they assume to be 2-piece linear is, in fact, exponential, and that the difference
between linear and exponential growth is quite marked at the low-frequency end of
the spectrum.

The term-weighting model of Chapter 4 is based on observed empirical evidence.
The term precision work shows that idf is an approximation of the model that they
assume to be right. But we conclude that their 2-piece linear assumption is not
correct. If the goal is to understand how query terms really do operate, the difference
between the two analyses is significant.

Finally, we will see in Chapter 4 that a model derived from examination of
empirical data has predictive power. As a result of analyzing the data, a prediction
as to how a modification of the traditional idf formulation might affect retrieval
performance becomes evident. The prediction is borne out rather convincingly by the
experiments that have been run. The approach taken in the term precision research
could not have led to the kind of insights that can result from exploratory data

analysis.

2.4 Regression

Regression strategies (explicitly or implicitly) assume a parameterized model and
apply statistical techniques to fit the model to available data. Yu and Mizuno, for
example, use linear regression to determine parameter settings for both a binary and
non-binary model [116]. Fuhr and Buckley have used a least-square error criterion
to determine coefficients for a polynomial weighting function of term-document pair
descriptor variables [35, 34].

A group at the University of California, Berkeley has conducted extensive research

into the use of logistic regression [37, 19]. Logistic regression is generally considered
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a more natural approach for estimating a probability. The [0, 1] range that can be
assumed by a probability does not correspond to other regression models, but is
accounted for in logistic regression. Also, normality assumptions which are often
behind the statistical inference techniques used in standard regression analysis are
inappropriate for a dichotomous response variable — such as relevance.

Logistic regression [58] models the probability of a binary response variable. The
logistic function of the probability is assumed to be a linear function of a pre-defined
set, of explanatory variables. This logistic function of the probability is formally
equivalent to the log-odds, which plays a central role in weight of evidence defined in
section 3.1, as well as the binary independence models as described in Section 2.1. At
Berkeley, they have experimented with fitting the logistic as a function of explana-
tory variables that have been used in other investigations. Variables studied have
included document frequency, term frequency in the document, and term frequency
in the query [37]. Experimentation has also involved a variety of transformations of
these variables. Statistical diagnostics and goodness-of-fit tests have been studied to
determine which variables to include in the model and what transformation of these
variables, if any, should be applied.

Most of the work at Berkeley has focused on the development of a term weighting
strategy [19, 20, 38, 39]. As initially conceived, however, the modeling of term weights
was only one component of a more encompassing staged logistic regression strategy.
Staged logistic regression is a technique whereby multiple logistic regressions are
performed, with each regression based on the results of regressions performed at
previous stages [21]. In particular, the focus is on a two-stage process. In the first
stage, logistic regression is used to develop a model for the probability of relevance
as a function of a number of predictor variables. Once the parameters for this model
are fit, corresponding term weights can be calculated as a function of pre-determined

query/document features. These term weights are then used for ranking and a second

20



stage of logistic regression is effected in order to fit a model for the probability of
relevance with the ranking scores, together with other variables, such as query length,

as predictors.

2.4.1 Relation of Regression Research to this Dissertation

Regression models, like the others that have been discussed, result from a prior:
reasoning. This research does have a more empirical flavor. Data is used so that
parameters can be estimated. That is to say, so that a specific member of a family
of functions can be chosen. The a priori aspect, though more subtle, is still present,
however. From which family of functions, is the “best” member to be selected? There
is typically little reason, a priori, to believe that the relationship of interest is well
modeled by, for example, a polynomial function; or that the log-odds of some event
is linear as a function of the proposed “explanatory” variables.

There are a number of distinctions between the work reported here and the logistic
regression research conducted at Berkeley. First, this work has relied heavily on
exploratory analysis of the data prior to attempting to fit a model. In particular,
we study graphical representations of the data in order to become familiar with its
behavior, search for underlying regularity and take advantage of insights that may
be offered by unexpected patterns. The use of exploratory analysis has been an
essential component of both the modeling of weight of evidence of term occurrence as
a function of query/document features for individual query terms, and the modeling
of how these weights are to be combined, over the set of terms in the query.

Another distinction between the two lines of research relates to the use of an
additive model, both with regard to the linear combination of distinct facets of the
evidence, such as the ¢df and tf values for a given term, and with regard to the linear
combination of the weights associated with the different terms of the query. The work

at Berkeley starts with the family of models and proceeds to determine the variable
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forms to be included and fit the parameters. The approach taken here is founded,
instead, on the Maximum Entropy Principle. In Chapter 5 it is shown that additive
models follow from this principle and the distinction between assuming additivity and
viewing the model as the probability distribution that maximizes entropy consistent
with a set of constraints drawn from empirical observation is discussed.

Finally, and perhaps most important, the overall goal of the research presented
here is different from that conducted at Berkeley. In their work, logistic regression
has been used primarily as the basis of a learning algorithm. Based on training data,
parameters for a general family of models are fit for a specific corpus with the goal
of using the learned parameters for evaluation of previously unseen queries. In this
work, regression is as much an exploratory tool, with emphasis on the discovery of
underlying statistical patterns.

A more in depth understanding of the variables involved in the retrieval process
should be useful for the development of improved retrieval strategies, including, po-
tentially, learning algorithms based on fitting parameterized models. However, it is
theory formation and not only improved retrieval that is the direct objective. The
goal is not limited to the computation of coefficients that can be plugged into a gen-
eral formula and used, perhaps very effectively, in a parameterized search engine. The
goal is a model, the components of which can be understood in terms of intuitively

reasonable statistical properties of retrieval.

2.5 Inference Network

In his doctoral dissertation in 1990 [109], Howard Turtle developed a probabilistic
model for information retrieval formulated in terms of a Bayesian Network [71, 82, 13].
The inference network is a general framework which makes possible the considera-
tion of multiple sources of evidence in the process of ranking documents in response

to a user’s information need. Evidence due to multiple document representations
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baseball umpire strike

O

"baseball umpire strike"

Figure 2.2. A query node dependent on three concept nodes

(e.g. titles, abstracts, document bodies, manually produced indices); multiple query
formulations (e.g. Boolean, natural language) and even multiple belief systems can
be combined in a principled way. An attractive aspect of the inference network ap-
proach is that it provides a direct, natural, computationally efficient, probabilistically
motivated method for modeling query operators.

The nodes of the inference network correspond to propositions and are divided into
two parts: the document sub-network, and the query sub-network. In the document
sub-network, the propositions associated with the nodes pertain to the observation
of: documents; representations of the documents; and representations of document
content. Nodes of the query sub-network correspond to propositions regarding: the
presence of query concepts; the satisfaction of queries; and the satisfaction of infor-
mation needs.

This dissertation is directly concerned with only the concept and query nodes,
and so this description will focus on this part of the network. In [108], Turtle and
Croft provide a more general description of the inference network framework; and
Callan, Croft and Harding discuss the implementation of the inference network in the
INQUERY retrieval system in [11].

Within the inference network formulation, a concept node is associated with the
presence of a “concept” in the document currently being analyzed. For unstructured

queries, there is exactly one query node in the network. This query node is connected

23



Figure 2.3. Conditional independence encoded in a Bayesian Network

to the concept nodes corresponding to the terms of the query. For example, Figure 2.2
shows the relevant part of the network for the query “baseball umpire strike”.
The leftmost node corresponds to a proposition asserting the presence in the document
of the concept associated with the word baseball. Similarly, there are nodes for the
umpire and strike concepts. The query node is associated with the proposition that

the user’s query is satisfied.

2.5.1 Bayes Nets

In general, a Bayesian Network encodes a joint probability distribution. The nodes
of the network correspond to random variables. In the INQUERY inference network,
each random variable may assume a value of either true or false. The topology of
the network is interpreted as encoding a set of conditional independence relations
among the variables. If the nodes corresponding to the variables, P, ..., P,, are the
immediate predecessors (parents) of a node, @), and Zi, ..., Z are all other nodes that
are not descendants of (i.e. are not reachable from) ), as shown in Figure 2.3, then

@ is considered to be conditionally independent of 73, ..., Z; given P, ..., Py:

p(Q ‘ Pl:"'aPnaZIa"'aZS):p(Q ‘ Pl:"':Pn)
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Given probabilities for the root nodes (i.e. nodes with no parents), the network
may be processed in a top-down fashion in order to produce the probabilities relevant
to each of its nodes. As a consequence of the conditional independence assumptions
implicit in the topology of a Bayesian Network, once the probabilities, pi,...,pn,
have been produced for the parents of a node, (), the probability that () assumes the

value y € D, is given by:

pP@=y)= Ddp@=y|Pi=mz1,...,P =2,)p(Pr = 1) -p(Pr = zp)
z1€D1,..., xn€Dn
where Dy, ..., D,, D, are the sets of values that may be assumed by the variables,
Py, ..., P,, and @), respectively. For the INQUERY inference network, D; = Dy =

...Dp, = Dy = {true,false}.

2.5.2 Binary Valued Random Variables

In INQUERY each node corresponds to a proposition; that is, a variable that may
take on one of two values: true or false. For example, in Figure 2.3, each P; might
correspond to the proposition that some document under consideration is about some
concept, ¢;, while () corresponds to the proposition that the query is satisfied.

Since all the variables are binary valued in INQUERY, the dependence of a child

on its parents can be given via the specification of:

p(Q is true | P, =by,...,P, =by,) and
p(Q is false | P, =by,..., P, =b,)

for each:

< by,...,b, >€ {true, false}"
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Equivalently, the values:

ar = p(Qisfalse | i€ R= P, is true

i ¢ R = P, is false) and

ap = p(Qistrue | i€ R= P, is true

i ¢ R= P, is false)

must be specified for every possible subset, R, of {1,...,n}. In terms of these condi-
tional properties, the probability that a child node is true can be calculated once the

probabilities of truth, pq,...,p,, are known for each of its parent nodes:

p(Q is false) = Z O‘RszH (1—p) and

RC{1,...,n} iER i¢R

p(Qistrue) = > ar][[p][Q - m)

RC{1,...,n} iER i¢R

The set of coeflicients involved is conveniently organized as a 2 x 2" matrix:

Bo..o00 | Po..oo1 | Fo..o10 e P 111
Q false || v..000 | ®0..001 | (o..010 01..111
Q true | ap..000 | @0..001 | ®0..010 Q1,111

where ap, 4,4, is the probability that ¢ is true subject to the condition that the

parents P; such that b; = 1 are true, and the parents P; such that b; = 0 are false;
Qtby by,..b, 15 the corresponding probability that () is false and is equal to 1 — o, 4,5, -

This matrix, known as a link matriz, may be visualized as linking the child node with

the parent nodes as is shown in Figure 2.4

2.5.3 Link Matrices As Query Operators
INQUERY examines documents one by one. For each, the inference network is used

to evaluate evidence that the document satisfies an information need expressed by the
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Figure 2.4. Link matriz links child to parents

user. A given link matrix form can be viewed as defining an operator for combining
evidence. For example, suppose the propositions P, P, Ps, state that three queries
¢1, G2, g3, respectively, have been (in some sense) satisfied by the document currently
under scrutiny. A link matrix connecting the parents nodes, P, P,, Ps, with the
child node, (), can be viewed as a way of forming a query, ¢, that is a composite of
the individual sub-queries. The child node, (), would correspond to the proposition
that the combined query, ¢, has been satisfied. The specification of the coefficients of
the link matrix defines the way the sub-queries are combined in that it gives all the
information necessary for determining the probability that ¢ has been satisfied given
the probabilities, p1, p2, p3, that the individual sub-queries have been satisfied.

In the example of Figure 2.2, this means that once the three probabilities, py,
Du, Ps that the document under scrutiny is about baseball, umpire and strike
respectively, have been determined, the probability that the document is relevant to
the query can be calculated. The computation requires that the requisite conditional
probabilities have been specified. One such probability, for example, is p(Q | BUS),
the probability that the query is satisfied, given that the document is about umpire,
but not about either baseball or strike. There are 8 possible truth assignments

for the set of three variables associated with the concept nodes of this example. The
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probability that the query is satisfied is then given by:

pQ = p@|BUS)-(1-p)-(1=pu)-(1—ps) (2.9)
+ p(@ | BUS)-(1=py) - (1 —pu)-ps

+ p(@Q | BUS) - (1 —pp) - pu- (1 —ps)

+ p(Q | BUS) -py-pu-Ds

One, admittedly arbitrary, way of defining a 3-ary query composition operator for
forming the query, ¢, from the sub-queries ¢, ¢o, ¢35, might be to specify that q is to

be considered satisfied with:

e 80% probability if ¢; is satisfied, independent of the whether or not ¢, and ¢

are satisfied;
e 50% probability if ¢; is not satisfied, but ¢, and g3 are both satisfied
e 10% probability in any other situation.

This particular operator corresponds to the link matrix?:

POOO POOl POIO POll PIOO P101 PllO Plll

1 .1 1 .0 .8 .8 .8 .8

Where the column under Fy;, for example, gives the probability that Q is true
given that P is false, P, is true, and P; is true. Clearly, this link matrix has the
desired effect. Typically, none of the parents will be known to be either true or

false with certainty. Rather, evidence corresponding to each of Py, P, P3; will, in

2Since each column must sum to 1.0, only the row corresponding to () = true is shown.
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general, be estimated to be present with certain probabilities: p;, ps, ps. Given these

probabilities, the probability that () is true can be calculated as:

p(Q is true) = 1 - p1pop3 + .1« P1pop3 + .1« P1paps + .5 - P1paps

+ .8-p1PoP3 + .8 - p1Pap3 + .8 - P1paP3 + .8 - P1PaP3

2.5.4 Relation of the Inference Network to this Dissertation

The initial motivation for the current research direction was earlier research per-
taining to the use of inference networks in information retrieval. The objective of this
research was to model Boolean query operators in terms of link matrix components of
a Bayesian network. It resulted in the development of a class of link matrices called
PIC matrices and a O(n?) algorithm for the evaluation of arbitrary matrices of this
class for arbitrary inputs.

Experimentation demonstrated that this approach to modeling Boolean opera-
tors can be as effective as the previously reported pnorm formulation [33, 93, 94].
Whereas the pnorm formulation was developed within the vector space model [92],
the PIC matrix approach is integrated in the inference network framework and has a
probabilistic interpretation. The PIC matrix work is reported in [45], and in greater
detail in [46].

While the modeling of Boolean query operators in the inference network was suc-
cessful, problems were encountered in later attempts to extend this work. Similar
difficulties were encountered when attempting to apply the PIC matrices to the re-
trieval of unstructured queries, and once again in the context of combining query
expansion terms with original forms of queries automatically generated from descrip-
tions of information needs.

Although the inference network is a probabilistic framework, there is no clear
frequentist interpretation of the input, output or intermediate values manipulated by

the system. This impedes the ability of the theory to guide research. Although, a
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purely subjective Bayesian interpretation can be given to these values, this does not
provide a concrete basis for determining the adequacy of the model. For example,
the correct functioning of the system cannot be analyzed by comparing output values
to proportions of relevant documents calculated over large samples. It is all the
more infeasible to correlate the probabilities for the latent variables corresponding to

intermediate nodes of the network with empirically observable frequencies.

2.6 Ranking by the Probability of the Query

Recently, Ponte and Croft have turned traditional probabilistic modeling on its
head [85]. In their approach, documents are not ranked in order of the probability
of relevance. Relevance is not modeled at all. Rather, each document is assumed
to have been generated by a language model. The language model corresponds to
a probability distribution over the collection vocabulary. For each document in the
collection, the term occurrence pattern for the document is used to estimate the
language model from which the document was produced.

A query submitted to this system is assumed to have been generated from a
language model as well. When a query is submitted, documents are ranked according
to the probability that the query was produced from the language model estimated
to correspond to the document.

This model has achieved ad-hoc retrieval performance comparable to state-of-the-
art systems. Ponte has also been successful in integrating relevance feedback into the
model and has shown that it performs as well as existing approaches on the TREC
routing task [84]. Local feedback has also been integrated easily into the model and

experimental results again confirm the viability of the approach.
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2.6.1 Relation of the Ponte/Croft Model to this Dissertation

An important component of the algorithm used in the Ponte/Croft system is the
use of smoothing in the estimation procedure. The simplest, and most common,
approach to estimating the probability of term occurrence for a document is to use
the maximum likelihood estimator obtained by simply dividing the number of times
a term occurs by the total number of occurrences over all terms appearing in the
document. A more robust approach is to smooth this estimate by taking a weighted
average of it with an estimate obtained from a larger sample. In the Ponte/Croft
system a weighted average is taken of the estimate based on the document alone with
an estimate based on the distribution of the term over the entire collection.

This smoothing method plays a significant role in producing the observed retrieval
performance. Smoothing is also used heavily in this dissertation. Non-parametric
smoothing techniques are used to produce regression curves for the purposes of ex-
ploratory data analysis. Also, in the section on future work, the possibility of research
into the application of empirical Bayes analysis [77, 12] to the modeling of weight of
evidence is discussed. The use of empirical Bayes techniques is similar to the approach
taken in Ponte’s work in that it utilizes a larger source of data to reduce the variance

of estimates for parameters associated with a subset of the given sample.
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CHAPTER 3

WEIGHT OF EVIDENCE AND EXPLORATORY DATA
ANALYSIS

... philosophy is like horseradish. It is good if taken in small
amounts in combination with other things. But it is not
good in large amounts by itself. The risk with philosophy,
as with horseradish, is the temptation to use ever stronger
concentrations to maintain the sensation of that first taste.
Soon you are serving up pure horseradish.

T. Seidenfeld paraphrasing Laura of Pasternak’s Dr. Zhivago
(chapter 13, section 16) in comment on Weight of Evidence
by I. J. Good, [43].

The principal object of study in this thesis is the weight of evidence in favor
of relevance provided by the values of features extracted from a retrieval situation.
Section 3.1 gives the formal definition for weight of evidence and motivation for it.
The method of study in this work relies heavily on statistical techniques that have
been developed in recent years and are collectively referred to as exploratory data
analysis. Section 3.2 provides a brief introduction of this approach to scientific

understanding and hypothesis formation.

3.1 Weight of Evidence

We begin in Section 3.1.1 by giving the formal definition for the concept of weight
of evidence. This is followed in Section 3.1.2 by the presentation of desiderata for the
concept from which the definition can be derived. Sections 3.1.3 and 3.1.4 discuss
interesting properties of weight of evidence as defined here and the connection of the

concept to previous research in the area of information retrieval.
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3.1.1 Formal definition of Weight of Fvidence
I. J. Good formally defines the weight in favor of a hypothesis, h, provided by

evidence, e, as [43, 41]:

O(hle)

woe(h : e) = log o0 (3.1)
where
p(h) _  p(h)

Oh) =—= = 3.2
)= k) = 1= (8] 2

is the prior odds of the hypothesis, 4 being true, and

p(hle)  plh]e)

O(hle) = —= = 3.3
B = o o) = T-plt ] o &9

is the posterior odds of the hypothesis h being true conditioned on the evidence e
having been observed. He believes this is a concept “almost as important as that of
probability itself” [41, p. 249].

In [42, chap. 4], Good points out that, in various guises, the notion of weight of
evidence had appeared in the work of others. As early as 1878, the quantity given in
eq. 3.1 appears in the work of the philosopher Charles Sanders Pierce. Good credits
Pierce with the original use of the term weight of evidence. More recently, Minsky and

Selfridge also refer to this quantity and call it weight of evidence as well [80]. Turing

O(hle)

had labeled the quantity, om)

as the factor in favor of the hypothesis h provided by
the evidence e, and Harold Jeffries made much use of the concept, referring to it as
support [65].

Weight of evidence is related to Keynes’s concept of the amount of information,
which he defined as the log of p(eAh)/p(e)p(h) [42, chap. 11]. This is more commonly
referred to today as mutual information and is discussed in Section 4.3 in connection
with the relationship between weight of evidence and inverse document frequency.
Keynes also used the term weight of evidence, but in a different sense from that used

by Pierce, Minsky & Selfridge, and Good [42, chap. 15].
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Although, we will primarily concentrate on the concept of weight of evidence as
it is defined in eq. 3.1, two generalizations will also play an important role in this
thesis.

First, weight of evidence can be conditional. That is, attention may be restricted
to some sub-space of the full event space. The notation that will be used for condi-
tional weight of evidence will be:

O(hle, c)

ol (3.4)

woe(h:e|c) = log

Second, weight of evidence, as given in eq. 3.1 and eq. 3.4 implicitly contrasts
the hypothesis h against its negation h. Often, however, we are interested in weight
of evidence in favor of one hypothesis of interest, h, relative to another hypothesis of

interest, A', that is not its negation. To meet this need we introduce the notation:

woe(h/h' e |c¢) = woe(h:e|hVH,c) (3.5)

By restricting the event space to that for which either h or A’ holds, we have effectively
defined the weight of evidence in favor of h against h' provided by e, (and, in the

general case, conditioned on c).

3.1.2 Desiderata for a Concept of Weight of Evidence
Good elucidates three simple, natural desiderata for the formalization of the notion

of weight of evidence [44, 43].

1. Weight of evidence is some function of the likelihoods:

woe(h : €) = flp(e | h),p(e | h)] (3.6)

For example, let us suppose that a document is evaluated with respect to the

query,
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Clinton impeachment proceedings

and we discover the term Hyde in the document:
h = document is relevant to the query

e = Hyde occurs in the document

This first criterion states that the weight of evidence provided by finding Hyde
in the document should be some function of the likelihood of finding Hyde in a
document that is relevant to the query and the (for this example, presumably

lower) likelihood of finding Hyde in a document that is not relevant to the query.

. The final (posterior) probability is a function of the initial (prior)

probability and the weight of evidence:

p(h | €) = glp(h), woe(h : )] (3.7)

In the context of the same example, this states that the probability associated
with the document being about the impeachment proceedings after having ob-
served that the document contains the term, Hyde, should be a function of 1)
the probability associated with the document being relevant to the query prior
to obtaining knowledge as to the terms it contains, and 2) the weight of evidence

associated with finding Hyde.

. Weight of evidence is additive:

woe(h : e; N ex) = woe(h : e1) +woe(h : ez | €1) (3.8)

This property states that the weight in favor of a hypothesis provided by two
sources of evidence taken together is equal to the weight provided by the first
piece of evidence, plus the weight provided by the second piece of evidence,

conditioned on our having previously observed the first. The weight of the
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second piece of evidence is conditioned on the first in the sense that, woe(h : e5)
is calculated on the subspace corresponding to the event, e;. If, for example,
the two pieces of evidence are:

e1 = Hyde occurs in the document

es = Henry occurs in the document

then the weight of evidence provided by finding both of the terms, Hyde and
Henry, in the document is the sum of the evidence given by finding Hyde and the
evidence given by finding Henry. The weight of evidence provided by occurrence
of the term, Henry, is conditioned on having previously taken into consideration

the evidence provided by encountering Hyde in the document.

Starting from these desiderata, Good is able to show that, up to a constant factor,

weight of evidence must take the form given in eq. 3.1:

O(hle)
O(h)

woe(h : €) = log (3.9)
The constant factor may be absorbed in the base of the logarithm. For the purposes
of this dissertation all logarithms will be understood to be in base 10, which will make

the scales shown on graphs easier to interpret.

3.1.3 Properties of Weight of Evidence
The formal definition of weight of evidence, together with conceptualization in
terms of log-odds in place of standard probabilities, has a number of interesting,

intuitively pleasing, and useful properties.

Weight of evidence adds to belief: From eq. 3.1, it follows directly that:
log O(hle) = log O(h) + woe(h : e)

That is, if we are disposed to think on a log-odds scale, our final belief in a

hypothesis (validity of a scientific theory, guilt of an alleged criminal, relevance
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of a document to an information need) is equal to our initial belief plus the

weight of whatever evidence we are presented with.

