A Self-Organized File Cabinet

Dawn Lawrie
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003*

Abstract

The self-organizing file cabinet is an information retrieval
system associated with a user’s physical file cabinet. It
enhances a physical file cabinet with electronic informa-
tion about the papers in it. It can remember, organize,
update, and help the user find documents contained in
the physical file cabinet. The system consists of a mod-
ule for extracting electronic information about the papers
stored in the file cabinet, a module for representing and
storing this information in multiple views, and a module
that allows a user to interact with this information. The
focus of this paper is on the design and evaluation of the
self-organized file cabinet.

1 Introduction

Most ordinary offices contain a desk with a computer
and lots of papers scattered on it. They also have file
cabinets and shelves full of books. If one considers only
the physical documents in this room, it is highly probable
that the owner of the office could only locate a portion
of what is in it. She may remember an interesting article
she read a year ago but not its author, and therefore,
cannot retrieve it to show it to an interested student.
Or perhaps a deadline is approaching and she needs a
document, but can’t remember where she put it. Is it
still in the file cabinet? Or did she already take it out
and put it on her desk?

These problems are faced by many people today, and
the only remedy they see is that they need to be better
organized. There is another solution. Rather than trying
to alter human nature, one can go to a computer for help.
By sharing the task of organization, one could be a lot
more efficient. All that is needed is one more tool in the
office, a scanner. Then a link between her file cabinet and
the physical world is created. Each new document that
is placed in the file cabinet is first scanned. A drawer is
chosen by the user or the system and then placed in the
front of the drawer. Now “author” is no longer the only
information she can use to search for the document she
wants to give that student. She will be able to query the

*Most of this work was done while at the computer science
department of Dartmouth College.

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or
fee. CIKM’99, Kansas City, Missouri © 1999 ACM 1-58113-015-5
11/99 $5.00.

Daniela Rus
Department of Computer Science
Dartmouth College
Hanover, NH 03755

system through text strings or color or both to find the
document

In this paper we describe a system we created for
information and knowledge management in an office set-
ting. The self-organizing filing cabinet is a system that
enhances a physical filing cabinet with electronic infor-
mation to support better filing and queries. The system
works as follows: each document is scanned before be-
ing filed away. The scanned image can be filtered with
OCR to recover the words of the document. The scanned
image can also be processed by color and other layout fil-
ters such as those we developed in our previous work
[RS95b, RS97]. This information is added to a database.
The scanned document is then compared with the rest
of the database to identify the best physical filing loca-
tion. The contents of the database are kept organized as
a hierarchy of clusters. When looking for information in
this physical filing cabinet, a digital query can be used to
compute locations of all relevant documents in the phys-
ical space. The database can also be used to browse the
contents of the collection.

This paper also contains three evaluation studies: the
first study measures the performance of the system; the
second study measures the effectiveness of using the file
cabinet to organize information for the user; and finally,
a small user study explores the utility of such a system.

1.1 Related Work

The quest for using automation to improve information
access in an office setting has a long history [Mal83]. Re-
cent efforts to enhance physical environments with elec-
tronic information include several projects. The Intelli-
gent Room project at the AI Lab at MIT created a room
surveyed by cameras that can recognize and understand
physical gestures. Progress on this project has been re-
ported in [Tor95]. Euro Xerox and Hitachi created inter-
active desks where the user can write with a stylus pen
on the desktop. The desktop consists of a display that
can capture the user’s input. A camera mounted on the
desktop is used to project on the desktop rather than ex-
tract information [AM+94]. Finally, [RS97] describes a
self-organizing desk.

Our virtual file cabinet system draws from progress
made in several areas: self-organizing systems [Koh90,
Sam69, CKP93, APR98, APR99], information retrieval
and organization [Sal91, SA93, Wil88, RA95], robotics
and vision [MRR96, HKR93], and automated document
structuring [TA92, MT*91, RS95b, JB92, NSV92].

2 Example

Figure 1 shows a typical setup for the self-organizing file
cabinet. The user interacts with the file cabinet through
a GUI The right side of the GUI contains a photograph

File Preferences Help |

Paper 3, row: 2, col: 3

Change Size of File Cabinet
Add Paper
Remove Paper
Retrieve Paper
Move Paper
‘Summarize a Drawer
Remove a Drawer
Cluster File Cabinet
Cluster of a Paper

Blue RED/BROWN
® Color Search | Combo Search
R

Enter text (search string):

57 6 E] 2
58 6 2 1
Results of Text Search: internet

Rank PageID Row o1 Similarity
1 3 2 0.1471

[FESENUFSRN
Goereno
PINTTNININIY
PREREOOOOGa

°

°

3

&

Figure 1: A snapshot of the virtual file cabinet system. This
figure shows the basic GUI for the virtual file cabinet. It
also shows the response of the file cabinet to a query. Note
that each drawer is represented in a side view so that the
approximate location of the documents found can be marked
in the virtual drawers.

of the physical file cabinet setup in the office. The left-
hand side gives an electronic visualization of the physical
file cabinet. We call this image the virtual file cabinet.
The bottom part of the file cabinet contains a series of
buttons that can trigger the retrieval and organization
capabilities of the system.

