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Abstract

Domain adaptation aims to transfer models trained on data-rich domains to low-resource
ones, for which a popular method is invariant representation learning. While they have been
studied extensively for classification and regression problems, how they would apply to ranking
problems, where the metrics and data follow a list structure, is not well understood. Theoret-
ically, we establish a generalization bound for ranking problems under metrics including MRR
and NDCG, leading to a method based on learning listwise invariant feature representations.
The main novelty of our results is that they are tailored to the listwise approach of learning
to rank: the invariant representations our method learns are for each list of items as a whole,
instead of the individual items they contain. Our method is evaluated on the passage reranking
task, where we adapt neural text rankers trained on a general domain to various specialized
domains.

1 Introduction

Learning to rank applies machine learning to solve ranking problems that are at the core of many
everyday applications and products, including search engines and recommendation systems (Liu,
2009). With the availability of ever increasing amounts of training data, state-of-the-art performance
on more and more ranking tasks are achieved by larger and larger models. A prominent example
is text retrieval and ranking, where fine-tuned language models with billions of parameters easily
outperform traditional ranking models (Nogueira et al., 2020). But the need for abundant data
means that large neural models may not benefit tasks with little to no annotated data, where they
could fare worse than baselines such as gradient boosted decision trees (Qin et al., 2021).

A popular technique for extending the benefits of large neural models is domain adaptation. It
builds on zero-shot learning: where instead of directly optimizing for the task of interest with limited
data, referred to as the target domain, the model is trained on a data-rich source domain with a
similar underlying data distribution. Domain adaptation considers the scenario where (unlabeled)
data from the target domain is available, which can be leveraged to estimate the domain shift
and improve transferability, e.g. via learning invariant feature representations. This setting and its
training methods have been actively studied for classification and regression problems (Ben-David
et al., 2007; Ganin et al., 2016; Zhao et al., 2018). For ranking problems, however, existing studies
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are mostly limited to specific tasks and applications. In fact, due to the inherent list structure of
the metrics and data, theoretical explorations of domain adaptation for ranking are only nascent.

To this end, in this paper we provide the first analysis of domain adaptation for listwise learning
to rank via invariant representation learning (Section 3). Our result builds upon the foundational
work by Ben-David et al. (2007) for domain adaptation in the binary classification setting. One
of the insights from our theory is that, when the domain shift is small in terms of the Wasserstein
distance, a ranking model optimized for the source is transferable to the target domain, whose
performance under ranking metrics such as MRR and NDCG can be bounded.

Inspired by our theory, we propose an adversarial training method for learning domain-invariant
representations, called ListDA, which aims at minimizing the source and target distributional shifts
in the feature space and thereby improving generalization over the target domain. Different from
the traditional classification and regression settings where each input could be modeled as a fixed
dimensional feature vector, in ranking, each input consists of a list of items. Technically, the main
novelty of ListDA is that it learns invariant representations of each list as a whole instead of the
individual items they contain, as approaches for invariant item representations are not necessarily
suitable for listwise learning to rank.1 We evaluate ListDA on unsupervised domain adaptation
for passage reranking, a fundamental research task in the field of information retrieval (Craswell
et al., 2019), where the goal is to rerank a list of candidate documents retrieved by a first-stage
retrieval model in response to a search query (Section 5). We adapt T5 neural rerankers (Raffel
et al., 2020) fine-tuned on the general domain MS MARCO dataset (Bajaj et al., 2018) to two
specialized domains: biomedical and news articles. Our results demonstrate the benefits of invariant
representations on the generalization of rankers trained with ListDA. In particular, the key to the
improved performance is the learning of listwise representations.

2 Preliminaries

Learning to Rank. A ranking problem is defined by a joint distribution over lists2 X ∈ X of
items and their non-negative relevance scores Y = (Y1, · · · , Y`) ∈ R`≥0, where all lists are length-`.
Furthermore, we assume that the ground-truth scores are a function of the lists, y(X), so that we
equivalently define ranking problems by a distribution µX of lists X along with the scoring function
y : X → R`≥0.

The goal is to train a ranker f : X → S` that maps each list x ∈ X to rank assignments r :=
f(x) ∈ S`, where ri represents the predicted rank of item i and S` denotes the set of permutations
on [`] := {1, 2, · · · , `}, such that r recovers the descending ordering of the relevance scores yi:
yi > yj ⇐⇒ ri < rj for all i 6= j. The more common setup is to train a scoring function
h : X → R` whose output is a list of ranking scores, s.t. s := h(x) correlates with y and their
ordering follows that of the ground-truth scores. Besides taking the descending ordering, rankings
of the items could also be obtained from the ranking scores with a probabilistic model, as will be
used in Section 3.

The quality of the predicted ranks is measured by ranking metrics u : S` × R`≥0 → R≥0, which
are functions that take as inputs the ranking along with the ground-truth relevance scores of the

1Throughout this paper, by listwise approach to learning to rank we mean that the ranker is trained using listwise
ranking losses (Cao et al., 2007; Xia et al., 2008), not that the ranker can necessarily model the interaction between
items (Pang et al., 2020).

2A common choice for the space of lists X is the `-times Cartesian product of Rd, meaning that each list
x = (x1, · · · , x`) is a concatenation of items represented by Rd feature vectors. But more generally and abstractly
the lists need not be concatenations; X can also be Rk (not scaling with `) provided a mechanism to represent lists
by fixed-length vectors.
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list and output a non-negative utility score. Two popular metrics in information retrieval include
reciprocal rank and normalized discounted cumulative gain:

Definition 1 (Voorhees, 1999). Suppose the ground-truth relevance scores y ∈ {0, 1}` are binary,
then the reciprocal rank (RR) of the rank assignments r ∈ S` is

RR(r, y) := max{r−1
i : i ∈ [`], yi = 1} ∪ {0}.

Mean reciprocal rank (MRR) is the expectation of RR over the dataset, EX∼µX [RR(f(X), y(X))].

Definition 2 (Järvelin & Kekäläinen, 2002). The discounted cumulative gain (DCG) and the nor-
malized DCG of the rank assignments r ∈ S` are3

DCG(r, y) :=
∑
i∈[`]

yi
log(ri + 1)

and NDCG(r, y) :=
DCG(r, y)

IDCG(y)
,

where the ideal DCG (IDCG) is defined as the maximum DCG value for fixed y, IDCG(y) :=
maxr′∈S`

DCG(r′, y), attained by the descending ordering of the yi’s.

Domain Adaptation. This work considers the setting where there is a source and a target
domain, (µXS , yS), (µ

X
T , yT ), and the goal is to train a good scoring function for the target domain.

When domain shift is small, i.e. µXS ≈ µTS and yS ≈ yT , scorers trained on the source are expected
to be transferable to the target without the explicit need of labeled target examples. In fact, in
such cases, the target performance can be bounded by the source performance. As an example, for
binary classification with Bernoulli models, we have the following generalization bound:

Theorem 1 (Shen et al., 2018). Let the source and target domain binary classification problems be
given by joint distributions µS , µT over inputs and labels (X,Y ) ∈ X × {0, 1}. Let F ⊂ [0, 1]X be a
class of L-Lipschitz predictors, and define the error rate of f ∈ F on the source domain by

ES(f) := E(X,Y )∼µS [1(Y 6= Ŷ )] := E(X,Y )∼µS [f(X) · 1(Y 6= 1) + (1− f(X)) · 1(Y 6= 0)],

and ET analogously, where P(Ŷ = 1 | X = x) = f(x). Define λ∗ := minf ′(ES(f ′) + ET (f ′)), then
for all f ∈ F ,

ET (f) ≤ ES(f) + 2L ·W1(µ
X
S , µ

X
T ) + λ∗,

where µX denotes the marginal distribution of X.

