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ABSTRACT
The multi-stage cascaded architecture has been adopted by many
search engines for efficient and effective retrieval. This architecture
consists of a stack of retrieval and reranking models in which
efficient retrieval models are followed by effective (neural) learning-
to-rank models. The optimization of these learning-to-rank models
is loosely connected to the early stage retrieval models. This paper
draws theoretical connections between the early stage retrieval
and late stage reranking models by deriving expected reranking
performance conditioned on the early stage retrieval results. Our
findings shed light on optimization of both retrieval and reranking
models. As a result, we also introduce a novel loss function for
training rerankingmodels that leads to significant improvements on
multiple public benchmarks. Our findings provide theoretical and
empirical guidelines for developing multi-stage cascaded retrieval
models.
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1 INTRODUCTION
Most modern search engines use the multi-stage cascaded retrieval
paradigm [55] for ranking. In this paradigm, an efficient lightweight
retrieval model is used to select a number of candidate documents
from a large-scale collection. This retrieval model is followed by
one or more reranking models that have higher computational costs
but are more effective. Learning-to-rank models, including neural
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ranking models, are often used for implementing these late-stage
reranking models. A popular assumption in the community is that
the early-stage retrieval model should be optimized for recall of
the top 𝑁 documents, while the late-stage learning-to-rank model
should be optimized for a desired user-centric precision-oriented
metric, such as NDCG [5, 32, 45]. However, in contrast to this
assumption, some studies on the construction of learning-to-rank
test collections show that improving the retrieval recall does not
always lead to better reranking performance [3]. Thus, even though
learning-to-rank models have been studied extensively in the last
two decades, formal models that take into account the relation
between the retrieval and the reranking models are still relatively
underexplored.

To this end, this paper introduces a novel formulation of rerank-
ing models in a multi-stage cascaded paradigm. Without loss of
generality, we focus on two-stage retrieval models (i.e., retrieval
and reranking). The proposed framework, Expected reranking per-
formance Conditioned on first-stage Retrieval (ECR), does exactly
as its name implies and estimates the expected performance of
a reranking model conditioned on the first-stage retrieval model
through a stochastic process. Our formulation is independent of
the ultimate precision-oriented ranking metric that is often desired
in real-world search engines. This formulation enables us to draw
connections between the performance of the retrieval and rerank-
ing models. There are three primary contributions of this work,
which we describe below.

First, we study the relation between retrieval and reranking
models through theoretical exploration. In particular, we study
the performance of an optimal reranker in a two-stage cascaded
model and theoretically quantify the impact of the retrieval stage
on reranking performance.

Second, we extend our initial theoretical exploration to sub-
optimal rerankers. We model sub-optimal rerankers using a noisy
channel applied to an optimal reranker. With no assumption on
the nature or the distribution of the noise (i.e., any arbitrary noise),
we draw theoretical connections between the reranking and the
retrieval performance. The outcome of our theoretical exploration
challenges the popular assumption that first-stage retrieval models
should optimize recall@N. In fact, we demonstrate that this is inac-
curate; instead the retrieval results should consider maximizing the
precision of the result list, meaning that it should also minimize the
number of non-relevant documents passed to the next stage. We
also provide a realistic simulation of these sub-optimal reranking
models and demonstrate that even when recall is constant, we can
improve reranking performance by just focusing on precision.
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Third, we demonstrate the impact of our theoretical exploration
in practice by proposing a novel reranking optimization algorithm
built on the ECR framework. We provide a robust, efficient, and
effective estimation of the reranking performance conditioned on
the retrieval model by viewing reranking as sampling without re-
placement. For this, we employ the Gumbel-Top-𝐾 trick [28] for
providing differentiable estimates. Motivated by our theoretical
findings mentioned above, we further extend our optimization al-
gorithm by jointly modeling reranking and rank cutoff prediction
for the retrieval model. Our empirical results on three publicly
available benchmarks demonstrate that the proposed optimization
algorithms significantly outperform competitive baselines.

Our contributions and findings provide practical guidelines for
developing real-world multi-stage cascaded retrieval models with
solid theoretical underpinnings.

2 RELATEDWORK
A major inspiration for this work is the cascade ranking model [55],
which views retrieval as a “multi-stage progressive refinement
problem, where each stage considers successively richer and more
complex ranking models, but over successively smaller candidate
document sets”. In theory, there could be an unlimited number of
cascade stages. In practice, however, most existing search engines
employ the two-stage retrieval architecture popularized by learning-
to-rank approaches [31]. First, a fixed number of top candidates is
retrieved for each query by a retrieval method, which operates on
the inverted index (e.g., BM25), or using deep retrieval methods (e.g.,
DPR [26]). Then, a (re)ranking model, either neural or feature-based,
is applied to these top candidates [14, 39, 45]. Note that in all of
these works, there is an implicit assumption of stage independence.
I.e., the rerankers are developed in isolation from the retrieval stage,
and the particular methods underlying the production of the top
candidates are not considered when training the reranking model.

Thus, the common intuition is that the retrieval stage should
optimize for recall@N [14, 32], while being bound by some cost
and latency constraints [34, 55]. This is reflected in best-practices
and expert advice. For example, a popular benchmarking study for
TREC-COVID participants notes: “. . . choosing the top 𝑘 documents
to rerank has a large impact on end-to-end effectiveness. Reranking
the top 100 seems to provide higher precision than top 1000, but the
likely tradeoff is lower recall”.1 This observation is also supported
by recent studies of dynamic ranking cutoffs, which suggest the
sub-optimality of fixed-sized candidate lists [4, 30].