The first task that needs to be accomplished in setting
up a file cabinet is adding papers. In order for a paper to
be added, there needs to be an ASCII and TIFF version
of the document. These are created by scanning the doc-
ument and then running the scanned TIFF file through
an OCR filter. Although currently these steps must be
done separately, it is possible to imagine a system that
could take the TIFF file and do the rest on its own. After
the electronic information is captured from the scanned
image (in the form of text, images, color, and layout in-
formation), the user has the choice of (1) selecting the
drawer location for the new document in the file cabinet;
or (2) asking the system for a drawer recommendation. A
drawer is recommended on the basis of the greatest num-
ber of similar documents at a given threshold. Usually a
range of thresholds is used so that the document is filed
with the most similar documents. This range is specified
by the user prior to the recommendation. Finally, the
document is placed in the front of the drawer.

The user can currently query the file cabinet based
on text, color, or a combination of these types. Queries
based on layout information about the document also
could be supported. The system can answer queries such
as “where is the paper with the red table in the lower
right hand corner?” Or “which papers are about in-
telligent agents and have red pictures on the left side?”
The file cabinet system responds by highlighting the loca-
tion of the relevant documents in the virtual file cabinet.
These locations correspond to the physical location of the
documents in the real file cabinet. A button in the “Find

Results” window gives the user access to the picture of
the document and finds its exact location in the drawer,
i.e. the number of documents in front of it. The user can
then proceed to the relevant physical drawer to retrieve
the document.

The file cabinet will also provide a table of contents.
The self-organizing file cabinet employs an information
organization algorithm that presents the user with a vi-
sual summary of all the topics present in the file cabinet.
By selecting one topic, presented as a cluster, the loca-
tions of all documents relevant to that topic are high-
lighted.

3 The System Description

Information Capture

document »[Scanning)—»u_»

Information Access

History

Space/Time
Text (OCR)
Layout (filters)

Location *

User —a—p

; Organization
queries

Summary

Figure 2: The system components of the self-organizing file
cabinet. Documents to be filed are first passed through a
scanner. The scanned images are filtered by OCR and color.
Other image segmentation modules could easily be added that
would recover figures, table, and other layout information.
Each of the layout features is then entered into a database
that contains multiple views of the documents according to
these features. In addition, the database contains a field for
the physical location of the document in the real file cabinet.
The user has the option of specifying a physical location for
the document in the file cabinet, or of asking the system for
a recommendation based on the current contents of the file
cabinet. The database is indexed, organized, and available for
queries.

The vision of a self-organizing file cabinet is achieved
by the system shown in Figure 2. Our main goal in creat-
ing this system was to develop tools to automatically cre-
ate a reference database associated with the documents
in an office space. We believe this to be a useful system
because people in general have great difficulty maintain-
ing organized systems of documents. This difficulty is
often due to the fact that one document could belong
logically in several different locations. Thus, there may
be inconsistencies in placing and retrieving physical doc-
uments.

Our system addresses this problem by maintaining
an electronic image of the physical cabinet. A picture of
each document is computed and retained in the virtual
file cabinet after it has been scanned in by the user. We
believe that although the initial time spent scanning a
document can be much greater than the time to place
a document in a drawer, the ease with which one can
find the document outweighs the initial time investment.
There is also the possibility that the file cabinet could be
enhanced to directly communicate with the scanner, and
a more sophisticated scanner would enable a number of
pages to be scanned automatically.

The user can query the virtual file cabinet by speci-
fying a combination of word and color information. The
system also offers the capability of finding other similar
documents stored in the file cabinet. In addition, the
system can present the user with a “table of contents”
that captures the topics and subtopics of the documents

contained in it. Finally, the system can help a user file
documents by suggesting the best drawer for the current
document based on the contents of the file cabinet.
There are four main components to the self-organized
file cabinet: (1) the database that captures multiple rep-
resentations for each document; (2) the search engine
used to query the cabinet; (3) the organization compo-
nent (used to compute a table of contents for the file cab-
inet and to recommend drawers for filing); (4) the GUI
visualization scheme for the file cabinet. The rest of this
section is devoted to describing each of these modules.