For example, our final belief that a given document will be about the impeach-
ment proceedings will equal our (initial) belief that an arbitrary document will
be about the impeachment plus the weight of evidence, such as the occurrence

of the term Hyde, observed once the document is examined.

Weight of evidence can be positive, negative or zero: Positive woe causes
our belief, in the form of log-odds, to increase; negative woe results in a de-
crease in our belief; and a weight of zero leaves the log-odds unaffected. Log-
odds, log O(hle), is a one-to-one, monotonically increasing, function of proba-
bility, p(h | €). Hence, increasing, decreasing and stable log-odds correspond to

increasing, decreasing and stable probabilities, respectively.

For example, presumably the weight,
woe(about impeachment : Henry occurs | Hyde occurs)
would be positive, whereas the weight,
woe(about impeachment : Jekyll occurs | Hyde occurs)
would be negative since the occurrence of Jekyll gives reason to believe Hyde

does not refer to the congressman.

Log-odds can be positive, negative or zero: This is true of the log-odds itself,
either prior to or resulting from, the accumulation of evidence. Log-odds of
zero is equivalent to a probability of % It is associated with a hypothesis that
is neither favored nor disfavored in comparison to its contradiction. Positive
log-odds (3 < probability < 1) is associated with a hypothesis that is expected
to hold, and negative log-odds (0 < probability < ) with a hypothesis expected

to be found to be false.
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On the log-odds scale, the entire range from —oo to +o0o is used:  On the
regular, 0 to 1, probability scale it becomes very difficult to conceptualize the
difference between two values that are very small or, between two values that
are very close to 1. But in many cases, this is where the action is. It then
becomes useful to operate on a scale that, for example, causes us to conceive
of the difference between 0.99 and 0.999 as equivalent to the difference between
0.999 and 0.9999. Of course, this comes at a price: the loss of the direct
correspondence which exists with the regular probability scale, between belief

values and ratios of occurrence.

Weight of evidence measures likelihood of what has been observed: The
following formulation of weight of evidence, algebraically equivalent to that
given in eq. 3.1, is compatible with our intuitions, as well as computationally
useful.

ple | h)

woe(h : e) = logm (3.10)

From this expression, we see that the weight of evidence can be viewed as how
much more likely we would be to see the evidence given that the hypothesis
were true, relative to the likelihood of observing the same evidence were it to
be false; the ratio in this case being measured on a log scale. The relation given
in eq. 3.10, allowing for an arbitrary alternative hypothesis, A', and conditioned

on some event ¢, would, in full generality, be:

p(e ‘ h, C)

woe(h/h' 1 e | c) = logm

(3.11)

Weight of evidence provides a useful notion of independence: In probabil-
ity theory, independence is defined so that two events, a and b, are considered

independent if the probability of one is unaffected by knowledge of the other:
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pla | b) = p(a) (3.12)

This definition is useful in large part because it corresponds to our intuitive
notion of causal independence. We believe that the probability of a die showing
6 is independent of another die coming up 6. We believe this because we do not
believe that one die has any causal influence on the other; nor do we believe in

an external causal influence affecting both of the dice.

This notion of independence is less applicable in an environment in which we
must assess the probability of a hypothesis in light of multiple sources of ev-
idence. In this case, the weight of one piece of evidence may be independent
of another, even though the two pieces of evidence are not probabilistically in-
dependent in the sense of eq. 3.12. For example, it may be the case that the
weight of evidence in favor of death from heart disease provided by learning that
a subject does not engage in regular exercise may be independent of whether
or not the subject is overweight,

woe(death : no exercise | overweight) = woe(death : no exercise)

This could be the case even though the probability that the subject does not
exercise increases upon learning that the subject is overweight.

p(no exercise | overweight) > p(no exercise)

Independence of weight of evidence is a different form of independence. This
type of independence will hold when: the factor by which our belief that the
subject will die of heart disease increases, upon learning that the subject does
not exercise, is the same if we know the subject is overweight as it would be if

we had no knowledge of the subject’s weight.

Independence of evidence in the sense of:

woe(h : ez | e1) = woe(h : e2) (3.13)
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will play an important role in the probabilistic retrieval model developed in
this thesis. As we will see, independence of weight of evidence, follows from
the Maximum Entropy Principle. Based on this, evidence in favor of relevance
given by the tf-idf value for a query term will be considered independent of the

tf-idf values associated with other terms.

3.1.4 Weight of Evidence and Information Retrieval

There is nothing new about using either log-odds or weight of evidence in infor-
mation retrieval. The Robertson/Sparck Jones term weight discussed in Section 2.1
is motivated by the desire to determine the log-odds of relevance conditioned on the
term occurrence pattern of a document. The weight, w,; of eq. 2.2, can be viewed as
the difference between the weights of evidence in favor of relevance provided by the
occurrence and non-occurrence of the term. Also, the focus of statistical inference
based on logistic regression is the probability of the event of interest transformed by
the logit function; that is, the log-odds.

Finally, as a lead-in to what follows, we mention that Tukey, [107], recommends
the use of what he calls folded logs or flogs as a natural and useful transformation

of counted fractions for the purposes of exploratory data analysis. The folded log is

defined to be:
1 1
flog = 7 log, f — 5 log.(1 - f) (3.14)

where f is the fraction of interest. With the fractions viewed as probabilities, flog is

proportional to log-odds.

3.2 Exploratory Data Analysis
Hartwig and Dearing define Ezploratory Data Analysis (EDA) as “a state of mind,
a way of thinking about data analysis — and also a way of doing it” [57, p. 9]. They

advance adherence to two principles. First, that one should be skeptical of data sum-
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maries which may disguise the most enlightening characteristics of the phenomenon
being investigated. Second, that one must be open to unanticipated patterns in the
data, because uncovering such patterns can be, and often is, the most eventful out-
come of the analysis.

The article on EDA in the International Encyclopedia of Statistics says that it
is the “manipulation, summarization, and display of data to make them more com-
prehensible to human minds, thus uncovering underlying structure in the data and
detecting important departures from that structure” [3]. It goes on to point out that
“these goals have always been central to statistics and indeed all scientific inquiry”,
but that there has been a renaissance in the latter part of this century. This is due in
no small part to the accessibility of powerful electronic computers for: the accumula-
tion of voluminous quantities of data, high-speed calculation and efficient graphical
display.

EDA embodies a set of useful methods and strategies, fomented primarily by John
W. Tukey [107]. Four distinguishing aspects of this practice, each of which plays an

important role in the probability modeling discussed in this dissertation, are:

graphical displays: The emphasis in exploratory data analysis is on making the
most of graphical displays of the data, a historical review of which is given in
[6]. The human mind is far better at uncovering patterns in visual input than in
lists or tables of numbers. Depending solely on the reduction of large quantities
of data to a few summary statistics erases most of the message the data have

for us.

smoothing: Smoothing and non-parametric regression techniques are used with the
objective of identifying the component of the data considered to be the signal
from that which, for the purposes of the analysis at hand, are to be treated as

noise.
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study of residuals: A residual is the difference between the observed value of a
response variable and the value predicted by a given model. By studying graphs
of residuals against potential predictor variables, possibilities for extending the

model can be explored.

transformation of variables: Supported by the production of graphical displays,
features of the data can be transformed in a variety of ways in order to make

more evident underlying regularities in the data.

What is most important is that EDA invites the researcher in information retrieval,
fortunate at this point to have available a significant body of useful data at her
disposal, to approach the task with the altered “state of mind” of which Hartwig and
Dearing speak. It is the goal of this dissertation to take advantage of this methodology
with the hope of letting the data itself guide development of an alternate approach

to the development of IR systems and IR theory.
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CHAPTER 4

ANALYSIS OF THE RELATIONSHIP BETWEEN
DOCUMENT FREQUENCY AND THE WEIGHT OF
EVIDENCE OF TERM OCCURRENCE

... while man is an insoluble puzzle, in the aggregate he
becomes a mathematical certainty. You can, for erample,
never foretell what any one man will do, but you can say
with precision what an average number will be up to.

Arthur Conan Doyle in Sherlock Holmes: The Sign of Four,
Chapter 10.

This chapter reports on a study of the relationship between the weight of evidence
in favor of relevance provided by the occurrence of a query term in a document and
the frequency with which the term is found to occur in the collection as a whole. From
the empirical study of retrieval data, statistical regularities are observed. Based on
the patterns uncovered, a theory of term weighting is developed. The theory proposes
mutual information between term occurrence and relevance as a natural and useful
measure of query term quality. We conclude that this measure is correlated with
document frequency and use this to derive a theoretical explanation in support of
idf weighting which is different from theories that have previously been proposed.
The theory developed, in conjunction with the empirical evidence, predicts that a
modification of the idf formula should produce improved performance. In Section 4.4,

experiments are presented that corroborate this prediction.
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4.1 Data Preparation

The study presented here involved data from queries 051-100 from the first Text
REtrieval Conference (TREC) and the Associated Press (AP) documents from TREC
volume 1 [51]. Each data point corresponds to one query term. The query terms were
taken from the concepts field of the TREC 1 topics. For the purposes of uncovering
underlying statistical regularities, a set of quality query terms was desired that would
keep to a minimum the noise in the data to be analyzed. For this reason the concepts
field was used.

Initially, the plan was for all query terms to be plotted. Two problems immediately
presented themselves. First, rare terms are likely to have zero counts and this is
problematic. For variables that are functions of log odds, a zero count translates
to a (positive or negative) infinite value. One way around the problem is to add
a small value to each of the counts of interest (relevant documents in which term
occurs, relevant documents in which term does not occur, non-relevant documents in
which term occurs, non-relevant documents in which term does not occur). This is
a common approach, taken for instance in [89], where, for the purpose of estimating
Wysj, 0.5 is added to each count.

For the purposes of data analysis, however, there is a problem with this approxi-
mation. The choice of constant is to a large degree arbitrary. For many of the plots
of interest, the shape of the plot at the low frequency end will vary considerably with
the value chosen for the constant. Two slightly different choices for the constant value
can give a very different overall picture of the data when they are plotted, particularly
at the low frequency end. Since our objective is precisely to infer the true shape of
the data, this approach is inadequate to our needs.

A second problem, is that the variance of the variables we are interested in is large,
relative to the effects we hope to uncover. This can be seen clearly, for example, at

the left of Figure 4.4 where p(occ | rel) is plotted against log O(occ) for all terms for
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which it has a finite value. That this variable increases with increasing df is somewhat
evident, but subtler details of the relationship are obscured.

In order to confront both of these problems, data points were binned. Query terms
were sorted in order of document frequency. Then for some bin size, k, sequences of
k query terms' were grouped together in bins. Each bin was then converted into a
single pseudo-term by averaging all counts (number of relevant documents in which
term occurs, number of relevant documents in which term does not occur, number of
non-relevant documents in which term occurs, number of non-relevant documents in
which term does not occur). Calculations of probabilities, weights, etc. were done on
the pseudo-terms and these results were then plotted. A bin size of £ = 20 was found
to be best for our purposes. The plot of binned pseudo-terms corresponding to the
left of Figure 4.4 is shown at the right of the same figure. Although we will focus on
the binned plots, each of these plots will be displayed alongside its unbinned version,
in order that the reader may get a feel for the raw data. It should be kept in mind,
however, that points with zero counts are not represented in the unbinned versions.

Although all analyses reported in this chapter were done using the binning tech-
nique described in the previous paragraphs, some experimentation was also conducted
using an adaption of kernel regression methods [27, 59, 99]. A direct application of
kernel regression does not work because it would involve calculating weighted av-
erages over sets of estimates that include infinite values. Hence, averaging is done
instead over the raw counts, as is done with the binning technique. As with binning,
terms are ordered by document frequency. Then, each term is replaced by a smoothed
version of the term.

All counts for the term are replaced by the weighted average of counts for all

terms. Weights for the averaging are determined by some kernel function. Often,

! More precisely, k or k + 1 query terms, so that no bin was much smaller than the rest.
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Figure 4.1. p(occ | rel) as function of p(occ)

a Gaussian kernel function is used. The Gaussian is centered over the point being
estimated, xy. The weight assigned to each of the points, z’, included in the average is
the value of the Gaussian of the difference between the idf value at 2’ and the idf value
at zo. Once the smoothed version has been produced for all terms, the calculations
of probabilities and weights can be done as above. How smooth a curve is produced
can be adjusted by modifying the variance of the Gaussian function.

This approach to smoothing presents some advantages over the binning technique.
In particular, discontinuities in the resulting plot due to the discrete nature of binning
are smoothed over. However, the author did not become familiar with non-parametric

approaches until after the phase of research reported in this chapter was complete.

4.2 Plotting the Data

Taking a lead from the Croft and Harper formulation of eq. 2.3, the data anal-
ysis begins by focusing on the components, p(occ | rel) and p(occ | rel), and how
these components correlate with document frequency. Because the goal is to compare
various document sets of differing sizes, we prefer not to plot the data in terms of
absolute document frequencies. Instead, we plot against p(occ) = %, the probability

that the term will occur in a document chosen randomly from the collection.
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Figure 4.2. p(occ | rel) as function of p(occ)

4.2.1 Occurrence in Non-relevant Documents
With respect to p(occ | rel), we see in Figure 4.1 that it is well approximated by

p(occ). We will return to analyze the variable, p(occ | rel), in more detail.

4.2.2 Occurrence in Relevant Documents

More interesting is Figure 4.2, which shows a plot of p(occ | rel) as a function of
p(occ). We see from this scatter plot that as the document frequency (equivalently,
probability of term occurrence) gets small (left end of graph), the probability of the
term occurring in a relevant document tends to get small (lower on the graph) as
well.

This plot of p(oce | rel) vs. p(oce) gives us reason to question the advisability of
the assumption of equal probability of term occurrence in the relevant documents,
used by Croft and Harper in [23] as the basis of eq. 2.4. This also puts into question
the assumptions made by Robertson and Walker in [90]. Both the assumption that
p(oce | rel) increases from a non-zero starting point and that the increase is linear
with increasing p(occ) contradict the evidence provided by Figure 4.2. We return to
discuss these points further in Section 4.5.

A glance at this graph suggests that a re-expression of variables may be indicated.
The histogram shown at the left in Figure 4.3 confirms that, as both intuition and

Figure 4.2 suggest, the distribution of document frequencies is highly skewed. With
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Figure 4.3. Histograms for p(occ) and log O(occ)

this type of skew, a logarithmic? transformation is often found to be beneficial [107].
Here, we go one step further and re-express the variable as:

log O(occ) = log : plocc) (4.1)

1 —p(oce)
For practical purposes, given typical document frequencies for query terms, the differ-
ence between log p(occ) and log O(oce) is negligible. For the development of a general
theory, log O(occ) tends to be a preferable scale on which to work, due to the symmet-
ric treatment it gives to probabilities below and above .5, as discussed in Chapter 3.
The histogram at the right in Figure 4.3 shows the distribution of the variable after it
has been re-expressed as log O(occ). Of course, our interest in log p(occ) or log O(occ)
is further motivated by the knowledge that this statistic is, in fact, known to be a
useful indicator of term value.

The variable, p(occ | rel), is re-plotted as a function of log O(occ) in Figure 4.4.
The plot against the log-odds shows that the decrease in p(occ | rel) continues as
document frequency get smaller and smaller, a fact that was obscured by the bunching

together of points below p(occ) = 0.01 in the original plot (Figure 4.2).

2As mentioned earlier, in order to aid intuitive comprehension, all logarithms in this document
are logarithms to the base 10.
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Figure 4.4. p(occ | rel) as function of log O(occ)

4.2.3 p(occ | rel) Relative to p(occ)

Despite the transformation of the independent variable, looking at p(occ | rel)
directly makes it hard to appreciate the phenomenon of interest. The conditional
probability of occurrence is higher for high frequency terms. But, high frequency
terms are more likely to appear in documents, in general. It comes as no great
surprise, then, that they are more likely to occur in relevant documents. This is
particularly obvious for very high frequency terms as compared to very low frequency
terms.

Take for example, two terms: ¢; with probability of occurrence, p(¢;) = .2, and
to with probability of occurrence, p(t2) = .0001. We would expect that p(t; | rel) is
at least .2. In contrast, we could hardly expect a term which only appears in one of
every ten thousand documents in the collection to appear in as many as two out of
ten of the relevant documents. In fact, if the probability of relevance for the query is,
say, one in a thousand, simple algebra shows that it will not be possible for p(t, | rel)

to be greater than 0.1:

plocc Arel) _ p(occ)  .0001

< = 1
p(rel)  — p(rel)  .001

p(oce | rel) =
What may be of more interest to us, then, is how much more likely it is for a

term to occur in the relevant documents compared to its being found in an arbitrary

document of the collection as a whole. Figure 4.5 shows a plot of the ratio
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Figure 4.6. log?Z poce) 88 function of log O(occ)

p(occ | rel)
p(occ)

as a function of log O(occ). We observe here a clear non-linear increase in this ratio
as document frequency decreases. From this plot it is evident that, in general: 1)
query terms are more likely to appear in relevant documents than in the collection
as a whole, and 2) how much more likely their appearance in relevant documents is
correlates inversely with document frequency. The apparent exponential nature of

this correlation calls out for the logarithm of % to be investigated.

4.2.4 Log of the Ratio of p(occ | rel) to p(occ)
In Figure 4.6 the log of the ratio ’% is plotted against the logarithm of the

odds of occurrence in the collection. In the plot, we observe:

occ | rel)

e a roughly linear overall increase in log & (oce) - With decreasing log O(oce);

e a stronger linear relationship apparent in the midrange of document frequencies

on the log scale;
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e an apparent flattening of this growth at both high and low frequencies.

A number of comments are in order. First, a clear pattern has emerged that
is difficult to attribute to chance. Furthermore, the “reality” of this regularity is
corroborated by our inspection of data from other collections included in TREC
volumes 1 and 2. To the author’s knowledge, this relationship has not been previously
reported in the information retrieval literature.

Second, the apparent flattening of the curve at the two extremes is supported by

theoretical considerations. At the low-frequency end, we note that:

ploce | rel)  p(occ Arel)  p(rel | occ) 1
plocc)  p(rel)plocc)  p(rel) = p(rel) (4.2)

If we assume that, for a given query, the probability of relevance across the entire

occ | rel)

collection is approximately one in a thousand?®, then log o P(oco) ~ ust be below

3.0. We can conclude that, on average, the growth of the log ratio observed between
log O(occ) = —1.0 and log O(occ) = —3.0 cannot be sustained for very small document

frequencies. It is reasonable to assume that this growth should begin to taper off as

plocc | rel)

p(occ) approaches — logp(rel).

log
The argument is similar at the high frequency end. We can safely assume that,
on average, a query term, even a very high frequency query term, is more likely to

appear in a relevant document than it is to appear in an arbitrary document of the

ploce | rel)

(oc) is greater than 1, and its logarithm greater

collection. Hence, the ratio,

than 0. Since we conclude that log’%

can be expected to be positive at all
document frequencies, its rate of descent must taper off at same point before reaching
0. Presumably it approaches 0 asymptotically as the log odds of occurrence goes to oo

(i.e. term occurs in all documents). It is reasonable to entertain the hypothesis that

this leveling off is what we are observing with the rightmost points in Figure 4.6 (and

3For the AP collection, the average probability of relevance over the 50 queries is .00085.
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have observed in plots for other collections as well). We must be cautious, however.
The leveling off may, in truth, occur at higher frequencies; the flattening suggested
by the few points in question attributable to chance happening.

Finally, we note that the quantity:

log p(oce | rel) ~ log p(oce A rel) _ p(rel | occ)
p(oce) p(rel) - p(oce) p(rel)

has connections to information theory. Often referred to as mutual information, it
has frequently been used as a measure of variable dependence in information retrieval.
It has been used in attempts to include co-occurrence data in models with weaker
independence assumptions [111]; for the purposes of corpus-specific stemming [24];
and for term selection in query expansion based on relevance feedback [50]. It is also
often used as a measure of variable dependence in computational linguistics [15].

In a very important sense, it can be taken as a measure of the information about
one event provided by the occurrence of another [31]. In our context, it can be taken
as a measure of the information about relevance provided by the occurrence of a query
term. In what follows, we shall adopt the notation,

MI(occ, rel)
for this quantity, which we believe to be an object worthy of attention as a measure

of term value in IR research. It will be the main focus in the analysis that follows.

4.3 Mutual Information and :df

In this section, we show how the general relationship observed between

l
MI(oce, rel) = log ploce | rel)
p(occ)

and df can be used to explain why inverse document frequency should be expected

to produce good retrieval performance when used for term weighting.
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4.3.1 Awoe

Our interest is in modeling the weight of evidence in favor of relevance provided
by the occurrence or non-occurrence of a query term. Presumably, the occurrence of
a query term provides positive evidence and its absence is negative evidence. If we
will assign a non-zero score only to those terms that appear in a document, this score
should be,

woe(rel : occ) — woe(rel : o¢c)

This quantity, which we shall denote by Awoe, measures how much more evidence
we have in favor of relevance when the term occurs in a document than we do when
it is absent. Based on the formal definition of weight of evidence ( 3.1), together with

that for mutual information, Awoe can be expressed as:

Awoe = woe(rel : occ) — woe(rel : o¢c)
_ poglocelrel) . ploce ] rel)
p(oce | rel) p(oce | rel)

= logp(occ | rel) —logp(oee | rel) — logp(oce | rel) + log p(oce | rel)

= Ml(oce, rel) + logp(occ) (4.3)

—logp(oce | rel) — log p(oce | rel) + log p(oce | rel)

4.3.2 Awoe ~ MI(occ,rel)

We will now argue that:

1) logp(oce | rel) =~ logp(occ)

2) —logp(oce | rel) is not too big;
3) logp(oce | rel) ~ 0

This done, we will be able to reduce eq. 4.3 to the following approximation for Awoe:

Awoe = MI(oce, rel)
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This approximation, together with assumptions concerning the form of MI(oce, rel)
based on our data analysis, will lead us to an understanding of idf weighting.
Although every effort has been made to maintain an appropriate level of rigor in
what follows, the arguments below do not attempt to be precise. We speak in terms
of “not too large”, “approximately the same”, “not much greater than”. The goal is
to explain why, based on our analysis, idf in the form of —log O(occ) can, in general,
be expected to perform well. We do not conclude that #dfis optimal as a term weight;
nor do we make any attempt at a precise estimate of how far from optimal it may
be. Figure 4.6, and similar plots for other collections that have been studied, lead
us to expect values of MI(occ, rel) in the approximate range of 0.5 to 2.5 for the vast
majority of query terms. This should be kept in mind. Quantities of the order of
magnitude of 0.1 may then be considered negligible when the goal is to show that

Awoe is roughly approximated by MI(occ, rel).

1) log p(occ | rel) ~ log p(occ) :  Throughout the range of document frequencies
with which we are concerned, log p(occ | rel) cannot be very different from log p(occ).
ploce Arel)  p(oce) — p(oce A rel)

plocc | rel) = el = 1= plrel) (4.4)

and, since p(rel) > p(occ A rel) > 0,

p(oce) — p(rel)
1 —p(rel)

< ploce | rel) < 2%

— 1—p(rel) (4:5)

We assume p(rel) is small. If the probability of occurrence is fairly large relative
to the probability of relevance, the range given in eq. 4.5 will be a small interval
about p(occ), the size of which will be small relative to p(occ). Hence, the order of
magnitude of p(occ | rel) will be the same as that of p(occ) and logp(oce | rel) will

be close to logp(occ).
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For example, if p(occ) = .01 with p(rel) = .001, then,

__ 01
= 009009 < p(oce | rel) < T = 010010 (4.6)

.01 —.001
1-.001

giving —2.0453 < log p(occ | rel) < —1.9996, whereas log p(occ) = —2.00.
When p(occ) is not large relative to p(rel), we can also conclude that log p(occ | rel) &
log p(occ), but the reasoning requires knowledge of the relationship between p(oce | rel)

and p(occ). For small p(rel),

p(occ A rel)

el p(oce A rel)

ploce | rel) =
= p(occ) — p(oce N rel)
= p(oce) — p(oce | rel) - p(rel)

= p(occ)-(l— p(rel)> (4.7)

p(occ | rel)
p(occ)

For a probability of occurrence greater than 1 in 10,000, the data indicate (Figure 4.5)
that ’% can be expected to be no more than 300. Given typical values for p(rel),

(1-— ’W -p(rel)) can still be expected to be less than one half of the value of

p(occ), and log,, p(oce | rel) can be expected to be not too different from log,, p(occ).

