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ABSTRACT
Learning multiple intent representations for queries has potential
applications in facet generation, document ranking, search result di-
versification, and search explanation. The state-of-the-art model for
this task assumes that there is a sequence of intent representations.
In this paper, we argue that the model should not be penalized as
long as it generates an accurate and complete set of intent represen-
tations. Based on this intuition, we propose a stochastic permutation
invariant approach for optimizing such networks. We extrinsically
evaluate the proposed approach on a facet generation task and
demonstrate significant improvements compared to competitive
baselines. Our analysis shows that the proposed permutation invari-
ant approach has the highest impact on queries with more potential
intents.
CCS CONCEPTS
• Information systems→ Query representation; • Computing
methodologies→ Natural language generation.
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1 INTRODUCTION
Learning effective query representations has always played a key
role in information retrieval (IR) systems. Early approaches for
query representation mostly focused on term-based representations
(e.g., TF-IDF weighting in vector space models [32]). Their semantic
representations have also been studied in latent semantic index-
ing (LSI) [4], bag-of-words embedding-based models [45, 46], and
contextual embedding-based models [10, 41]. State-of-the-art solu-
tions for obtaining accurate query representations fine-tune large
language models, e.g, BERT [5] and BART [20], on a downstream
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retrieval task. These approaches often learn a single representa-
tion for each query or query term. However, this is a sub-optimal
solution for representing ambiguous or faceted queries that can
be associated to multiple different intents. To tackle this problem,
Hashemi et al. [8] recently proposed NMIR – an encoder-decoder
framework for learning multiple vectors for a query, each repre-
senting a potential query intent. NMIR aims at learning multiple
representations by generating different query intent descriptions.
Despite the strong effectiveness achieved by NMIR, it ignores the
permutation invariance nature of query intents. In other words, it
assumes that the query intents should be generated as a sequence.
With this assumption, a method that learns accurate query repre-
sentations and precisely generates the query intent descriptions
but in a different order than the ground truth will be significantly
penalized by the loss function. In this paper, we propose a solution
to address this fundamental shortcoming.

The proposed approach, named PINMIR,1 looks at the query in-
tents as a set rather than a sequence. Given the unordered structure
of sets, PINMIR uses a permutation invariant loss function for opti-
mization and thus learns more accurate query representations. Per-
mutation invariant losses often consider all possible permutations
of the predicted output which quickly becomes computationally
inefficient as the number of intents increases. To address this issue,
we also propose a stochastic variation of our permutation invariant
loss. Besides the loss function, we use a simple solution based on
resetting the positional embedding of transformer decoders for
permutation invariant decoding.

As a pioneeringwork for learningmultiple intent representations
of the query, Hashemi et al. [8] demonstrated that query facet
generation can be successfully used for extrinsic evaluation of the
learned query representations. Following their advice, we evaluate
our model on a query facet generation task.2 Our experiments
on the large-scale MIMICS dataset demonstrate the effectiveness
of the proposed solutions compared to state-of-the-art baselines.
Our experiments suggest that the proposed permutation invariant
approach has the highest impact on queries with more intents.
We also show that our stochastic loss is as effective as an exact
permutation invariant loss, while being more efficient.

It is notable that although we lay out our proposed optimization
approach based on NMIR for learning multiple query represen-
tations, it can be simply adoptable for any sequence-to-sequence
model that generates a unordered set of text pieces.

2 RELATEDWORK
This section briefly reviews prior work related to multiple query
representation learning and set neural networks.