In Theorem 1, the domain shift is measured by the Wasserstein-1 distance between source and
target input distributions; its Kantorovich-Rubinstein dual formulation is stated below (Edwards,
2011):

Definition 3 (Wasserstein-1). Let (X, dX ) be a metric space, and µ, ν be probability measures on
X . Their Wasserstein-1 distance is W1(µ, ν) := supf∈Lip(1)(

∫
X f(x) dµ(x)−

∫
X f(x) dν(x)).

Where the supremum is taken over 1-Lipschitz functionals f : X → R:

Definition 4 (Lipschitz). Let (X , dX ), (X ′, dX ′) be metric spaces. A function f : X → X ′ is
L-Lipschitz if dX ′(f(x1), f(x2)) ≤ LdX (x1, x2) for all x1, x2 ∈ X , which is denoted by f ∈ Lip(L).

Domain adaptation generalization bounds under the pointwise and pairwise approaches to rank-
ing could be derived from Theorem 1, since they cast the ranking problem to one of binary classifi-
cation. But the result would be too loose to give a statement on the learned ranker w.r.t. ranking
metrics such as MRR or NDCG, which are defined on lists.

3W.l.o.g. the gain function in DCG is set to the identity map in this work.
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3 Domain Adaptation Generalization Bound for Ranking

In this section we establish a domain adaptation generalization bound for listwise learning to rank
akin to Theorem 1. We consider the setting of learning representations in addition to scoring
functions, so that our end-to-end scorer is the composition h ◦ g of a feature mapping g : X → Z
and a scoring function h : Z → R` on the learned list representations. For instance, we could train
an m-layer neural network and treat the first (m− 1) layers as g and the last as h.

For our bound, the rank assignments r ∈ S` are obtained from the output scores s := h ◦ g(x)
in a probabilistic manner: by sampling from the Plackett-Luce model with the exponentiated scores
exp(si) as its parameters (Cao et al., 2007; Guiver & Snelson, 2009).

Definition 5 (Plackett, 1975; Luce, 1959). A Plackett-Luce model with parameters v ∈ R`>0 defines
a distribution over S`, whose probability mass function is denoted by pv and given for all r ∈ S` by

pv(r) =
∏̀
i=1

vI(r)i∑`
j=i vI(r)j

,

where I(r)i is the index of the item ranked at i, i.e. rI(r)i = i,∀i.

For a ranking metric u, the source domain performance of a scorer h ◦ g is evaluated via

ES(h ◦ g) := EX∼µXS

[
max
r∈S`

u(r, yS(X))− ER∼pexp(h◦g(X))
[u(R, yS(X))]

]
,

which computes its suboptimality relative to the maximum utility. ET is defined analogously.
Finally, we make the following Lipschitz assumptions for our result.

Assumption 1. The ranking metric u : S`×R`≥0 → R≥0 is bounded by B and is Lu-Lipschitz w.r.t.
its second input, the ground-truth relevance scores y ∈ R`≥0, under Euclidean distance.

Assumption 2. The ground-truth scoring functions yS , yT : X → R` are Ly-Lipschitz under Eu-
clidean distance on the output space R`≥0.

Assumption 2 is satisfied when X is discrete and the scores are bounded (this argument is used
in the proof of Corollary 3). As an example, the input to most neural language models is a sequence
of one-hot encodings of the vocabulary.

Assumption 3. The spaces of input lists X and feature representations Z are metric spaces. The
function class H of the scoring functions h is Lh-Lipschitz under Euclidean distance on the output
space R`, and that of the feature mappings, G, is such that ∀g ∈ G, the restrictions of g to the
supports of µXS and µXT are injective with Lg-Lipschitz inverses, g−1|g(supp(µXS )), g

−1|g(supp(µXT )).

When both h and g are neural networks, Lipschitzness can be enforced via `2-regularization.
This assumption in fact underlies most neural network generalization and complexity analyses (An-
thony & Bartlett, 1999; Bartlett et al., 2017). Injection is a technical assumption that we argue is
reasonable on g, because the feature representations should retain as much information from the
inputs of each domain as possible, whereas injection and Lipschitzness of the inverse are violated
when different inputs are mapped to the same point in Z, and causing information loss.

With the above definitions and assumptions in place, we are now ready to state our generalization
bound for learning to rank.
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Theorem 2. Under Assumptions 1 to 3, for any g ∈ G, define λ∗g := minh′(ES(h′ ◦ g)+ ET (h′ ◦ g)),
then for all h ∈ H,

ET (h ◦ g) ≤ ES(h ◦ g) + 2(2LuLyLg +BLh
√
`) ·W1(µ

Z
S , µ

Z
T ) + λ∗g,

where µZS denotes the distribution of the learned source features, µZS (z) := µXS (g
−1(z)), and µZT

analogously.

The bound suggests that, if the feature representations of g : X → Z are domain-invariant,
meaning µZS = µZT , and the optimal joint error λ∗g remains low, then a scorer h : Z → R` optimized
for the source will also perform well on the target. Note that in order for λ∗g to remain small,
then the feature mapping g should also preserve the necessary information and learn the correct
correspondence between source and target domains for recovering the ground-truth rankings on both
domains. This forms the basis of the majority of domain adaptation approaches based on invariant
representation learning, including ours, whichs use labeled source and unlabeled target data to
minimize source error ES and align the feature distributions µZS , µ

Z
T for lowering their W1 distance.

Generally without labeled target data, λ∗g is not theoretically guaranteed to remain low, but it does
not prevent the empirical success of these methods in many applications, from vision (Zhao et al.,
2022) to language (Ramponi & Plank, 2020). The proof is deferred to Appendix A.

Proof Sketch. The main idea of the proof is that under our setup and assumptions we could
write ES and ET as expectations of Lipschitz functions of Z ∼ µZS and µZT , respectively, so their
difference can be upper bounded by theW1 distance between µZS , µ

Z
T by Definition 3. With a simple

modification of the proof, the result extends to the cutoff version of the ranking metric u. A final
remark is that a finite sample generalization bound could be obtained from Theorem 2 using existing
results on Rademacher complexities, due to the Lipschitzness of the feature mapping as well as the
scoring function (Blitzer et al., 2008; Shalev-Shwartz & Ben-David, 2014).

To instantiate our bound to MRR and NDCG, we verify their Lipschitzness:

Corollary 3 (Bound for MRR). RR is 1-Lipschitz in y, thereby

ET [RR(h ◦ g)] ≥ ES [RR(h ◦ g)]− 2(2LyLg + Lh
√
`) ·W1(µ

Z
S , µ

Z
T )− λ∗g,

where for brevity we wrote E[RR(h ◦ g)] := EX∼µX ,R∼pexp(h◦g(X))
[RR(R, y(X))].

Corollary 4 (Bound for NDCG). Suppose Umin ≤ IDCG(y) ≤ Umax for some Umin, Umax ∈ (0,∞)
and all y ∈ yS(supp(µXS )) ∪ yT (supp(µXT )), then NDCG is Õ(

√
`)-Lipschitz in y, thereby

ET [NDCG(h ◦ g)] ≥ ES [NDCG(h ◦ g)]− Õ(
√
`(LyLg + Lh)) ·W1(µ

Z
S , µ

Z
T )− λ∗g.

where for brevity we wrote E[NDCG(h ◦ g)] := EX∼µX ,R∼pexp(h◦g(X))
[NDCG(R, y(X))].