In this work, we rethink the reranking process as sampling from
a categorical distribution of the retrieved documents, akin to the
Plackett-Luce model [42]. This is similar to viewing the ranking
process as inherently stochastic, as is done in some recent work.
For instance, Bruch et al. [7] uses Gumbel sampling to provide more
robustness for direct metric optimization, while Diaz et al. [17] use
it for deriving an expected exposure evaluation metric. Roitman
et al. [49] proposed a method that applies cross entropy to the
permutations of the retrieval list and takes advantage of query
performance prediction models for obtaining more accurate re-
ranking models. To the best of our knowledge, our work is the first

1https://github.com/castorini/anserini/blob/master/docs/experiments-covid-
doc2query.md
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Figure 1: A two-stage cascaded retrieval model. The early-
stage model, called the Retrieval model 𝜙 , efficiently re-
trieves 𝑁 documents (denoted as 𝐿𝑞,𝜙 ), followed by a late-
stagemodel, called theReranking model \ that only reranks
the documents in 𝐿𝑞,𝜙 . The reranking model often focuses
on improving precision-oriented metrics for the very high
positions in the ranked list.

to apply the notion of ranking stochasticity in the context of the
cascade ranking model.

3 BACKGROUND AND NOTATION
In this section, we provide background information on the multi-
stage cascaded architecture for information retrieval, and the learning-
to-rank optimization used in its reranking stage. We then briefly
discuss score distributions produced by several first-stage retrieval
models. The notation used in this section and throughout the paper
is presented in Table 1.

3.1 Multi-Stage Cascaded Retrieval
Current modern search engines often use a multi-stage cascaded
architecture that includes a stack of retrieval and reranking models
[6, 13, 18, 33, 55, 57]. The most common implementation of the
multi-stage cascaded architecture usually involves two stages [2, 9].
As depicted in Figure 1, a lightweight scoring function 𝜙 (e.g., TF-
IDF [50], BM25 [47], QL [43], or their combination) is applied to the
entire collection 𝐶 at the first-stage, which results in a large pool
of 𝑁 candidate documents (denoted as 𝐿𝑞,𝜙 ). At this stage, existing
systems mainly focus on optimizing Recall@𝑁 of the returned
candidate pool and ignore their exact ordering.

At the later (second) stage, a reranking function \ is applied to
the 𝑁 retrieved candidates. In this stage, we generally focus on user-
centric metrics that measure relevance at the very top of the ranked
list, denoted as𝑀 (𝑞, 𝐿𝑞,𝜙 , 𝑘), where 𝑘 is the ranking cutoff for the
metric and 𝑘 ≪ 𝑁 . NDCG@𝑘 and Precision@𝑘 are examples of
such metrics. The reranking models are often implemented using
learning-to-rank methods.

Increasing the number of stages [55] as well as applying multiple
stages in parallel [33] have also been explored in the literature.
However, in this paper, we primarily focus on a two-stage cascaded
model, which is the most common implementation, and leave the
extension to multiple stages to future work.

Much of the prior work [5, 32, 45] assumes that gains in recall@𝑁
will be consistent with further gains in NDCG@𝑘 , however this
is mostly based on intuition, rather than theoretical analysis. This
paper closes this gap and challenges this popular belief.

3.2 Learning-to-Rank
Learning-to-rank (LTR) methods are supervised techniques heavily
used as rerankers in search engines and recommender systems
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Figure 2: The score distribution of relevant (gray) and non-relevant (white) documents in the top 1000 documents returned by
BM25 for five random queries from the TREC 2020 Deep Learning Track. The dashed line is a exponential distribution fit to
the non-relevant document scores and the solid line is a normal distribution fit to the relevant document scores.

[9, 31]. Given a training query set 𝑄 = {𝑞1, 𝑞2, · · · , 𝑞𝑚} containing
𝑚 queries, the training data for LTR models can be represented as
T = {(𝑞, 𝐷𝑞, 𝑅𝑞) : ∀𝑞 ∈ 𝑄}, where 𝐷𝑞 ⊆ 𝐶 and 𝑅𝑞 respectively
represent a set of candidate documents and relevant documents
associated with the query 𝑞. Without loss of generality, we assume
that relevance labels are binary (i.e., relevant or non-relevant). The
LTR objective is to learn a function that produces an ordering of
items in 𝐷𝑞 for each query 𝑞 so that the utility of the ordered list is
maximized.

Most LTR algorithms formulate the problem as learning a rank-
ing function to score and sort the items in a list. As such, the goal
of LTR boils down to finding a parameterized ranking function
𝑓 (·, ·;\ ) to minimize the empirical loss:

argmin
\

1
|𝑄 |

∑
𝑞∈𝑄
L(𝑓 (𝑞, 𝐷𝑞 ;\ ), 𝑅𝑞), (1)

where L(·, ·) is the loss function on a single list. There are three
main categories of LTR loss functions: pointwise, pairwise, and
listwise. LTR algorithms differ primarily in how they parameterize
𝑓 and how they define L.

A major shortcoming of existing models is how they connect
LTR optimization to first-stage retrieval models. The retrieval stage
is often used for shaping the document set 𝐷𝑞 (e.g., by sampling
non-relevant documents from 𝐿𝑞,𝜙 as negative samples [37]). Once
these sets are constructed for training, LTR is independent of the
retrieval stage 𝜙 (see Equation (1)). This is, in particular, true for
most recent neural ranking work, where the scores provided by the
retrieval stage are either ignored [45], or heuristically combined
with the reranking scores post-hoc [39].

Even though recent work by Gallagher et al. [18] studied joint
optimization of multi-stage cascaded systems, they ignored the
retrieval stage and solely optimized the following reranking stages
jointly (they assumed more than one reranking stage). Therefore,
these existing joint optimization models are also independent of
the retrieval model, and are orthogonal to our work.

3.3 Retrieval Score Distributions
Modeling the score distribution produced by first-stage retrieval
models has been extensively studied in the literature. It has appli-
cations to ranked list truncation, score normalization across search
engines [16, 36], score thresholding for information filtering [1, 60],
and query performance prediction [41, 53]. One approach to mod-
eling score distribution is using prior relevance information. This
enables us to model score distribution for both relevant and non-
relevant documents. In this work, we demonstrate that modeling

Table 1: Notations frequently used throughout this paper.