3.1 The Database

The file cabinet database is structured to mirror a file
cabinet in the physical world from the design of the struc-
ture to the way in which file cabinet manipulations are
performed. For example, in order to retrieve a paper, one
first thinks of retrieving the paper from the cabinet. The
first question that needs to be answered is which drawer
the document is in. Once a drawer is known, the task can
be reduced to retrieving a paper from the drawer, and the
files are “thumbed through” to find the correct one. We
designed classes in C++ to make normal operations on
a filing cabinet as natural and intuitive as possible. The
parent structure is the filing cabinet itself. A filing cabi-
net consists of drawers. The implementation structure of
the drawers is a dynamically allocated ordered list.

To support queries that combine textual with color
information, we created a database indexed by words,
color, and physical information. The database comprises
a collection of inverted indices, one for each attribute.
An inverted index associates each attribute instance with
a list of documents within which the attribute is found.
The advantage of this representation scheme is a decrease
in search time: given a specific attribute (a word, a color,
etc.). The list of documents containing this attribute is
available in constant time. Each index is computed in-
crementally by a filter that operates on the document’s
scanned image. Currently, our filter library consists of
two filters: OCR and color. The architecture is expand-
able, and we will add new filters in the future.

3.1.0.1 OCR. The OCR filter we used was the soft-
ware product OmniPage Lite by Caere, but any off-the-
shelf OCR package could be used. From a random sam-
pling of the 88 documents scanned for the experiments, it
was determined that the OCRed text was 97.5% correct
by word with a 2.7 standard deviation. This error rate is
better than most published error rates [Har99] because
the test pages came from a magazine where the text was
black printed on glossy white paper and was of a size
and boldness where the OCR did very well. In addition,
problems with the layout were not counted as an error
because we do not consider proximity of words important
in the information retrieval part of the file cabinet.

3.1.0.2 Color. The color filter works by building a
color histogram annotated with layout information for
each object. The filter determines the 24 most preva-
lent colors occurring in the document and the location of
each color. Location is a layout attribute determined by
placing a 3 x 3 grid on the paper.

3.1.0.3 Space, time, and history. Each paper
is assigned a location in the file cabinet using coordinates
that can be provided by the user or computed by the

system. Each paper is also given a time-stamp, which is
the current time the paper is placed in the drawer. If the
paper is moved, it is given a new time stamp. In addition,
each paper is positioned within the document array as it
is in the physical file cabinet so that the location within
the drawer is readily available.

3.2 Filing and Retrieving Documents

The filters defined in Section 3.1 generate a web of rep-
resentations for each document. We compile this multi-
plicity of representations in a database. This database
supports the following file operations: adding a paper to
the file cabinet, removing a paper from the file cabinet,
computing a table of contents for the file cabinet, and
computing the best location for filing a new document.
The information in this database changes dynamically,
as driven by these operations. In response to each event,
the database is updated automatically.

The file cabinet can be queried with keywords, with
an entire document (full text), with color and layout in-
formation, or any combination of these attributes. We
use an augmented version of the SMART System [Sal91],
which is a sophisticated text-retrieval system. We aug-
mented SMART to also support color and layout indices.
SMART copes well with text partially corrupted during
the OCR process. Its basic premise is that two doc-
uments are similar if they use the same words. Doc-
uments and queries are modeled as points in a wvector
space defined by the important words occurring in the
corpus. When all texts and text queries are represented
as weighted vectors, a similarity measure can be com-
puted between pairs of vectors that captures the text
similarity. We use this similarity measure as the basis
for computing hyper-links between documents that are
similar to each other in this statistical framework.

The textual information contained in the documents
in the file cabinet is organized by topic using the star clus-
tering algorithm we developed [APR98, APR99] on the
document space. The star algorithm is simple, easy to
implement, efficient, and gives a hierarchical organization
of a collection into clusters. Each level in the hierarchy
is determined by a threshold for the minimum similarity
between pairs of documents within a cluster at that par-
ticular level in the hierarchy. This method conveys the
topic-subtopic structure of the corpus according to the
similarity measure used.

We have developed an off-line version of the star algo-
rithm to handle static collections and an on-line version
to handle dynamic collections [APR98, APR99]. Both
algorithms are used in the file cabinet system. These two
algorithms compute clusters induced by the natural topic
structure of the space. To compute accurate clusters,
we formalize the clustering problem as one of covering
a thresholded similarity graph by cliques. Covering by
cliques is NP-complete and thus intractable for large doc-
ument collections. Recent graph-theoretic results have
shown that the problem cannot even be approximated in
polynomial time [LY94, Zuc93]. We instead use a cover
by dense subgraphs that are star-shaped!, where the cov-
ering can be computed off-line for static data and on-line
for dynamic data.