Because the last two terms on the r.h.s. are nonnegative, target domain MRR and NDCG are
improved by maximizing the source performance of h and minimizing W1 via learning a feature
mapping g that is both invariant and informative.

4 Learning Listwise Domain-Invariant Representations

Inspired by Theorem 2, we propose an adversarial training method for learning domain-invariant
representations of list. Specifically, we consider the setup where each feature representation z := g(x)
of the input list of ` items, x ∈ X , is the concatenation of ` feature vectors, i.e. Z = R`×d, each
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z = (z1, · · · , z`), and zi ∈ Rd is the learned feature vector of the i-th item in the list. This is
standard in many learning to rank applications, e.g. in neural text ranking, each feature vector is
an embedding of the input text computed by a language model (Guo et al., 2020).

We want to learn a feature mapping g ∈ G that minimizes the distributional shifts between
source and target on the feature space under some probability metric, D(µZS , µ

Z
T ), for which a well-

known technique is adversarial training (Goodfellow et al., 2014; Arjovsky et al., 2017). It solves a
minimax problem of two players: the feature mapping g, and the domain discriminator fad ∈ Fad,
Fad ⊂ [0, 1]Z , taking as input a feature sample z := g(x) of either the source or target domain and
predicting its domain identity, â := fad(z) = fad ◦ g(x). The minimax objective is defined with an
adversarial loss function `ad : [0, 1] × {0, 1} → R that takes as inputs the prediction â along with
the true domain identity a (w.l.o.g. a = 1 for target):

Lad(g, fad) := Ex∼µXS [`ad(fad ◦ g(x), 0)] + Ex∼µXT [`ad(fad ◦ g(x), 1)], (1)

and the optimization is w.r.t. mingmaxfad Lad(g, fad).
With the 0-1 loss, `ad(â, a) = −a · 1(â < 1

2) − (1 − a) · 1(â ≥ 1
2), the adversarial loss becomes

the (total) classification accuracy of fad on the task of predicting the domain identity, Lad(g, fad) =
Px∼µXS (fad ◦ g(x) < 1

2)+Px∼µXT (fad ◦ g(x) ≥ 1
2). Then the goal of the discriminator is to distinguish

the features output by g, and that of the feature mapping is to fool the discriminator by learning
invariant representations. Indeed, under optimality of fad, Lad upper bounds W1(µ

Z
S , µ

Z
T ):

Proposition 5. Let ‖ · ‖ be a metric on R`×d, define B := supz∈supp(µZS ),z′∈supp(µZT ) ‖z − z′‖. With
`ad(â, a) = −a · 1(â < 1

2)− (1− a) · 1(â ≥ 1
2), we have W1(µ

Z
S , µ

Z
T ) ≤ B(maxfad Lad(g, fad)− 1).

In practice, to train fad for minimizing the classification error, the 0-1 loss is replaced by a
surrogate loss, and for which we use the cross-entropy loss in our experiments,

`ad(â, a) = a log(â) + (1− a) log(1− â). (2)

And by setting Fad to a parameterized function class e.g. neural networks, the minimax problem can
be solved with gradient descent-ascent (w.r.t. g and f respectively). This is typically implemented
with a gradient reversal layer on g (Ganin et al., 2016). To prevent g from converging to trivial
solutions like x 7→ 0 that cause information loss in the learned features and increase the minimum
achievable ES and therefore λ∗g, g is optimized together with the scorer h under a joint objective

Ljoint(h, g) = min
h∈H,g∈G

(
Lrank(h ◦ g) + λ max

fad∈Fad
Lad(g, fad)

)
, (3)

where Lrank is the ranking loss of choice (a surrogate to the ranking metric), and the hyperparameter
λ ≥ 0 controls the strength of domain-invariant feature learning.

Choice of Discriminator Function Class. The final missing piece is the choice of Fad that can
model lists z = (z1, · · · , z`) of feature vectors zi ∈ Rd and is continuously differentiable. A naïve
design choice would be to flatten the list into a single `d-dimensional vector and set Fad to dense
neural networks. But note that the output of fad ∈ Fad may change if the items in z are swapped,
despite this does not alter the list as far as ranking is concerned, so the capacity of fad is wasted
on modeling the permutation invariance property of the inputs z. To avoid this waste, one could
attempt at replacing flattening with an information-preserving permutation-invariant operation, but
such an operation that is also continuously differentiable is nontrivial to handcraft.

Therefore, we propose using transformers (no positional encoding) with mean-pooling as our dis-
criminator function class Fad (Vaswani et al., 2017), which are permutation-invariant, continuously
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Query:  What kind of bear is best?
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Document 3:  All bear species are great…

Transformer 
Discriminator

T5 Encoder
BM25

Predicted 
domain identity

Source or 
Target

Figure 1: Block diagram of ListDA instantiated on the T5 neural ranker for text ranking.

differentiable, and expressive for their success in many language tasks. We refer to our approach as
ListDA, for which a block diagram is in Fig. 1.

As a final remark, note that aligning the distributions of R`×d lists of feature vectors, which
ListDA performs, is not the same as those of the individual Rd feature vectors (items), or ItemDA:
µ
U(Z)
S = µ

U(Z)
T where µU(Z)

S (zi) := PZ∼µZS (zi ∈ Z). Concretely, µ
U(Z)
S = µ

U(Z)
T 6=⇒ µZS = µZT .

5 Experiments on Passage Reranking

We evaluate ListDA on the passage4 reranking task, where the goal is to rank candidate passages
in a retrieved set based on their relevance to a given text query q. The candidate set of ` passages
is usually retrieved from the corpus using an efficient model, such as sparse retrievers including
BM25 (Robertson & Zaragoza, 2009), or dense retrievers e.g. DPR (Karpukhin et al., 2020). Then
a more accurate but expensive ranking model is applied to refine and improve the ranks. Currently,
SOTA performance is achieved by cross-attention rankers based on large language models.

Training neural rerankers requires a large amount of queries and document-relevance annota-
tions. While such data can be obtained from search engines under weak supervision for general
domain text retrieval, annotations on specialized domains such as scientific literature are costly.
However, unannotated documents are almost always readily available regardless of domain, making
them a suitable candidate for applying unsupervised domain adaptation: specialized rerankers are
obtained via adapting ones that are trained on general domain annotated data.

Models. For our ranking model, we use BM25 as the first-stage retriever for simplicity (details
in Appendix C) and focus on the adaptation of the reranker, which is fine-tuned from the T5 1.1
Base checkpoint with 250 million parameters. Given candidate documents d1, · · · , d` for a query q,
the input list is formed by concatenating each document with the query (and the title if available),
x = ([q, d1], [q, d2], · · · , [q, d`]). We treat the T5 encoder as the feature mapping g, and set the
listwise feature representation to the list of first-token output embeddings that g computes on each
query-document (q-d) pair,5 z = g(x) = (g(x1), · · · , g(x`)) ∈ R`×1024. Ranking scores are then
projected from each q-d embedding by a dense layer, si = h(zi). We use the listwise softmax
cross-entropy loss for model training, as in (Jagerman et al., 2022b):

`rank(s, y) = −
∑̀
i=1

yi log

(
exp(si)∑
j∈[`] exp(sj)

)
. (4)

4The terms document, text, and passage are used interchangeably in this paper.
5Here, the feature vectors are computed from each item independently, but generally and ideally g would also

model the interaction between items in the same list (Pang et al., 2020).
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The setup for adversarial training follows Section 4. The discriminator fad is a stack of three
transformer blocks with the same architecture as those in the T5 encoder, and it predicts domain
identities as follows: taking as input the list feature z = (z1, · · · , z`) as a sequence, its output
embeddings are mean-pooled, followed by a projection and sigmoid. To minimize the sensitivity of
fad to random initializations, we use an ensemble of five discriminators as in (Elazar & Goldberg,
2018).