Notation Definition

𝐶 collection
𝑞 query
𝑅𝑞 a set of judged documents non-relevant to 𝑞
𝑅𝑞 a set of documents relevant to 𝑞
𝐿𝑞, · ranked list produced by the given model for 𝑞
𝑀 (𝑞, 𝐷, 𝑘) a ranking metric for 𝑞 and list 𝐷 at cutoff 𝑘
𝜙 first-stage retrieval model
\ second-stage reranking model
𝛾 retrieval list truncation model
𝑠 ·
𝑞𝑑

ranking score produced by the given model for 𝑞 and 𝑑
𝑁 |𝐿𝑞,𝜙 |
𝑛 number of relevant documents in 𝐿𝑞,𝜙 , i.e., 𝐿𝑞,𝜙 ∩ 𝑅𝑞
𝜌 𝑁 /𝑛 (inverse precision of the first-stage model)
𝜋𝑘 (·) a set of all permutations of the given list truncated at rank 𝑘
𝜋𝑘 a shorthand for 𝜋𝑘 (𝐿𝑞, 𝜙).

score distribution can also be useful in connecting the retrieval
and the ranking stages, by providing a more robust estimation of
document relevance to the reranker. There are multiple sugges-
tions in prior work on modeling score distributions. For instance,
Kanoulas et al. [25] suggest Gamma distribution, while Robertson
et al. [48] suggest logistic distribution. In this work, we respec-
tively use the normal and exponential distributions to describe
relevant and non-relevant documents, as suggested in [1, 36, 60].
We find these distributions fit well empirically on our datasets. To
demonstrate this, Figure 2 plots the relevant and non-relevant score
distributions of BM25 for five random queries sampled from the
data used in the TREC 2020 Deep Learning Track. Regardless of the
choices made here, it is important to note that our framework is
general enough to be used with other score distributions.

4 EXPECTED RERANKING PERFORMANCE
CONDITIONED ON FIRST-STAGE
RETRIEVAL

In this section, we introduce ECR, a framework for estimating
performance expectation of a multi-stage cascaded system. For
simplicity, assume that there are two stages: an efficient early stage
model, named the retrieval model 𝜙 , followed by an effective model
that reranks the output of the retrieval model, named the reranking
model \ .

Let𝑀 (𝑞, 𝐷, 𝑘) be an evaluationmetric function that takes a query
𝑞 and a ranked list of documents 𝐷 and computes a ranking metric



with a cutoff of 𝑘 . The expected performance of this ranking model
for a query 𝑞 would be:

E(𝑀 (𝑞, 𝐷, 𝑘) |𝜙, \ ) =
∑

𝐷∈𝜋 (𝐶)
𝑝𝑞 (𝐷 |𝜙, \ )𝑀 (𝑞, 𝐷, 𝑘),

where 𝑝𝑞 (𝐷 |𝜙, \ ) is the probability of a ranked list 𝐷 being pro-
duced by the two-stage ranking model 𝜙 → \ for query 𝑞. In this
equation, 𝜋 (𝐶) is the set of all possible ranked lists. Therefore,
|𝜋 (𝐶) | = |𝐶 |!, which makes it extremely inefficient to compute.
However, we know that 𝑀 (𝑞, 𝐷, 𝑘) only measures the top 𝑘 doc-
uments and the rest of the documents in the ranked list do not
contribute to the ranking metric𝑀 (𝑞, 𝐷, 𝑘). Therefore, we can limit
this computation to the top 𝑘 documents in a ranked list. In ad-
dition, since \ only reranks the 𝑁 documents returned by 𝜙 , we
have 𝑝𝑞 (𝐷 |𝜙, \ ) = 0, if 𝐷 ⊈ 𝐿𝑞,𝜙 . Therefore, we can reduce the
computation cost of the above expectation as follows:

E(𝑀 (𝑞, 𝐷, 𝑘) |𝜙, \ ) =
∑
𝐷∈𝜋𝑘

𝑝𝑞 (𝐷 |𝜙, \ )𝑀 (𝑞, 𝐷, 𝑘), (2)

where 𝜋𝑘 = perm_cut(𝐿𝑞,𝜙 , 𝑘) is a set of unique ranked lists pro-
duced by computing all permutations of documents returned by
the retrieval model 𝐿𝑞,𝜙 with a ranking cutoff of 𝑘 . Therefore,
|𝜋𝑘 | = 𝑁𝑃𝑘 = 𝑁 !

(𝑁−𝑘)! , which is equivalent with ordered sampling of
𝑘 documents without replacement from 𝐿𝑞,𝜙 . This motivates us to
model reranking models via sampling without replacement. Note
that the above calculation can be quite efficient for small 𝑘 , but
quite costly as 𝑘 increases. We will provide an efficient stochastic
estimation of this expectation in Section 4.2.

4.1 Theoretical Exploration of Reranking
Behavior

This section provides theoretical analysis of the expected perfor-
mance of multi-stage cascaded retrieval system, as described in
Equation (2). We examine two cases – an optimal reranker, which al-
ways picks the relevant document, and a more realistic sub-optimal
reranker based on the noisy channel model.

Optimal Reranker. The probability of selection that an optimal
reranker \opt assigns to each document 𝑑𝑖 is:

𝑝𝑞 (𝑑𝑖 |𝜙, \opt) ∝
{
1 iff 𝑑𝑖 ∈ 𝐿𝑞,𝜙 ∩ 𝑅𝑞
0 otherwise

,

where 𝐿𝑞,𝜙 ∩𝑅𝑞 denotes the set of relevant documents retrieved by
𝜙 . The normalization factor for this probability distribution would
be equal to |𝐿𝑞,𝜙 ∩ 𝑅𝑞 | = 𝑛. We can first assume that 𝑛 ≥ 𝑘 , thus
the probability that the optimal reranker assigns to any arbitrary
document set 𝐷 with the size of 𝑘 would be equal to:

𝑝𝑞 (𝐷 |𝜙, \opt) ∝
{
1 iff 𝐷 ⊆ 𝐿𝑞,𝜙 ∩ 𝑅𝑞
0 otherwise.

.

Thus every document in the top 𝑘 result list produced by \opt would
be relevant, resulting in𝑀 (𝑞, 𝐷, 𝑘) = 1, independent of the ranking
metric (note that the upper-bound for most popular normalized
ranking metrics is 1). Hence, the expected performance of the multi-
stage system (see Equation (2)) would be equal to 1. Therefore, as
long as 𝑛 ≥ 𝑘 , optimal reranker produces the optimal top 𝑘 metric.