1stands for the Permutation Invariant Neural Multiple Intent Representation model.
2In this paper, we use “facets” and “intent descriptions”, interchangeably.
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Query Representation. Traditionally, queries were represented
based on term occurrences and frequencies [32]. However, these
models suffer from the vocabulary mismatch problem. Several stud-
ies have tried to address this issue mostly with query expansion and
pseudo-relevance feedback [2, 18, 31, 47]. Latent semantic indexing
(LSI) is one of the early approaches for learning a semantic repre-
sentation for queries and documents. It calculates a term frequency
matrix given a piece of text and uses singular value decomposition
for embedding the given text in a semantic space. Word embedding
models, e.g., word2vec [26] and GloVe [30], learn word represen-
tations by predicting the next word in a text. Thus, queries can be
represented based on their individual query term embeddings [45].
Most recently large language models, such as BERT [5], are used
for representing queries and documents. All these approaches only
generate a single representation per query or query term. To the
best of our knowledge, NMIR [8] is the only neural approach that
learns multiple intent representations for search queries. However,
this approach ignores the permutation invariance nature of query
intents. Such a simplifying assumption leads to a sub-optimal solu-
tion [50]. This paper addresses this shortcoming by introducing a
permutation invariant variation of NMIR.

Query Facet Extraction and Generation. In our experiments,
we use query facet generation as an extrinsic evaluation method-
ology. Early work on facet extraction and generation focused on
facet extraction and generation for e-commerce and digital libraries
using external resources and metadata [3, 11, 17, 21, 35]. These
models, however, are not applicable to an open domain setting,
such as web search [39]. To adopt facet generation methods to
open domain, a number of methods conduct local analysis on the
top retrieved documents in response to the query. For instance,
Kong and Allan proposed a number of supervised methods for facet
extraction from the web [12–14]. Dou et al. [6] proposed a facet
extraction approach that use a hybrid model called QDMiner. This
paper uses these models as baselines. There is also a line of research
that studies query variations [22]. For instance, Xue and Croft [42]
modeled queries as a distribution over query variations. Learning
multiple query vectors has potential impact on all of these tasks.

Set Neural Networks. Set neural networks can be considered as
set-input networks and set-output networks. Most existing models
focus on set-input problems, where the input of the network is a
set of items. An algorithm designed for set-input problems should
satisfy two conditions. First, it should be permutation invariant,
meaning the model’s prediction should remain the same under
any permutation of the input. Second, such model should take
variable input size. Therefore, existing network architectures such
as MLP and RNN cannot be used for input sets [27, 28, 38]. One
line of work to handle set inputs uses pooling architectures for
permutation invariant mapping [24, 33, 34, 36]. Their core idea is to
apply the neural function 𝐹 to each set item individually, and apply
a pooling permutation invariant function (e.g., sum or average).
Zaheer et al. [44] discuss the structure of set pooling methods and
prove that they are a universal approximator for any set function.
More recently, attention-based approaches come to the play for the
set networks [9, 40, 43]. For instance, Lee et al. [19] proposed Set
Transformer which allows the model to encode pairwise or higher
order interactions between items in a set.

Set-output networks are less explored. To design a set-output
network, the model needs to satisfy two condition. First, the model
must be permutation-equivariant; meaning the generation of a
particular permutation of output should be as probable as any
other permutation. Second, the loss function should be permuta-
tion invariant. Recently, Zhang et al. [49] introduced a model for
permutation-equivariant set generation. Following their work, re-
searchers worked on a transformer variant for predicting a set of
object properties[15, 23]. The majority of these approaches study
computer vision problems and do not focus on text set generation.

3 METHODOLOGY
Learning multiple representations for a single query or generally
speaking a piece of text is not a straightforward task. This is even
more challengingwhen the number of representations varies among
different instances. NMIR proposed by Hashemi et al. [8] is the pi-
oneering work in this area and also the current state-of-the-art
approach for learning multiple representations for search queries.
In this section, we introduce PINMIR that extends NMIR by satisfy-
ing a permutation invariance constraint. We first briefly introduce
NMIR and then describe our extension. Note that the proposed
optimization approach is not restricted by the network architecture
and can be applied to other networks beyond NMIR. Our proposed
training schema is adaptable to any other network that generates a
set of unordered text pieces.