The joint objective for ListDA is obtained from combining Eqs. (1) to (4), except that the max in
Eq. (3) is taken over the ensemble of discriminators f (1)

ad , · · · , f
(5)
ad w.r.t. the aggregated adversarial

loss of
∑5

i=1 Lad(g, f
(i)
ad ). See Fig. 1 for a diagram, and Appendix C for hyperparameter settings.

Datasets. The source domain of our experiments is the MS MARCO dataset for passage ranking,
a large-scale public dataset consisting of 8 million passages from the web covering a wide range of
topics and 532,761 pairs of search queries and relevant passages (Bajaj et al., 2018). The target
domains are biomedical (TREC-COVID and BioASQ) and news articles (Robust04) (Voorhees et al.,
2021; Tsatsaronis et al., 2015; Voorhees, 2005). The data are collected and preprocessed as in the
BEIR benchmark (Thakur et al., 2021), whose paper also includes the statistics of the datasets.
Details on the preparation of training lists, including the negative sampling procedure for irrelevant
q-d pairs, are in Appendix C.

Since not all target datasets contain training queries, and neither do most unannotated domains
in the wild, we discard the real training queries they contain and instead synthesize queries in a zero-
shot manner using a query generator (Ma et al., 2021). With MS MARCO source domain relevant
q-d pairs, the natural language generation model (QGen) is fine-tuned from the T5 1.1 XL checkpoint
under the sequence-to-sequence task of generating the query given the relevant document as input,
prepended with the prompt “Generate question >>>” and the title if available. To synthesize
queries on the target, we feed QGen with documents in the target corpus and treat its outputs as
queries to which the input documents are likely relevant. See Table 5 for samples of QGen q-d pairs.

Baselines and Methods. ListDA is compared to two baseline methods, zero-shot and QGen
PL. In zero-shot learning, the reranker is trained on MS MARCO source domain only and directly
evaluated on the targets. In QGen PL, we treat the QGen q-d pairs synthesized on the target
domain as relevant pairs (PL as in these q-d pairs being “pseudolabeled” by QGen), and train the
reranker on them in addition to MS MARCO q-d pairs. This method underlies several recent work
on domain adaptation of text retrievers and rankers (Ma et al., 2021; Sun et al., 2021; Wang et al.,
2022).

To illustrate that learning invariant representations of individual items is not suitable for listwise
learning to rank as discussed in Section 4, i.e. aiming for µU(Z)

S = µ
U(Z)
T , we perform a set of

ItemDA experiments, where the transformer domain discriminator is replaced by a three-layer
MLP (no improvements from going larger) that takes as inputs individual q-d embeddings instead
of entire lists of items (same as the DANN model by Ganin et al. (2016) in effect). This is the
approach taken by prior work based on invariant representation learning (Cohen et al., 2018; Tran
et al., 2019; Xin et al., 2022). Although ItemDA is appropriate for pointwise learning to rank, they
are not included here because pointwise ranking losses are typically less performant than listwise.

5.1 Results

The results are presented in Table 1. For evaluation, the items are ranked in descending order of
the ranking scores, and the metrics include ones that are commonly reported in the literature (e.g.
TREC-COVID uses NDCG@20). Because TREC-COVID and Robust04 are annotated with 3-level
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Table 1: Reranker performance on ranking the top 1000 documents retrieved by BM25.

Dataset Method MAP MRR@10 NDCG@5 NDCG@10 NDCG@20

Robust04

BM25 0.2282 0.6801 0.4396 0.4088 0.3781
Zero-shot 0.2759 0.7977† 0.5857† 0.5340† 0.4856†

QGen PL 0.2693 0.7644 0.5406 0.5034 0.4694
ItemDA 0.2822∗† 0.8037† 0.5822† 0.5396† 0.4922†

ListDA 0.2901∗†‡ 0.8234∗† 0.5979†‡ 0.5573∗†‡ 0.5126∗†‡

TREC-COVID

BM25 0.2485 0.8396 0.7163 0.6559 0.6236
Zero-shot 0.3083 0.9217 0.8328 0.8200 0.7826

QGen PL 0.3180∗‡ 0.8907 0.8373 0.8118 0.7861
ItemDA 0.3087 0.9080 0.8276 0.8142 0.7697
ListDA 0.3187∗‡ 0.9335 0.8693∗‡ 0.8412†‡ 0.7985‡

BioASQ

BM25 0.4088 0.5612 0.4580 0.4653 0.4857
Zero-shot 0.5008‡ 0.6465 0.5484‡ 0.5542‡ 0.5796‡

QGen PL 0.5143∗‡ 0.6551 0.5538‡ 0.5643‡ 0.5915∗‡

ItemDA 0.4781 0.6383 0.5315 0.5343 0.5604
ListDA 0.5191∗‡ 0.6666∗‡ 0.5639∗‡ 0.5714∗‡ 0.5985∗‡

∗Improves upon zero-shot baseline with statistical significance (p ≤ 0.05) under the two-tailed Stu-
dent’s t-test. †Improves upon QGen PL. ‡Improves upon ItemDA.

relevancy, they are binarized for mean average precision (MAP) and MRR as follows: for TREC-
COVID, 0 (not relevant) and 1 (partially relevant) are negative, and 2 (fully relevant) is positive;
for Robust04, 0 (not relevant) is negative, and 1 (relevant) and 2 (highly relevant) are positive.

Across all datasets, the best performing reranker is trained with ListDA, and the fact that it
shares the same training resource with QGen PL demonstrates the benefits of invariant representa-
tions. Furthermore, the favorable comparison of ListDA with ItemDA confirms our earlier analysis
and discussion that under the listwise approach, the invariant representations the model learns
should be of each list as a whole, on which the ranking loss `rank is computed, and not of the item
individually.

Quality of QGen. An explanation for why QGen PL underperforms ListDA despite them sharing
the same resources is that the random sampling of documents for gathering irrelevant q-d pairs could
lead to false negatives being sampled and included in the training lists (Appendix C). In particular,
Sun et al. (2021) observed that the queries synthesized by QGen lack specificity and could therefore
have many relevant documents. While QGen pseudolabels are treated as ground-truth for supervised
training under QGen PL, they are not assumed by ListDA and hence is less affected by the false
negatives or false positives, as some synthesized queries may also not be entirely relevant. While out
of scope in the present work, improving the query generation procedure could boost the performance
of QGen PL as well as ListDA (Sun et al., 2021).