On the other hand, if 𝑛 < 𝑘 , then the optimal reranker would
rank all the 𝑛 relevant documents first followed by (𝑘 − 𝑛) non-
relevant documents. In other words, 𝑝𝑞 (𝐷 |𝜙, \opt) ∝ 1 iff 𝑑𝑖 ∈
𝐿𝑞,𝜙 ∩ 𝑅𝑞 : ∀1 ≤ 𝑖 ≤ 𝑛, zero otherwise. Unlike the previous case,
the expected performance of the multi-stage system depends on the
ranking metric. For instance, if the ranking metric is Precision@k,
then E(𝑀 (𝑞, 𝐷, 𝑘) |𝜙, \opt) = 𝑛

𝑘
.

Considering both cases (𝑛 ≥ 𝑘 and 𝑛 < 𝑘), Precision@k for
an optimal reranker would be equal to min(1, 𝑛

𝑘
), where 𝑛 is the

number of relevant documents retrieved by 𝜙 and 𝑘 is the ranking
metric cutoff. This finding suggests that if the ultimate goal
is to improve Precision@k of a multi-stage cascaded system
with an optimal reranker, the retrieval model 𝝓 should max-
imizemin(1, 𝒏𝒌 ), instead of Recall@N (i.e., the current popu-
lar belief). Extension of this to other metrics, e.g., NDCG@k, is
trivial.

Sub-Optimal Reranker. In practice, an optimal reranker does
not exist. Therefore, it is important to also provide theoretical in-
sights into sub-optimal rerankers. Inspired by Zamani andCroft [58],
we model sub-optimal rerankers using a noisy channel – an infor-
mation theoretic formulation for faulty models. A noisy channel
introduces noise into the optimal performance to model a sub-
optimal reranker. For any arbitrary noise distribution, the probabil-
ity of selection that a sub-optimal reranker \sub-opt assigns to each
document 𝑑𝑖 is:

𝑝𝑞 (𝑑𝑖 |𝜙, \sub-opt) ∝
{
1 − 𝜖𝑖 iff 𝑑𝑖 ∈ 𝐿𝑞,𝜙 ∩ 𝑅𝑞
𝜖𝑖 otherwise

, (3)

where each 0 ≤ 𝜖𝑖 ≤ 1 is the noise probability of the sub-optimal
reranker \sub-opt for the 𝑖th document. Since 𝜖𝑖 = 0.5 corresponds to
a random reranker, it is expected that 𝜖𝑖 < 0.5. Thus, the normaliza-
tion factor for this probability distribution is equal to

∑
𝑑𝑖 ∈𝐿𝑞,𝜙∩𝑅𝑞

(1 − 𝜖𝑖 ) +
∑
𝑑𝑖 ∈𝐿𝑞,𝜙 \𝑅𝑞 𝜖𝑖 . Therefore, using sampling without re-

placement (see more on this in Section 4.2), we can also compute
𝑝𝑞 (𝐷 |𝜙, \sub-opt) for every ranked list 𝐷 ∈ 𝜋𝑘 . Through Equa-
tion (2), the expected performance of a sub-optimal model can
be computed. However, the obtained equation is complicated for a
general case. For illustration, let us assume 𝑘 = 1, meaning that we
care solely about the relevance of the first retrieved document (e.g.,
Precision@1). In this case, expected performance of a sub-optimal
reranker would be equal to:

E(𝑀 (𝑞, 𝐷, 1) |𝜙, \sub-opt)

=

𝑁∑
𝑖=1

𝑝𝑞 (𝑑𝑖 |𝜙, \sub-opt)𝑀 (𝑞, 𝐷, 1)

=
∑

𝑑𝑖 ∈𝐿𝑞,𝜙∩𝑅𝑞

1 − 𝜖𝑖∑
𝑑 𝑗 ∈𝐿𝑞,𝜙∩𝑅𝑞 (1 − 𝜖 𝑗 ) +

∑
𝑑 𝑗 ∈𝐿𝑞,𝜙 \𝑅𝑞 𝜖 𝑗

=

∑
𝑑𝑖 ∈𝐿𝑞,𝜙∩𝑅𝑞 (1 − 𝜖𝑖 )∑

𝑑 𝑗 ∈𝐿𝑞,𝜙∩𝑅𝑞 (1 − 𝜖 𝑗 ) +
∑
𝑑 𝑗 ∈𝐿𝑞,𝜙 \𝑅𝑞 𝜖 𝑗

=
𝑛(1 − 𝜖+)

𝑛(1 − 𝜖+) + (𝑁 − 𝑛)𝜖−

=
(1 − 𝜖+)

(1 − 𝜖+) + (𝜌 − 1)𝜖−
, (4)



where 𝜖+ and 𝜖− denote the average noise probability for rele-
vant documents (i.e., 𝑑𝑖 ∈ 𝐿𝑞,𝜙 ∩ 𝑅𝑞) and non-relevant documents
(i.e., 𝑑𝑖 ∈ 𝐿𝑞,𝜙 \ 𝑅𝑞), respectively. In the last step, 𝜌 B 𝑁

𝑛 . This
derivation is true for the majority of ranking metrics, including
Precision, Reciprocal Rank, DCG, NDCG, and Hit Ratio. In this
derivation, 𝜖+ and 𝜖− solely depend on the reranker’s quality (more
accurate rerankers would result in smaller 𝜖+ and 𝜖−). On the other
hand, 𝜌 solely depends on the retrieval quality by 𝜙 . This the-
oretical finding suggests that if the ultimate goal is to im-
prove themetrics for the first ranked document produced by
a sub-optimal reranker, the retrieval model 𝝓 should mini-
mize 𝝆 = 𝑵

𝒏 , instead of Recall@N (i.e., the current popular
belief). Note that 𝜌 is equal to the inverse of precision. Therefore,
the retrieval model should maximize precision of the top 𝑁 doc-
uments. This suggests that withholding non-relevant documents
from 𝐿𝑞,𝜙 is as important as maximizing the number of relevant
documents. One approach for withholding non-relevant documents
would be truncating the retrieval list 𝐿𝑞,𝜙 through cutoff prediction.
This observation motivates us to jointly model reranking and cutoff
prediction of the first-stage retrieval list in Section 4.3.