Problem Statement. Let 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} be a training query
set with 𝑛 queries, and 𝐷𝑖 = {𝑑𝑖1, 𝑑𝑖2, . . . , 𝑑𝑖𝑚} be the top 𝑚 re-
trieved documents in response to the query 𝑞𝑖 using an arbitrary
retrieval model 𝑀 . In addition, let 𝐹𝑖 = {𝑓𝑖1, 𝑓𝑖2, . . . , 𝑓𝑖𝑘𝑖 } denote
the set of all intent descriptions (facets) associated with the query
𝑞𝑖 , where 𝑘𝑖 is the number of query intents and can vary across
queries. The task is to learn 𝑘𝑖 representations 𝑅𝑖 = {𝑅𝑖1, 𝑅𝑖2, . . . ,
𝑅𝑖𝑘𝑖 } for the query 𝑞𝑖 , each associated with a query intent in 𝐹𝑖 .

3.1 A Brief Overview of NMIR
Our approach extends NMIR [8] which uses an encoder-decoder
transformer architecture. Let 𝜙 (·) and𝜓 (·) denote a text encoder
and decoder, respectively. The encoder takes the query 𝑞𝑖 and doc-
uments 𝐷𝑖 as input. The model assumes that the top retrieved doc-
uments are relevant to the query (similar to the pseudo-relevance
feedback assumption), and the retrieval model𝑀 retrieves a diverse
set of documents. The core idea is to use the query and the top
retrieved documents, and extract some information from them to
generate all query intent descriptions or facets. The representations
led to different query facets can be used as the multiple representa-
tions of the query. The more precise facets get generated, the more
accurate multiple representations are expected. NMIR clusters the
top retrieved documents and assigns each cluster to a query intent
description 𝑓𝑖 𝑗 ∈ 𝐹𝑖 using a greedy algorithm, say 𝛾 :

C∗
𝑖 = 𝛾

(
𝜙 (𝑑𝑖1), 𝜙 (𝑑𝑖2), . . . , 𝜙 (𝑑𝑖𝑚), 𝜙 (𝑓𝑖1), 𝜙 (𝑓𝑖2), . . . , 𝜙 (𝑓𝑖𝑘𝑖 )

)
where C∗

𝑖
= {𝐶∗

𝑖1,𝐶
∗
𝑖2, . . . ,𝐶

∗
𝑖𝑘𝑖

} is a set of document sets. Each 𝐶∗
𝑖 𝑗

is a set of documents from 𝐷𝑖 that are assigned to 𝑓𝑖 𝑗 by 𝛾 which
uses k-means to cluster the document representations produced by
the encoder. The number of clusters in training time is defined by
the number of query intents in ground truth. However, at inference



time the number of clusters are unknown. NMIR considers two
scenarios. In the first scenario, it assumes that the number of clusters
is constant for all queries, and in the second scenario, it uses non-
parametric K-Means [25] to handle dynamic number of clusters.

The decoder’s input for generating the 𝑗 th intent description
is a concatenation of the query string and the first 𝑗 − 1 intent
descriptions, separated by a special token. NMIR uses the cross
entropy loss function of sequence-to-sequence models [37], thus
expects that the predictions follow the same order as the ground
truth. NMIR parameters are initialized using BART pre-trained pa-
rameters [20] and Guided Transformer [7] is used for adjusting the
query representation based on each document cluster. The proposed
optimization solution is orthogonal to the network architecture
choice, therefore, we refer the reader to [8] for more information
on the NMIR architecture.

3.2 The Permutation Invariant NMIR
Despite its strong performance, NMIR still suffers from some limita-
tions. First, it uses the standard sequence-to-sequence optimization,
as as result, it assumes that the query intents are ordered and it tries
to optimize the model to produce intent descriptions in the same
order as it appears in the ground truth. Second, NMIR uses a greedy
algorithm for assigning each cluster to a ground truth query intent
during training. Therefore, the model’s performance depends on
this heuristic cluster-intent assignment algorithm. In this paper, we
introduce a permutation invariant optimization solution for text
generation, when each element of the set is a piece of text. We
explain our model as a variant of NMIR, where the performance of
the model is not sensitive to the order of generated query intent
descriptions. In this model, we no longer need the intent-cluster
matching algorithm, since the order of generated intents do not
matter. A side benefit is that in reality, sometimes documents ad-
dress more than one query intent and assigning only one intent to
a document would be sub-optimal.