5.2 Analysis of ListDA

Size of Target Data. Unsupervised domain adaptation assumes access to sufficient unlabeled
target data for domain shift estimation, but not all domains have the same amount of resource.
BioASQ contains 14 million documents (and thereby QGen queries), but Robust04 has 528,155,
and TREC-COVID only 171,332. Therefore, we study how target data size affects ListDA on
Robust04 and TREC-COVID by reducing the number of target QGen queries and thereby that of
target documents for invariant feature learning (we retrieve 1,000 documents for each query using
BM25, the majority of which are likely irrelevant). The results are shown in Fig. 2.
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Figure 2: ListDA under differ-
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Figure 3: ListDA under different hyperparameter settings
of λ and ηad. Grey horizontal line is zero-shot. On the left,
ηad = 0.004 is fixed and λ varies. On the right, λ = 0.02
is fixed and ηad varies.

Surprisingly, using only around 100 target QGen queries (0.03% and 0.06% of all, respectively)
is sufficient for ListDA to achieve full performance on both domains! Although the number of
pseudolabeled q-d pairs is reduced, the size of target document is still substantial—up to 100,000, or
29.5% and 60.7% of the entire corpus, although most of them are irrelevant to the synthetic queries.
So we hypothesize that the reason for this phenomenon, and the primary source of the performance
gain brought by ListDA under our training setup (Appendix C), is the feature alignment of irrelevant
q-d pairs in the lists. Indeed, when reduced to around 10 queries so that the number of documents
is at most 10,000 (2.7% and 5.8%, respectively), ListDA performance begins to drop. Therefore, a
direction for future empirical explorations is to apply ListDA on lists that contain more than one
(pseudolabeled) relevant q-d pair (most pipelines for neural text rankers, including ours, uses only
one), under which it may exhibit a different (and perhaps better) behavior.

Sensitivity to Hyperparameters. ListDA introduces two new hyperparameters for the domain
discriminators fad: the strength of invariant feature learning λ > 0, and the discriminator learning
rate ηad. We study the sensitivity to their settings on Robust04 and TREC-COVID by fixing one
and varying the other; the results are shown in Fig. 3. It is observed that the choice of λ is fairly
important in eliciting the best performance from ListDA, but the same choice could work well across
datasets because of the consistency of the trends. We set ηad to be multiples of the reranker learning
rate ηrank. The results show that while ηad is more tolerant to misspecifications, the discrimina-
tors prefer different settings on each target dataset, probably due to distinct characteristics of the
datasets.

6 Related Work

Learning to Rank and Text Ranking. Traditional learning to rank concerns tabular datasets
with numerical features (Liu, 2009), for which a range of models are developed in the past decades:
from SVMs (Joachims, 2006), gradient boosted decision trees (Burges, 2010), to neural rankers (Burges
et al., 2005; Pang et al., 2020; Qin et al., 2021). Another focus is the design of ranking losses (sur-
rogate to the ranking metrics), categorized into pointwise, pairwise, and listwise approaches (Cao
et al., 2007; Bruch et al., 2020; Zhu & Klabjan, 2020; Jagerman et al., 2022a).

Recent advances in large neural language models have spurred interests in applying them on text
ranking tasks (Lin et al., 2022), leading to the development of models including cross-attention (Han
et al., 2020; Nogueira & Cho, 2020; Nogueira et al., 2020; Pradeep et al., 2021) and generative ones
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based on query likelihood (dos Santos et al., 2020; Zhuang & Zuccon, 2021; Zhuang et al., 2021;
Sachan et al., 2022). Another family of work focuses on neural text retrieval models that emphasize
efficiency, including dual-encoder (Karpukhin et al., 2020; Zhan et al., 2021), late-interaction (Khat-
tab & Zaharia, 2020; Hui et al., 2022), and transformer memory (Tay et al., 2022).

Domain Adaptation. Following (Ben-David et al., 2007; Blitzer et al., 2008), a family of do-
main adaptation methods is based on learning (adversarial) domain-invariant feature representa-
tions (Long et al., 2015; Ganin et al., 2016; Courty et al., 2017). These methods are applied in fields
including NLP, and on tasks ranging from cross-domain sentiment analysis, question-answering (Li
et al., 2017; Vernikos et al., 2020), to unsupervised cross-lingual learning and machine transla-
tion (Xian et al., 2022; Lample et al., 2018). Our method, ListDA, belongs to this family, but to
the best of our knowledge no prior work considers learning invariant representations of lists/sets.

Domain Adaptation for Information Retrieval. Existing work on this subject can be cate-
gorized into supervised and unsupervised domain adaptation. The former assumes access to labeled
source data and (a small amount of; i.e. few-shot) labeled target data (Sun et al., 2021). The focus
of this paper is on the latter, which assumes access to target documents but not annotated data
(queries and relevance judgements). Cohen et al. (2018) is the first to apply invariant representa-
tion learning to unsupervised domain adaptation for text ranking, followed by Tran et al. (2019)
for enterprise email search and Xin et al. (2022) for dense retrieval. Another family of approaches
is based on query generation (Ma et al., 2021; Wang et al., 2022), originally proposed for dense
retrieval.

7 Conclusion

We theoretically analyze domain adaptation for learning to rank and establish a generalization
bound under ranking metrics. Our bound leads to a method based on learning invariant listwise
representations that is generally applicable to any ranking problem. The method, called ListDA,
demonstrates improved results on unsupervised domain adaptation for passage reranking on various
domains.

The novelty of our results is that they are tailored to the listwise approach for learning to
rank. Although existing work on binary classification and learning invariant item representations
could immediately apply to domain adaptation under the pointwise approach, there are several
limitations. Theoretically, pointwise generalization bounds would be too loose for a statement on
ranking metrics defined on lists. Empirically, models trained with pointwise ranking losses are often
less performant than listwise. In contrast, ListDA is a listwise approach, and works in tandem
with listwise ranking losses that currently achieve SOTA performance on many ranking tasks. We
believe our theoretical and empirical contributions provide a foundation for future studies on domain
adaptation for ranking.
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A Omitted Proofs

Before proving the generalization bounds for binary classification (Theorem 1) and learning to rank
(Theorem 2), recall the following properties of Lipschitz functions:

Fact 6.

1. f : Rd → R is differentiable, then it is L-Lipschitz under Euclidean distance if and only if
‖∇f‖2 ≤ L.

2. If f : X → R is L-Lipschitz and g : X → R is M -Lipschitz, then af + bg is (|a|L + |b|M)-
Lipschitz, and max(f, g) is max(L,M)-Lipschitz.

3. If f : X → Y is L-Lipschitz and g : Y → Z is M -Lipschitz, then g ◦ f is LM -Lipschitz.

Proof. For the first statement, suppose bounded gradient norms, then by mean value theorem
∃t ∈ [0, 1] s.t. f(y)− f(x) = ∇f(z)>(y − x) with z := (1− t)x+ ty, so by Cauchy-Schwarz,

‖f(y)− f(x)‖2 ≤ ‖∇f(z)‖2‖y − x‖2 ≤ L‖y − x‖2.

Next, suppose L-Lipschitzness, then by differentiability, ∇f(x)>z = f(x+ z)− f(x) + o(‖z‖2). Set
z := t∇f(x), we have

t‖∇f(x)‖22 = f(x+ t∇f(x))− f(x) + o(t∇f(x)) ≤ Lt‖∇f(x)‖2 + o(t‖∇f(x)‖2),

and the result follows by dividing both sides by t‖∇f(x)‖2 and taking t→ 0.
For the second,

|af(x) + bg(x)− (af(y) + bg(y))|
≤ |a||f(x)− f(y)|+ |b||g(x)− g(y)| ≤ (|a|L+ |b|M)dX (x, y).