Relationship betweenRecall and 𝝆. Asmentioned earlier, 1/𝜌
is equal to the precision of the first-stage retrieval model. If 𝑁
(the number of documents returned by the retrieval model) is con-
stant, then increasing Recall@𝑁 would translate into increasing
1/𝜌 . However, by varying 𝑁 we observe that 1/𝜌 varies even if
Recall@𝑁 does not change. The simulations presented in Section 5.3
demonstrate how 𝜌 values can impact reranking performance even
if Recall@𝑁 of the retrieval model does not change.

As we will see in Equation (6), the variable 𝜌 also appears in
estimating the ranking metric𝑀 (𝑞, 𝐷, 𝑘) for the reranker. This is
independent of 𝑘 (the ranking cutoff for the evaluation metric).
Therefore, the variable 𝜌 also plays a key role in our optimization
presented in the following subsection.

4.2 ECR Optimization for Reranking Models
Building upon the theoretical analysis of the impact of the retrieval
stage on the reranking performance, this section introduces a novel
practical optimization approach for LTR rerankers in multi-stage
cascaded systems. Given a training query set𝑄 containing indepen-
dent and identically distributed queries, ECR optimization suggests
the following based on empirical expectation:

\∗ = argmax
\
EQ [E(𝑀 (𝑞, 𝐷, 𝑘) |𝜙, \ )]

= argmax
\

1
|𝑄 |

∑
𝑞∈𝑄
E(𝑀 (𝑞, 𝐷, 𝑘) |𝜙, \ )

= argmax
\

1
|𝑄 |

∑
𝑞∈𝑄

∑
𝐷∈𝜋𝑘

𝑝𝑞 (𝐷 |𝜙, \ )𝑀 (𝑞, 𝐷, 𝑘) (5)

The derivation above follows from the Law of Iterated Expectation
and Equation (2). The derivation assumes that all queries in the
query set are uniformly weighted. As we will see in the following,
we obtain a robust estimation of𝑀 (𝑞, 𝐷, 𝑘) using the retrieval scores
produced by 𝜙 and the relevance judgments. Thus, 𝑀 (𝑞, 𝐷, 𝑘) is
independent of the reranking model and can be computed offline.

On the other hand, 𝑝𝑞 (𝐷 |𝜙, \ ) is the probability that a reranker
assigns to the given ranked list 𝐷 .

In this particular case, it is useful to consider reranking as a
process of iteratively selecting items from the retrieved list of candi-
dates 𝐿𝑞,𝜙 based on their scores. As rerankers are imperfect in prac-
tice, we can model this process via sampling without replacement
from the Plackett-Luce distribution [42]. For estimating 𝑝𝑞 (𝐷 |𝜙, \ ),
we first compute the sampling probability of each individual docu-
ment that appears in 𝐿𝑞,𝜙 using the softmax operator:

𝑝𝑞 (𝑑 |𝜙, \ ) =
exp (𝑠\

𝑞𝑑
)∑

𝑑′∈𝐿𝑞,𝜙 exp (𝑠\
𝑞𝑑′
)

For every 𝐷 ∈ 𝜋𝑘 , the probability of sampling without replace-
ment from the above distribution can be computed using an incre-
mental approach as follows:

𝑝𝑞 (𝐷 |𝜙, \ ) =
𝑘∏
𝑖=1

𝑝𝑞 (𝑑𝑖 |𝜙, \ )
1 −∑𝑖−1

𝑗=1 𝑝𝑞 (𝑑 𝑗 |𝜙, \ )

Intuitively, this approach takes samples one by one and re-
normalizes the distribution once each sample is selected. The Placket-
Luce distribution is a common choice for modeling ranking pro-
cesses. In fact, several popular learning-to-rank methods, such as
ListNet [8], ListMLE [56], and Softmax Cross-Entropy [40]) are
based on it. However, directly sampling from the Plackett-Luce dis-
tribution is computationally expensive, as it requires instantiating
the set of all possible permutations 𝜋𝑘 . This may not be tractable,
especially for larger lists. Furthermore, this iterative process of
document sampling is non-differentiable, and thus cannot be sim-
ply used in gradient descent-based optimization approaches. To
address both of these problems, Kool et al. [28, 29] recently intro-
duced Ancestral Gumbel-Top-𝑘 sampling. This approach creates
a tree over all items in the sampling set and extends the Gumbel-
Softmax sampling approach [35] to sampling without replacement.
According to [28], independently perturbing each individual docu-
ment score with Gumbel noise and picking the top 𝑘 documents
with the largest perturbed values will generate a valid sample from
the Plackett-Luce distribution. Gumbel perturbation itself can be
done efficiently by simply drawing a sample𝑈 ∼ Uniform(0, 1), as
Gumbel(0, 𝛽) ∼ −𝛽 log(− log(𝑈 )) [35].

Algorithm 1 demonstrates how this Gumbel-Top-𝑘 sampling
technique can be integrated in a gradient descent-based learning-
to-rank method to generate samples to approximate Equation (5).
This algorithm is run iteratively at each training epoch, such that
new samples are generated using the updated model weights \ .

Note that Algorithm 1 can be viewed as a generalization of
the stochastic reranking approach first introduced by Bruch et
al. [7]. In the stochastic reranking setting, we also generate Gumbel-
perturbed score samples at each training epoch. However, in that ap-
proach, the samples can be viewed as uniformly weighted, whereas
we introduce an explicit dependence on the retrieval stage by at-
taching a metric estimate𝑀 (𝑞, 𝐷, 𝑘) to each sample 𝐷 . We evaluate
the empirical benefits of this weighting in Section 5.3.