Since there is reason to believe that the growth of p(";(c()# will continue to in-
crease as document frequency decreases, concluding that p(occ | rel) ~ p(occ) may be
problematic for query terms whose probability of occurrence is much less than .0001.
On the other hand, query terms of this sort appear to be few and far between. Even
when such a rare query term appears, its scarcity in the collection as a whole implies
that its precise term weight is unlikely to have a major impact on overall retrieval
performance.

The derivation of the combination match weighting formula (eq. 2.4) in [23] also

depends on p(occ | rel) being well approximated by p(occ). We emphasize, however,
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that for low frequency query terms, the argument given here depends heavily on the

occ | rel)

value of & (oce) Telative to p(rel). In theory, at least, p(occ | rel) could be an

arbitrarily small fraction of p(occ). Equivalently, ’% - p(rel) = ’% could
be arbitrarily close to 1, and so, p(occ | rel) in eq. 4.7 could be an arbitrarily small
fraction of p(occ). If this were the case, log O(occ|rel) would then be very different

occ | rel)

from log O(occ). Knowledge of the behavior of X o(oce) ~ SUPPOItS & conclusion,
p(occ | rel) ~ p(oce)

which cannot be rigorously maintained in its absence.

2) —log p(occ | rel) is not too big : Though it may not be negligible, the quan-
tity, —logp(occ | rel) cannot be too big. The conditional probability, p(oce | rel),
is simply 1 — p(occ | rel), and we see in Figure 4.2 that p(occ | rel) is below .9,
even for the most frequent pseudo-term. It follows that p(occ | rel) > .1, and hence
—logp(oce | rel) < 1.

A component of the derived weight that approaches 1.0 is not insignificant. We
believe that an ¢df formulation that takes this factor into consideration should perform
better than one that does not. Nonetheless, a value close to 1 for —log p(occ | rel) is
achieved by only a small percentage of query terms — those which appear in more than
25% of all documents. Also, log p(oce | rel) falls off rapidly with decreasing document
frequency. For the AP data, it is already less than 0.5 for the second bin of 20 data
points. In and of itself, the effect of ignoring the contribution of log p(oce | rel) should
not overwhelm the overall effect of the more important component, MI(occ, rel), of

Awoe given in eq. 4.3.

3) log p(occ | rel) ~ 0 : Presumably, a query term is more likely to occur in
the relevant documents than in the collection as a whole. Hence, it is more likely
not to be present in the non-relevant documents than in a random document of the

entire collection. That is, p(oce | rel) > p(oee). In this study, p(oce) is found to be
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greater than .7 for all pseudo-terms. Equivalently, 0 > log p(oce | rel) > —0.15. This

component too, has a minimal effect on Awoe.

4.3.3 idf approximates Awoe
There is little question about our ability to infer from the available data that
MI(oce, rel) increases with decreasing document frequency. To a first order approxi-

mation, we can say that this increase is roughly linear with respect to log O(occ).

Awoe = MI(oce, rel) = ko — k1 log O(occ) (4.8)

But, ko can be ignored. By casual inspection of Figure 4.6, we see that any reason-

occ | rel)

able linear approximation of the plot of MI(occ, rel) = log® (p(occ) as a function of

log O(occ) will have an intercept value relatively close to 0. We are now left with:

Awoe = —kjlogO(occ) = ki(—1logO(oce)) (4.9)

Once the constant k9 has been eliminated, the remaining constant, k;, becomes irrel-
evant, for the purposes of ranking. It will affect only the scale of the scores obtained,
having no affect on the ranking order itself. And so we conclude that the idf formu-

lation,
idf = —log O(occ) = log ¥ (4.10)

should produce good retrieval performance.

4.4 TImproving on IDF
We have shown that by accepting some empirically motivated assumptions con-

cerning query terms, the quantity Awoe can be approximated by MI(occ, rel). By
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further assuming that MI(oce, rel) is roughly linear in log O(occ), we showed that tra-
ditional idf formulations should perform well. We also argued in Section 4.1, however,
that both theoretical and empirical considerations give reason to assume a flattening
of MI(oce, rel) at both ends of the practical spectrum of document frequencies.

If we can assume that the “true” form of the function that maps log O(occ) to
MI(occ, rel) involves flattening at the extremes, the map to Awoe will exhibit similar
shape. If we accept the hypothesis that the plot of Figure 4.6 is representative of
the general behavior of query terms for the types of queries and collections we study,
we should expect improved retrieval performance from a term weighting formula that
accounts for the observed flattening.

To test this prediction, we compared retrieval performance of two versions of the
INQUERY IR system [11] on each of the ad-hoc tasks for TREC 1 through TREC 6
[53]. Queries were formed by taking all words from both the title and description.
After the union of the words in the title and description fields was produced, the

following processing steps were applied:

stopword removal: stopwords taken from a fixed list of non-content bearing En-

glish words (articles, prepositions, etc.) were removed.

elimination of duplicates: any term appearing more than once in the title ap-

pears just once in the query.

stemming: all words were converted to a canonical form based on the k-stem algo-

rithm [72].

The baseline system used pure idf term weighting with idf = —log O(occ)*. The
test system used a flattened version of idf. For this version, weights were kept at 0 for

all values of —log O(occ) below 1.0; increased at the same rate as —log O(occ) from

4Tests with idf = — log p(occ) were also run. For all test sets, performance differences were small,
with —log O(occ) outperforming — log p(oce) on all 6 of the test sets.
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—log O(occ) = 1.0 to —log O(occ) = 3.0; and maintained at a constant value for all

terms for which —log O(occ) exceeded 3.0.

avg. prec.
baseline test | % diff -/ + sign wilcoxon
TREC 1 0.1216 0.1312 7.88 18/32 | 0.0325 0.0201

TREC 2 0.0693 0.1021 | 47.36 10/40 | 0.0000 0.0000
TREC 3 0.0676 0.1257 | 86.03 4/46 | 0.0000 0.0000
TREC 4 0.0680 0.1002 | 47.42 15/34 | 0.0047 0.0006
TREC 5 0.0466 0.0688 | 47.63 17/32 | 0.0222 0.0006
TREC 6 0.1185 0.1422 | 20.01 12/37 | 0.0002 0.0000

Table 4.1. 3-piece Piecewise-linear vs. Linear Versions of idf

The results of these tests are summarized in Table 4.1. The test version outper-
forms the baseline system in terms of average precision, on all six query sets, by 20%
or more on five of the six. The test system also outperforms the baseline system
on a majority of queries on each of the six query sets. The “-/+” column gives the
number of queries for which the test system performed below/above baseline. The
column labeled “sign” gives the results of the sign test for each query set. Each value
indicates the probability of the test version outperforming the baseline on as many
of the queries as it did were each system equally likely to outperform the other. The
column labeled “wilcoxon” gives the analogous probability according to the wilcoxon
test, taking into account the size of the differences in average precision for each of
the queries. The test results showed statistically significant improvement at the 5%
level on all test sets according to both statistical measures. Improvement at the .1%
level was observed in three of the six runs according to the sign test and five of the
six according to the wilcoxon. Improvement was found at all (11) levels of recall on
TREC’s 2 through 5; all but the 50% recall level on TREC 1 and all but the 80%
recall level on TREC 6.
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4.5 Discussion

We have shown strong empirical support for concluding that MI(occ, rel) as a
function of logO(occ) is roughly linear, with a slope of the order of magnitude of
%; and that this can be used to explain why inverse document frequency has been
found to be so useful for term weighting. Previous probabilistic explanations have
started from plausible a priori assumptions, in particular assumptions concerning the
probability of a query term occurring in a relevant document. In this section, we
review these earlier efforts in light of the results reported here.

Central to the combination match model of Croft and Harper is the assumption
of constant p(occ | rel) for all terms. In the absence of any pertinent prior knowledge
concerning these terms, this is a quite reasonable assumption; essentially an appli-
cation of the Laplacian “law of insufficient reason”. However, with the availability
of large numbers of conscientiously formulated queries, systematically judged against
diverse, voluminous document collections, pertinent information becomes accessible.
Inspection of these data supplies us with sufficient reason for assigning unequal prob-
abilities for p(occ | rel) based on a term’s document frequency.

The probabilities suggested by the data vary over a wide range. The value of
the first term, log O(occ|rel), in eq. 2.3, ranges from approximately 0.0 to 2.0. This
value, which is treated as constant in the model, varies over almost half the range of
the second term, log O(occ|rel), which stays between 0.0 and 4.0 for virtually all of
the terms of our study. Also, the second term, log O(occ|rel), cannot be presumed to
be approximated by log O(occ), a priori. This puts the theoretical foundation of the
combination match model in question.

The Robertson/Walker adjustment of the combination match formula allows for
an increase in p(occ | rel) that grows linearly with p(occ). This is intuitively appeal-
ing at the same time that it resolves an anomaly in the combination match model.

What’s more, the data confirm that p(occ | rel) does rise monotonically with p(occ).
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However, the increase is not at all linear, at least not for the greater portion of the
document frequency range. Also, the data indicate that the positive value that should
be assumed for p(occ | rel) for the lowest frequency terms must be very very small.
Unfortunately they find themselves restricted to values above 0.5. Figure 4.2 shows
that only fairly high frequency terms can be expected to appear in as many as half
of the relevant documents.

The term precision model comes closest to being validated by the empirical data.
The overall shape of the curve for p(occ | rel) predicted by the model comes closest to
approximating the plot shown in Figure 4.2. But, the 2-piece piecewise-linear function
of the term precision model derives from the assumption that the query term of a given
document frequency will have a probability, p(occ | rel), that is a linear combination
of the best possible query term and a randomly chosen query term at that document
frequency. Again, a quite reasonable assumption in the absence of any pertinent
knowledge, appears to be contradicted by the data.

All of these models have resulted from what can be considered a priori reasoning.
While the conceptualization involved is insightful and to a large degree forced on ear-
lier researchers due to the paucity of hard data, the availability of extensive retrieval
data is, we believe, an invaluable asset which should not be ignored. This extends as
well to research that seeks to apply statistical techniques such as regression analysis
to the IR task. This research does have a more empirical flavor. Data is used so
that parameters can be estimated; that is to say, so that a member of a family of
functions can be chosen. The a priori aspect, though more subtle, is still present,
however. From which family of functions, is the “best” member to be selected? There
is typically little reason, a priori, to believe that the relationship of interest is well
modeled by, for example, a polynomial function; or that the log-odds of some event
is linear as a function of the proposed “explanatory” variables. Exploratory analysis

can be part of an initial phase, during which the researcher becomes acquainted with
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data in order to determine what would be a reasonable family of functions on which

to base regression techniques.

4.6 Summary

In this chapter we have analyzed the discriminatory power of a term as a function
of its frequency of occurrence in the collection. We have seen how an approach based
on exploratory data analysis can lead to the use of —log% as a feature for term
weighting. Through the use of EDA we recapitulate advances originally made in
information retrieval due to intuition; in this case, the intuition of Sparck Jones in
the early seventies [103]. The EDA approach, however, has led to a more precise
formulation of the way document frequency can be utilized for term weighting.

At this stage we have only studied the use of document frequency in isolation.
Two point should be noted. First, it has been implicitly accepted that term weights
based on document frequency should be added across query terms appearing in a
document in order to use weights of evidence for retrieval ranking. Second, modern
IR systems make more sophisticated use of available sources of evidence.

These two points are addressed in the following two chapters. First, in Chapter 5,
we present a theoretical foundation for probabilistic modeling based on the Maximum
Entropy Principle. We derive a formulation for combining different sources of evi-
dence. Based on this foundation, we proceed, in Chapter 6, to expand the techniques
introduced here to sources of evidence traditionally used in information retrieval that

have not yet been considered.
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CHAPTER 5

THE MAXIMUM ENTROPY PRINCIPLE AS A
FOUNDATION FOR THE DERIVATION OF
PROBABILISTIC RETRIEVAL MODELS

Tout le monde y croit (la lois des erreurs) par ce que les
mathématciens s’imaginent que c’est un fait d’observation,
et les observateurs que c’est un théoréme de mathématiques.

Henri Poincaré in the preface to Thermodynamique, quoted
by Mark Kac in Enigmas of Chance: An Autobiography [67,
p. 48]

In the experimentation reported in the previous chapter, it was implicitly assumed
that the weights associated with the query terms should be added in order to produce
the ranking status value for document retrieval. Additivity follows from independence
assumptions, which have been made in one form or another in much of the work on
probabilistic retrieval models. In particular, the Binary Independence and Combi-
nation Match models mentioned in the section on related work have been based on
these assumptions. In [47], Greiff and Ponte have shown that the independence as-
sumptions of both of these models, as well as the assumption of equal probability of
occurrence in relevant documents in the Combination Match model, can be derived
from what has come to be known as the Maximum Entropy Principle.

In this chapter, we begin with a summary of the principal arguments given in [47].
We then go on to extend this work by proving a theorem that gives general condi-
tions from which the additivity of weights of evidence follows. This theorem, which

generalizes arguments used in [47] with respect to both the Binary Independence and
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Combination Match models will be used in the chapter following this one to support
the addition of weights of evidence in the log-odds model developed there.

In order to rank documents in response to a query, a probabilistic system will
calculate a probability of relevance for each document. This calculation will be based
on some joint probability distribution over the relevance variable and variables cor-
responding to the evidence used by the system. The system, however, will not have
full knowledge of such a distribution. In the Binary Independence and Combination
Match models, a probability distribution is chosen by making strong assumptions con-
cerning the distribution, which, together with parameters estimated from the data,
allows the desired probability of relevance to be calculated. We will show how these
formal models can be derived from the Maximum Entropy Principle, which coun-
sels us to select the probability distribution with maximum entropy of all those that
conform to an accepted set of constraints.

We adopt a probabilistic attitude with respect to information retrieval in this
chapter, where probability of relevance shall be understood as the system’s judgment
that a document will be relevant based on all information it has available to it. These
probabilities will have to be determined in the absence of total knowledge concern-
ing all aspects of the distribution. In order to rank a document according to the
probability that it will be judged relevant to the query, an IR system must adopt a
probability distribution of relevance conditioned on the evidence it considers. Avail-
able knowledge will constrain this distribution, but will not leave it fully determined.
The Maximum Entropy Principle provides a reasonable methodology for fully deter-
mining the otherwise underconstrained distribution.

In the next section, we introduce the Maximum Entropy Principle in the context
of a Bayesian view of probabilities. We go on to give a brief review of the Binary

Independence Model (BIm) developed by Robertson and Sparck Jones. We also review
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the Croft and Harper adaptation of the basic BiM idea to applications for which no
relevance judgments are presumed to be available.

In Section 5.3, we show how the essence of the Binary Independence Model can
be derived from the Maximum Entropy Principle. With the development of the
model established, we discuss the assumptions of the Binary Independence Model,
in the light of the maximum entropy approach. In particular, we show that linked
dependence, which is assumed in the Binary Independence Model is, in a sense, a
consequence of the maximum entropy (MAXENT) model in that it is a characteristic
of the resulting probability distribution. In section 5.4 we go on to show how
the work of Croft and Harper can also be reproduced from the maximum entropy
standpoint. Again the approach taken by the original authors is compared to that
adopted with MAXENT.

In Section 5.5, we discuss the two models that have been developed with the
MAXENT approach. More specifically, we discuss the differences between making
assumptions concerning the probabilities of events and constraining the probability
distribution. We will review how constraints have been chosen to reflect prior informa-
tion in the models and, generally, what kinds of prior information can be incorporated

in a MAXENT distribution.

5.1 Bayesian Reasoning and Maximum Entropy

This section begins with a review of Bayesian reasoning. Based on a Bayesian
outlook, the Maximum Entropy Principle (MEP) is defined. In Section 5.1.3, we
give an example of how thinking in terms of the MEP can be used to solve a problem
analogous to that facing the researcher in information retrieval. The section concludes
with a review of previous work in the area of information retrieval pertaining to the
application of the Maximum Entropy Principle, and the motivation behind adopting

it in this thesis.
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5.1.1 Bayesian Reasoning

A clear distinction is made in Statistics with regard to those who consider them-
selves frequentists and others who tend to be known as Bayesians. Frequentists view
a probability as a real characteristic of a physically reproducible experimental setup.
A clear example of this would be the repeated throwing of a coin or pair of dice.
Another would be the random sampling of a physically existing population such as
that which is done for the purposes of medical testing or political polling.

Bayesians can be distinguished in two important ways. First is a far greater
tendency to call on Bayes law:

E|H,K) - p(H|K)

_
PUHIE ) = = B

(5.1)

when reasoning probabilistically. The second is that Bayesians have a wider view of
what a probability is. For a Bayesian, a probability is interpreted as the plausibility
of a proposition. While these propositions can refer to repeatable events, such as
coin tosses, they may also refer to propositions that are not easily or naturally given
a frequentist interpretation. Propositions referring, for example, to whether Albert
Gore will be elected president of the United States in the year 2000, or whether Lizzy
Borden was actually guilty of what she was accused are anathema to the frequentist,
but considered grist for the probabilistic mill by the Bayesian.

These two facets of the Bayesian are not unrelated. Often, H is a statistical hy-
pothesis and FE is data that has been collected. K is included to emphasize that,
for the Bayesian, all probabilities are conditioned on the background knowledge pos-
sessed by the person (or machine) making the probability assessment, as well as other
information such as the data from an experiment. In such cases, p(E|H, K) is the like-
lihood of seeing the evidence we have observed given that the hypothesis is true, and
p(H|K) is the prior probability that H is true before any data have been observed.

p(F|K) is the probability assigned to seeing the evidence without any knowledge
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of which of the possible hypotheses may be true. In general, it may be calculated
by summing the product of the likelihoods and prior probabilities over all possible

hypotheses:

p(E=e| K) = ip(E:e/\H:h”K)

i=1

= ip(E=€|H=hi,K)-p(H=hi|K) (5.2)

where e is the observed evidence, each h; is one of the possible hypotheses, and the
summation is over all possible hypotheses. Equivalently, p(E|K) can be viewed as
a normalization constant chosen to make the sum of probabilities over all possible
hypotheses conditioned on the evidence, e, sum to 1.

For a frequentist, this type of reasoning is not considered valid unless the proba-
bility of a hypothesis can be given a frequency interpretation. Often it is not possible,
or at least it is very unnatural, to conceive of the hypothesis as a random event. For
the Bayesian who views the probability of a hypothesis as a measure of its plausibility,
this does not present a problem. We see then that the two aspects of the Bayesian
outlook, the utilization of Bayes law and the interpretation of the meaning of a prob-
ability, are intimately intertwined. The reader is referred to [32, 49] for more in depth

discussions of these issues.

5.1.2 The Maximum Entropy Principle

At the end of the 19th century, primarily as a result of the work of Maxwell, Boltz-
mann and Gibbs [63], the area of Statistical Mechanics was born. As a consequence,
the entropy of a physical system became associated with a probability distribution of
the phase space of possible atomic configurations.

In 1948, Claude Shannon published The Mathematical Theory of Communication
and established the foundations of Information Theory. From three intuitively ap-

pealing desiderata, Shannon developed a formal expression for a measure of “how
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much ‘choice’ is involved in the selection of an event or of how uncertain we are of
the outcome” [97]. He showed that for a probability distribution, p = (p1,--.,Pk),

over k possible elementary events, the quantity:

k

H(p) = —z; Prlog pi (5.3)
is, within a constant factor, the unique quantity in accord with his assumptions®.
Since the form of the expression is recognized as the expression given for the physical
property of entropy in formulations of Statistical Mechanics he calls the quantity
entropy and adopts the symbol H, recalling Boltzmann’s H-theorem.

In 1957, Edwin Jaynes “converted Shannon’s measure to a powerful instrument for
the generation of statistical hypotheses and ... applied it as a tool in statistical infer-
ence” [106]. In a pair of seminal articles, [60, 61], Jaynes demonstrates that by viewing
it as a problem of statistical inference, Statistical Mechanics can be derived without
depending on “additional assumptions not contained in the laws of mechanics” [60].
His method of inference is based on what has come to be known as the Mazimum
Entropy Principle. In his own words, this principle states that the maximum entropy
estimate is: “the least biased estimate possible on the given information; i.e. it is
maximally noncommittal with regard to missing information” [60, pg. 620]. This
maximum entropy estimate is obtained by determining that probability distribution
associated with a random variable, A, over a discrete space (a1, ..., a,) which has the
greatest entropy subject to constraints on the expectations of a given set of functions
of the variable. That is, the distribution that maximizes eq. 5.3 subject to a set of

constraints:

! This constant factor can be identified with the base chosen for the logarithm in the expression
of entropy. Consistent with the rest of this document all uses of the log symbol in this chapter will
refer to base 10.
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E(gl(A)) = zi:Pl ‘gl(a'i) = G

E(gm(A)) = ipm : gm(ai) = Gn

These constraints embody the knowledge that we wish to incorporate in our distri-

bution of the probability over the possible elementary events.

5.1.3 The Brandeis Dice Problem

The example given here is an adaptation of the “Brandeis Dice Problem” originally
presented as an illustration of the maximum entropy approach in [62].

Suppose that we are given a large number of dice and the task of ranking them.
Once the dice are ordered, each will be thrown one time, and our goal is to get as
large a number of 4’s as we can. Suppose, furthermore, that experiments have been
run on the dice. Each die has been thrown a large number of times, but the only
knowledge we have of these experiments is the average value produced by each die.
Following the Probability Ranking Principle [88], we decide to rank the dice by the
probability of their producing 4’s. How are we to arrive at this probability?

Of some things we feel sure. A die whose average is very close to either 1 or 6
should rank very low. We know that a die that produced an average close to 1 must
have produced almost all 1’s and hence could have produced only a few 4’s at best.
The frequency of 4’s was low in the experimental trials, and common sense dictates
assigning a very low probability to its producing 4 the next time it is thrown. Similarly
for an average close to 6. Somehow common sense also tells us that dice that produce
sample means above 3.5 should be ranked higher than those that produced sample
means below 3.5. A die that produced an average greater than 3.5 has exhibited a
tendency toward the higher numbers, whereas a die that produced an average below

3.5 has exhibited a tendency toward the lower numbers. It is reasonable, then, to
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assign a higher probability of producing a 4 to a die that has displayed an affinity for
higher numbers. But, how are we to compare, for example, a die with an average of
3.7 against a die with an average of 4.27

There are a number of formulations that might be employed here which are reason-
able and are analogous, in fact, to approaches taken in a variety of real applications.
For example, we might choose the probability distribution with maximum variance.
This would result in all of the probability mass placed on the 1 and the 6 in such a
way that mean, p, was respected. That is,

p=<pi=%£ pp=0,p;=0,ps=0, p;=0, pg = £+ >
Another approach that has been used in statistics is to choose the distribution that
minimizes the sum of the squares of the probabilities. Unfortunately, this can lead to
negative values for some of the probabilities in some cases.