Next, assume w.l.o.g. max(f(x), g(x))−max(f(y), g(y)) ≥ 0, then

|max(f(x), g(x))−max(f(y), g(y))|

=

{
f(x)−max(f(y), g(y)) ≤ f(x)− f(y) ≤ LdX (x, y) if max(f(x), g(x)) = f(x)

g(x)−max(f(y), g(y)) ≤ g(x)− g(y) ≤MdX (x, y) else

≤ max(L,M)dX (x, y).

For the third, dZ(g ◦ f(x), g ◦ f(y)) ≤MdY(f(x), f(y)) ≤ LMdX (x, y).

We first prove Theorem 1, as it shares the same organization of the arguments with Theorem 2.

Proof of Theorem 1. Define η := 1(Y = 1), then E(f) = E(X,Y )∼µ[η − (2η − 1)f(X)]. Note that

E(f)− E(f ′) = E(X,Y )∼µ[η − (2η − 1)f(X)]− E(X,Y )∼µ[η − (2η − 1)f ′(X)]

= E(X,Y )∼µ[(2η − 1) · (f ′(X)− f(X))]

≤ EX∼µX [|f ′(X)− f(X)|]
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because (2η − 1) = ±1. On the other hand,

EX∼µX [|f(X)− f ′(X)|] = E(X,Y )∼µ[|(2η − 1) · (f(X)− f ′(X))− η + η|]
≤ E(X,Y )∼µ[|(2η − 1)f(X)− η|] + E(X,Y )∼µ[| − (2η − 1)f ′(X) + η|]
= E(X,Y )∼µ[η − (2η − 1)f(X)] + E(X,Y )∼µ[η − (2η − 1)f ′(X)]

= E(f ′) + E(f).

Then by Fact 6, the fact that taking absolute value is 1-Lipschitz, and Definition 3, for all
f, f ′ ∈ F ,

ET (f) = ES(f) +
(
ET (f)− ET (f ′)

)
−
(
ES(f) + ES(f ′)

)
+
(
ES(f ′) + ET (f ′)

)
≤ ES(f) +

(
EX∼µXT [|f(X)− f ′(X)|]− EX∼µXS [|f(X)− f ′(X)|]

)
+
(
ES(f ′) + ET (f ′)

)
≤ ES(f) + sup

q∈Lip(2L)
(EX∼µXT [q(X)]− EX∼µXS [q(X)]) +

(
ES(f ′) + ET (f ′)

)
≤ ES(f) + 2L ·W1(µ

X
S , µ

X
T ) +

(
ES(f ′) + ET (f ′)

)
.

and the result follows by taking the min over f ′.

Proof of Theorem 2. Fix g ∈ G, which has a Lg-Lipschitz inverse g−1 to supp(µXS ) by Assumption 3.
Define εh,g : Z → R≥0 for any given h : Z → R` by

εh,g(z) := max
r∈S`

u(r, yS ◦ g−1(z))− ER∼pexp(h(z)) [u(R, yS ◦ g
−1(z))]

= max
r∈S`

u(r, yS ◦ g−1(z))−
∑
r∈S`

u(r, yS ◦ g−1(z))
∏̀
i=1

exp(h(z)I(r)i)∑`
j=i exp(h(z)I(r)j )

,

and note that ES(h ◦ g) = EX∼µXS [εh,g(g(X))] =: EZ∼µZS [εh,g(z)]. An analogous analysis holds for
ET .

We show that εh,g as written above is a Lipschitz function of z if h is Lipschitz. For the first
term, because u is Lu-Lipschitz in yS ◦g−1(z) and yS ◦g−1(z) is LyLg-Lipschitz in z, so u is LuLyLg-
Lipschitz in z, and so is z 7→ maxr∈S`

u(r, yS ◦ g−1(z)) by Fact 6. Now we bound the second term.
We show that it is Lipschitz in both yS ◦ g−1(z) =: y and h(z) =: s under the Euclidean distance.
By Jensen’s inequality,

‖∇yER∼pexp(s) [u(R, y)]‖2 = ‖ER∼pexp(s) [∇yu(R, y)]‖2 ≤ ER∼pexp(s) [‖∇yu(R, y)‖2] ≤ Lu.

Next,

‖∇sER∼pexp(s) [u(R, y)]‖2 =

√√√√√∑̀
k=1

∇s

∑
r∈S`

u(r, y)
∏̀
i=1

exp(sI(r)i)∑`
j=i exp(sI(r)j )

2

k

≤ B
√
`,
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where the inequality is due to product rule and∣∣∣∣∣∣ ∂

∂sI(r)m

∑
r∈S`

u(r, y)
∏̀
i=1

exp(sI(r)i)∑`
j=i exp(sI(r)j )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
r∈S`

u(r, y)
∑̀
i=1

∏
k 6=i

(
∂

∂sI(r)m

exp(sI(r)i)∑`
j=k exp(sI(r)j )

)
exp(sI(r)i)∑`
j=k exp(sI(r)j )

∣∣∣∣∣∣
=
∑
r∈S`

u(r, y)
∑̀
i=1

1(m ≤ i)

(
1−

exp(sI(r)i)∑`
j=k exp(sI(r)j )

) ∏̀
k=1

exp(sI(r)i)∑`
j=k exp(sI(r)j )

≤ B
∑
r∈S`

∑̀
i=1

∏̀
k=1

exp(sI(r)i)∑`
j=k exp(sI(r)j )

= B;

recall that d
dxi

softmax(x)j = softmax(x)i(1(i = j) − softmax(x)j). Suppose h ∈ Lip(Lh), then
z 7→ ER∼pexp(h(z)) [u(R, yS ◦ g−1(z))] is Lipschitz because∣∣∣ER∼pexp(h(z)) [u(R, yS ◦ g−1(z))]− ER∼pexp(h(z′)) [u(R, yS ◦ g

−1(z′))]
∣∣∣

≤
∣∣∣ER∼pexp(h(z)) [u(R, yS ◦ g−1(z))]− ER∼pexp(h(z)) [u(R, yS ◦ g

−1(z′))]
∣∣∣

+
∣∣∣ER∼pexp(h(z)) [u(R, yS ◦ g−1(z′))]− ER∼pexp(h(z′)) [u(R, yS ◦ g

−1(z′))]
∣∣∣

≤ Lu‖yS ◦ g−1(z)− yS ◦ g−1(z′)‖2 +B
√
`‖h(z)− h(z′)‖2

≤ (LuLyLg +BLh
√
`)dX (x, x

′).

Putting everything together, εh,g is (2LuLyLg +BLh
√
`)-Lipschitz in z for any h ∈ Lip(Lh).

Then by Fact 6 and Definition 3, for all g ∈ G and h, h′ ∈ H,

ET (h ◦ g) = ES(h ◦ g) +
(
ET (h ◦ g)− ET (h′ ◦ g)

)
−
(
ES(h ◦ g) + ES(h′ ◦ g)

)
+
(
ES(h′ ◦ g) + ET (h′ ◦ g)

)
≤ ES(h ◦ g) +

(
ET (h ◦ g)− ET (h′ ◦ g)

)
−
(
ES(h ◦ g)− ES(h′ ◦ g)

)
+
(
ES(h′ ◦ g) + ET (h′ ◦ g)

)
= ES(h ◦ g) + EZ∼µZT [εh,g(Z)− εh′,g(Z)]− EZ∼µZS [εh,g(Z)− εh′,g(Z)]

+
(
ES(h′ ◦ g) + ET (h′ ◦ g)

)
≤ ES(h ◦ g) + sup

q∈Lip(2(2LuLyLg+BLh

√
`))

(
EZ∼µZT [q(Z)]− EZ∼µZS [q(Z)]

)
+
(
ES(h′ ◦ g) + ET (h′ ◦ g)

)
≤ ES(h ◦ g) + 2(2LuLyLg +BLh

√
`) ·W1(µ

Z
S , µ

Z
T ) +

(
ES(h′ ◦ g) + ET (h′ ◦ g)

)
,

and the result follows by taking the min over h′.