Robust Estimation of 𝑴 (𝒒, 𝑫, 𝒌). One can simply compute
this evaluation metric using relevance judgments. This is only pos-
sible when complete relevance judgments are available for training



Algorithm 1 Gumbel-Top-𝐾 sampling for ECR optimization.
Input (a) a set of queries 𝑄 ; (b) a list of candidate documents
𝐿𝑞,𝜙 ; ∀𝑞 ∈ 𝑄 ; (c) current ranking model parameters \ , which can
be used to derive log-probabilities 𝑠\

𝑞𝑑
; ∀𝑑 ∈ 𝐿𝑞,𝜙

Output (a) 𝑆 samples with Gumbel score perturbation drawn
from 𝐿𝑞,𝜙 ; ∀𝑞 ∈ 𝑄 ; (b) a metric estimate 𝑀 (𝑞, 𝐷, 𝑘) for each
sample.
for 𝑞 ∈ 𝑄 do

for 𝑖 ∈ [1, 2, . . . , 𝑆] do
𝑈𝑑 ∼ Uniform(0, 1), 𝐺𝑑 = −𝛽 log(− log(𝑈𝑑 )); ∀𝑑 ∈ 𝐿𝑞,𝜙

𝑝𝑞 (𝑑 |𝜙, \ ) =
exp(𝑠\

𝑞𝑑
+𝐺𝑑 )∑

𝑑′∈𝐿𝑞,𝜙 exp(𝑠\
𝑞𝑑′+𝐺𝑑′ )

; ∀𝑑 ∈ 𝐿𝑞,𝜙
p̃𝑞 ← [𝑝𝑞 (𝑑1 |𝜙, \ ), . . . , 𝑝𝑞 (𝑑𝑁 |𝜙, \ )]
yield (p̃𝑞, 𝑀 (𝑞, p̃𝑞, 𝑘))

end for
end for

the model. Given the large number of queries required for training
most of the current state-of-the-art neural ranking models [12], it is
impractical to have complete relevance judgment for a large num-
ber of queries. Therefore, we propose a more robust estimation for
this metric function based on the probability of relevance for each
query-document pair. Let 𝑅 = {0, 1} be a binary random variable
representing the notion of relevance. Hence, 𝑝 (𝑅 = 1|𝑞, 𝑑) denotes
the probability of relevance of document 𝑑 to query 𝑞. Using this
probability we estimate popular precision-oriented ranking met-
rics for a single query 𝑞 for the top 𝑘 retrieved documents. These
metrics include:
• Precision. The ratio of relevant documents in the top 𝑘 retrieved
documents.
• Reciprocal Rank (RR). The multiplicative inverse of the rank
of the first relevant document.
• Discounted Cumulative Gain (DCG) [24]. The relevance gain
obtained by a ranked list of documents discounted by their posi-
tions in the ranked list.
• Hit Ratio. The ratio of ranked lists across a query set that con-
tain at least one relevant document (or attract click from the
user). This metric is quite popular for evaluating recommender
systems [52]. Hit Ratio for a single query (or user) is binary (either
containing a relevant document or not).

The estimation of these metrics are reported in Table 2. For all the
metrics, we assume binary relevance. Note that DCG is often nor-
malized (i.e., NDCG) by the ideal DCG value. Given the assumption
that 𝑛 ≥ 𝑘 (which is reasonable for small values of 𝑘), ideal DCG for
cutoff 𝑘 with the binary relevance assumption would be a constant
value.

Estimation of popular precision-oriented ranking metrics there-
fore boils down to an accurate and robust estimation of 𝑝 (𝑅 = 1|𝑞, 𝑑)
for every document in 𝐿𝑞,𝜙 . Given Bayes’ rule and the Law of Total
Probability, we have:

𝑝 (𝑅 = 1|𝑞, 𝑑) = 𝑝 (𝑑 |𝑞, 𝑅 = 1)𝑝 (𝑅 = 1|𝑞)
𝑝 (𝑑 |𝑞)

=
𝑝 (𝑑 |𝑞, 𝑅 = 1)𝑝 (𝑅 = 1|𝑞)

𝑝 (𝑑 |𝑞, 𝑅 = 1)𝑝 (𝑅 = 1|𝑞) + 𝑝 (𝑑 |𝑞, 𝑅 = 0)𝑝 (𝑅 = 0|𝑞)

Table 2: Estimation of popular precision-oriented ranking
metrics for a given query 𝑞 and ranked list 𝐷 . In these equa-
tions, the ranking cutoff is 𝑘 and𝑑𝑖 denotes the 𝑖th document
in the ranked list 𝐷 . For all metrics we assume relevance is
a binary notion.

Metric Estimation of M(q, D, k)

Precision
∑𝑘
𝑖=1 𝑝 (𝑅 = 1|𝑞, 𝑑𝑖 )/𝑘

Reciprocal Rank
∑𝑘
𝑖=1

1
𝑖 𝑝 (𝑅 = 1|𝑞, 𝑑𝑖 )

∏𝑖−1
𝑗=1 (1 − 𝑝 (𝑅 = 1|𝑞, 𝑑 𝑗 ))

DCG
∑𝑘
𝑖=1 (𝑝 (𝑅 = 1|𝑞, 𝑑𝑖 )/log(𝑖 + 1))

Hit Ratio 1 −∏𝑘
𝑖=1 (1 − 𝑝 (𝑅 = 1|𝑞, 𝑑𝑖 ))

Since this probability of relevance is computed for the reranking
model and 𝑑 ∈ 𝐿𝑞,𝜙 , we can estimate 𝑝 (𝑅 = 1|𝑞) = 𝑛

𝑁
, where 𝑛

denotes the number of relevant documents in 𝐿𝑞,𝜙 , i.e., the top 𝑁
documents returned by 𝜙 . Defining 𝜌 = 𝑁

𝑛 as we did previously,
we can rewrite the above equation as follows:

𝑝 (𝑅 = 1|𝑞, 𝑑) = 𝑝 (𝑑 |𝑞, 𝑅 = 1)
𝑝 (𝑑 |𝑞, 𝑅 = 1) + (𝜌 − 1)𝑝 (𝑑 |𝑞, 𝑅 = 0) (6)

The probability 𝑝 (𝑑 |𝑞, 𝑅 = 1) denotes the probability of 𝑑 being
generated from the relevance distribution for query 𝑞. As discussed
in Section 3.3, this distribution can be modeled by a normal distri-
bution (denoted by N(·, ·)) over the retrieval scores. In addition,
𝑝 (𝑑 |𝑞, 𝑅 = 0) can be estimated using an exponential distribution
(denoted by Exp(·)). Therefore, we estimate the above probability
as follows:

𝑝 (𝑅 = 1|𝑞, 𝑑) =
𝑝 (𝑠𝜙

𝑞𝑑
∼ N(`, 𝜎))

𝑝 (𝑠𝜙
𝑞𝑑
∼ N(`𝑞, 𝜎𝑞)) + (𝜌 − 1)𝑝 (𝑠𝜙𝑞𝑑 ∼ Exp(_𝑞))

,

(7)
where 𝑠𝜙

𝑞𝑑
denotes the retrieval score for the query 𝑞 and document

𝑑 produced by 𝜙 . Therefore, we need to fit the two distributions
N(`𝑞, 𝜎𝑞) and Exp(_𝑞) to the relevant and non-relevant document
score distributions by estimating the three query-dependent pa-
rameters `𝑞 , 𝜎𝑞 , and _𝑞 . They can be estimated by maximizing
the log-likelihood of generating the observed retrieval scores for
labeled documents in the judgment set:

`𝑞, 𝜎𝑞 = argmax
`,𝜎

∑
𝑑∈𝑅𝑞

log(𝑝 (𝑠𝜙
𝑞𝑑
|N (`, 𝜎))),

_𝑞 = argmax
_

∑
𝑑∈𝑅𝑞

log(𝑝 (𝑠𝜙
𝑞𝑑
|Exp(_))),

These two optimization processes can be trivially solved using
the Lagrange multiplier approach; see previous work on modeling
score distributions, e.g., [1, 36]. Note that these optimizations are
independent of the reranking model \ and thus can be done offline.

Extension to Multiple Reranking Stages. So far we solely fo-
cus on two-stage retrieval models. As suggested by Wang et al. [55],
the multi-stage cascaded architecture may involve more than one
reranking stage. Let assume that the retrieval model𝜙 is followed by



𝑚 rerankers 𝜙1, 𝜙2, · · · , 𝜙𝑚 in that order. These𝑚 rerankers can be
models using Markov chain. Thus, inspired by Gallagher et al. [18],
we can extend the ECR optimization to multiple rerankers using the
backpropagation algorithm. With the assumption that all reranking
stages are differentiable and they are parameterized independently,
each reranker \𝑖 can be modeled as a sampling without replace-
ment process. Thus, Algorithm 1 can be applied for every reranker
\𝑖 . Since this algorithm provide a differentiable approximation of
sampling without replacement, the whole process for a stack of
rerankers would be differentiable. For more information on joint
optimization of multiple rerankers using backpropagation, we refer
the reader to [18].

4.3 ECR Optimization for Joint Reranking and
Retrieval List Truncation

According to the theoretical findings presented in Section 4.1, trun-
cating the retrieval result list to avoid including a large number of
non-relevant documents in the lower ranks can improve reranking
quality. Based on this observation, we extend the ECR reranking
optimization approach to jointly optimize retrieval list truncation
and reranking quality. Let 𝛾 denote a ranking truncation model
that produces a probability distribution over all rank positions (i.e.,
𝑝cutoff (𝑖 |𝜙, \,𝛾)) where a higher probability represents a higher
chance of truncation. Given this, we rewrite Equation (5) as fol-
lows:

\∗, 𝛾∗ = argmax
\,𝛾
EQ [E(𝑀 (𝑞, 𝐷, 𝑘) |𝜙, \,𝛾)]

= argmax
\,𝛾

1
|𝑄 |

∑
𝑞∈𝑄
E(𝑀 (𝑞, 𝐷, 𝑘) |𝜙, \,𝛾)

= argmax
\,𝛾

1
|𝑄 |

∑
𝑞∈𝑄

∑
𝐷∈𝜋𝑘

𝑝𝑞 (𝐷 |𝜙, \,𝛾)𝑀 (𝑞, 𝐷, 𝑘)

= argmax
\,𝛾

1
|𝑄 |

∑
𝑞∈𝑄

𝑁∑
𝑖=𝑘

[𝑝cutoff (𝑖 |𝜙, \,𝛾)·∑
𝐷∈𝜋𝑘 (𝐿𝑞,𝜙 [:𝑖 ])

𝑝𝑞 (𝐷 |𝜙, \ )𝑀 (𝑞, 𝐷, 𝑘)]

(8)

where 𝐿𝑞,𝜙 [: 𝑖] denotes the first 𝑖 documents returned by the re-
trieval model 𝜙 . Note that considering our ultimate ranking metric
𝑀 , the minimum cutoff rank is 𝑘 . We can calculate components
𝑝𝑞 (𝐷 |𝜙, \ ) and 𝑀 (𝑞, 𝐷, 𝑘) using the equations presented in Sec-
tion 4.2. The remaining probability 𝑝cutoff (𝑖 |𝜙, \,𝛾) can be estimated
using a list truncation model. We use the Choppy architecture [4]
but optimize it jointly with our rerankers. The Choppy architecture
is a Transformer-based [54] ranked list truncation model that takes
the scores produced by 𝜙 as input.

5 EXPERIMENTS
We conduct extensive experiments to evaluate the proposed ap-
proaches. Our experiments involve simulation of sub-optimal rerankers
as well as evaluation on diverse standard retrieval benchmarks.

5.1 Data and Experimental Setup
In our experiments, we focus on two-stage retrieval models. The
first-stage model is implemented using BM25 [47]. The second-
stage model is a standard BERT [15] reranking model first proposed
by Nogueira and Cho [38]. This model takes [CLS] query tokens
[SEP] doc tokens [SEP] as input and applies a single fully-
connected layer to the CLS representation of the last layer in order
to produce a real-valued relevance score. We use BERT-base that is
fine-tuned on theMSMARCO training set (503K training queries) in
all experiments.2 We truncate the input sequences that are longer
than 512 tokens due to BERT’s input length limitations. Neural
ranking architectures that handle long documents, such as TKL [23]
and IDCM [22], can simply use the proposed optimization approach.
Note that there exist some models with different architectures or
larger parameter sets that slightly outperform BERT reranking
models, such as those based on BERT-large or T5. However, the
focus of our experiments is on optimization of these models which
can be applied to all of these alternatives. For this reason, we focus
on this standard BERT reranking model architecture and train
it using a wide range of optimization approaches. We use Adam
optimizer [27] with a learning rate of 7 × 10−6. We employ early
stopping, based on the best NDCG@10 value on the validation set.
We set the number of perturbation samples 𝑆 to 128.