First, we need to define a permutation invariant loss function for
training the model. Common permutation invariant loss functions
include Chamfer loss and Hungarian loss. Chamfer loss is based
on Chamfer distance that was first introduced in computer vision
[1]. Although it is more efficient, it is not applicable to our task
due to the design of decoder for text generation. The reason is that
the decoder generates the output token-by-token and the closest
ground truth facet is not known until the facet is fully generated.
Therefore, we extend the Hungarian loss [16] for text set generation.
The proposed loss function for a query 𝑞𝑖 is computed as follows:

𝐿(𝐹𝑖 , 𝐹𝑖 ) = min
𝐹 ′
𝑖
∈𝜋 (𝐹𝑖 )

𝐿𝐶𝐸 (𝐹𝑖 𝑗 , 𝐹 ′𝑖 𝑗 )

= min
𝐹 ′
𝑖
∈𝜋 (𝐹𝑖 )

1
𝑘𝑖

𝑘𝑖∑︁
𝑗=1

|𝑓 ′𝑖 𝑗 |∑︁
𝑡=1

− log𝑝 (𝑓 ′𝑖 𝑗𝑡 |𝑣, 𝑓
′
𝑖 𝑗1, 𝑓

′
𝑖 𝑗2, · · · , 𝑓

′
𝑖 𝑗𝑡−1)

where 𝜋 (𝐹𝑖 ) denotes all permutations of ground truth intents for
query 𝑞𝑖 . Therefore, the size of 𝜋 (𝐹𝑖 ) is equal to 𝑘𝑖 !. The loss func-
tion 𝐿𝐶𝐸 is the average sequence-to-sequence loss for generating
each facet description, and 𝑣 denotes the encoder representation.
Intuitively, the proposed loss function computes all permutations
of ground truth set and considers the one with the minimum loss
value, which is the loss value for the closest ground truth ordering

to the generated set. Therefore, the original ordering of ground
truth text would not impact the loss value.

This loss function can be quite expensive to compute, since it
requires us to repeat this process for every permutation of the
query intents. We propose to use a stochastic variation of this
loss that instead of iterating over all possible permutations, takes
𝑠 samples from the permutation set and computes the loss based
on the sampled query intent sequences. Our experiments show
that the stochastic loss performs comparably to the non-stochastic
variation of the loss, which is computationally expensive.

Position Resetting.We highlight that in our task in contrast to
the standard assumption in set networks, although the order does not
matters between the set elements, it matters within each individual
element. In other words, the order that themodel generates different
query intent descriptions does not matter, but it is important that
sequence of tokens in each query intent description get generated
legitimate, both semantically and syntactically. To help the model
capture this concept, we modify the standard decoder architecture
in transformer. The decoder generates tokens one-by-one and each
token becomes the decoder’s input for generating the next token.
The standard transformer decoder uses position embedding for every
token. However, in PINMIR, we reset the position embedding of
decoder for every intent description. In other words, the position
at the start of every new intent description is equal for all intents.
In that case, the decoder representations for every permutation of
a given set of intents would be identical.

4 EXPERIMENTS
Following Hashemi et al. [8], we evaluate the model on a query
facet generation task. The task is defined as generating a number
of textual facet descriptions for a given multi-faceted query.

Data. We use the MIMICS collection3 in our experiments. It
consists of three datasets. We use MIMICS-Click–the largest MIM-
ICS dataset in our experiments, which consists of over 400K unique
web search queries. We dedicate a random sample of 80% of data
to the training, 10% to the validation, and 10% to the test set.4 The
top retrieved documents in response to each query is obtained by
the Bing’s public web search API.5 We only use the documents’
snippets to represent a document.