Finally, we verify the Lipschitz conditions for RR and NDCG.

Proof of Corollary 3. It suffices to verify that y 7→ RR(r, y) is 1-Lipschitz, which follows from the
fact that RR ≤ 1 and ‖y − y′‖2 ≥ 1 for all y, y′ ∈ {0, 1}`, y 6= y′.
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Proof of Corollary 4. It suffices to verify that

y 7→ NDCG(r, y) :=
DCG(r, y)

IDCG(y)
=

∑
i∈[`]

yi
log(r∗i + 1)

−1 ∑
i∈[`]

yi
log(ri + 1)

is Lipschitz. Note that IDCG(y) = maxr DCG(r, y), a max of continuous functions, is piecewise
continuous in y where each piece is defined by an r′ ∈ S`: {y : r′ = argmaxr DCG(r, y)}.

Let r ∈ S`, and y, y′ ∈ R` s.t. argmaxr′ DCG(r′, y) = argmaxr′ DCG(r′, y′) =: r∗, i.e. they are
on the same piece for IDCG. Then∣∣∣∣ ∂∂ykNDCG(r, y)

∣∣∣∣
=

∣∣∣∣∣∣IDCG(y)−1 · ∂

∂yk

∑
i∈[`]

yi
log(ri + 1)

−DCG(r, y) ·

 ∂

∂yk

∑
i∈[`]

yi
log(r∗i + 1)

−2∣∣∣∣∣∣
≤
∣∣∣IDCG(y)−1 · log(rk + 1)−1

∣∣∣+ ∣∣∣DCG(r, y) · log(r∗k + 1)2
∣∣∣

≤
∣∣IDCG(y)−1 · log(2)−1

∣∣+ ∣∣DCG(r, y) · log(`+ 1)2
∣∣

≤ U−1
min + Umax log(`+ 1)2,

so NDCG is
√
`(U−1

min +Umax log(`+1)2)-Lipschitz by combining the above and the fact that IDCG
is continuous.

Proof of Proposition 5. First,

W1(µ
Z
S , µ

Z
T ) = inf

γ∈Γ(µZS ,µ
Z
T )

∫
Z×Z

‖z − z′‖ dγ(z, z′) ≤ B inf
γ∈Γ(µZS ,µ

Z
T )

∫
Z×Z

1(z 6= z′) dγ(z, z′)

= B

(
1− sup

γ∈Γ(µZS ,µ
Z
T )

∫
Z×Z

1(z = z′) dγ(z, z′)

)

= B

(
1−

∫
Z
min

(
µZS (z), µ

Z
T (z)

)
dz

)
= B

∫
Z
max

(
0, µZT (z)− µZS (z)

)
dz =

B

2

∫
Z

∣∣µZT (z)− µZS (z)∣∣dz,
because

∫
µZT (z)− µZS (z) dz = 0.

On the other hand, define Ŷ (z) := 1(fad(z) ≥ 1/2). Then the balanced total error rate of Ŷ on
predicting the domain identities is

Err(Ŷ ) :=

∫
Z

(
Ŷ (z)µZS (z) + (1− Ŷ (z))µZT (z)

)
dz = 1 +

∫
Z

(
Ŷ (z)− 1

2

)(
µZS (z)− µZT (z)

)
dz.

This quantity is minimized with Ŷ ∗(z) = 1(µZT (z) ≥ µZS (z)), whereby

Err(Ŷ ∗) = 1− 1

2

∫
Z

∣∣µZS (z)− µZT (z)∣∣dz ≤ 1− 1

B
W1(µ

Z
S , µ

Z
T ).

The conclusion follows from the balanced total classification accuracy of Ŷ ∗ being 2−Err(Ŷ ∗). Note
that Err(Ŷ ∗) ∈ [0, 1], so 2− Err(Ŷ ∗) ∈ [1, 2].
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Table 2: ListDA + QGen PL performance on ranking the top 1000 retrieved documents.

Dataset Method MAP MRR@10 NDCG@5 NDCG@10 NDCG@20

Robust04
ListDA + QGen PL

0.2851∗† 0.8039† 0.5761† 0.5386† 0.4975†

TREC-COVID 0.3168 0.8950 0.8539 0.8292 0.7820
BioASQ 0.6538∗‡ 0.5158 0.5547‡ 0.5671∗‡ 0.5931∗‡

∗Improves upon zero-shot baseline with statistical significance (p ≤ 0.05) under the two-tailed Student’s t-
test. †Improves upon QGen PL. ‡Improves upon ItemDA.

Table 3: Reranker performance on ranking the top 1000 retrieved documents on Signal-1M (RT).

Dataset Method MAP MRR@10 NDCG@5 NDCG@10 NDCG@20

Signal-1M (RT)

BM25 0.1740 0.5765 0.3639 0.3215 0.2905
Zero-shot 0.1511 0.4804 0.3068 0.2685 0.2410

QGen PL 0.1541 0.5043 0.3238 0.2799 0.2497
ListDA 0.1456 0.4629 0.3002 0.2602 0.2328
ListDA + QGen PL 0.1549 0.5170 0.3261 0.2817 0.2505

B Additional Experiments

Signal-1M and ListDA + QGen PL. In this section, we include passage reranking results on
the Signal-1M dataset (Suarez et al., 2018), included in the BEIR benchmark as well. They are
in Table 3. As in most published results of neural rerankers on Signal-1M (Thakur et al., 2021;
Liang et al., 2022), reranking does not improve performance on Signal-1M. This does not mean that
neural rerankers are worse than BM25, but that MS MARCO is not a good source domain choice
for transfer learning with Signal-1M as the target, which is likely due to the large domain shift
between tweet retrieval and MS MARCO web search data—qualitatively, the text styles and task
semantics are very different; see Table 5 for samples. Hence we discussions and comparisons below
are among the reranking models.

On Signal-1M, QGen PL improves upon the zero-shot baseline, but ListDA does not, which is
likely because the domain shift is too large for ListDA to find the correct alignment of source and
target features without supervision. Therefore, we experiment supplementing ListDA with QGen
q-d pairs training (ListDA + QGen PL). It is observed that ListDA performance on Signal-1M
improves with + QGen PL, which could have benefited from QGen q-d pairs acting as anchor points
for ListDA to find the correct correspondence between source and target.

The results of ListDA + QGen PL on the other datasets are in Table 2. Although it is the only
method that consistently improves the zero-shot baseline (because of Signal-1M), it underperforms
ListDA on the other datasets. Further improvements to this method may be possible with better
strategies of balancing the contributions of ListDA and QGen PL.

C Details of Experiment Setup

Training List Construction with Negative Sampling. To train the reranker under supervi-
sion for minimizing the listwise ranking loss (as in training on MS MARCO labeled data and QGen
pseudolabeled data), the model needs to see training example lists that contain both relevant and
irrelevant q-d pairs. Because the MS MARCO dataset and QGen only provide relevant q-d pairs, we
perform negative sampling to gather irrelevant pairs for constructing training lists: given a relevant
q-d pair, let d1, · · · , dk, k ≤ 1000 denote the unannotated or irrelevant documents in the top 1000
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Table 4: Hyperparameter settings of T5 reranker and domain discriminators for experiment results.