The star algorithm is based on a greedy cover of the
thresholded similarity graph of a document collection by
star-shaped subgraphs; the algorithm itself is summa-
rized in Figure 3 below.

1In [SJJ70] stars were also identified to be potentially useful
for clustering.

For any threshold o:

1. Let G» = (V, E,) where E, = {e : w(e) > o} be
a similarity graph.

2. Let each vertex in G, initially be unmarked.
3. Calculate the degree of each vertex v € V.

4. Let the highest degree unmarked vertex be a star
center, and construct a cluster from the star cen-
ter and its associated satellite vertices. Mark
each node in the newly constructed cluster.

5. Repeat step 4 until all nodes are marked.

6. Represent each cluster by the document corre-
sponding to its associated star center.

Figure 3: The off-line star algorithm. The on-line star
algorithm is described in [APR98, APR99].

We show [APR98, APR99] that the off-line and on-
line algorithms produce high quality clusters very effi-
ciently. Asymptotically, the running time of both al-
gorithms is roughly linear in the size of the similarity
graph that defines the information space. We have de-
rived lower bounds on the topic similarity within clusters
guaranteed by a star covering, thus providing theoretical
evidence that the clusters produced by a star cover are of
high quality (in other words, have a high degree of pre-
cision). The file cabinet uses the off-line version of the
star clustering algorithm to organize an existing file cab-
inet and extract a table of contents. The file cabinet uses
the on-line version of the star algorithm to recommend a
drawer and to insert a new document in an existing file
cabinet organization.

3.3 The Graphical User Interface

The GUI was spatially designed with four quadrants as
shown in Figures 1 and 4. In the upper left-hand corner,
a graphical representation of the file cabinet appears. In
the upper right hand corner, a picture of a file cabinet
is shown. The lower left-hand corner displays the search
operations. The output from a search is printed in the
scrolling text area. In the lower right hand corner there
are a series of buttons that allow for the manipulations
of documents and the file cabinet as well as buttons per-
taining to the clustering by topic features.

The graphical representation of the virtual file cabinet
is displayed in blue with drawers outlined in yellow on a
black background. Each drawer is actually a side view of
the open drawer rather than a front view. This enables
the interface to display the approximate position of a
paper within the drawer by drawing a red line to highlight
the document. When a drawer becomes full, many papers
could be represented by one line. The results of most
searches yield more than one paper. In order to figure
out exactly which paper is the one the user is interested
in, the user can highlight a specific paper in green.

The lower left part of the screen is devoted to the
searching mechanisms. The top part of this section is
used to select search colors by mixing red, green, and
blue. This allows selection of twenty-four different col-
ors. The constructed color is displayed to the right of the
sliders. Above this color display are nine radio buttons
used to select portions of the page to search. The search

File Preferences Help

Change Size of File Cabinet |

Blue Add Paper
0 (3 £

Remove Paper |

. Retrieve Paper |
. . Move Paper |
° -
° . Summarize a Drawer
. Remove a Drawer

Cluster File Cabinet |

Done

Cluster of a Paper |

L]
=

Figure 4: The Graphical User Interface to the virtual file cab-
inet shows the output of the system in response to a request
for the table of contents. Each blob represents a topic con-
tained within the file cabinet that was computed by the star
algorithm. The distance between the blobs is proportionate
to the distance between their corresponding topics computed
by the star algorithm in the vector space model. The user can
select a topic by clicking on a blob. The location of all the
documents contained in that cluster are then highlighted.

is initiated by clicking the ” Color Search” button. Below
the color search part of the display is a line to enter text
queries. The text query commences by pressing enter
in that box. Next to the “Color Search” button is the
“Combo Search” button. A combination search takes the
results of a text query and color search and displays only
those papers that are found by both searches. The re-
sults of queries are displayed in the scrollable text area at
the bottom of the screen. The search identifies pages by
page identification number, drawer row, and drawer col-
umn. The text query also includes information about the
similarity of the document to the query. Documents are
listed in rank-order. After any search, a “Find Results”
window will appear that provides access to information
about the found pages including a way to view a partic-
ular scanned page.

The lower right part of the screen consists of all but-
tons used to manipulate the file cabinet, as well as those
related to clustering documents by topic. These buttons
include changing the size of the file cabinet; adding, re-
moving, showing, and moving a paper; summarizing and
removing a drawer; and clustering the whole file cabinet
or finding the clusters that include one particular paper
to discover similar papers.