Evaluation Metrics. We use four different metrics to evaluate
our model. The first group is “term overlap” that has been used
for the facet extraction models [12]. We compare the precision,
recall, and macro-averaged F1 score between the model prediction
and the ground truth. The second group is “exact match”. This
group, again, computes the precision, recall, and macro-averaged
F1 score for the exact facet descriptions. The third metric, is based
on Set BLEU [8]. It extends BLEU [29] to a set of output text by
selecting the best matched ordering 𝑅∗ from all permutations of 𝑅
such that 𝑅∗ = argmax𝑅′∈perm(𝑅)

1
𝑀

∑𝑀
𝑖=1 BLEU-4(𝑅′

𝑖
,𝐺𝑖 ), where

𝑖 denotes the facet index, 𝐺𝑖 is the 𝑖th ground truth facet, and
𝑀 = max( |𝐺 |, |𝑅 |). Finally, the Set BLEU score is calculated as
3MIMICS is publicly available at https://github.com/microsoft/MIMICS.
4The NMIR paper [8] mentions that it uses MIMICS-Manual for evaluation. However,
it was a typo and it uses 10% of the MIMICS-Click dataset.
5The MIMICS SERP data is available at http://ciir.cs.umass.edu/downloads/mimics-
serp/MIMICS-BingAPI-results.zip.
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Table 1: Results for the query facet generation experiment. The superscript * denotes statistically significant improvements
compared to all the baselines using two-tailed paired t-test with Bonferroni correction at 99% confidence level.

# Term Overlap Exact Match Set BLEU Set BERT-Score
facets Model Prec Recall F1 Prec Recall F1 1-gram 2-gram 3-gram 4-gram Prec Recall F1

va
ria

bl
e

QDist 0.0969 0.1564 0.1195 0.0017 0.0023 0.0019 0.1999 0.1134 0.0360 0.0107 0.6772 0.6855 0.6100
QFI 0.1461 0.1748 0.1571 0.0057 0.0061 0.0059 0.2763 0.1269 0.0421 0.0140 0.7069 0.7113 0.6144
QFJ 0.1807 0.2041 0.1894 0.0069 0.0067 0.0067 0.2484 0.1065 0.0242 0.0090 0.7196 0.6708 0.5871
QDMiner 0.2060 0.2456 0.1894 0.0076 0.0083 0.0079 0.2893 0.1226 0.0301 0.0126 0.7220 0.7025 0.6285
BART 0.4307 0.4618 0.4481 0.0474 0.0516 0.0486 0.4459 0.4003 0.3896 0.3351 0.7623 0.6932 0.6558
NMIR 0.4851 0.5673 0.4968 0.0790 0.0842 0.0784 0.5187 0.4748 0.4470 0.4192 0.8003 0.7487 0.6928
PINMIR 0.4891 0.5691 0.5107* 0.0798 0.0856 0.0795 0.5173 0.4763 0.4491 0.4246* 0.8173* 0.7524* 0.7199*

m
ax

QDist 0.1557 0.1593 0.1440 0.0023 0.0024 0.0023 0.3387 0.1048 0.0439 0.0176 0.7165 0.7802 0.7192
QFI 0.1605 0.1941 0.1720 0.0058 0.0050 0.0050 0.3539 0.1524 0.0523 0.0203 0.7603 0.8127 0.7584
QFJ 0.1767 0.1348 0.1451 0.0055 0.0057 0.0053 0.3735 0.1675 0.0564 0.0234 0.7731 0.8136 0.7714
QDMiner 0.2176 0.1443 0.1773 0.0069 0.0066 0.0065 0.4275 0.1826 0.0657 0.0234 0.7758 0.8036 0.7792
BART 0.3043 0.4124 0.3558 0.0282 0.0263 0.0275 0.5087 0.4406 0.3969 0.3445 0.7633 0.8017 0.7660
NMIR 0.3877 0.4559 0.4121 0.0613 0.0584 0.0596 0.6313 0.5628 0.5222 0.4871 0.8442 0.8870 0.8405
PINMIR 0.4712* 0.4302 0.4423* 0.0731* 0.0689* 0.0677* 0.6505* 0.5732* 0.5411* 0.4895* 0.8731* 0.8873 0.8740*