The maximum entropy solution to this problem is to assign to each die the prob-
ability distribution over the six possible numbers that has maximum entropy. From
this distribution, we can determine the probability of each die coming up 4, and then
rank the dice based on these probabilities. The MAXENT solution has the following

attractive properties:

e The probability associated with each die accords with the data in that, under
this distribution, the expectation of the number to appear on a given toss is

equal to the experimental average.

e Of all distributions that conform with the data in this way, it is that which has
the maximum uncertainty associated with it, in the sense of uncertainty that
follows from the Shannon desiderata. The probability is “spread out” as much
as possible in accord with the constraints that have been imposed. In this way,
it may be said to include all the knowledge available and nothing more. In the

words of Jaynes, it is the least biased distribution possible.
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e The method is logically consistent. We are guaranteed that anomalies (negative

probabilities, for example) will not occur if we follow the MAXENT procedure.

e The results accord with common sense. For example, the probability distribu-

tion for a die with an average close to 1 will be highly peaked around 1.

The probability distribution associated with a die whose average is 4.0 is given by
Golan, Judge and Miller [40, Table 2.3.1, pg. 14] as
p =< 0.103,0.123,0.146,0.174,0.207,0.247 >
The expected value for this distribution is 4.0, and of those with expectation of 4.0,
the probability is the most evenly distributed. An average of 5.0 corresponds to a
distribution of
p =< 0.021,0.038,0.072,0.136, 0.255,0.478 >
which is even more skewed toward higher numbers, as we would expect. An average
of 3.5 corresponds to
p =< 0.167,0.167,0.167,0.167,0.167,0.167 >
which is as spread out as a distribution over six possibilities can be, and is the same
probability distribution we associate with a die about which we have no information.
It is interesting to note here that the MAXENT approach allows such a die (one for
which the experimental average was missing for some reason) to be included in the
ranking along with the rest. Values for the probability of throwing a 4, associated
with dice with averages of 2.0, 3.0, 3.5, 4.0, and 5.0 are, respectively, 0.072, 0.146,
0.167, 0.174 and 0.136.
We have modified The Brandeis Dice Problem so that the example is suggestive
of the problem faced in the design of information retrieval systems. It is now time to

address directly the issue of how the MAXENT approach pertains to IR modeling.
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5.1.4 The MAXENT Approach and Probabilistic IR Modeling

Since the publication of Jaynes’ articles, the Maximum Entropy Principle has been
applied to practical problems in diverse areas [29], including image reconstruction [48],
spectral analysis [8], reliability engineering [105] and economics [40].

In two papers in the early ’80s, Cooper and Huizinga [22] and Cooper [16], make
a strong case for applying the maximum entropy approach to the problems of infor-
mation retrieval. Cooper points out that, “A common criticism of most probabilistic
approaches to information retrieval system design is that they involve the use of unre-
alistic simplifying assumptions concerning statistical independence” [16]. Cooper and
Huizinga state that one might “forgive serious oversimplifications in particular cases
if the assumptions were in some sense correct on the average, or if they constituted
a best guess in some cogent statistical sense, but no convincing arguments have been
advanced showing that the assumptions are supportable even in this weak sense®”
(22, pg. 101].

In these papers, firm first steps are taken in the direction of applying maximum
entropy to information retrieval. The maximum entropy approach is used to incorpo-
rate the idea of term precision weighting [95] in a probabilistic context. They show
how probability-of-relevance computations based on MAXENT result in an expressive
request language combining the capabilities of both Boolean and “weighted-request”
retrieval systems.

In [68, 69], Kantor and Lee extend the analysis of the Maximum Entropy Princi-
ple in the context of information retrieval. In [73] they explore the use of maximum
entropy to resolve user estimates of conditional relevance probabilities that may be
inconsistent with available term occurrence data. Very recently, [70], they have con-

ducted experiments to test the performance of the MEP as a method of document

2italics added
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retrieval. While they outperform two simpler methods on small collections, they
report discouraging results on large document sets and conclude that the MEP, in
general, does not appear to present advantages over more “naive” methods.

In contrast to the work of Kantor and Lee in [70], our interest is not in the devel-
opment of an alternative retrieval algorithm based on the MEP. Our intent is rather
to consider the conceptual basis for traditional approaches to probabilistic retrieval.
The goal in what follows will be to analyze classical probabilistic IR models in light
of the Maximum Entropy Principle. The primary objectives are to: 1) show that
traditional approaches to probabilistic retrieval modeling can be reproduced using
the MAXENT methodology; and 2) compare and contrast the classical and MAXENT

approaches. The reasons for undertaking this study is our belief that:

e The MAXENT approach is, in a sense, more basic than previous approaches.
We believe that maximum entropy allows for the development of probabilistic
models from conceptually simpler, more fundamental principles. We recognize
that opinions will differ as to what is to be considered conceptually simpler
and more fundamental. We shall try to avoid taking a dogmatic stand in what
follows and stay to our goal of presenting an alternative view and the reasons

we believe this view to be worthy of consideration.

e The MAXENT approach adopts a different philosophical attitude with respect
to the role of probability theory, and the meaning of “probability”. This dif-
ference we believe to be pertinent when the probability calculus is applied to
the problem of information retrieval. We find this distinction to be more than
an abstract issue of philosophical interpretation, but one with practical reper-
cussions that can affect how the IR problem is viewed; the types of solutions
researchers are predisposed to consider; the methodologies and tools brought
to bear; the formulation of proposed solutions; and ultimately the design of

retrieval systems.
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e Maximum entropy offers a formal, mathematically consistent technique for the
combination of evidence. The justification of this technique, felt to be com-
pelling by some, less so by others, can be said, at the least, to be reasonable.
In cases of sufficient simplicity, for which common sense suggests a solution,

MAXENT is found to accord with common sense.

e Maximum entropy can be viewed as a methodology of research. The researcher,
intent on modeling some aspect of nature stochastically, chooses an elementary
event space as best she can based on her knowledge of the phenomenon under
study. She further constrains the probability distribution over this space using
whatever information she has available. She then may mathematically derive
the form of the maximum entropy distribution. If this distribution is satisfac-
tory, all is well, and she is done. The results, however, may not be acceptable.
The derived distribution may not predict something known to be true; in Sta-
tistical Mechanics, for example. Or, an application utilizing the distribution,
for image reconstruction perhaps, may produce results inferior to what we have
reason to suspect is possible. If so, this is where, according to Jaynes, the
maximum entropy approach can be most valuable. Jaynes recounts how clas-
sical statistical mechanical theory was unable to predict some thermodynamic
properties such as heat capacities. This state of affairs forced the search for
additional constraints. The nature of this constraint lay in the discreteness of
possible energy states. Jaynes asserts as “historical fact that the first claims
indicating the need for the quantum theory ...were uncovered by a seeming

unsuccessful application of the principle of maximum entropy” [64, p. 1125].

If the distribution is not living up to expectations, then something known about
the problem has not been taken into account and MAXENT points a finger in the
direction that needs to be explored. There may be a way of using this knowledge

to further constrain the distribution. If this extra piece of knowledge can be
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identified, a way of incorporating the knowledge in the form of one or more
new constraints can be designed and the process may continue. If no more
constraints can be found and the results are still not adequate, the researcher
must begin to question the specification of the elementary event space over
which the probability distribution is defined. After serious contemplation, the
space may, in retrospect, be thought not to be the best. The researcher may
want to modify the space so as to better conform to her prior knowledge with

respect to the nature of her problem.

In this thesis, the following view of a probabilistic retrieval system is adopted.
The ranking score of a document is the system’s probability that the document in
question will be found to be relevant to a given query. In arriving at this probability,
the system brings to bear all general knowledge it has concerning the relevance of
documents to queries. This is combined with knowledge of the characteristics of the
particular document collection being searched and the specific query/document pair
currently under scrutiny. In the case of the Binary Independence Model, knowledge
gleaned from the user in the process of relevance feedback is used as well.

For a given query, the system will arrive at a joint probability distribution over
the elementary event space {2 = X x R, where X is a vector of document attributes
and R={0, 1} corresponds to judgments of relevance. Knowledge built into the sys-
tem in combination with knowledge of the statistical characteristics of the document
collection are used to constrain the probability distributions that will be considered.
Of the set of probability distributions satisfying these constraints, the unique distri-
bution that maximizes the entropy will be chosen. The distribution can then be used

to assign the system’s probability of relevance.
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5.2 Binary Independence and Combination Match Models
This section presents the mathematical foundations of both the Binary Indepen-
dence and Combination Match models. In the following two sections, we will see how

the same models can be derived from the Maximum Entropy Principle.

5.2.1 Binary Independence Model
The Binary Independence Model (BIM), developed by Robertson and Sparck Jones
(89, 111], adopts a probabilistic approach to the development of a ranking formula. It
is designed to be applicable in an environment in which the relevance of some of the
documents will have been judged prior to the application of the BiM ranking formula.
In the Binary Independence Model, the focus is on the odds of relevance, con-
ditioned on the occurrence pattern of the query terms that is observed in a given

document:

p(rel|xy, ..., zs)

O(rel|zy, ..., x; —
(retla, %) p(rel|zy, ..., zs)

where (z1,...,z5) € {0,1}° are the values of (Xi,...,X;) corresponding to the oc-
currences of the s query terms in a given document. For the purposes of clarity of
exposition, el and rel shall be used interchangeably with 0 and 1, respectively, for
the values of the relevance variable, R. The application of Bayes law in both the

numerator and the denominator gives:

O(rel|lxy,...,z5) = p(ar, ..., zslrel) - p(r_d)/P(xl, , Ts)
p(xh ,-Ts|'f'€l) : p(?“e )/p(l‘l, 7_1‘5)
_ p(my, .., mslrel) - p(rel)
p(@1, ..., xlrel) - p(rel)
o i e (5.4
p(xla ,$S|T€l)
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The key assumption in the Binary Independence Model is that query term occurrences

are independent in both the relevant and non-relevant sets. Formally:

8

V(zi,...,zs) € {0,1}°: p(x1,...,xs|rel) = Ep(xm'el) (5.5)
p(@n, .. xyrel) = f[p(mﬂ@) (5.6)

From which, it immediately follows that:

8

p(z1,...,xs|rel) p(z;|rel)
V(z1,...,2s) € {0,1}°: 5.7
(21 %) €{0,1} p(z1, ..., x4rel) Hp (z;|rel) (57)

i=1

William Cooper later emphasized that equation eq. 5.7 is all that really needs to
be assumed [17]. This “linked dependence assumption” is weaker than the pair of
conditional independence assumptions, eq. 5.5 and eq. 5.6, and is a fairer statement
of the properties that need be assumed to hold, in order for the application of the
Binary Independence Model to be valid.

Under the linked dependence assumption the expression given in eq. 5.7, may be

substituted for the fraction in eq. 5.4, giving:

O(rel|zy,...,z5) = IM - O(rel)
z:lp(‘ri‘T.EZ)
- X, =
_ st | ppela=ore) o
= P(Xi = 1frel)  JZp(X; = Olrel)
_ =t p(X =0l | pp(Xi=0lrel)
zizlp(Xi - 1|’r6l) p(XZ = O‘Tel) i= lp(X - O‘TEZ)
Taking the log of both sides yields:
p(X; = 1|rel) p(X; = O|rel)
logO(rel|zy,...,zs) = 1 — 5.8
0og (7’6 |.T1, » L ) EZ: 0og p()(Z _ 1|7’6l) p(Xz — O‘Tel) ( )
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s p(X; = 0|rel)
+ E loe—————~ + logO(rel
°8 p(X; = 0|rel) 0g O(rel)

The Binary Independence Model supposes that relevance feedback information is
available and that the probabilities in eq. 5.8 can be estimated from the set of

documents judged relevant and non-relevant:

giving,

logO(rel|zy, ..., z5) = Z_ log% + ilog 1 :? + logO(rel)  (5.9)

The result is an additive formula for the calculation of the log-odds of relevance,
conditioned on the occurrence pattern of the query terms. The increase in the log-
odds in favor of a hypothesis, from log O(rel) to log O(rel|z, ..., z) in this case, can
be understood as “weight-of-evidence” as defined in Chapter 3. The formula allows
the weight of evidence in favor of relevance provided by the occurrence pattern of the
query terms, relative to that provided by a document in which no query terms are
present, to be calculated by adding:
&(1-§)
log ——= (5.10)
&i(1—&)
for each query term that appears in the document. From a practical standpoint, it is

important that the calculation involves only terms that appear in the document.

5.2.2 The Combination Match Model without Relevance Information
In 1979, Croft and Harper adapt the work of Robertson and Sparck Jones to

develop a probabilistic retrieval model that does not depend on the availability of
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relevance information. In the place of relevance feedback data they use collection
statistics to estimate the probability of a query term appearing in a non-relevant

document. Croft and Harper rewrite the sum of the BIM term weights, eq. 5.10, as:

og PLXi = TlreD(1 = p(X; = 1rel))
Zl X; =1|rel)(1 — p(X; = 1|rel))

z;=1
Z log p(X

z;=1 p

= 1|rel)

; = 1|rel) Zl g

z;=1 p = l‘rel)

—p(Xi = 1frel) (5.11)

They estimate the value of p(X; = 1|rel) as %, where n; is the number of documents
in which term ¢ appears and N is the total number of documents in the collection.
They also assume that the probability of appearing in a relevant document is the same
for all terms in the query, an assumption we will examine further later on. The first
term of eq. 5.11 is then simply a constant, C, times the number of query terms that
appear in the document. Viewing this constant as a weighting factor, they conclude

that the best ranking function is a weighted combination:

(5.12)

C - Zl + ZIOg

z;=1 z;=1

of a simple coordination match and a match using ¢df weights, which they call the
Combination Match Model (cMM). They determine the value for C' empirically, based
on the quality of the resulting retrieval performance. This formula suggests a prob-
abilistic justification of the use of inverse document frequency for the weighting of

terms, which was originally proposed by Karen Sparck Jones [103].

5.3 Basic BIM-MAXENT Model
In this section, we derive a retrieval model based on the Maximum Entropy Prin-
ciple. The model, which we shall refer to as BIM-MAXENT, will be constrained in such

a way as to be consistent with the assumptions made in the Binary Independence
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Model of Robertson and Sparck Jones. Our goal is to reproduce the ranking formula.
Subsequently, we will analyze the constraints placed on the probability distribution
in our maximum entropy model and compare them with the assumptions on which
the Binary Independence Model is based.

Our goal is to maximize the entropy of the probability distribution:

H(p) = —Zﬂp(w) log p(w) (5.13)
we

where each w is an elementary element of the event space {2 = X x R. Each elementary
event corresponds to the observation of a document with respect to a given query.
Associated with each observation are the random variables, Xi,..., X;, & R, where
s is the number of terms in the query. Each of these variables is binary, with X; =1
corresponding to the occurrence of term 7 in the document, and R = 1 corresponding
to the document being relevant to the query. Hence, the sum in eq. 5.13 is taken

over all possible (binary) assignments (z1,...,zs,r) to (X1,...,Xs, R).

5.3.1 Constraints
In the maximum entropy model, the probability distribution over these elementary

events will be constrained in three different ways:

e For each query term, the probability of its occurring in a document known not
to be relevant to the query will be constrained. These probabilities may be

constrained independently.

e For each query term, the probability of its occurring in a document known to
be relevant to the query will be constrained. As with the probabilities condi-
tioned on non-relevance, the probability associated with each query term may

be constrained independently of the rest.
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e The prior probability of relevance (i.e., the probability that an arbitrary doc-
ument is relevant before any of the term occurrence variables is observed) will

be constrained.

Formally these three constraints can be expressed as:

p(X;=1R=0) = & i=1,...,8 (5.14)
p(Xi=1R=1) = & i=1,...,s (5.15)
p(R=1) = p (5.16)

The constraints given in eq. 5.14 and eq. 5.15 are analogous to probabilities that,
in the Binary Independence Model, are estimated as a result of relevance feedback.
There, the values & and & are estimated from documents judged to be relevant and
non-relevant respectively.

No attempt is made to estimate the value p in the Binary Independence Model.
The prior odds of relevance does enter into the odds of relevance conditioned on the
term occurrence pattern given in eq. 5.8. However, it is not needed for the purposes
of ranking. We include constraint eq. 5.16 in order to fully mimic the log-odds of
relevance formula developed in the BiM model. This constraint has something of a
subordinate status in our model, also. If no reasonable value for it can be assigned,
it may be treated as a parameter in the resulting probability distribution. We will
see that, for the purposes of ranking, the parameter may be left undetermined.

In order to “implement” the constraints discussed above, we focus on certain
features of the elementary events. These features are random variables; functions

associating a real number with every element of w. The features we will need are:

1 f X;(w)=1ARw)=0 .
gilw) = i=1,...,s
0 otherwise
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9i(w) = i=1,...,s
0 otherwise

gr(w) = R(w)

The desired constraints on the probability distribution can be effected by constraining

the expectations of these features such that:

Elgi(w)] = Gi=&-(1—p) i=1,...,s (5.17)
Elgr(w)] = Gr=p (5.19)

In eq. 5.19 we constrain the probability p(R = 1) to p directly, since the expected
value of a binary variable is simply the probability that the variable equals 1, and in

eq. 5.17, we are effectively constraining p(X; = 1|R = 0) to &,.

5.3.2 Probability of an Arbitrary Event

To maximize the entropy subject to these constraints, we apply the Lagrange
method of undetermined multipliers [14]. Introducing the multipliers, Aj; Ay, ..., Ay;
A1, ..., As; and Ag, the problem of maximizing H in conformance with the constraints,

5.17 — 5.19, is transformed into the maximization of the unconstrained function:

H'(p) = — ;p w) log p(w) + Ag(1 = %p(w)) (5.20)
+ A [gp(w)él(w) —Gi+. A [gp(w)gs(w) —G,]
A [gp(w)gl(w) —Gil+.. A [gp(W)gs(w) -Gy
+ A [gp(w)gR(w) — Gg

where the term, Aj(1 — ¥p(w)), corresponds to the constraint, applicable to any

probability distribution, that the p(w) must sum to 1. Taking the partial derivative
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with respect to p(w), for a specific event, w, and setting the derivatives (one for each

w) equal to zero, we get:

p(w) — e[)\0+(Z:zlj\ifwi)-f-(zjzl)\ﬂ'l‘i)‘}-)qgr]

where \g is used for Aj — 1, r is 1 if w corresponds to a relevant document and
0 otherwise; 7 = (1 — r) is 1 if w corresponds to a non-relevant document; and for
1=1,...,s: x; is 1 when term 7 occurs in the document and 0 otherwise. It is not
difficult to prove (see, for example, Chapter 4 of [105]) that this solution will always

be, not only a maximum, but a global maximum for the entropy.

5.3.3 BIM-MAXENT Ranking Formula

As we saw in the introduction, the ranking formula developed for traditional
probabilistic systems is based on the calculation of the odds of relevance given the
occurrence pattern of the query terms. Based on the model developed in the previous
section, the conditional odds of relevance for the maximum entropy distribution can

be calculated as:

logO(rel|zy,...,x5) = (Z()‘Z - 5\1)$Z> + Ar

i=1

z;=1

This gives an expression for the log-odds of relevance in terms of the parameters,
M, 3 As; At,-.., As; and Ag. We will need to determine the values of these pa-
rameters in terms of the constraining factors, &, ..., & &, ..., &; and p, in order to

transform this ranking formula to one in terms of parameters that can be set from

the data that will be available at the time of retrieval.
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In [47] it is shown that for the maximum entropy solution:

O(X; =1rel) = € i=1,...,s (5.22)
O(X; = 1[rel) = e i=1,...,s (5.23)
s As
1_'_1)
Ofrel) = e[l Y 5.24
ret) = I (524
and the values for the Lagrange multipliers must be:
A = log & (5.25)
-
A = log S (5.26)
1—&
—&
Ar = lo -+ log 5.27
e Y (>21)

Since e is a factor in the probability of each elementary event and A\, plays no other
role, \g is nothing more than the log of the normalization constant which forces the
probabilities over elementary events to sum to 1.

Also, it is worth observing that Ag is simply the log-odds of relevance of a docu-

ment for which none of the query terms occurs:

0,...,0,rel
logO(rel|0,...,0) = logp(’ : ’E) (5.28)
p(0,...,0,rel)
elro+AR]
= log o (5.29)
= Ar (5.30)

Substituting the values of the parameters derived in eq. 5.25, 5.26, 5.27 for the

conditional log-odds of relevance given in eq. 5.21, we have:

+Zl +1gL (5.31)

logO(rel|zy, ..., x4 log
8 ( |1 Z 1_& i=1 1_51 p

and this is the ranking formula, eq. 5.9, of the Binary Independence Model.
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5.3.4 Discussion of the BIM-MAXENT Model

Of the distributions that conform to the constraints, that with maximum entropy
is the distribution of the Binary Independence Model. Two points are worthy of
further discussion. First, we have not assumed independence in any form. The linked
dependence condition, while not assumed, can however be shown to be a property
of the derived maximum entropy distribution. Also, we have included a constraint
on the prior probability of relevance. A value for this is not needed if the formula is
only to be used for ranking. Nonetheless, we might like to consider estimating this
probability in order to produce a ranking status value that can be interpreted as a

probability. We begin with a discussion of linked dependence.

5.3.5 Linked Dependence as a Consequence of Maximum Entropy

We have not explicitly encoded the linked dependence assumption in the devel-
opment of the BIM-MAXENT model. It has not been necessary. Rather than assume
that the query term occurrences are conditionally independent random variables, we
have chosen a probability distribution that maximizes entropy subject to a set of
constraints. There has been no need to explicitly assume independence.

We shall defer further discussion of the distinction between constraints and as-
sumptions for the moment. For now, we will show that although independence has
not been assumed, the form of the independence conditions is a consequence of the
Maximum Entropy Principle. More precisely stated, a property of the probability
distribution that maximizes uncertainty is equivalent to a property of the physically
real probability distribution that is assumed to hold in traditional models.

In [47] it is shown that, for an arbitrary configuration (z1,...,xzs) € {0,1}*:

p(21,...,z5lrel) S o) ¢ (€N + 1)

p(z1, ..., x4 rel) ey

whereas for each 7 =1,...,s:
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from which it follows that:

p(z1, ..., xs|rel) s (X, = x;|rel)
= ]I
) i=1p(

p(xla"'a‘r8|m X’L:xl|m)

which is the form of the linked dependence assumption discussed in Section 5.2.1.
Linked dependence, then, is not assumed. It is a property of the constrained

maximum entropy distribution. There is, we believe, a significant difference between

making (possibly unwarranted) assumptions and constraining the distribution. The

difference is discussed in greater detail in Section 5.5.

5.3.6 Prior Probability Of Relevance

The constraints imposed on the BIM-MAXENT model include a constraint on the
prior probability of relevance, p(rel) = p. It is important to note, however, that it is
not necessary for the system designer to actually set p to a particular value. If the
goal is simply to rank documents according to the probability of relevance, without
making any claims as to the interpretability of the resulting ranking status value, the
value assigned to p becomes irrelevant. It can be ignored here, as it is in the Binary
Independence Model, inasmuch as the value used will not affect the order in which
documents are ranked.

Even if we wanted to produce the system’s probability of relevance, as opposed
to a (less naturally interpretable) ranking score, we might not include the constraint
on the prior probability of relevance. We would not include this constraint if we felt
that we had no reason, a priori, to distinguish between relevant and non-relevant
documents in any way other than that which is incorporated in the constraints, 5.17

and 5.18, regarding term occurrences. If after studying the characteristics of the

86



resulting probability distribution, we feel comfortable with what MAXENT is telling
us, there would be no motivation for including other constraints.
In the model with prior probability of relevance unconstrained, the prior odds of

relevance would be

(5.32)

for the maximum entropy distribution. This might cause little consternation. It does
not, on the surface, seem to conflict with any preconceived notions we have concerning
the relevance of documents. At first glance, a need for constraining p(rel), thereby
constraining O(rel), is not apparent.