In the Menu Bar there are two pull down menus. One
is “File” which allows one to load or save a file cabinet,
or to quit the application. The user is prompted to spec-
ify a path when saving or loading a file cabinet. There
are two menu items in the second pull-down menu, la-
beled “Preferences”. The first, “Set Image Directory”,
asks the user to specify the directory where all scanned
documents in the file cabinet are located. The second,
“Recommendation Threshold”, allows the user to set up
the range of the thresholds used by the file recommenda-

tion algorithm. This algorithm also requires a frequency
to be used with the range, which is also specified in this
window.

4 Experiments and Discussion

The file cabinet was implemented on an SGI Indy, and its
database was written in C++. The file cabinet database
was integrated with existing pieces of software that had
been used in the self-organizing desk [RS97].

We have identified three different ways of evaluating
the virtual file cabinet system. First, we measured the
performance of each module in the system. Second, we
devised an experiment for evaluating the most complex
function of the system, which is the recommendation of
the filing location. Finally, we did a small user study to
evaluate peoples’ reaction to such a system.

4.1 Performance

The system was tested on an SGI Indy with an R5000
processor to make sure that all operations occurred at a
reasonable speed so that users would not become impa-
tient with the system. The results of this test are shown

below. The time is recorded in clockticks. The times
shown are an average of at least ten runs.
Function Avg | Min | Maz
Delete Drawer 0.09 0 1
Find - Single 0.54 0 1
Move Page 0.72 0 3
Print Drawer 5.16 0 7
Search by Color 8.18 1 31
Change File Cabinet Size | 8.27 0 22
Find - Group 16.80 2 32
Combo Search 54.80 33 179
SMART Search 61.80 35 161
Initialize 85.59 20 207
Save 103.77 | 71 176
Load 241.13 | 151 945
Add Page 334.71 | 274 | 674
Remove Page 572.55 | 512 | 763
Cluster Cabinet 710.78 | 498 | 1004
Recommend Drawer 814.90 | 330 | 1556
Cluster on a paper 871.44 | 782 | 1389

These timings show that most operations like search
and move that would be utilized a number of times over
the lifetime of a document are very fast — less than one
hundred clockticks — which seems instantaneous to a user.
The setup operations take longer. We believe that peo-
ple do not mind waiting a bit when an application is
starting up or loading, so those timings do not present a
problem. The slowest functions (Cluster Cabinet, Rec-
ommend Drawers, and Cluster on a paper), however,
could cause a problem. We reason that since a paper
will only be added and removed once, the extra time will
not cause too much impatience. The other functions all
involve looking at all the papers in the cabinet and as a
result are slower. Note, also, that these measurements
were done on a very slow machine (an SGI Indy R5000).
All of these functions take either constant or linear time,
so they will scale.

4.2 Evaluating the Filing Location Recom-
mendation

The most computationally complex part of the system
is the drawer recommendation operation. This feature

of our system enhances the virtual file cabinet so that it
is more than just a mirror image of a real file cabinet.
The ability to identify the most logical filing location
for a new document leads to a system with limited self-
organizing capabilities. Our goal is to have a file cabinet
that is organized by topic rather than more traditional
filing systems such as by author or journal.

There are two competing attributes that we would like
our file cabinet to have. First we would like documents
to be evenly distributed in the file cabinet, and second
we would like papers on the same topic to be grouped
together. This will create a cabinet where documents
are evenly distributed and grouped by similarity. To this
end we chose two measures for evaluating the filing lo-
cation recommendation features. The first measure cap-
tures how well the cabinet was able to evenly distribute
the papers throughout the drawers. The second measure
captures the quality of the topic and subtopic clusters
computed by the system.

Our experimental document collection consists of the
pages from Communications of the ACM July 1994-
Volume 37, Number 7, a special issue on Intelligent
Agents [CAC93]. Some 88 of the total pages of this
issue contain articles about different aspect of intelli-
gent agents. We regarded each page in the magazine as
a separate document. We hypothesized that all pages
within an article would be more closely related to each
other than pages of other articles. For the most part this
proved to be correct, except for a few notable exceptions
where pages were not related to any other page in the
magazine. One was in the article “A Conversation with
Marvin Minsky about Agents” where American society
and education are discussed. Occasionally, a large por-
tion of the final page of an article consists of references,
which greatly affects its similarity to previous pages.

We set up three different types of experiments to test
the ability of the file cabinet to recommend a drawer.
Every file cabinet used had four drawers. Since the rec-
ommendation will vary depending on the order that pa-
pers are inserted, we created eleven different file cabinets
for each experiment. In one of these runs the documents
were inserted in the order they appeared in the mag-
azine. In the ten other runs, the order of insertion was
determined by a random order generator. Since page rec-
ommendation is a deterministic algorithm given a state
of the file cabinet, multiple runs of the in-order insertion
of pages were unnecessary.