1
𝑀

∑𝑀
𝑖=1 BLEU-n(𝑅∗𝑖 ,𝐺𝑖 ) for all n-grams. The last metric, BERT-

Score [48], is a neural based metric that use BERT to find the seman-
tic similarity between a single text prediction and a set of facets in
the ground truth. Similar to Set BLEU, we use Set BERT-Score as
1
𝑀

∑𝑀
𝑖=1 BERT-Score(𝑅∗𝑖 ,𝐺𝑖 ).

Results and Discussion. We compare our model with the fol-
lowing baselines: (1) the query variations generated by the QDist
model proposed by Xue and Croft [42], (2, 3) two effective graphical
models proposed by Kong and Allan [14] for facet extraction in
web search, named QFI and QFJ, (4) a hybrid method for query
facet extraction for web search, named QDMiner [6], (5) fine-tuned
BART model [20] for facet generation that uses a pre-trained trans-
former encoder-decoder architecture and is also used in our model,
and finally (6) the recent NMIR model of Hashemi et al. [8] which
is the same as our model without consideration the permutation
invariance nature of intents.

Each query in MIMIMCS contains between two and five facets.
The majority of queries in this dataset only have two facets. Each
query in our dataset contains an average of 2.81 facets per query.
The results for our first set of experiments on this dataset are re-
ported in Table 1 (# facets = variable). The proposed method gener-
ally outperforms all the baselines. The improvements in terms of
exact match are marginal, while we observe significant improve-
ments for term overlap F1, BLEU 4-gram, and Set BERT-Score.

Intuitively, we expect a permutation invariant loss to have higher
impact on queries with more facets. In our second set of experi-
ments, we solely focus on the queries with 5 facets (i.e., the maxi-
mum number of facets in MIMICS). According to Table 1, we ob-
serve substantially larger improvements in queries with five facets.
The improvements are statistically significant in nearly all cases,
except for term overlap recall and Set BERT-Score recall. This ob-
servation demonstrates that the permutation invariant model has
higher impacts on the queries with more intents.

As mentioned in Section 3.2, this paper proposes the Stochas-
tic Hungarian loss for efficiency reasons. In our experiments, we
observe no statistically significant difference between the effec-
tiveness of a model trained with Hungarian loss compared to its

stochastic variation (with three samples). Hungarian loss achieves
a term overlap F1 of 0.4724 for queries with three facets while this
value for the Stochastic Hungarian loss is 0.4731. We made similar
observations for other metrics too, which are not reported due to
space limitations. Therefore, both exact and stochastic Hungarian
losses perform comparably. This is while the stochastic variation
can be used for larger number of facets efficiently by sampling from
all permutations.

5 CONCLUSIONS AND FUTUREWORK
In this work, we introduced a model that learns generating a set of
text pieces in an permutation invariant manner. We explained our
model compared to NMIR, an existing model recently proposed by
Hashemi et al. [8], to learn multiple representations for a search
query. NMIR, despite performing strongly, suffers from some design
limitations. In particular, the NMIR’s solution to achieve multiple
representations for a query is to generate all the query intents asso-
ciated with that query. However, the model expects the output to be
exactly in the same order as it appears in the ground truth. We intro-
duced a novel variation of NMIR that compensates its drawbacks,
and makes the model permutation invariant regarding different
intents. We trained the model with a stochastic manner with a
new loss function that we introduced. By resetting the positional
embedding for each intent description generated by the model, we
ensured that the model’s decoder is also permutation invariant. We
showed that our model outperforms competitive baselines for a
facet generation task.

In the future, we intend to evaluate the impact of permutation
invariant models on document ranking, search result diversification,
and clarifying question selection. We also believe that the proposed
solutions can be generalized to many text set generation tasks. We
will explore this direction in our future work.
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