We would also notice, however, that in the model without the p(rel) constraint,
the odds of relevance for a document with none of the query terms occurring is:

et
O(rel|0,...,0) = =1 (5.33)

Mo

This is nettlesome. The system designer will likely feel that the probability of a
document in which none of the query terms are to be found is very far below % This
discrepancy is indicative of an under-constrained distribution. MAXENT is signaling
that some pertinent knowledge has not been incorporated into the model. If the goal
is for the system to present its probability of relevance to the user and the system’s
belief system is to mirror the designer’s belief system, then some constraint must be
added.

One obvious way to accomplish this, given that the weakness of the model has
become apparent in the value it gives for O(rel|zy,...,zs), would be to constrain
p(rel]0,...,0) directly. This can be done, but it may not be the best approach. In

typical IR system design situations most people would assign a very small value for
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p(rel|0,...,0). The problem is that humans are notoriously poor at dealing with very
small (p(...) ~ 0) and very large (p(...) = 1) probabilities.

Alternatively, an empirical approach might be taken. By studying a large number
of queries, the value given to the conditional probability, p(rel|0, ..., 0), can be based
on statistics of the data. Unfortunately, the extremely small probability that a doc-
ument with no query terms would be found to be relevant comes to haunt us again.
For such a small probability a very large sample would be needed. If the sample is
not large enough we would not have much confidence in the resulting value of the
statistic. For example, even for a reasonably large sample of queries against a large
collection, there may well be no instance of a document containing none of the query
terms having been judged relevant.

A preferable approach is to estimate the prior probability of relevance and utilize
this as a constraint on the distribution as was done in BIM-MAXENT with constraint,
5.19. In the version of BIM-MAXENT with all three constraints, this problem does not

arise, since the odds of relevance given no query terms is given by:

8 X S
p et +1 p 1-§
O(rel|0,...,0) = €' = = > 5.34
(7“€|7 ’ ) € 1—,0i1;[1€’\i+1 1_p¢:11_§i ( )
Implicit in constraining p(rel) is a constraint on O(rel|0,...,0). Presumably p, and

hence ﬁ will have been constrained to be small. We also expect that, for each i,

the constraints, & = p(z; | rel) and & = p(x; | rel) will be in the relation, & > &,

which would mean that 1:2 < 1, making O(rel|0, ..., 0) smaller still. This conforms
to the prior knowledge that we desire to incorporate in our retrieval system. The
system designer may depend on her own subjective judgment, empirical study, or
some combination of the two. However it is done, constraining the prior probability
of relevance will be a better approach to incorporating the knowledge that is felt to
be missing in the two-constraint version of the model, when we come to realize that

this version would entail even odds for a document with no query terms.
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5.4 The cM-MAXENT Retrieval Model
In this section we apply the same approach to a modified set of constraints in

order to derive the cMM.

5.4.1 Basic CM-MAXENT Model

For this model the constraints are:

p(X;=1R=0) = ¢ i=1,...,s (5.35)
E(X4R=1) = ¢ where: X, = X, (5.36)
p(R=1) = p (5.37)

The second constraint restricts the probability distributions under consideration to
those with a given value for the expected number of query terms occurring in a relevant
document. It will not be necessary that a value for this expectation be explicitly
specified, however. The constraint will result in the inclusion of a parameter in the
distribution and, as we will see, a number of alternatives for determining a value for
this parameter will be available.

The following features of the elementary events:

1 if X;(w)=1ARwW)=0
gilw) = 4 i=1,...,8 (5.38)

0 otherwise

\

(Xi+---+X,) ifRw)=1
gp@) = 4 (5.39)
0 otherwise

gr(w) = R(w) (5.40)

are be constrained by:

Elgiw)] = Gi=&-(1-p) i=1...s (5.41)



Elgsw)] = Gu=C(-p (5.42)

Elgr(w)] = Gr=0p (5.43)

In eq. 5.42, we are effectively constraining F(X; +---+ X |R = 1) to (.
By introducing Lagrange multipliers, setting partial derivatives to zero and solving

for p(w), we get:
p(w) — e[A(H—(ijlj‘ﬁwi)_FA#w#r_'—)‘Rr] (544)

where 74 = sz

i=1

Based on the probability distribution, eq. 5.44, we can determine the odds of

relevance given a specific occurrence pattern:

O( l| ) e[)\o+>\#w#+>\R] Aptptin- 0 A (5 45)
rel|Ti,...,%5) = — = e =170 .
1 elot (Zin i)

and, therefore, a ranking formula based on the conditional log-odds of relevance is:

logO(rel|zy,...,z5) = Agzp — > XN+ Ag (5.46)

z;=1

Here again g is simply the log-odds of relevance conditioned on all query terms being
absent, log O(rel|0,...,0), which is a constant and can be dropped for the purposes

of ranking.

5.4.2 Characteristics of the cM-MAXENT Distribution
As with the BIM-MAXENT model, we can derive closed form solutions for the odds

of certain events.

O(X;=1lrel) = e (5.47)
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O(X; = 1[rel) = & (5.48)
s A#+1)

O(rel) = H

(M 4+ 1)

(5.49)

We note here that e*# is independent of the values of the X;, and so the probability
of occurrence given relevance is the same for all query terms. Equal probabilities are
assumed in the cMM. But, as with linked dependence for BIM, it appears as a property

of the CM-MAXENT distribution as a consequence of maximizing the entropy.

From eq. 5.48 and the constraint given in eq. 5.35, we have that )\; = log 15%
If, following Croft and Harper, we use % for &, where N is the total number of
documents in the collection, and n; is the number of documents in which query term

1 occurs, we have:

A = log—~ = log

Using this in eq. 5.46 gives the formula:

N —n,
logO(rel|zy,...,xs) = Ag-zu+ (Z log n ) + Ar (5.50)

z;=1 %

The first term is just a constant, Ay, multiplied by the number of terms that occur
in the document. Taking into consideration that the last term, Ag, is independent
of the term occurrence variables and can be ignored for the purposes of ranking, we

have the equivalent of the Combination Match Model formula.

5.4.3 Discussion of the cM-MAXENT Model
By exchanging the constraints on the probabilities of occurrence in relevant doc-
uments for a single constraint on the expected number of terms appearing in relevant

documents, we obtain the cMM for document ranking,

n

> (

:ci:I
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Croft and Harper point out that cMM is a generalization of the inverse document
frequency weighting scheme originally proposed by Sparck Jones. It is interesting
to note what happens if we ease the constraints on our probabilities in the CM-
MAXENT model. In this section we will show how we can get a pure idf ranking
formula by eliminating the constraint with respect to term occurrence in relevant
documents. We will also show that elimination of the constraint on term occurrence
in the non-relevant documents can be compared to the observation made by Croft
and Harper that, in essence, a coordination match formula results from assuming,
in their model, that the probability of a term occurring in a relevant document is
very large. We continue in this section with a discussion of how assumptions in the
CMM are properties of the CM-MAXENT model. This is analogous to the situation
in the Binary Independence Model, where the linked dependence assumption turns
out to be a property of the BIM-MAXENT version of the model. Finally, we discuss
the constraint in CM-MAXENT on the expected number of query terms for relevant

documents and approaches to associating a value with the constraint.

5.4.4 A MAXENT Version of idf Weighting
If we eliminate constraint eq. 5.42 respecting the expected value of the number

of terms to be found in a relevant document, the ranking formula assumes the form:

1-¢ : 2
logO(rel|xy,...,z5) = (Zlog §_-£Z> + (Zlog . —{?) —|—loglip (5.51)

cci:I

Since the two terms at the right are constant over all documents, eq. 5.51 is
equivalent to ranking by summing weights associated with each of the occurring
query terms. If, as above, % is used for &, this is equivalent to the weighting scheme
originally proposed by Sparck Jones with the minor difference that log Nn;:“ is used

in place of log”ﬂi for the term weights. The Sparck Jones weighting formula can
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therefore be interpreted as the maximum entropy distribution constrained only so

that p(z; | rel) = &;.

5.4.5 A MAXENT Version of Coordination Matching

In a similar fashion, we can consider a model in which knowledge concerning term
occurrences in the collection as a whole is not used to constrain the distribution.
In the absence of the constraints specified in eq. 5.41 the conditional log-odds of

relevance would be:

log O(rel|zy,...,25) = Ap2p + AR

In this formula, both Axand A are constant and both can be ignored for the purpose
of ranking. The formula, a linear function of the number of query terms appearing

in a document, is equivalent to coordination match ranking.

5.4.6 Assumptions of the Combination Match Model

As with the Binary Independence Model, no assumptions have been made in the
MAXENT version of the combination match model. Neither the linked dependence
assumption nor the Croft and Harper assumption of equal probabilities of occurrence
in relevant documents is made in CM-MAXENT. Here, as before, the properties as-
sumed in the classic models turn out to be true of the derived MAXENT probability
distributions. The essence of the arguments given in favor of linked dependence in
Section 5.3.5 hold for the cMM. Also, we have seen that the odds of occurrence in a

relevant document is

O(X; = 1|rel) = M (5.52)

and hence is the same for all query terms. The property of equal probabilities of

occurrence, assumed in the classical combination match model, is shown to be a
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property, as well, of the maximum entropy distribution. The difference between a
relation being assumed to hold and the relation arising as a property of a constrained
maximum entropy distribution is an important one and is discussed in more detail in

Section 5.5.

5.4.7 The E[gy(w)] Constraint

In Section 5.3.4 we saw that the constraint on the probability of relevance was
unnecessary for the purposes of ranking. We also discussed what steps might be
taken if a ranking status value that can be interpreted as a probability is desired.
The constraint on the expected value of the number of terms appearing in the rel-
evant documents is somewhat different. Its value must be determined for ranking.
Nonetheless, the constraint need not be specified explicitly. The Croft and Harper
approach can be taken. The parameter Ay can be left undetermined in the ranking
formula and set as the result of empirical testing so as to yield the best possible
retrieval results.

The MAXENT approach provides an interesting alternative. If there is data on
which to base the setting of the constant, A4, based on retrieval experiments, this
same data could be used to estimate E[Xy|rel| directly. The same document collec-
tion, query set and relevance judgments that are used to analyze retrieval performance
can be used to estimate the expected number of query terms appearing in relevant
documents. An interesting option here is that E[X|rel] might be estimated as a
function of query characteristics, yielding a query specific probability distribution on
which conditional probabilities of relevance are calculated. A characteristic which

comes immediately to mind in this regard is the number of terms in the query.
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5.5 Discussion of Maximum Entropy Modeling

Both the Binary Independence Model and the Combination Match Model can be
derived from the maximum entropy approach with appropriate constraints. In this
section we analyze in further detail the difference between the maximum entropy
approach and the classical approaches based on a prior: assumptions. We attempt
to signal both the philosophical and practical importance of this distinction to the
conduct of IR research. We emphasize that constraining a distribution is not the same
as making, possibly unwarranted, a prior: assumptions. This becomes most clear in
the case of the assumption of equal probabilities of occurrence in relevant documents
made in the cMM. We assert in this section that thinking in terms of constraints
results in greater adaptability when we encounter previously uncontemplated sources
of knowledge that can be applied to document ranking. A unifying thread running
through all of the following discussion is the notion that the probabilities manipulated
by probabilistic retrieval systems can not reasonably be construed as frequencies. We
begin with a discussion of difficulties inherent in the interpretation of the Probability

Ranking Principle.

5.5.1 Probability Ranking Principle
In [88], Robertson gives a formal statement of the Probability Ranking Principle
as originally put forth in an unpublished memorandum by William Cooper:
If a reference system’s response to each request is a ranking of the docu-
ments in the collection in order of decreasing probability of usefulness to
the user who submitted the request, where the probabilities are estimated
as accurately as possible on the basis of whatever data has been made
available to the system for this purpose, then the overall effectiveness of
the system to its users will be the best that is obtainable on the basis of
that data.
Use of the phrase “probabilities are estimated as accurately as possible”, as well

as the nature of the arguments in the body of the paper, indicate that a frequentist

interpretation of probability is intended. But then we are cautioned that the estima-
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tion is to be made on the basis of “whatever data has been made available”. This is
problematic.

Let’s recall momentarily the case of the die that has been tossed millions of times
with an average of 5.0. This is certainly knowledge “available to the system”; it has
a bearing on the probability of the next toss revealing a 4.

The situation is the same in IR. Suppose we have a substantial theory, based on
the study of extensive retrieval data. Let us suppose furthermore that this theory
permits us to produce a well calibrated [26, 79, 25] estimate of the probability of
relevance of a document to a query containing a term as a function of collection and
document statistics with respect to the term. Now what do we do if we have a two
word query? Our theory provides us with two probability estimates. Both are correct.
The Probability Ranking Principle counsels us to use all evidence.

The Probability Ranking Principle, doesn’t, however, advise on how this is to be
done. The problem that arises for two word queries, is exacerbated for three word
queries, more so for four word queries, and more so for twenty word queries. Perhaps
further study of retrieval data will result, at a later date, in a more sophisticated
model that will offer guidance as to how best to assess the probability of relevance
based on statistical characteristics of all the query terms collectively. In the meantime
“as accurate as possible” a probability of relevance must be estimated in the absence
of such a theory. We appear to be at an impasse.

We have two estimates; both are as accurate as possible; we are enjoined to use
all of the data at our disposal; we have no estimate at all based on all of the data.

Our conclusion is that:

1. if we are to exploit all of the data, we are obliged to abandon the frequentist

notion that the objective is the estimation of a true physical probability;

2. the alternative is to view the objective as the generation of a subjective proba-

bility — the system’s belief that a document is relevant;
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3. a guiding principle must be adopted for the determination of this probability

based on knowledge possessed by the system:;

4. the Maximum Entropy Principle is a very reasonable candidate.

5.5.2 Constraints are not Assumptions

The Binary Independence Model assumes that occurrence of query terms is in-
dependent in both the relevant and non-relevant documents. Both intuition and
experimental evidence imply that such an assumption is unwarranted. There is little
reason to believe these assumptions are even approximately correct. Unfortunately,
attempts to model term dependence have been disappointing [110, 54, 102]. The prob-
lem is generally attributed to the inability to produce accurate probability estimates
due to insufficient sample sizes. So, we return to the independence assumptions. But,
what is the justification for basing a model on assumptions in which we have so little
faith?

We suggest that “independence” in the Binary Independence Model should not
really be thought of as an assumption at all. Rather, incorporating independence
is an attempt to make the most reasonable use of the information that is available,
accepting that there is information that could be very useful if only we had access to
it, but we don’t. The MAXENT approach makes this explicit. In BIM-MAXENT, there
is no assumption of independence. In place of assumptions, we have constraints.

A constraint is not an assumption. Nothing is being assumed to be “true”. No
“physically real” population is presumed to exist, so there is nothing we can “as-
sume” about it. When we constrain the probability of term occurrence in a relevant
document to &;, we are not saying that this is an estimate of the proportion of rele-
vant documents that contain the term in some super-population of documents. We

are saying that based on the evidence we have, a probability distribution for which
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p(Xi =1| R =1) = ¢ is the most reasonable distribution for us to accept, given
what we know.

The probability produced by the BIM-MAXENT model is not an estimate of a
true physical probability. It is a subjective probability. It is the system’s subjective
probability that the document will be judged relevant by the user. Again we turn to
the analogy of the dice. When, after learning that the average of a large number of
tosses of the die is 5.0, MAXENT assigns a probability of 0.136 for a die coming up 4
on the next throw, it is not producing an estimate. An estimate of what could it be?
Perhaps, an estimate of the fraction of tosses in the universe of dice with expected

values of 5.0 that come up 4:

#({t|t is toss of a die d A E[d] = 5.0 A value of t is 4})
#({t|t is toss of a die d A E[d] = 5.0})

(5.53)

Even if we were willing to contemplate such a population, on what basis would we
estimate the fraction involved?

The frequentist may complain that the interpretation that we give to the proba-
bility, 0.136 is unscientific, or even less charitably, meaningless. We are not unsym-
pathetic with regard to this reaction. But, then it seems that the frequentist is forced
to conclude that there is no basis at all on which to rank the dice. We prefer to forge
ahead, in spite of the difficulties involved.

We assert that it is misleading to conceptualize as estimates the probabilities on
which the Binary Independence Model is based. If the design objective is to produce
an estimate, it becomes very difficult to understand why an assumption of something
known not to hold, even approximately, would be used to improve the estimation

procedure.
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5.5.3 Equal Probabilities Assumption of cMMm
Croft and Harper state that, “prior to relevance feedback, we have no information
about the relevant documents and we could therefore assume that all the query terms

7

had equal probabilities of occurring in the relevant documents.” They are certainly
not assuming this is true in a frequentist sense. They clearly state that they can
assume equal probabilities because they have “no information”. They can’t mean
that the absence of information implies something concrete, and very specific, about
the material universe.

We take the liberty here of speaking for them, rephrasing what they said based
on our perception of what they had in mind: “we have no information and therefore
we should adopt the probability distribution that best expresses our uncertainty”.
The Maximum Entropy Principle asserts that our uncertainty is best expressed by
the distribution with greatest entropy subject to constraints embodying knowledge

we feel we do possess. The development of the CM-MAXENT model presented here

clarifies, we believe, the conceptual position of the original authors.

5.5.4 Flexibility of Constraints

An advantage of the MAXENT approach is that it naturally accommodates the
introduction of added constraints. Assumptions such as linked independence in BIM,
and the equal probabilities of term occurrences conditioned on relevance in cMM, have
been shown to exist in the corresponding MAXENT versions in the form of properties
of the constrained distribution. We may decide to bring more information to bear in
the MAXENT models, and as a result, these properties may no longer hold.

For example, suppose that based on a study of retrieval data, we are able to
develop a reliable model of the distributions of document length for both relevant

and non-relevant documents. This is pertinent knowledge. Even though we have no
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knowledge of these distribution for the particular query in question, knowledge, albeit
general knowledge, can and should be brought to bear.

It is not immediately clear how knowledge such as this can be integrated into
models such as BIM and ¢cMM. The MAXENT approach, on the other hand, guides
us as to how to proceed. What we would do is incorporate the information we
had discerned concerning the two conditional distributions as further constraints on
our overall probability distribution. While the mathematical difficulties that may
be involved must not be minimized, the maximum entropy approach does provide a

theoretical foundation for how best to proceed.

5.6 Maximum Entropy and Weights of Evidence

In this section we generalize the reasoning originally used in the development of
the BIM-MAXENT and CM-MAXENT models. Also, we explicitly present the results
in terms of weight of evidence, linking the Maximum Entropy Principle with the
formalism introduced in Chapter 3. This will prepare the way for the derivation of

the models to be discussed in the succeeding chapter.

5.6.1 Constraints

The theorem to be proved in this section, which we shall refer to as the MAXENT-
WOE Theorem, asserts that the weight of evidence shall be additive for the maximum
entropy distribution if the constraints are of a certain restricted form. For the theo-

rem, we shall assume that the event space, €2, can be factored as:

O=HxE X...xE,

where H is intended to be interpreted as the space of my hypotheses, hy, ..., hp,,
and each &; is interpreted as the space corresponding to a separate source of evidence.

In what follows, we will use h and A’ for variables that range over possible hypotheses,
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and e; for variables that range over the possible values that may be observed for the

th

1" source of evidence. As before, w will be used as a variable to range over all possible

(compound) events.

We shall allow for three classes of constraints:

hypothesis constraints: A family of x* constraints on the prior probability dis-

tribution over the set of possible hypotheses, of the form:

Blo] ()] =¢ (5.54)

where ©F depends only on h = H(w)

for j = 1,...,x". Each member of this family places a constraint on the

expected value of some function, @f , of the hypothesis variable, H(w).

evidence constraints: A family of x” constraints on the probability distribution

over the sources of evidence:

Zmz =& (5.55)

where each ©% depends only on e; = E;(w)

for 5 = 1,...,x¥. Each member of this family places a constraint on the
expected value of a linear combination of a sequence of functions, 6]1, .. @fm,
of the individual source-of-evidence variables, E}(w), ..., En,(w).

conditional constraints: A family of x¢ constraints on the probabilities of evi-

dence conditioned on individual hypotheses:

Za]k E[Z jki ]kz |hk]_ (556)
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where each ©F,; depends only on e; = Ej(w)

for j = 1,...,x%. Each of these constraints places a restriction on a linear
combination of conditional expectations. Each expectation is of some function
of the evidence conditioned on one of the possible values for the hypothesis
variable. Each of these functions, in turn, is a linear combination of functions

of the individual sources of evidence.