In the first experiment we entered the entire collec-
tion at a range of thresholds 0.45 to 0.5 (in increments of
0.05) for the threshold parameter used by the star clus-
tering algorithm. First similar documents were sought
at a threshold of 0.5. If none were located, similar docu-
ments were sought at the threshold of 0.45.

In the second experiment we entered all pages but
the first page of each article using the same threshold
range as in the first experiment. We chose this variation
because we observed that a very large number of docu-
ments were clumping together and hypothesized that the
introduction pages of the articles tended to be similar,
since all articles were on related subjects.

In the third experiment we used a higher range of
thresholds, 0.55 to 0.75. This meant that if a document
was not similar to any others at the 0.75 threshold, then a
0.70 threshold was tried. The threshold was decremented
to 0.55, at which point the document was considered to
have no similar matches and was therefore filed in the
drawer with the fewest number of documents so far.

As shown in figures 5 and 6, the high threshold vari-

Size of the Smallest Drawers

60

50

40

Characteristic People

Dislike the Color Set-up
More Mouse Use

List Actions

Logical Search Operators
Titles Papers

I Experiment 1
30 W Experiment 2
U Experiment 3

20

Number of Documents

10

Avg Min Max

Figure 5: Compares the size of the smallest drawers from
the three experiments. The average is the average size of the
smallest drawer. The minimum is the smallest of the small
drawers for that experiment. The maximum is the largest
of the small drawers, so the mean and range of the smallest
drawers are presented over the eleven runs performed for each
experiment.

Size of the Largest Drawers

60

50 T

40

I Experiment 1
W Experiment 2
U Experiment 3

30 +

20

Number of Documents

10

Avg Min Max

Figure 6: The mean and range of the largest drawers are
presented over the eleven runs performed for each experiment.

ation gave the best results as far as distribution of pa-
pers among the file cabinet drawers. The largest drawer
had an average size of 26.0 papers. The smallest drawer
had an average size of 20.2. The other two variations
performed almost equally, but the distribution of papers
was more uneven.

In contrast the variations that used a lower threshold
performed significantly better at grouping pages from a
particular article. When all pages were filed at thresholds
of 0.5 and 0.45, 82% of pages of an article grouped to-
gether when filed in random order. This value increased
to 91% when the documents were filed in order. Without
the first page of each article, no preference was given to-
wards the pages being filed in order versus random order.
Eighty-two percent of the pages of an article were found
grouped in the same drawer when the pages were filed
in order, and 83% when the pages were filed in random
order. The high threshold variation only had 70% of the
pages of an article group in the same drawer when pages
were filed in random order. This number decreased to
62% when the pages were filed in order.

N W W & Ot ot

Add Keywords to Papers

Figure 7: This table lists some of the reactions by the users
and how many of those 6 users had the same reaction.

From these results it is evident that the most im-
portant choice the user will make is defining a range of
thresholds to find related documents. This requires the
user to have an idea about what the purpose of the file
cabinet is before she begins adding documents to it. Of
course, the user can change the range of thresholds at
any time, but documents already filed will stay in cur-
rent places. The importance of drawers containing simi-
lar topics is to facilitate the gathering of documents on a
given topic. If all documents on a similar topic are found
in only one or two different drawers it will be simpler to
retrieve them.

4.3 TUser studies

User studies were performed to evaluate how well the in-
terface was able to facilitate use of the file cabinet. In
this sense we were more interested in constructive criti-
cism than an evaluation of the statistical significance of
effectiveness. The user studies revealed attributes of the
file cabinet that were difficult or uncomfortable to use.
To instruct people in using the file cabinet, we gave a
brief demonstration that pointed out buttons and showed
how to cluster the file cabinet. Finally, we demonstrated
a color, text, and combination search before quitting the
application and allowing them to use it. They were given
some sixteen tasks which are listed in Appendix A.1.

There were six participants in the user study; all
were members of the Department of Computer Science
at Dartmouth College either as faculty or students. They
were asked to evaluate this from the perspective of a soft-
ware user and as a user of file cabinets.

The main complaint of the users as shown in Figure 7
was that they did not like trying to construct a color, and
they wanted to do more things with the mouse and less
with the keyboard. In general they wanted the capabil-
ity to review actions performed by the system. Some
users also expressed a desire to assign titles to pages
rather than be presented with the identification num-
ber assigned by the file cabinet. Finally, many expressed
an interest in adding information to what SMART was
already indexing to emphasize their interest.