Dataset Method ηrank ηad λ

Robust04

Zero-shot

1e-4

- -
QGen PL - -
ItemDA 1e-3 0.01
ListDA 4e-3 0.01
ListDA + QGen PL 1e-3 0.02

TREC-COVID

Zero-shot

2e-4

- -
QGen PL - -
ItemDA 8e-3 0.01
ListDA 4e-3 0.01
ListDA + QGen PL 4e-3 0.02

BioASQ

Zero-shot

2e-4

- -
QGen PL - -
ItemDA 4e-3 0.01
ListDA 8e-3 0.01
ListDA + QGen PL 4e-3 0.02

Signal-1M (RT)

Zero-shot

5e-5

- -
QGen PL - -
ListDA 2e-3 0.01
ListDA + QGen PL 1e-3 0.02

results returned by BM25 on query q (we use the implementation of Anserini; Yang et al., 2017),
then we sample 30 documents at random and treat them as being irrelevant to q. This way, our
training lists have length ` = 31, each containing one relevant and 30 (likely) irrelevant q-d pairs for
the same query. Setting a larger ` should improve performance, but it also demands more memory
and compute resources for training.

Eliminating False Negatives. Note that the above procedure does not prevent unannotated
relevant documents from being selected during negative sampling and causing the training lists to
contain false negatives. In fact, they are prevalent in the MS MARCO dataset due to duplicates
and the existence of many semantically similar documents in the web. A sampling method with a
lower chance of selecting false negatives is to first use a pre-trained reranker to score and rank the
BM25-retrieved top-1000 documents, so that all relevant documents are now concentrated at the
top provided good reranker performance, and then sample negatives among the rank-300 or greater
documents (Qu et al., 2021). We use a cross-attention reranker trained on MS MARCO.

This improved sampling method is not used in our experiments to construct example lists for
supervised training, but is used to construct source domain lists for ListDA feature alignment.
In other words, the source domain feature lists seen by the domain discriminator in Eq. (1) are
constructed using the improved method. This follows our observation that while the ranking loss is
not very sensitive to false negatives, they affect ListDA feature alignment, likely due to the domain
shift caused by the existence of many duplicates/semantically similar documents on MS MARCO
and the lack of them on our target domains. While the above method for eliminating false negatives
is largely sufficient to allow ListDA to provide good performance in our experiments, fundamentally,
source domain training data should be prepared with more care.

Hyperparameters. For BM25, we use the implementation of Anserini (Yang et al., 2017), set
k1 = 0.82 and b = 0.68 on MS MARCO source domain, and k1 = 0.9 and b = 0.4 on all target
domains without tuning. As in (Thakur et al., 2021), if titles are available, they are indexed as a
separate field with equal weights as the document body.
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For the T5 reranker, we tune the learning rate ηrank ∈ {5× 10−5, 1× 10−4, 2× 10−4}, and select
the one that gives the best zero-shot performance to use on all models on each dataset. We also
apply a learning rate schedule on ηrank that decays by 0.7 every 5,000 steps. All rerankers are
fine-tuned for 50,000 steps from the pre-trained T5 checkpoint.

For the domain discriminators, there are two hyperparameters: the strength of invariant feature
learning λ > 0, and the discriminator learning rate ηad. We select λ ∈ {0.01, 0.02} and ηad ∈
{10, 20, 40} times the reranker learning rate ηrank.

The reranker and discriminator hyperparameters mentioned above for the results in Tables 1, 2
and 3 are provided in Table 4.
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Table 5: Samples of test relevant and QGen q-d pairs from the text reranking domains experimented
on. Truncated or omitted texts are indicated by “[...] ”.

Dataset Test Q-D Pairs QGen Q-D Pairs

MS MARCO Q: what is the science of mapmaking called
D: What is cartography? A. the science of map-

making B. the science of shipbuilding C. the
science of charting direction on a ship D. the
science of measuring distances on the ocean.
Cartography is the science of map making A.

Q: what’s in the flu shot
D: The flu shot also contains the following in-

gredients: sodium phosphate & buffered iso-
tonic sodium chloride solution, formaldehyde,
octylphenol ethoxylate, and gelatin, accord-
ing to the FDA.

-

TREC-COVID Q: what is known about an mRNA vaccine for
the SARS-CoV-2 virus?

D: An Evidence Based Perspective on mRNA-
SARS-CoV-2 Vaccine Development. [...]
The production of mRNA-based vaccines is
a promising recent development in the pro-
duction of vaccines. However, there remain
significant challenges in the development [...]

Q: What is the mechanism of cytokine storm
syndrome on the COVID-19?

D: The possible pathophysiology mechanism of
cytokine storm in elderly adults with COVID-
19 infection: the contribution of “inflame-
aging”. PURPOSE: Novel Coronavirus dis-
ease 2019 (COVID-19), is an acute respira-
tory distress syndrome (ARDS), [...]

Q: what is arterial load for pulse pressure analy-
sis

D: Impact of arterial load on the agreement be-
tween pulse pressure analysis and esophageal
Doppler. INTRODUCTION The reliability
of pulse pressure analysis to estimate cardiac
output is known to be affected by arterial load
changes. [...]

Q: opportunity cost pacifism
D: Opportunity Costs Pacifism. If the resources

used to wage wars could be spent elsewhere
and save more lives, does this mean that wars
are unjustified? This article considers this
question, which has been largely overlooked
by Just War Theorists and pacifists. It fo-
cuses on whether the opportunity costs of war
[...]

BioASQ Q: Is amantadine ER the first approved treat-
ment for akinesia?

D: The role of extended-release amantadine for
the treatment of dyskinesia in Parkinson’s
disease patients. [...] Extended-release
amantadine (amantadine ER) is the first ap-
proved medication for the treatment of dysk-
inesia. When it is given at bedtime, it [...]

Q: Can leuprorelin acetate be used as androgen
deprivation therapy?

D: [...] We investigated the health-related qual-
ity of life (HRQoL) of long-term prostate
cancer patients who received leuprorelin ac-
etate in microcapsules (LAM) for androgen-
deprivation therapy (ADT). [...]

Q: average age of femoral subluxation
D: Subluxation of the femoral head in coxa

plana. Twenty-two patients who had severe
coxa plana had closed reduction for lateral
subluxation of the femoral head, [...] The
average age when the patients were first seen
was eight years and six months. [...]

Q: which scale is used for proxy assessment of
hrqol

D: [...] a comparison of proxy assessment and
patient self-rating using the disease-specific
Huntington’s disease health-related quality of
life questionnaire (HDQoL). [...] Specific
Scales of the HDQoL. On the Specific Hopes
and Worries Scale, proxies on average rated
HrQoL as better than patients’ [...]

Signal-1M (RT) Q: Party MP calls BJP ‘Baura Jayewala Party’
D: BJP terms party MP R.K Singh’s allegation

that money has changed hands for tickets in
#BiharPolls as baseless.

Q: Kerry: US plans military talks with Russia
over Syria

D: Kerry: US plans military talks with Russia
over Syria

Q: where is black lives matter?
D: Black lives matter: thoughts from the deliv-

ery ward in St. Louis: #mustread

Q: brenda got a baby pac
D: RETWEET if “Brenda’s Got A Baby” is one

of your favorite @2Pac songs. #RIP2Pac
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