5.6.2 The MAXENT-WOE Theorem
Theorem 5.1:  For the probability distribution over the event space, 2 = H X

&1 X ... x En, subject to a set of constraints, weight of evidence is additive:
woe(h/h :ey,....em) = Y woe(h/h :e;)

iof the constraints are in the form of hypothesis constraints, evidence constraints, and
conditional constraints, as defined above.

proof: For any of the conditional constraints:

Mg m

Za]k E[Z jki chz |hk] = Zzajk ijZE[@]kZ( )‘hk]
k=1 i=1

= Y 05 BE05 ()] /p(hi) (5.57)

k=11i=1

0%, ifh=h
where: ®sz( w) = ]k( @) *
0 otherwise

For k = 1,...,my, let m; = p(hy), the probability of the hypothesis, Ay, corre-
sponding to the distribution of maximum entropy. Then, for any distribution with

these marginal probabilities, p(h1), ..., p(hy), it follows that:

MH m

Z%k ngzE[@gm Nhi] = §jC if ZZ% JkZE[(—)JkZ( )]/WZ:{.:]-C

k=1i=1
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MH m

Zﬁ. Zznjkz e]kz ] = 60

k=1i=1

MH m

Zﬁ E[Zznjkz ]kz ] - 60 (558)

k=11i=1

where: nfk'i: i - QTR j=1,...x% k=1,....myg; i=1,....m
Based on this, the conditional constraints given in eq. 5.56 can be replaced by

constraints of the form:

My m

B[} Y 1505 (w)] = & (5.59)

k=1i=1

where each ©¢

‘i depends only on e; = Ej(w)

without affecting the maximum entropy solution that will be obtained.
So, we continue assuming that all constraints are of the form given in eq. 5.54,
eq. 5.55, and eq. 5.59. As we saw in Section 5.3.2, we can apply the Lagrange

method of undetermined multipliers in order to maximize the entropy subject to

these constraints. By introducing the multipliers, \j; Y for j = 1,...,x"; AP for
j=1,...,x%; and )\JC for j = 1,...,xY; the problem of maximizing the constrained
function:

—>_p(w)logp(w

wenN

becomes the problem of maximizing the unconstrained function:

= p(w)logp(w) + /\6'[(21)(60))—1] (5.60)

wEN w€eN
+ ZAH [ (D_p(w) - &
weN
+ ZAE [ (D_p(w Znﬁ & ]
weN
XC ) MH m
+ Z/\C Zp Zznjkz ]kz fc]
j=1 w€eN k=1i=1

where the term, Aj(1 — Xp(w)), corresponds to the constraint that the probabilities,

p(w), must sum to 1.
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Taking the partial derivative with respect to p(w), for a specific event, w, gives:

ap?w)Hl = —1-logp(w)+ Xy, + ;Af@f(w)

+ Z)‘sznﬂcz jkz )

Jj=1 k=11i=1
Using A for Aj — 1 and setting the derivatives (one for each w) equal to zero, we get:

My m

XH XE m
logp(w) = Ao +ZIAJH®§{ (w) +ZIAJE Zlnf +ZACZZ CE
i= j= i=

j=1 k=1i=1

and hence,

mHm
,\0+2AH9H +Z>\E2nﬁ@ﬁ +Z/\CZZ Jf;m@fk’l(w)]
'L

j=1 k=11i=1

plw) = e

Taking advantage of the restricted dependencies of ©f, ©% and ®akz this can be

written as:

mg m
,\0+Z,\H@H +Z/\Eznﬁ@ﬁ (ei) +Z,\CZZ 0G0 (h ei)]
'L

j=1 k=1i=1

plw) = et

r H E
X m [ x

)‘0+Z)‘JH®f(h)+Z (Z)‘E"ﬂ ]7« el)+zz)‘c"ﬂm Jlm(h eﬁ)]
j=1 i=1 \ j=1

j=1k=1
= eL

X xC mpg
[Z/\foI(h)] . [ZAE% 2 ez)+ZZA§’ AL ei)]
: el

=1 1k=1
— e)\().ej i=

i=1

= 6)\0 . (I)H(h) . H(Dz(h, ei)
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where: h = H(w)

e; = E;j(w)
-
D_Arelm
and: ®z(h) = el

XF
Z PrfOf @) +ZZA§’ fis s )

CIJZ-(h,eZ-) = et j=th=t

By summing up over all possible combinations of values for the sources of evidence,
<€1,...,6n >€£1 X ... X(c:m

we get an expression for the probability of an hypothesis, p(h):

p(h) = Z p(h,e1,. .., em)

E1X...XEm
= Z 6)\0 . @H(h) . H(I)z(h; ei)
E1X...XEm i=1

= dhh)- 3 ﬁ@i(h,ei)

E1X...XEmi=1

= M ay(h) [[X @ik ) (5.61)

i=le; €&

Similarly, we can sum up over all possible combinations of values for the sources of

evidence, < eg,...,e, > € E X ... X Ey, to get p(h, eq):
p(hvel) = Z p(h7€17€27"'7€m)
EoX...XEm
= > e -ou(h) - I[Pi(he)
EoX...XEm i=1

m

= Y & ®yuh) - Bi(her) [[Rilhe)

EgX...XEm =2

= e Oy (h) - D1(h,eq) - Z ﬁ@i(ha ei)

EgX...XEmi=2
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m

= - ®y(h) @i (h,er) - [[D Pi(h,e) (5.62)

i:2e; €&;

Using eq. 5.61 and eq. 5.62 we can determine the probabilities for the first source

of evidence conditioned on a hypothesis, p(e; | h):

- Dy (h) - @y (hyer) - T[S @il

h/, € i= 26 €&y
p(€1 | h) — p( (h)l) — _ £
P e - &y (h) - H Z ®;(h, €)
”":162651
— él(h” 61) (563)
Z (I)l(h’ ell)
e/1€51

For the sake of concreteness, we have focused on the conditional probabilities for
observations of the first source of evidence. However, eq. 5.63 generalizes to an
arbitrary source of evidence:

plec | h) = —lb&) (5.64)

Z (I)Z(h, el

e’iefi

Now, for the probability of a complete set of observations conditioned on a given

hypothesis, we have:

pler,...,em | h) =

H(I)z h 6, H(bz(h; ei)
=1 _ i=1

DY Gihe) 11 ik e

i=le; €& i=1 52651

Hp ei | h) (5.65)
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Combining the results given in eq. 5.63 and eq. 5.65, we get the desired results.

pler,...,em | h)

woe(h/h :e1,...,en) = log ~ = log T— L
! p(ela"'vem | h) Hp(el | hl) i=1p(€i | h)

g e, | = Zwoe(h/h' e;) O

5.6.3 Application of the MAXENT-WOE Theorem
The principal motivation for the development of this theorem is to support the
development of the models that will be studied in the next chapter. In what follows,
we will rely on the fact that if all constraints are on the weights of evidence of
individual sources, then the weights of evidence are additive. Formally stated,
Corollary 5.1.1:  If a probability distribution over the event space 2 = H X

E1 X ... X &, 1s constrained such that all constraints are of the form

woe(h/h' 1 e;) = &; J=1.x

fori=1,...,m, then for the mazimum entropy distribution:
woe(h/h :er,....em) = > woe(h/h :e;) (5.66)

proof: This follows from the theorem because the weight-of-evidence constraints

can be viewed as conditional constraints, in the sense of eq. 5.56 since:

i | h
woe(h/h' :e;) =&; iff ]% = &j
iff plei| h) —&j-ple | 1) =
1 Bl @) - & - Bllisg-a@IK] =0 (567
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1 if ¢ is true of omega

where:  Ijyj(w) =
0 otherwise

is the indicator function

Therefore, eq. 5.67 satisfies the linearity condition imposed on the conditional con-

straints. [O.

Clearly, if there are only 2 hypotheses, h and h, then eq. 5.66 reduces to:

woe(h:e1,....e5) = Y woe(h:e)
i=1

(5.68)

It is interesting to point out that the general constraints allowed for in the

MAXENT-WOE Theorem cover the constraints used in the BIM-MAXENT and CM-

MAXENT models. Specifically, the constraints on the conditional probabilities of oc-

currence,

ploce; | rel) = &,

ploce; | rel) = §&

are consistent with the restrictions given for conditional constraints.

the probability of relevance
p(rel) = p
is a hypothesis constraint. And, the

E(XyxlR=1) = (¢ where: Xy =) X;

i—1

Constraining

constraint used in the CM-MAXENT model (eq. 5.36) is also a conditional constraint,

since X is a linear combination of functions of the individual sources of evidence.

108



5.7 Summary

We have seen in this chapter how the BIM-MAXENT and CM-MAXENT models
can be derived from the Maximum Entropy Principle with suitable constraints. In
Section 5.6, the reasoning used with respect to these two models was generalized. The
generalization was supported by conceptualizing the problem explicitly in terms of
the concept of weight of evidence as formulated in Chapter 3. The result is Theorem
5.1.

Corollary 5.1.1 of this theorem will play an important role in the following chapter.
The ranking formula developed there will include a component corresponding to the
evidence given by the total set of #fidf values appearing in the document. The
formal results that have been derived here provide justification for calculating this
contribution to the ranking value as a sum of the contributions due to the tf~idf values

for individual terms appearing in the document.
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CHAPTER 6

PROBABILISTIC MODELING OF MULTIPLE SOURCES
OF EVIDENCE

... we may have knowledge of the past but cannot control it;
we may control the future but have no knowledge of it.

Claude Shannon in Coding Theorems for a Discrete Source
with a Fidelity Criterion, [98, p. 126].

This chapter presents an analysis of the weight of evidence in favor of relevance
offered by query/document features traditionally used for ranking in information re-
trieval. The predominate objective is to obtain a more precise and rigorous under-
standing of the relationship these retrieval characteristics have to the probability that
a document will be judged relevant. The ultimate goal of this analysis is the devel-
opment of a retrieval formula, the components of which can be understood in terms
of statistical regularities observed in the class of retrieval situations of interest.

A methodology is presented for the analysis of the relationship between query-
document characteristics and the probability that a document will be judged relevant
to the query. Application of the methodology to a homogeneous collection of docu-
ments — 1988 news articles from the Associated Press (AP88), taken from volume 2
of the TREC data, evaluated for queries 151-200 from TREC 3 [52] — will serve as
the vehicle for exposition of the principal techniques involved.

The following sections will show how query/document features can be studied, how
a model in terms of this evidence can be formulated, and how parameters for it can

be determined. The resulting model can be used directly as a scoring mechanism for
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which the ranking status values (RSVs) that are produced have a precise probabilistic
interpretation.

Results will be presented suggesting that the modeling framework, and more im-
portant the general approach to the analysis of evidence, developed in this study may
lead to a ranking formula that performs as well as state-of-the-art retrieval formulas

that have evolved over the years.

6.1 Data Preparation
In this section we review the query/document features that will be considered;

the format of the data to be analyzed; and how the queries were prepared.

6.1.1 Query/Document Characteristics

The characteristics that have been studied, and will be discussed here are:

coordination level: the number of query terms that occur (one time or more) in

the document;

inverse document frequency: for each of the query terms,
d
—log %
where df is the number of documents containing the term and N is the size of

the collection;

term frequency: for each of the query terms, the number of the times the term

occurs in the document.

document length: The number of words the document contains. Although doc-
ument length is considered, as will be seen, it will not play a role in the final

ranking formula.
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query doc. term | coord idf tf | rel |

151 10383 Clinton 2 23 1 0
151 10383 proceedings 2 3.1 3 0
151 10674 proceedings 1 3.1 2 0
151 10992 impeachment 1 35 1 0
151 11005 Clinton 1 23 1 0
151 11013 Clinton 3 23 2 1
151 11013 impeachment 3 3.0 7 1
151 11013 proceedings 3 31 3 1
151 11089 proceedings 1 3.1 1 0
152 10046 dairy 2 42 3 1
152 10046 industry 2 1.9 1
152 10572 industry 1 19 1 0

Table 6.1. Format of Retrieval Data

Although we focus on these particular features, the approach is general, and can in
principle be applied to any feature set deemed to be of interest to the researcher or

system designer.

6.1.2 The Data to be Analyzed

Table 6.1 shows the format of the data, the analysis of which is discussed in this
chapter!. There are entries in this table only for query/document pairs for which at
least one of the query terms appear in the document. IR systems generally do not
process documents for which no query terms are present, so the goal of the analysis
will be to build a model conditioned on the occurrence of at least one query term (i.e.

a non-zero coordination level).

! The terms shown for query #151 are not those of the actual query extracted from TREC topic
#151. The query shown corresponds to the example used earlier in the text, and the associated
data is fictitious.
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For each of these query/document pairs, there is an entry for each of the terms
that appear in the document. For each entry, the following fields depend only on the

query/document pair:

query: a number that identifies the query;

doc: a number that identifies the document;

coord: coordination level — the number of query terms appearing in the document;

rel: the TREC relevance judgment for this document with respect to the query,

where 1 indicates relevance and 0 indicates non-relevance;
and the following two fields that depend as well on the individual term:
idf: inverse document frequency;

tf:  term frequency.

6.1.3 Query Preparation

In this chapter, the use of exploratory data analysis to study evidence in favor of
relevance is explained. Analysis of the relevance judgments for TREC queries 151-
200 run against the AP88 collection is used to exemplify the process. Queries were
taken from the titles of the 50 TREC topics. In order to convert the TREC title
field to a query, stopwords were removed, duplicates were eliminated, and words were

stemmed, as was done for the testing described in Chapter 4.

6.2 Overview of the Modeling Strategy
The objective of the analysis is to develop a model for the weight of evidence in

favor of relevance given by the query/document features under consideration:

O(relley, ..., en, q, %)
O(rel|q, *)

woe(rel : e1,...,e, | ¢,x) = log
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where the weight of evidence is conditioned on the query being evaluated. To be
more precise, the weight of evidence that will be modeled is restricted as well to the
subspace corresponding to those query/document pairs for which at least one of the
query terms appears in the document. This is indicated by the *x in the condition
of the weight of evidence given in eq. 6.1. In general, IR systems do not evaluate
documents that do not include at least one of the query terms. For that reason, all
probabilities and weights of evidence considered in this chapter will be conditioned on
the occurrence of at least one term. We will explicitly include the % in the formulas
appearing in this section, but for the sake of reducing clutter in the notation, it will

be left implicit in the sections that follow.

6.2.1 Four Models
The data analysis will result in the development of four models, which will be
denoted by: Mg, M;, My, and Mg. The focus of the modeling effort for each of

these models will be:

Mp: logO(rel|Qry = g, *) (6.2)
M; :  woe(rel : Coord = co | Qry = g, *) (6.3)
Mo :  woe(rel : Idf = idf | Coord = co, Qry = q, *) (6.4)

Ms: woe(rel : Tf =tf | Idf = idf, Coord = co,Qry = q, *) (6.5)

with each model extending the previous one, in terms of the constraints imposed on
the probability distribution. Although, the direct objective at each of the last three
steps is to model weight of evidence conditioned on the query, the log-odds in favor
of relevance, and hence the probability of relevance, for the query is modeled as well.

This is true because for each of the models concerned:
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M; : log O(rel|co, g, *) = logO(rel|q, *) + woe(rel : co | g, *)
M, : log O(rellidf, co, g, *) = logO(rel|co, q,*) + woe(rel : idf | co,q, *)
Ms : logO(relltf,idf,co,q,%) = logO(rellidf,co,q,*) + woe(rel : tf | idf, co, q, *)

In each case, the conditional probability can be derived from the conditional log-odds

by:

p(rel | ...) =125  where a =logO(rel|...)

ea

To begin the process, model Mg is developed by simply estimating, for each
query, the probability that an arbitrary document will be found to be relevant to that
query. This is described in more detail in Section 6.3. We proceed, in Section 6.4, to
analyze evidence corresponding to coordination level. This results in the M; model
of relevance conditioned on the query being evaluated and the number of query terms
occurring in the document. In Section 6.5, we see that inverse document frequency is
correlated with residual log-odds of relevance, relative to the M; model. Extension
of the model to include idf; for each of the query terms, ¢ = 1,2, ..., produces the
M, model. Finally, analysis of the role of term frequency, discussed in Section 6.6,

results in the M3 model. It is this model on which a ranking formula will be based.

6.3 Base Model

A modeling assumption, derived from the Maximum Entropy Principle, is that
the weight of the query/document evidence, €, shall be considered independent of the
query, g. The ranking status value to be used will then be this weight of evidence,
which can be assigned without knowledge of the prior probability of relevance for the
query, p(rel|q). However, as discussed in Section 6.3.1, modeling is best accomplished
by including the probability of relevance conditioned only on the query, ¢, in order

to eliminate potential problems due to confounding.
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The basis for the analysis is established by first developing a model of the proba-
bility of relevance conditioned only on the query being evaluated, p(rel | ¢). We shall
loosely refer to the probability as the prior probability of relevance for query ¢ in
the sense that it is the probability that a randomly selected document will be found
relevant to the query before any evidence is observed, that is before the contents of

the document are known.

6.3.1 Confounding and the Prior Probability of Relevance

An important aspect of the modeling effort is that at each stage, My, Ms, and
M3, it is the log-odds and weight of evidence conditioned on the query that is mod-
eled. This can be done effectively since the prior probability of relevance can be
estimated from the available data (resulting in the Mg model). However, since the
prior probability is not expected to be available at retrieval time, the derived rank-
ing formula will not depend on the query specific prior probability. Formally, this is
possible because, in the model on which the ranking formula is based, the weight of
evidence conditioned on the query is independent of the query itself. This being the
case, one might ask why the modeling procedure involves the query specific priors
when they are only to be factored out in the resulting ranking formula. The answer
has to do with the issue of confounding.

In the words of Sahai and Khurshid, “Confounding exists when the association
between two variables is altered after accounting or controlling for the effect of a third
variable” [91, p. 55]. Suppose, for the sake of example, that the conditional weight

of evidence is a linear function of coordination level:

woe(rel : Coord = co | Qry = q) = B§° + 57° - co

and that coordination level is the only factor involved so that empirical data reflect

the linearity relation perfectly; that is, the log-odds of relevance can be measured
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log O(rel) qry #6

qry #5

regression line

qry #4
qry #3
qry #2
qry #1

coordination level

Figure 6.1. Data for six queries resulting in confounding

without any noise. Then, we would have:

log O(rel|co,q) = logO(rel|q) + woe(rel : co | q)

= B+ G5+ B0 co

where 32 is the prior log-odds of relevance, log O(rel|q), for query, g. A scatterplot of
log O(rel|co) vs. co for six queries would look something like that shown in Figure 6.1.
For each query, the log-odds of relevance is also a linear function of coordination level;
the slope, 87°, is constant across queries, resulting in parallel lines; and the intercept
values, 37 + (35°, vary across queries, resulting in a different line for each query.

Suppose further that there is a tendency for most of the data to correspond to
higher coordination levels for queries with lower 32 (queries 1-4 in the figure), and
for most of the data to correspond to lower values of co for queries with higher 32
(queries 5 & 6). This is suggested in Figure 6.1 by the size of the circles, with larger
circles intended to indicate greater quantities of data for the given point.

If the modeling process does not take into consideration the difference in prior
log-odds from one query to another, data will be analyzed independent of the query

from whence they came. The result will be that the log-odds for low values of the
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query | # rels # docs | p(rel|q) logO(rellq) |

151 7 4488 0.0015 -2.80
152 2 2646 0.0007 -3.12
153 1 0923 0.0019 -2.71
173 11 014 0.0214 -1.66

Table 6.2. Reduction of Data for Query Analysis

predictor value will be overestimated relative to the estimate of the log-odds at higher
values of the predictor variable. The estimate of the slope, Afo, will then be lower
than it should be, Bfo < (B7°, as is shown by the dashed line in the figure. This
underestimate is due to the relation existing between the distribution of the co values
and prior log-odds. The relation between log-odds of relevance and coordination level
is said to be confounded [58].

In order to avoid the problems of confounding, the prior odds of relevance are
included in models My, My, and Mjs. They are then factored out in order to model

the weight of evidence conditioned on the query, and from that produce a ranking

function.

6.3.2 Estimating the Prior Probability of Relevance

The estimation of the probability of relevance conditioned on the query (and
the occurrence of at least one query term) is straightforward. The data shown in
Table 6.2 are grouped by the query id, a unique number identifying the TREC topic
from which the query has been taken. The total number of documents and the total
number of those documents that were judged relevant are counted, as shown at the
left of Table 6.2. From these counts the probability of relevance, p(rel|q), can be

estimated as,
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Figure 6.2. (Prior) log-odds of relevance for TREC-3 queries

p(rel | q) = #rels | #docs

and this can be converted to log-odds as shown in the rightmost two columns of the
table.

A graph of these data is shown in Figure 6.2. It can be seen in this graph that
the prior probability of relevance ranges over almost three orders of magnitude, from
a little less than one in ten (log-odds = -1) for query #189, to slightly above one in

ten thousand (log-odds ~ -4), for query #181.

6.4 Modeling Coordination Level

Using M, as a base, we model the weight of evidence offered by coordination level.

6.4.1 Calculation of Residual Log-odds
In order to model the weight of evidence offered by coordination level, the data
were first grouped by the value of the Coord variable into subsets, C, C, ...
Ci ={(q,d) € @ x D | Coord(q,d) =i}

where Q is the set of queries and D is the set of documents. For each of these subsets
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query doc # |coord | rel pg(rellq) docs

151 10674 1 0 .0027 1
151 10992 1 0 .0027 1
151 11005 1 0 .0027 1
151 11089 1 0 .0027 1
151 11203 1 1 .0027 1
152 10572 1 0 .0004 1
152 10734 1 1 .0004 1

| | | # rels  Ey(Ffrels) # docs

Table 6.3. Reduction of Data for Coordination Level Analysis

of query/document pairs, an ezpected number of relevant documents was computed.

based on the estimated probabilities of relevance, p(rel|Qry = ¢q), for each query:

Fi =Y nig-prel|Qry = q) (6.6)
Qry=q

where n;, is the number of documents that contain ¢ terms from query g. The
probability, p(rel|Qry = q), is the conditional probability of relevance given by model,
M, that was estimated by counting the fraction of documents relevant to the query.
The product, n; ,-p(rel|Qry = q), is an estimate of the number of these n; , documents
that can be expected to be relevant. The sum of these over all queries is then an
estimate of the number of relevant documents in the set C;. Although somewhat less

intuitive, the summation given in eq. 6.6 can also be expressed as:

Fio= Y. b(rel|Qry = q) (6.7)

(q,d):Coord(q,d)=i

This formulation will be seen to be more useful as this technique is extended to the

analysis of idf and tf as sources of evidence.
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Figure 6.3. Residual log-odds as function of coordination level: unsmoothed

Accompanying the calculation of 7;, the actual number of documents in C; that
are relevant, r;, can be counted. Both of these can be transformed into log-odds:
7y

log "~ and log -, where n; = |Cj| is the number of query/document pairs for

which the coordination level is 7. The difference between the two:

res; = log # — log ﬁ

can be viewed as the residuallog-odds of relevance; the difference between the observed
log-odds of relevance and the log-odds that would be predicted by a model that only
uses information about which query is being evaluated. After the residuals were
calculated for each subset of query/document pairs, C;, a residual plot was produced.

Figure 6.3 shows the scatterplot of residuals against coordination level. The
lightly shaded bars in the background give a cumulative histogram. The height of a
bar at Coord = i indicates the fraction of query/document pairs under consideration
for which Coord(q,d) < i. The small circle along the bottom of the graph at Coord =

7 indicates that there were 0 relative documents in subset C;. Since 7; is undefined for

121



0 relevant documents (i.e. 7; = —o00), and hence res; is undefined, the circle serves to

remind us that a point is missing from the plot at this value for the predictor variable.

6.4.2 Fitting a Regression Line

Motivated by the linearity suggested by Figure 6.3, a weighted linear regression
was performed. The point at Coord = 7 represented by the small circle in Figure 6.3
has been ignored for the purposes of the regression. Since the point corresponds to
very few documents, its effect on the overall regression would be negligible. When we
come to the modeling of the ¢df variable, a more general approach to the processing
of these infinite estimates will be described.

The linear regression was weighted because the variance associated with the points
on the graph is not constant. There are two factors contributing to the differing
variance, or heteroskedasticity [81, p. 170], both of which must be taken into consid-
eration. The first is that each point on the graph corresponds to a different number
of data points, as indicated by the histogram in the background. The greater the
number of documents corresponding to a point on the graph, the smaller the variance
will be. Second, even were there to be an equal number of documents entering into
the calculation of each of the points on the graph, the variance for each point would
be different due to the differences in the true log-odds of relevance at different values
of the predictor variable. In order to compensate for the disparity in the variance as
a function of the predictor, we use a weighted linear regression.

A weighted linear regression produces a fit that minimizes the weighted sum of
squared residuals. Each point is weighted by the inverse of the variance of the response
variable at that point [81, p. 170]. The greater the variance, the smaller the weight.

For the problem here, the response variable is?:

2Natural log is used here to simplify the derivation. The change of scale of the log only affects
the final calculation by a multiplicative constant, which will have no affect on the weights relative
to one another.
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TZ/(nz—r,) T; TAZ
log ———+ =1 -1
ngi/(ni—fi) Ogni—ﬁ' Ogni_ﬁ

where r; is the observed number of relevant documents, 7; is the expected number
of relevant documents, and n; is the total number of documents for the ** point.
Assuming that the variability of the second term involving the expected value is
small relative to the variability of the first, and using p; for the observed proportion

of documents, 7;/n;, that are relevant, we can write:

bi

Var llog %] ~ Var [log njz Ti] = Var [log(l Di )]
Letting p? be the (unknown) true probability of relevance, and using a first order

Taylor series expansion [30, Section 8.8] about p? to approximate log lf"pi, we have:

. )
Di D; d Di
log( ) =~ log(=——=) + (pi — p}) | log( )]
)

I —pi 1—p |dp 71 —p;
0 ]
D; 0 -1
= log(=—"—) + (i — p; 7]
0
p; 0 1
= log(-——5) + (i — p; (—7>
S L AN Ty

Using this approximation to calculate the variance, gives us:

— D i 1—17?)
1 12

= -m- - Var [pz] (68)

12
1 p(1-pi)
| p?(1—p)) ] n;
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Figure 6.4. Residual log-odds as function of coordination level: smoothed with regression

1
ni-pg-(l—pg)

Eq. 6.8 follows since p), and hence log(% io) and also

1
— are constants;

pY(1-p7)° ’
and eq. 6.9 follows because the variance of the proportion, p;, of successes on n;

independent Bernoulli trials with probability of success, p?, on each trial, is given by

p2(1-p?)
n; )

The true probability of relevance, pg, is unknown, but we can estimate it by the
observed proportion of relevant documents, p; = r;/n;, which gives as an estimate of

the variance:

1

— 6.10
nipi(l _pi) ( )

The inverse of this variance, n;p;(1 — p;), can be used as the weight of the i** point
for the linear regression. The result of the weighted regression is shown in Figure 6.4,

which is equivalent to the graph of Figure 6.3, with the regression line

res = 35° + B7° - co (6.11)
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query doc # term |coord | rel ps(relq,coord) docs |

151 10383 Clinton 2 0 .0039 0.50
151 11005 Clinton 1 0 .0016 1.00
151 11013 Clinton 3 0.33 .0051 0.33

| | # rels By (#rels) # docs |

Table 6.4. Reduction of Data for idf Analysis

overlaid.