The user studies showed that constructing a color was
very problematic. One issue was that people did not
know which mix of colors composes the one for which
they are looking. Another problem was the difficulty in
defining the names for colors. For example, a person
might call a particular color “green” that the computer
identifies as a “yellow-green.” A selection method that
does not include names would alleviate this ambiguity.
Another option would be to use a method of naming col-
ors through a heirarchy of colors that uses full names,
partial names, and base hues like the one described in
[DMR9S].

Users found the “Find Results” window intimidating.
Each document found is presented as a button so that

actions such as highlighting and displaying the page are
easily accessible. The problem is that since each page is
labeled with its coordinates (drawer by row and column,
and page number), the user does not remember exactly
which page she has selected. By changing the color of
the last button pressed, this problem would be resolved.

The users wanted the scrolled text on the lower left
side to be used as a record for all actions instead of just
those involved with searches. This would enable one to
keep track of all the file manipulations during a session.

Adding keywords to the document was a feature that
many desired. If only the first page of a paper is scanned
and added to the file cabinet, it is possible that the reason
the person is filing the paper is not discussed on the first
page. It would be very easy to modify a temporary ver-
sion of the OCRed file with the added keywords and have
SMART index the new file. The keywords could be kept
with the filter data, and if in the future the user changed
the keywords, the paper could be re-indexed by SMART.
One user also desired that his keywords be given more
weight than what appeared on the page. This could also
be implemented using SMART.

5 Conclusion

We believe the experiments show that the virtual file cab-
inet is a usable and useful system for computing and
maintaining references to a collection of documents con-
tained in a physical file cabinet. Most of the file op-
erations are very fast, seeming nearly instantaneous to
the user. The experiments performed on the ability of
the file cabinet to recommend drawers shows that it is a
functionality that can be used. Although the users sug-
gested many improvements that we could make to the
file cabinet, they thought that such a tool would be ben-
eficial.

6 Acknowledgements

We would like to thank Katya Pelekhov, Hans Kieser-
man, and Peter deSantis for their contribution of software
to the project. We would like to thank Javad Aslam,
Thomas Corman, John Danskin, Ahsan Kabir, Katya
Pelekhov, and Cliff Stein for their participation in the
user study. In addition, we would like to thank James
Allan and Craig Allen for their insightful comments on
the paper.

Support for this work was provided in part by ONR
contract N00014-95-1-1204, DARPA contract F30602-98-
2-0107, and Air Force MURI contract F49620-97-1-0382
at Dartmouth. Support for this work was also provided
in part by the National Science Foundation, Library of
Congress, and Department of Commerce under cooper-
ative agreement number EEC-9209623 and the United
States Patent and Trademark Office and Defense Ad-
vanced Research Projects Agency/ITO under ARPA or-
der number D468, issued by ESC/AXS contract num-
ber F19628-95-C-0235 at the CIIR, University of Mas-
sachusetts. Any opinions, findings and conclusions or
recommendations expressed in this material are the au-
thors and do not necessarily reflect those of the sponsors.

References

[APRY8] J. Aslam, K. Pelekhov, and D. Rus, Static
and Dynamic Information Organization with Star
Clusters in Proceedings of the 1998 Conference on

Intelligent Knowledge Management, Washington,
DC (November 1998).

[APR99] J. Aslam, K. Pelekhov, and D. Rus, A practical
clustering algorithm for static and dynamic infor-
mation organization, in Proceedings of the 1999
Symposium on Discrete Algorithms (SODA99),
Baltimore, MD (January 1999).

[AM+94] T. Arai, K. Machii, S. Kuzunuki, and H. Sho-
jima, InteractiveDESK: A computer augmented
desk which responds to operations on real objects,

in Proceedings of Computer Human Interactions,
1994.

[CKP93] D. Cutting, D. Karger, and J. Pedersen. Con-
stant interaction-time scatter/gather browsing of
very large document collections. In Proceedings of
the Sizteenth Annual International ACM SIGIR
Conference on Research and Development in In-
formation Retrieval, 1993.

[DMR98] M. Das, R. Manmatha, and E.M. Riseman.
Indexing Flowers by Color Names using Domain
Knowledge-driven Segmentation, in the Proceed-
ings of IEEE Workshop on Applications of Com-
puter Vision (WACV98), pages 94-99, 1998.

[Har99] S. M. Harding, Personal Communication, 1999.

[HKR93] D. Huttenlocher, G. Klanderman, and
W. Rucklidge, Comparing images using the
Hausdorff distance, in IEEE Transactions on

Pattern Analysis and Machine Intelligence,
15(9):850-863, 1993.