6.4.3 Producing the M; Model

This regression line can be used to form a model, My, that takes into account both
the query being evaluated and the coordination level. The points marked by small
x’s at each value, co = 1,2, ..., that lie about the line, res = 0, show the difference
between the log-odds predicted by the model, M, and the log-odds actually observed
— their proximity to the line, res = 0, demonstrating that the model provides a close
fit to the data.

The log-odds difference given by the model is equivalent to the weight of evidence

in favor of relevance provided by the coordination level, conditioned on the query:

O(rel|co, q)
O(rel|q)

= logO(rel|co, q) —log O(rel|q) (6.12)

woe(rel :co| q) = lo

This My model advances the development of the complete model. The next step
will be to use it as a basis for the analysis of the evidence provided by the rarity of a

term.
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6.5 Modeling Inverse Document Frequency

The analyses for both idf and tf as sources of evidence also depend on the study
of residual log-odds of relevance. Whereas Coord is a feature of query/document
pairs, for both idf and tf, data points involve individual query terms as well. For the
analysis of coordination level, each pair corresponded to only one data point. For the
analysis of idf and tf, each query/document pair corresponds to multiple data points
— one for each term appearing in the document.

Since the same relevance judgment applies to each of these points, each point will

be weighted for the purposes of model fitting.

6.5.1 Weighting of Data Points

In order that each document, and hence each relevance judgment, be treated
equally, each point will be considered weighted by:

w(q,d,t) = 1/Coord(q,d).

In this way, the 5 points corresponding to a relevant query/document pair with a
coordination level of 5 will each receive a weight of 1/5 —i.e. each will be considered
as 1/5 of a relevant document; 2 points corresponding to a non-relevant document
with a coordination level of 2 will be considered as 1/2 of a non-relevant document;
in total, 1 relevant and 1 non-relevant document.

With this in mind, the method of analysis for idf is a straightforward extension of
that for coordination level. For each query term, ¢, an expected number of relevant

documents is computed.

6.5.2 Evidence Respecting Specific Query Terms

In order to study the value of a term’s inverse document frequency as a source of
evidence, the evidence associated with learning that a specific query term, ¢, was one
of the terms that occurred in the document, was studied. The weight of evidence tied

to this event was estimated for each of the query terms over all of the queries.
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Figure 6.5. Residual log-odds as function of idf: unsmoothed

In order to carry out this estimation process, the data were first grouped into

subsets,
L ={(q,d,t) € @xDxT | Qry(t) =q,t =i}

(T, the set of query terms), with one subset for each query term. (Occurrences of
the same word used in two or more different queries are, for this purpose, considered
different terms.) Here again, the actual number of relevant documents can be counted
and the fraction of documents that are relevant can be compared against the expected
fraction for each subset. It must be kept in mind that both the observed and expected
values are based on counts of entries weighted by the inverse of the coordination level.

More precisely,
ri = > w(q,d,t)

(q,d,t):t=i,Rel(q,d)=1

The calculation of the expected number of relevant documents for each subset is

analogous to that given in eq. 6.7:

fi o= Y p(rel|Coord = co,Qry = q) - w(q, d,t)
(q,d,t):it=i
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where the estimated probability is calculated from the estimated log-odds of relevance:

log O(rel|co,q) = logO(rel|q) + woe(rel : co | q)

with the second term being the weight of evidence predicted by the M; model; i.e.
given by the regression line shown in Figure 6.4.

Figure 6.5 shows a scatterplot of these residuals against idf value. Again, small
circles are shown at the bottom of the graph for each residual that is undefined because
the corresponding term did not appear in any relevant documents. Also visible is a
small circle in the upper right hand corner. This corresponds to a term that only
appeared in relevant documents. For this term the estimated probability of relevance
is 1, giving infinite odds, and hence infinite log-odds, of relevance. The vertical bars

in the background give a cumulative histogram for the (weighted) data points.

6.5.3 Smoothing

There are three reasons for considering the application of smoothing to the data
displayed in Figure 6.5. First is the problem of infinite estimates (both positive and
negative). A benefit of using scatter plots as part of the exploratory data analysis
process is to produce a visual impression of the behavior of the data. The difficulty
with Figure 6.5 is that the eye is unable to integrate the information represented
by the small circles with the information represented by the stars. By smoothing,
estimates based on a single point are replaced by estimates that incorporate infor-
mation garnered from neighboring points as well. The result is the production of
more robust estimates and the integration of visual information that was previously
presented separately.

A second reason to consider smoothing of the data pertains to the variance dis-
played for estimates of the weight of evidence for points corresponding to similar

values of the explanatory variable, even when the points corresponding to infinite
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estimates are ignored. For example, in Figure 6.5, there are seventeen points plotted
at a value of idf between 0.9 and 1.0. (Actually some of these correspond to the
same word, occurring as a term in different queries). Five of these are infinite. The
estimates for the twelve remaining points vary from -0.7 to 4+0.3. This variance is in
evidence in all parts of the graph, contributing to an overall fuzziness in the presen-
tation, making it more difficult to discern an underlying pattern that may be present
in the data.

The third reason is related to the first. The points at the right of the graph
correspond to rare terms; terms that occur in a small fraction of documents in the
collection and hence have a high idf value. The estimate for one of these terms is
based on a small number of documents, since it is based on the relevance of only those
documents in which the term appears. These estimates can be expected to be less
robust. The points on the right side of the graph should be given less consideration
than estimates corresponding to high frequency terms which are based on a greater
number of documents. This, however is difficult for the eye to do without help. By
smoothing the data in the manner described below, each point of the resulting graph
can be considered to be more or less of equal value in arriving at a sense of underlying
patterns existent in the data.

These same problems were encountered earlier in the analysis of idf weighting (see
Section 4.1). However the solution adopted there is not adequate to our needs in this
situation. In Chapter 4 we grouped terms into pseudoterms and weight of evidence
was estimated for each pseudoterm. Now, in contrast, we need to estimate residual
weight of evidence. We cannot simply group the data by idf value, because each data
point corresponds to a different coordination level. Observed weight of evidence could
be calculated as before, but not the difference between observed weight of evidence
and the weight of evidence as predicted by M, which is what is needed. To produce

a smoothed plot, an alternative technique was developed.
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Figure 6.6. Residual log-odds as function of idf: smoothed

Figure 6.6 shows a smoothed version of the data displayed in Figure 6.5. To
produce the smoothed plot, a number of bins, b, is fixed, with b = 50 for this graph.
The points of Figure 6.5 are sorted by #df and assigned to bins as follows. Starting
with low-idf terms, data points are assigned one-by-one to the first bin, until 2%
(=1/50) of the relevant documents have been accumulated. When a term is reached
that will not fit in the first bin, it is partitioned in two parts. The division is such that
the first part can be assigned to the first bin, completing the alloted 2% of relevant
documents. The second part is then distributed to the second bin, and the process
continues. Three counts — observed relevant documents, expected number of relevant
documents, and total documents — are distributed proportionally when data for a
term must be partitioned across two bins.

For each bin, the three counts are summed over all terms assigned to the bin.
At the same time, an ¢df value is assigned to the bin by taking a weighted average
of the idf values for the terms of the bin. The weighting is based on the number of
documents associated with each term (keeping in mind, again, that a term occurrence

is only counted as 1/Coord(q,d) data points).
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In this way 50 (idf;, res;) pairs are generated. None of these points will correspond
to 0 relevant documents. Also, by choosing a reasonable bin size, the possibility of the
fraction of relevant documents reaching 100% (which would also yield an undefined
7i, and hence, res;) can be effectively eliminated.

Finally, it should be mentioned that the kernel regression approach discussed
in Chapter 4 can be readily adapted to the needs of residual analysis. Weighted
averaging using (Gaussian) kernel functions can simply replace the division into bins.
This approach was contemplated, but discarded in favor of binning for two reasons.
The principal consideration was pragmatic. The SAS statistical analysis package
was used to support this phase of the research. The kernel regression approach is
computationally intensive and would not be practical if implemented in the SAS
environment.

The second consideration involved the question of robustness of estimation. As
discussed above, the binning approach responds to this issue by varying bin sizes
based on the number of relevant documents included in the bin. In order to address
the problem of robustness with the kernel regression approach, a variable bandwidth
could be used. The bandwidth is essentially the width or dispersion of the function
— for example, the variance of the distribution in the case of the Gaussian. A
variable bandwidth means the use of a different bandwidth for different points. For
our purposes, the bandwidth could be based on the proportion of relevant documents
in the neighborhood of the point being estimated. Unfortunately, this would serve to

exacerbate the problem of computational complexity.

6.5.4 Fitting a Three-piece Linear Function
As discussed in Chapter 4, the study of the weight of evidence provided by term
idf values, suggests that the weight of evidence provided by idf is well-modeled by

a 3-piece linear function. Review of the general form of residual plots, such as that
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Figure 6.7. Residual log-odds as function of idf: smoothed with regression

shown in Figure 6.6, generated at various level of smoothing, tended to corroborate
these earlier findings. Together, these two factors motivated the attempt to model
woe(rel : idf | co,q) as a 3-piece linear function.

In order to realize this, a linear regression was performed to determine parameters

for the following linear model:

res = [B°F 4+ BF . idf, (6.13)
0 if idf <1

where idf; = { idf —1 if 1 <idf <2 (6.14)
1 if odf > 2

The resulting estimates for the parameters, 3;°" and 3;°", yield the model, Ma,
that minimizes the mean square error of all those models for which the expected value,
E[r;], of the residual is a 3-piece linear function of idf with flat segments at the two
extremes, and elbows at idf = 1.0 and idf = 2.0. Regressions were also run with a

4-parameter function, allowing for a general 3-piece linear model (one without the flat-
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query coord idf [tf | rel ps(rellq,coord,idf) | docs |

151 2 23 1 0 .0041 0.50
151 1 3.5 1 0 .0021 1.00
151 1 23 1 0 .0018 1.00
151 1 3.1 1 0 .0023 1.00
152 1 1.9 1 0 .0030 1.00
|| # rels Es(#rels) | # docs |

Table 6.5. Reduction of Data for tf Analysis

segments restriction). These regressions showed no statistical evidence of non-zero
slope in either of the tails, an indication that might have justified consideration of a
more general model. Regressions were also run for other settings for the elbows; with
values close to 1.0 and 2.0 resulting in the best fit. The 3-piece linear curve shown in
Figure 6.7 shows the resulting model imposed on the scatterplot of smoothed residual

values.

6.6 Modeling Term Frequency

Analysis of the evidence provided by term frequency proceeds along the same
lines as that of inverse document frequency. Data points are grouped into subsets
TF|, TF,,..., according to the number of occurrences of the query term in the docu-
ment, T'f (q,d,t). For each subset, T'F;, the observed number of relevant documents

is determined, and the expected number of relevant documents is calculated as:

iy = > D(rellidf, co,q)

(g,d,t):T f(q,d,t)=i

where p(rel|idf, co, q) is calculated from the log-odds of relevance according to model,

Mz!
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Figure 6.8. Residual log-odds as function of #f unsmoothed
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Figure 6.9. Residual log-odds as function of #f: smoothed with curve fit

log O(rellidf,co,q) = logO(rellq) + woe(rel : co | q)

+ woe(rel : idf | co,q)

A scatterplot of the resulting residuals is shown in Figure 6.8. A number of

transformations of the variables involved were tried. Figure 6.9 shows a plot of
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Figure 6.10. Residual log-odds as function of log(¢#f): smoothed with regression
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Figure 6.11. Residual log-odds as function of #f smoothed with regression on original
scale
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Figure 6.12. Residual log-odds as function of document length

the residuals with log(tf) as predictor variable, smoothed to 50 bins. (Some of the
original points, in particular the point for ¢f = 1, i.e. log(tf) = 0, are spread over a
number of bins, accounting for several points with the same coordinates, overlapping
one another, on the smoothed version of the graph.) The apparent linearity motivated
the application of a simple linear regression. The regression results in a line given by
the equation:

res = ;" + [ -log(tf) (6.15)

This line is overlaid on the smoothed scatterplot of Figure 6.10. The fit of the curve to

the smoothed data on the more natural, unlogged #f scale can be seen in Figure 6.11.

6.7 Modeling Document Length

Many modern retrieval systems normalize term frequencies by document length
in some way. The intuition is that a term is more likely to occur a larger number
of times, the longer a document is. In the vector space model, term frequency is

typically normalized by use of the cosine rule [112]. Here the score is normalized by
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Figure 6.13. Residual log-odds as function of document length for zZIFF2/TREC3 and
wsJ89/TREC] datasets

the Euclidean length of the document vector, which will tend to be greater for longer

documents. In INQUERY, the term formula component of the ranking formula is:

tf

dl
tf+05+15x S0

(6.16)

where dl is document length and avg_dl is the average document length over the entire
collection, and also incorporates a form of normalization based on document length.

In order to consider the role of document length in this work, two types of analysis
were performed. First, a residual plot was produced with document length as predic-
tor, as it was for the other variables. The data were grouped by document length,
and for each group: an expected number of relevant documents was computed, based
on Mg; the actual number of relevants were counted; and from these a residual log-
odds was calculated. A plot for 50 bins is shown in Figure 6.12. From the plot it
does not appear that there is any predictive value associated with document length.
Figure 6.13 shows graphs for two other data sets. For the wsi89 collection with
the TREC1 queries, little if any effect due to document length is observed, as was the
case with the AP88 data shown in Figure 6.12. Some effect can be seen for the ZIFF2
collection with the TREC3 queries, but again the effect is relatively small.

A different way of viewing the problem is displayed in Figure 6.14. Each of the

three graphs shows the (smoothed) residual weight of evidence as a function of term
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Figure 6.14. Residual plot for term-frequency for three ranges of document length

frequency. Each was produced in exactly the same way as the graph in Figure 6.8 of
Section 6.6, except that only a fraction of the data were used. In each case, only data
corresponding to a specified range of document lengths entered into the calculations.
The ranges considered for Figure 6.8 were document lengths: below 300; between 300
and 500; and above 500 words. These ranges encompass approximately one third of
the data entries each. Although fragmentation of the data is obviously reducing the
robustness of the estimates, as compared to the estimates produced when all of the
data is used, we can say that document length does not appear to have a significant
affect on the weight of evidence provided by the term frequency variable.

Based on the above analyses, it was decided not to include document length as a

source of evidence in the final model.

6.8 Discussion
In this section, we review some of the important issues involved in the analysis

presented in the previous sections.

6.8.1 Coordination Level as Evidence

The study of coordination level gives convincing evidence that the weight of evi-
dence provided by the number of query terms appearing in the document, Coord = co,
is well modeled as a linear function of co. This conclusion is supported by analysis of
individual queries, over a number of different data sets. Figure 6.15 shows plots of

woe(rel : co | q) as a function of coordination level, co, for all of the TREC 3 queries
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Figure 6.15. Residual log-odds as function of coordination level for individual queries

for which at least one document of AP88 was judged relevant. Remarkable regularity
is evidenced by this plot. This is especially true when we take into account that the
number of relevant documents corresponding to many of the queries is small, which
would cause us to expect substantial variability in the data. Similar regularity was

observed for other data sets that were examined.

6.8.2 Inverse Document Frequency As Evidence

The modeling of idf is more problematic in two respects. First, the variance of
residual log-odds across terms with similar ¢df values is large. The trend of increasing
weight of evidence for increasing idf in Figure 6.5 1is clear, although the number
of points that are undefined (circles along the bottom of the graph) must not be
forgotten. The trend is also evident in the smoothed version of the plot, Figure 6.6,
where all query terms, including those that do not appear in relevant documents,
contribute to the visual effect. Even in the smoothed version, large variance is in
display. Review of more coarsely smoothed plots has not helped much. This large

variance makes it difficult to have confidence in the modeling decisions.
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Second, although the general trend is quite robust, the magnitude of the effect and
the exact form of the increase, seem to vary considerably across varying collections and
query sets. More study will be required to arrive at a more thorough understanding

of the nature of the evidence provided by the value of the idf feature.

6.8.3 Term Frequency As Evidence

There are two reasons that speak in favor of a log transformation of the term fre-
quency variable. The shape of the curve shown in Figure 6.8 strongly suggests a sharp
decrease in the weight of evidence provided by one additional occurrence of a query
term as term frequency increases. All data sets studied exhibited this same behavior.
Intuitively, this is what one would expect, and this intuition has been the inspiration
for a number of ranking formulas that are used in IR research. One approach to the
modeling of this effect that was tried, was treating the residual log-odds as a function
of if whose distance from a fixed maximum value decreases exponentially:

res = [l — By - e U
By fixing (3, and transforming the response variable, this exponential model could
be converted to an equivalent linear model:
Bo —log(res) = B — P - tf
The problem with this is that it requires an estimation of the asymptote, ;. Exam-
ination of other data sets revealed a notable robustness in the general shape of the
curve, but also unfortunate variability in the apparent value of f.

In retrospect, it becomes clear that a log transformation of #f should have been
applied before even considering the shape of the approximating function. This is
because of the highly skewed distribution of the 7T'f variable.

Both intuition and the histogram shown in Figure 6.16. suggest that the difference

between T'f = 1 and T f = 2 should not be treated as equal to the difference between
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Figure 6.16. Histogram of tf values

Tf =21 and Tf = 22. This is an indication that a log transformation is likely to

provide a more appropriate scale on which to analyze the data.

6.8.4 Document Length As Evidence

We have concluded that there is no convincing indication that document length
should be included in our model. This goes against much evidence to the contrary
in the experimentation literature. It should be kept in mind, however, that attention
has been restricted to news articles. Two points can be made.

First, there may not be any effect due to document length when attention is
restricted to a relatively homogeneous collection of documents such as a collection of
news articles. The benefits of document length normalization in an environment such
as TREC may be due to differences in behavior across the variety of sub-collections.

Second, the distribution of document lengths over a sub-collection is much more
uniform than it is over an entire TREC collection. It is reasonable to conjecture that

even if there is an effect due to document length, it may be too small to be detected,
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Figure 6.17. Residual plot for term-frequency for two ranges of document length over a
combination of AP88 and FR88 documents

and perhaps too small to make a difference in retrieval effectiveness, when retrieval
is limited to a sub-collection.

The above comments are corroborated to a degree by the graphs shown in Fig-
ure 6.17. The two graphs were produced from data corresponding to a combination
of the Associated Press articles for 1988 (AP88) and Federal Register documents for
the same year (FR88). The graph at the left in this figure shows weight of evidence as
a function of term frequency for documents of 600 words or less, whereas the graph
at the right shows the same curve for documents of 600 words or more. A comparison
of the two graphs indicates that the rise in weight of evidence is more gradual for the

longer documents than it is for the shorter ones.

6.9 Development of a Ranking Formula
In the section we take the Mg model and from it derive a probabilistic ranking

formula in terms of weight of evidence.

6.9.1 Weight of Evidence as a Ranking Formula
The Probability Ranking Principle (see Chapter 5) councils us to rank documents
by the probability of relevance. Equivalently, we may rank by the log-odds of rele-

vance. The evidence we have considered to this point is: the coordination value; and,
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for each of the query terms appearing in the document, the idf and ¢f values. In terms

of this evidence, the log-odds of relevance is given by:

log O(rel|lg,d) = logO(rellq)

+ woe(rel : co,idfi,tf1,...,idfn,tfn | Q)

There are two steps that need to be taken to convert this to a ranking formula. First
we note that we do not expect to have knowledge of the prior odds of relevance,
O(rel|q), for the query. However, this value is not needed. Since O(rel|q) is constant
for a given query, we can ignore it, and, for the purposes of ranking, simply use the

weight of evidence as an RSV, in place of log-odds:

RSV = woe(rel : co,idf,tfi,...,idfn,tfn | @)

= woe(rel : co | q) +woe(rel : idfi,tf1,...,idfn,tfn | co,q)

At this point, the theoretical results derived in the previous chapter can be applied.
The (tf;, idf;) pairs in the second term can be viewed as separate sources of evidence.

Based on the data analysis of sections, 6.5 and 6.6 we want a distribution such that:
woe(rel : idf;, tf; | co,q) (6.17)

is constrained for each tf-idf pair. According to Corollary 5.1.1, for the maximum

entropy distribution,

woe(rel : idfr, tf1,...,idfn,tfy | co,q) = D [woe(rel : idfi,tf; | co,q)] (6.18)

1T €d

Therefore, the ranking status value can be written as,

RSV = woe(rel:co | q)+ Y [woe(rel :idf;, tf; | co,q)]

irT; €d
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= woe(rel :co | q)+ > [woe(rel : idf; | co,q) +woe(rel : tf; | idfi, co, q)]

it €d

Using the regression equations, 6.11, 6.13, and 6.15, produced to model the weights

of evidence in the above expression, yields a ranking status value in the form of:

RSV = B5°+B°-co+ Y [BP" + B - idf; + B + Br* - log(tf)]

T, €d
where: idf; ={ BF(idf; — 1) if 1 < idf; < 2
iDF if odf; > 2

= B5°+ Y18 + B - idf; + BT - log(tf)] (6.19)

T, €d

where: 8] = 57° + B> + 33"

In the above formula 37° can be ignored for the purposes of ranking.
The coefficient values corresponding to the regression which have been fit in the

previous sections are given by:

(BS°, B%°) = (—0.66,+0.42)

(685> ")

= (—0.49,+1.27)

giving the ranking formula:

RSV = —0.66+ Y [~0.62+1.27-idf; + 1.25- log(t )]

irT; €d

6.9.2 Discussion of the M3 Ranking Formula
It is instructive to compare the ranking formula given in eq. 6.19 with formulas

commonly used in IR systems. First, the general form of the M3 formula is different
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Figure 6.18. Observed p(rel) vs. expected p(rel) for 50 bins

from traditional #f-idf formulas. In classic versions of the formula, some function of
the document frequency is multiplied by some function of the term frequency and

these products are added over all terms appearing in the document.

> ou(tf) - pa(df)
In the M3 version, the idf and tf ;g:ponents are added.

A second difference is the introduction of a 3-piece linear function of — log ’—f{; as
part of the ranking formula. This form of the ¢df function is a direct result of the
data analysis performed.

The tf formula in contrast is not novel. Intuition has suggested, and experi-
mentation has validated, the idea that the impact of an increasing number of term
occurrences should be dampened in retrieval formulas. Nonetheless, to our knowl-

edge, the study of residual log-odds as a function of #f reported here is the first time

direct evidence has been observed in support of this approach.
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6.9.3 Probabilistic Interpretation Of RSV

One advantage of a probabilistic retrieval model is that the ranking status value
will have a precise interpretation. This interpretation enables us to analyze the behav-
ior of a system in a way that is different from methods traditionally used to evaluate
system performance. The RSV produced by the Mg model can be interpreted as a
weight of evidence; specifically the conditional weight of evidence favoring the hy-
pothesis that the document is relevant to the query. Adding that weight of evidence
to the observed log-odds of relevance for the query gives a probability of relevance
for the document. After sorting the query/document pairs by this probability of rel-
evance, we can perform the same binning operation that was used for smoothing in
the analysis of evidence. For each bin, we can calculate the fraction of documents
in the bin that can be expected to be relevant based on the probability of relevance
associated with each of the documents. Figure 6.18 shows a plot of the fraction of
documents that are relevant for each bin against the fraction predicted for that bin.
The plot is produced on log-log scale, since the fractions involved are small and span
over three orders of magnitude.

The ability to produce a plot such as this is a valuable tool for information retrieval
research. For example, from Figure 6.18 we see that, while the model is doing well
overall at predicting probabilities, there appears to be a tendency to underestimate
probabilities at the low end of the scale. This says something about the way the
model is behaving and gives direction to investigations into how modeling might be

improved.

6.9.4 Performance Evaluation
The primary goal of this research is to acquire a better understanding of the rela-
tion between query/document features and the probability of relevance. Subordinate

to this objective, at the stage of the research, is the development of a ranking formula.
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Figure 6.19. Recall-precision graph for TREC 3 queries on AP88

Nonetheless, it is useful even at this point, to get a feel for how a ranking formula
resulting from the analysis might perform. To test the M3 model, the INQUERY infor-
mation retrieval system [11] was modified to apply a formula based on eq. 6.19 for the
RSV calculation. Performance was compared to an unmodified version of INQUERY
as a baseline.

A series of tests were run with various parameter settings. Figure 6.19 shows an
11-point recall-precision graph for the Mgz model using the best parameter settings
found. It is compared against the unmodified INQUERY system. The test system is
represented by the solid line, with a broken line used for the baseline. Performance is
almost identical at all levels of recall. This is encouraging, giving reason to believe that
the traditional multiplicative tf-idf formulation may ultimately yield to a probabilistic
ranking formula that is founded on observable statistical regularities.

A number of caveats are in order. First, the test results shown in Figure 6.19
correspond to testing the Mg model on the same data set for which it was developed.

However, test results on other data sets are promising.
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Figure 6.20. Recall-precision graphs for TREC 3 queries on ZIFF2
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Figure 6.21. Recall-precision graphs for TREC 1 queries on WSJ89
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Figures 6.20 and 6.21 show results for two other document collections: ZIFF2 and
WSJ89. In both cases, performance for the two systems were again quite comparable.
The collections involved are similar to the AP88 collection whose analysis is discussed
in this paper. The ZIFF2 test was run with the same TREC 3 queries that were used
for analysis with the AP88 data. Here, the test system performs slightly better than
the baseline system.

Interestingly, the test system performs well also on the WSJ89 test, even though
both the collection and the query set, queries from TREC 1, were different from those
used to develop the model. Individual collections of other types of articles have yet
to be studied, but tests of the full TREC volumes 1 and 2 gave poor results. Thus,
while preliminary testing can be said to give reason for hopefulness, research still
remains to be done before a competitive ranking formula, robust over a wide range
of document types, can be expected to emerge.

Second, trial-and-error tuning methods were used for setting the parameters for
these tests. The initial parameter values tried were those produced by the regressions.
One by one each parameter was then allowed to vary and tests were run. In general,
performance was found to be robust over a comfortable range of values, and the initial
parameter settings were found to be reasonably close to optimal. The settings used
for the tests reported here were those produced by the respective regressions for all
parameters save one.

The one exception was the value for 47, the slope of the line modeling the weight
of evidence, woe(rel : co | q), provided by coordination level. In this case, the setting
used was the one resulting from tuning.

Finally, the model has been developed for, and the tests have been run on, ho-
mogeneous collections of articles; whereas the baseline system has been designed to
perform well over a heterogeneous mix of collections representing a wide range of

document types. Presumably, state-of-the-art retrieval systems would perform bet-
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ter on news articles if they had been designed and tuned for performance on this
more restrictive type of document. This should be kept in mind when comparing the

performance of the test system to the baseline.
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CHAPTER 7
CONCLUSIONS

Having given the number of instances respectively in which
things are both thus and so, in which they are thus but not
so, in which they are so but not thus, and in which they are
neither thus nor so, it is required to eliminate the general
quantitative relativity inhering in the mere thingness of the
things, and to determine the special quantitative relativity
subsisting between the thusness and the soness of the things.

Alan Agresti in Categorical Data Analysis [1, p. 28], says
this is quote from 1887 paper by M.H. Doolittle, which he
got from 1959 paper by Goodman and Kruskal.

This chapter reviews the principal contributions of this work and discusses a num-

ber of directions for further investigation.

7.1 Research Contributions
There are four general ways in which this dissertation can be considered to have

contributed to the advance of information retrieval research.

Data driven methodology: Development of a methodology for the modeling of

relevance as a direct product of the analysis of retrieval data.

Formal framework: Development of a formal framework based on weight of evi-
dence and the Maximum Entropy Principle which guides the data exploration

process and serves as a foundation for modeling.

Application of the methodology: Creation of a statistical model through the ap-

plication of the methodology to available retrieval data.
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Ranking formula: Derivation of a probabilistic ranking formula interpretable in

terms of observable statistical regularities of retrieval data.

The following four sub-sections describe each of these general categories. In each
case specific results of the research are listed giving a more detailed itemization of

the contributions.

7.1.1 Methodology for the Study of Retrieval Evidence

The principle contribution of this research is the development of a methodol-
ogy for the study of evidence used for the ranking of documents in response to the
expression of a user’s need for information. As discussed in the introduction, two gen-
eral approaches to IR research can be identified. The engineering approach focuses on
experimenting with a variety of techniques with the goal of increasing retrieval perfor-
mance on some set of experimental data. The more theoretical approach starts from
a priori assumptions and formally derives techniques that should improve retrieval.
There is a rich interplay between these two approaches, as engineering techniques are
used to convert theoretical results into practical improvements, and formal analysis
is used to advance the understanding of progress due to engineering.

Rarely however are empirical methods used to directly assess or model retrieval
strategies. As we have seen, statistical analysis was used to test the 2-Poisson hy-
pothesis. The use of logistic regression by the group at Berkeley does probabilistic
modeling, but not exploratory data analysis. A more direct precursor to this disser-
tation research is work on pivoted document length normalization [101, 100], where
techniques very similar to those used here were used to develop a modification to the
way document length is treated in ranking.

The research reported here, however, is the first time EDA has been applied to
all sources of evidence that participate in the retrieval strategy. It can fairly be

categorized as the first example of what we have termed the data driven approach.
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The result is a complete probabilistic model from which a document ranking
formula can be derived. Although, application of the methodology developed in this
dissertation has been restricted to the study of features traditionally used in ranking
formulas, it is a general methodology. It can be applied to other features and other
issues which have been the subject of IR research for many years. Some of these
possibilities will be discussed further in the section on future work.

Aspects of the methodology worthy of specific mention are:

Extensive use of graphical displays: Graphical representation of the data is the
most important aspect of the methodology. To a degree, the extent of the
reliance on graphical displays is evident from this thesis report itself. But it
should also be kept in mind that much auxiliary graphical material is produced
and studied before arriving at final graphs, such as those appearing in this
document. Graphical displays play a key role in determining what it is that is
worthy of study and how it can best be studied, before questions of scale and

curve-fitting are even considered.

Analysis in terms of weight of evidence: We have argued that weight of evi-
dence is particularly appropriate to the study and modeling of retrieval data
because the goal is to predict a binary value in an environment where proba-
bilities of interest tend to be small and vary over a range spanning a number of
orders of magnitude. Although weight of evidence can be seen to have played
a role in previous research, the explicit formal recognition of this role and the
specific manner in which it has been incorporated into the overall methodology

is a unique contribution of this work.

Study of woe residuals: A technique specific to the modeling of weight of evidence
has been developed for the studying of residuals. This technique, which was

applied for the development of each of the models, My, M5, and Mg, involved
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comparison of observation with expectation: observation of the actual number
of relevant documents in a subset of the data; expectation of the number of

relevant documents based on an existing model.

woe smoothing: Techniques specific to weight of evidence have also been developed
for the purpose of smoothing, motivation for which was given in Section 6.5.3.
As described in the same section, the techniques involved smoothing over the
counts that enter into the calculation of weight of evidence, rather than over
the calculated values themselves. Due consideration is also given to insuring

that the resulting smoothed estimates are robust.

Transformations resulting from EDA: Raw evidence used in document ranking
is often transformed in some way. Prominent examples of this are the classical
idf formula introduced by Sparck Jones [103], and the application of some damp-
ening function to raw tf values, both of which are common in modern ranking
formulas. The use of EDA to suggest promising transformations is, however, a
contribution of this dissertation. This is made particularly clear in Chapter 4,
where we see 1) how the classical form for idf could have arisen from the data
analysis that was performed, and 2) how, as a result of the same data analysis,

an improved form can emerge.

7.1.2 Formal Framework Based on WOE and MAXENT

As support for the data analysis and modeling, a formal framework based on the
Maximum Entropy Principle has been produced. Initially, two classic probabilistic
models were analyzed from the maximum entropy standpoint. This experience led to
the formulation of a general theorem expressing conditions for woe additivity, which
in turn, supported the modeling process that forms the core of this research.

In summary, specific contributions are:
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The MAXENT-WOE Theorem: A theorem that gives very general conditions that, if
satisfied by a set of constraints, will result in additive weights of evidence for

the maximum entropy distribution.

Reformulation of the BIM and ¢MM models: As an immediate consequence of
the MAXENT-WOE Theorem, both of these models can be understood from the

perspective of maximum entropy.

Justification for the models developed: The MAXENT-WOE Theorem becomes a

justification for additive aspects of the modeling approach adopted.

We have argued that adherence to the Maximum Entropy Principle carries with

it a number of advantages which may be summarized as follows:

Generality: In theory at least, arbitrarily complex constraints can be considered,
consistent with knowledge available to the modeling agent. This is in contrast

to modeling limited to relatively simplistic forms of independence assumptions.

Principled approach: The approach may be considered principled in that it is
founded on information theoretic notions. While one may not be disposed
to accept the principles in question, they are clearly stated and open to more

precise and rigorous analysis than more ad-hoc approaches permit.

Combination of evidence: Combinations of multiple sources of evidence can be
processed in a consistent and intuitively plausible manner within the theoretic

formalism.

New evidence: Existing models can be extended to incorporate new sources of ev-
idence. Most probabilistic IR models that have been devised are tailor made
to address specific issues or to explain specific empirical results. With these
models it is generally unclear how they might be extended to address issues for

which they were not originally designed.
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7.1.3 Application of the Methodology to the Analysis of Retrieval Data
The methodology based on weight of evidence was applied to an available set of
retrieval data. This resulted in the development of a model for weight of evidence in

favor of relevance given by the query/document features that were studied.

7.1.4 Ranking Formula
A ranking formula has been derived directly from the weight-of-evidence model.

The derived formula has two important characteristics:

Probabilistically interpretable RSV: The ranking status value has a strict prob-
abilistic interpretation. It is the weight of evidence in favor of relevance given

by the features of the query/document pair being evaluated.

Decomposable: The components of the formula can be decomposed. Both the form
and the parameter values correspond to observable regularities of the retrieval

data.

The formula that resulted from the modeling process differs from other probabilis-

tic and non-probabilistic models in a number of interesting ways:

3-piece idf: The idf function corresponds to a 3-piece linear function of the fraction
of documents in which the term appears. This is a novel contribution of this

work.

additive tf-idf score: The ranking formula is a sum of ¢f-idf scores. In contrast with
standard ranking formulas however, the tf-idf score is the sum of a function of
term frequency and a function of document frequency. Typically, tf-idf scores

are products.

constant term in tf-idf score: The tf-idf component scores also include an additive

constant, corresponding to the sum of the 3;°", 3", and 37° coefficients.

156



7.2 Future Work

A central motivation for this dissertation is the development of a theoretical frame-
work that allows for various forms of evidence to be incorporated in a general retrieval
system in a systematic way. As mentioned above, it should be possible to apply the
techniques developed as a result of this research to other sources of evidence. Alter-
natively, the same sources of evidence can be analyzed in different retrieval settings.
The approach taken in this dissertation opens the door to a research paradigm that
can be brought to bear on the study of all aspects of the information retrieval prob-
lem. A number of directions that are ripe for immediate exploration are outlined in

this section.

7.2.1 Alternate Sources of Evidence
The dissertation has addressed the weight of evidence provided by the occurrence
of query terms in documents when query terms are single words. However, other

sources of evidence may be considered.

7.2.1.1 Alternative Query Terms

Information retrieval is not restricted to single words as terms. For example,
phrases can be used as terms. The user may explicitly indicate the submission of
a phrase [10], or the system may apply some heuristic technique to identify phrases
in the query [66]. Systems such as INQUERY allow for the specification of proximity
operators as part of a query [10]. Through the use of proximity operators, the user can
form features based on the co-occurrence of more basic features (e.g. words, phrases)
within a fixed window within a document. A window may be a component of natural
language text, such as a sentence or paragraph, or simply an arbitrary fixed length
sequence of words within a document.

Typically, features corresponding to phrases and proximity operators are, once

identified, treated in the same way as single-word terms. It is reasonable to speculate,
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however, that there is a systematic difference between single word terms, phrases and
proximity operators with regard to the evidence their occurrence provides in favor
of relevance. It follows that a weighting scheme tailored to the type of term should
result in improved retrieval performance. The methodology employed in this thesis

can be used to derive such a weighting formulation and test this hypothesis.

7.2.1.2 Query Term Sub-categories

At the same time that it might be beneficial to base weighting on the category (e.g.
single word, phrase, proximity operator) of a term, it is reasonable to explore the way
evidence may differ for different sub-categories. For single word terms a number of
attributes come immediately to mind. Intuition suggests that a word’s part of speech,
or whether a term is a proper noun, or simply whether or not a word is capitalized,
may well be correlated with differences in the weight of evidence associated with a
query term. For automatic query formulation from topic descriptions, such as those
developed for the TREC competitions, whether the term was derived from the title,
description, or narrative fields, or some combination of them may also be useful for
estimating weight of evidence.

In 1957 Luhn pronounced, “there are as yet many unanswered questions, such as
whether nouns and adjectives or other portions of sentences furnish ... the most effec-
tive discriminating elements.” [74]. Such questions still await a precise quantitative

response.

7.2.1.3 Query Expansion

A technique frequently employed to improve retrieval performance is query ex-
pansion, whereby the query is extended by terms deemed to be related to the query,
but not explicitly specified by the user. When relevance judgments are available,
the query can be expanded with terms that appear frequently in documents that are

known to be relevant. Local feedback is an expansion technique that does not rely on
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relevance feedback [23]. In this approach, an initial search is realized using the query
as given by the user. The high ranking documents from this initial query are then
treated as if they were known to be relevant, and are used for query expansion.

Qui and Frei [86] represent terms as vectors, the components of which are given
by a measure of the association between the term and each of the documents in the
collection. A query is associated with a weighted sum of the query terms. The query
can then be expanded by adding terms with vector representations close to that of
the query vector.

Jing and Croft build an association thesaurus of noun phrases, and expand queries
with related phrases from the thesaurus [66]. Each phrase is represented as a list of
term/frequency pairs. The terms are those that co-occur with the phrase in the corpus
and the frequency is the number of co-occurrences. This representation of phrases is
the same as the representation used for documents. In order to determine expansion
phrases, the query is applied to the phrase thesaurus as if it were a collection of
documents. Top ranked phrases are added to the query.

Many other techniques have been proposed. Whatever the mechanism for expan-
sion, the final query will be a combination of original terms and those that have been
chosen as a result of expansion. Typically, once expansion terms are chosen, they are
simply affixed to the query, with no distinction between the original terms and those
that have been added. But, here again it is reasonable to investigate the possibility
that, with respect to their weights in favor of relevance, there is a systematic differ-
ence between terms chosen initially by the user and those added by a given expansion
strategy.

It is true that researchers have often experimented with schemes for weighting
expansion terms differently. But these tend to be ad-hoc attempts, where some pa-
rameterized weighting is chosen and parameter values are set as a result of empirical

testing. The methodology developed as a result of this thesis offers the opportu-
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nity to develop a more principled approach to automatically incorporating new terms
in a query. Furthermore, the behavior of terms resulting from different expansion
techniques can be compared and contrasted with the goal of obtaining greater under-
standing of what these techniques are doing; why it is that they work; and how they
might be improved.

The study of query expansion with terms produced as a result of Local Context
Analysis [114] is a promising area for exploration. Local Context Analysis (LCA) is a
variation on local feedback that does not assume that all top-ranked documents are
relevant. It is based instead on the hypothesis that, “Query expansion using words
co-occurring with all words in the top ranked documents will produce more effective
retrieval” [113, p. 53]. LCA utilizes a formula for ranking the terms appearing in
top-ranked documents as candidates for query expansion. The ranking formula takes
into consideration the number of documents in the collection that contain the term
and the number of times the term co-occurs with the query terms in the collection.
Experiments have shown that local context analysis is very effective, not only for the
ad-hoc retrieval task [114], but also in the context of cross-lingual retrieval [4] and
topic segmentation [83].

A direct study of weight of evidence in favor of relevance can be beneficial in
many ways with respect to LCA. As mentioned above, it can be used to determine
how best to weight expansion terms, relative to terms appearing in the original query.
A variable to be considered in this weighting is the score assigned to expansion terms
as part of the process of ranking them.

The formula used to rank candidate expansion terms can, itself, be studied using
techniques of exploratory analysis. The goal in this case would be to uncover correla-
tions between the characteristics of a candidate term input to the Xu ranking formula
and the quality of the expansion term. A formal definition of expansion term quality

would be required for this purpose.
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7.2.2 Alternative Retrieval Settings

An IR system evolves as a result of experimentation and experience with retrieval
in a given setting. As information retrieval technology has matured and proven itself
useful, systems developed for one purpose have been applied to new tasks and new
environments. Unfortunately, the lack of solid theoretical foundations and established
methodology makes it difficult, if not impossible, to attack these problems from first

principles.

7.2.2.1 Differences across Languages

Often a retrieval system built for one language, say English, is used, essentially as
is, for document searching in another language of the same general linguistic family
— Spanish perhaps. Text pre-processing routines may need to be reworked to ac-
commodate, for example, differences in the morphological rules used for stemming,
and interface issues may need to be addressed. Typically, however, the same basic
techniques and weighting formulas are used without modification. The implicit as-
sumption is that the nature of retrieval in one language is the same as (or is similar
enough to) the problem of retrieval for a different language. This approach appears
to work, but the result may be sub-optimal. Is term weighting necessarily the same
across languages?

In [36], Fujii expresses the view that, “the general research method has not yet
been systematically explored, despite there being a number of studies of non-English
retrieval” [p. 21]. He finds that existing studies “tended either to focus on the
idiosyncratic characteristics of a specific target language (often in an ad-hoc manner),
or to ignoring the effecting factor of the language(s) used in the experiments'” [36,

p. 22]. The data driven approach provides a methodology for the study of this issue.

litalics added
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Once sufficient data has been accumulated in a new language, such as Spanish,
the adequacy of utilizing a weighting formula that had been originally developed for
English could be tested directly. If the fit is good, fine. If it is not, exploratory
techniques such as residual plots, should help suggest where to begin the process of

modification.

7.2.2.2 Specialized Tasks

In the same way that retrieval algorithms may be used, as is, for new languages,
weighting formulas are often used, unmodified, for new specialized tasks. For exam-
ple, Allan, Papka & Lavrenko have reported on an algorithm for unsupervised event
detection, in which documents are treated as queries [2]. Each document, as it is re-
ceived (for example, over a newswire), is evaluated as a query against all documents
previously encountered. The resulting ranking scores are then used as a measure of
document similarity. The measure of similarity is used, in turn, to assess how likely it
is that the document in question concerns a new event. It is doubtful, however, that
a term weighting formula that is optimal when the objective is prediction of relevance
to a query, will also be optimal when the objective is prediction of a new event. The
degree to which this may be a problem for the event detection task can be directly
appraised by way of a post-hoc analysis of the data.

Allan et al. have also shown that the time between arrival of two documents is a
good source of evidence as to whether or not a document will be considered to encom-
pass a new event. They utilize this information in their detection algorithm, but the
incorporation of elapsed time in the algorithm is ad-hoc. A non-parametric regres-
sion with a binary new-event response variable, and elapsed-time and ranking-score
as predictor variables, may be a better way to model the problem. Aside from the
possibility of improved performance due to a better combination-of-evidence formula,

a score resulting from the formula would have semantic content as an estimate of the
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probability that a document would be considered to correspond to a new event. Fur-
thermore, a probabilistic interpretation would allow decision theoretic principles to
be employed for the setting of a threshold value, given a user specified cost function.

Another example of how the formula used for standard retrieval is used for a very
different purpose was given in Section 7.2.1.3. When the association thesaurus of Jing
and Croft is used for term expansion, the query is run against the thesaurus as if it
were a document collection. This approach works well, but there is good reason to
think it might be made to work better, since the ranking formula used was developed
for a different purpose. More important, once again, is that a study of this nature
may lead to a better understanding of characteristics of information retrieval; in this
case with regard to the role phrases can play in the expansion of queries.

Also mentioned in Section 7.2.1.3 was the use of local context analysis for appli-
cations such as cross-lingual retrieval and text segmentation. Here again a technique
derived with one application in mind is called into service in a novel setting. In the
context of specific alternate applications, the study of how LCA terms are chosen,
and what weights might best be associated with the terms once they are chosen, may

prove both informative and beneficial.

7.2.2.3 Specialized Collections

Even if both the language and the essential character of the task are constant
across applications, differences in the nature of collections may require variations
in the ranking formula used, if optimal retrieval is to be achieved. It is certainly
conceivable that the relationship of term characteristics to weight of evidence for
queries used for searching a collection of legal documents may be different from the
relationship for terms of queries made against a collection of newspaper articles.
Queries against a collection of abstracts may differ from queries against a collection

of full documents. Queries submitted to retrieval engines on the world wide web are
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likely to display very different behavioral characteristics from information searches in
more restricted environments.

It is hard to see how these questions can be addressed in a principled way with
the methods currently employed in information retrieval research and system devel-
opment. The data driven approach, used to study TREC queries in this thesis, could
be used to study data collected in different environments. Differences in the behavior
of query terms, or other sources of evidence, should not be difficult to uncover if they
exist. Where discrepancies are observed, the theory developed as a result of the study
of TREC data should serve to guide the investigation of variations across collections.
As an additional benefit, the study of differences across collections may well provide
insights into the general retrieval problem that might not be apparent from the study

of individual collections in isolation.

7.2.3 Boolean Queries

As explained in Section 2.5, the original motivation for this research was previous
work on the modeling of Boolean queries in the context of the INQUERY inference
network. With reliable estimates of probabilities of relevance, generated by a model
derived from inspection and analysis of extensive retrieval data, a more principled
attempt at the modeling of Boolean queries can be made. Probabilistic intuitions
should be a more trustworthy guide to modeling when the inputs to Boolean operators
correspond to reliable estimates. Surprising or disappointing results are more likely
to succumb to intuitive analysis.

More important, and more in concert with the overall philosophy of this research,
is that the engineering approach relying solely on intuition and trial-and-error search,
which characterizes earlier work such as that reported in [45], can be replaced by
data driven analysis. As with the phrases and proximity operators discussed in Sec-

tion 7.2.1.1, Boolean combinations of query terms can be treated as sources of evi-
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dence in their own right. Post-hoc determination of the weight of evidence provided
by components of Boolean queries can be computed, and multivariate non-parametric
regression techniques can be applied. The relationship between univariate weights of
evidence and relevance can be studied for a number of queries, and a model can be
developed for the weight of evidence provided by a combination of components as a
function of the weights of evidence given by each component individually.

Also, the data driven approach can help determine how best to take advantage
of other aspects of the inference network framework. In the same way that Boolean
combinations can be studied, combinations of multiple query formulations, or evidence

provided by multiple document representations, can be investigated.
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