[JB92] A. Jain and S. Bhattacharjee. Address block lo-
cation on envelopes using Gabor filters. Pattern
Recognition, vol. 25, no. 12, 1992.

[Koh90] Teuvo Kohonen, The self organizing map, in
Proceedings of the IEEE, 78(9):1464-1480, 1990.

[LY94] C. Lund and M. Yannakakis. On the hardness of
approximating minimization problems. Journal of
the ACM 41, 960-981, 1994.

[Mae95] P. Maes, Artificial Life meets Entertainment:
Interacting with Lifelike Autonomous Agents,
Special Issue on New Horizons of Commercial and
Industrial AI, Vol. 38, No. 11, pp. 108-114, Com-
munications of the ACM, ACM Press, November
1995.

[Mal83] T. Malone. How do people organize their desks?
Implications for the design of office information
systems. ACM Transactions on Office Information
Systems, vol. 1 no. 1, pp 99-112, 1983.

[MRR96] R. Manmatha, S. Ravela, and E. M. Riseman,
Retrieval from Image Databases Using Scale Space
Matching, in Proceedings of the ECCV 1996.

[MT*91] M. Mizuno, Y. Tsuji, T. Tanaka, H. Tanaka,
M. Iwashita, and T. Temma. Document recogni-
tion system with layout structure generator. NEC
Research and Development, vol. 32, no. 3, 1991.

[NSV92] G. Nagy, S. Seth, and M. Vishwanathan. A pro-
totype document image analysis system for tech-
nical journals. Computer, vol. 25, no. 7, 1992.

[RA95] D. Rus and J. Allan. Structural queries in elec-
tronic corpora. In Proceedings of DAGS95: Elec-
tronic Publishing and the Information Superhigh-
way, May 1995.

[RS97] D. Rus and P. deSantis. The self-organizing
desk. In Proceedings of the 1997 International
Joint Conference on Artificial Intelligence, Au-
gust 1997.

[RS95b] D. Rus and K. Summers. Using whitespace
for automated document structuring. To appear
in Advances in digital libraries, N. Adam, B.
Bhargava, and Y. Yesha, editors. Springer-Verlag,
LNCS 916, 1995.

[Sal9l] G. Salton. The SMART document retrieval
project. In Proceedings of the Fourteenth An-
nual International ACM/SIGIR Conference on
Research and Development in Information Re-
trieval, pages 356-358.

[SA93] G. Salton and J. Allan. Selective text utilization
and text traversal. In Hypertext 1993 Proceedings,
pages 131-144, Seattle, Washington, 1993.

[Sam69] John W. Sammon Jr., A nonlinear mapping for
data structure analysis, in IEEE Transactions on
Computers, 18(5):401-409, May 1969.

[SJJ70] K. Sparck Jones and D. Jackson. The use of
automatically-obtained keyword classifications for
information retrieval. Information Storage and
Retrieval, 5:174-201, 1970.

[Tor95] Mark C. Torrance, Advances in Human-
Computer Interaction: The Intelligent Room, in
Working Notes of the CHI 95 Research Sympo-
stum, 1995.

[TA92] S. Tsujimoto and H. Asada. Major components
of a complete text reading system. In Proceedings
of the IEEE, vol. 80, no. 7, 1992.

[Tur90] H. Turtle. Inference networks for document re-
trieval. PhD thesis. University of Massachusetts,
Ambherst, 1990.

[Wil88] P. Willett. Recent trends in hierarchical doc-
ument clustering: A critical review. Informa-
tion Processing and Management, 24:(5):577-597,
1988.

[Zuc93] D. Zuckerman. NP-complete problems have a
version that’s hard to approximate. In Proceed-
ings of the Eight Annual Structure in Complexity
Theory Conference, IEEE Computer Society, 305—
312, 1993.

[CAC93] Special issue on visualization. Communications

of the ACM, 36(4), 1993.

A.1 User Tasks

The following is a list of tasks the users were asked to
perform during the user study.

e load: /usr/plum/lawrie/save
e set pref: /usr/plum/lawrie/images

e Find out how the documents in the file are related.

Examine a paper in the file cabinet in more depth.
Make the file cabinet bigger.

Add page 102 to a new drawer

Print the drawer.

Move the paper to another drawer.

Print that drawer.

Find the paper in its new location.
Remove a drawer.

Remove the paper that you added.

Make the file cabinet smaller.

Find the articles written by Doug Riecken

Look at page 63 in the magazine: what might you
remember about this page a month later and then
try to find it based on those details.

Search for the article on pages 72-76.