For evaluation, we use the following diverse benchmarks:
TREC DL 2020: This data was used for the TREC Deep Learning
Track in 2020 [11]. We focus on the passage retrieval task that
consists of 54 queries and a collection of 8.8 million passages. We
use the TREC DL 2019 dataset [10] for training (43 queries).
TRECRobust 2004: This data was used for the TREC Robust Track
in 2004. The collection consists of 528K news articles from multiple
news agencies. It consists of 249 queries. Due to the lack of training
set for this dataset, we use 5-fold cross-validation over the query set
(i.e., each fold consists of about 50 queries). There are an average
of 70 relevant documents per query in this dataset.
ANTIQUE: This is a passage retrieval dataset for non-factoid ques-
tions developed by Hashemi et al. [19]. The questions are sampled
from real user questions in the Yahoo! Webscope L6 dataset, a
community question answering dataset. For this benchmark, we
train the model on the ANTIQUE’s training set (2426 queries) and
evaluate on its test set containing 200 queries. It contains 8.5 rel-
evant document per query on average. The relevance judgments
in ANTIQUE are constructed using the standard depth-𝑘 pooling
techniques used by TREC.

As mentioned above, note that for all three benchmarks, the
models were trained on the MS MARCO training set before fine-
tuning on the corresponding small training sets.

5.2 Evaluation Metrics
The focus of this work is on precision-oriented metrics for the very
top ranks in the result list. Hence, we use NDCG [24] with differ-
ent ranking cutoffs (1, 3, and 10). Furthermore, we use two-tailed
paired t-tests with Bonferroni correction for identifying statistically
significant performance differences (𝑝_𝑣𝑎𝑙𝑢𝑒 < 0.05).

2https://github.com/nyu-dl/dl4marco-bert

https://github.com/nyu-dl/dl4marco-bert
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Figure 3: Simulating a sub-optimal reranker’s performance for different evaluation metrics at different ranking cutoffs (top
row) and in terms of NDCG@10 for different values of 𝜖+ and 𝜖− (bottom row). In this simulation, we kept the recall of the re-
trieval model fixed (set to 0.5) to demonstrate that by increasing 1/𝜌 , the reranking performance can be improved independent
of the recall value.

Table 3: Performance of two-stage retrieval models with different optimization approaches, in terms of NDCG@k. The su-
perscripts * and † denote statistically significant improvements compared to all the baselines and ECR, respectively. Highest
value in each column is bold-faced (except for the Oracle).

Reranking TREC DL 2020 TREC Robust 2004 ANTIQUE
Retrieval Model Optimization @1 @3 @10 @1 @3 @10 @1 @3 @10
BM25 – 0.5432 0.5256 0.4980 0.5341 0.4908 0.4369 0.4411 0.4237 0.4334

BM25
𝑁=1000−−−−−−→ BERT

Cross-entropy (pointwise) 0.6728 0.6464 0.6149 0.5778 0.5372 0.4732 0.7126 0.6570 0.6423
Cross-entropy (pairwise) 0.6773 0.6497 0.6168 0.5975 0.5420 0.4795 0.7348 0.6943 0.6776
Hinge loss (pairwise) 0.6766 0.6474 0.6192 0.5971 0.5346 0.4719 0.7456 0.6917 0.6791
ApproxNDCG (listwise) 0.6881 0.6511 0.6288 0.6035 0.5587 0.4872 0.7589 0.6970 0.6841
_MART (listwise) 0.6853 0.6497 0.6208 0.6055 0.5513 0.4826 0.7506 0.6957 0.6815
E(ApproxNDCG)[7] 0.7076 0.6634 0.6438 0.6115 0.5601 0.4948 0.7767 0.7234 0.7071
E(_MART)[7] 0.6915 0.6605 0.6353 0.6150 0.5576 0.4976 0.7565 0.7020 0.6917
ECR 0.7160* 0.6774* 0.6523* 0.6221 0.5647* 0.4981 0.8044* 0.7423* 0.7336*

BM25
Oracle−−−−−→ BERT ECR 0.7604*† 0.7470*† 0.7234*† 0.7303*† 0.6286*† 0.5548*† 0.9613*† 0.8642*† 0.8158*†

BM25
Choppy
−−−−−−→ BERT ECR 0.6713 0.6485 0.6212 0.6012 0.5406 0.4312 0.7980 0.6982 0.6777

BM25
Choppy
−−−−−−→ BERT Joint ECR 0.7184* 0.6809* 0.6593* 0.6365*† 0.5717* 0.5069* 0.8123*† 0.7639*† 0.7591*†

5.3 Experimental Results
We conducted several experiments to empirically study the five
following research questions.

RQ1. How does 𝜌 impact the performance of a sub-optimal
reranker? As mentioned in Section 4.1, there is a theoretical con-
nection between the performance of a sub-optimal reranker and 𝜌 .
We formally derive this connection in Equation (4) for metrics when
the ranking cutoff 𝑘 = 1. To complement our theoretical derivation,
we demonstrate the impact of 𝜌 on metrics for deeper ranked lists
through a number of simulations. To this aim, we generate 1000
samples of the top 𝑘 retrieved documents from the sub-optimal
reranking distribution mentioned in Equation (3).

The top row of Figure 3 shows the simulation results for 𝜖+ =
𝜖− = 0.05, 𝑁 = 2000, and 𝑛 = 50 for different ranking metrics,
where the recall is fixed and set to 0.5. Having fixed recall enables
us to observe the true impact of 𝜌 on the reranking performance.
The first plot (left) in the top row of Figure 3 shows the precision

metric while the others show NDCG. The aim is to show that
the observations hold for both ranking metrics. Overall, the top
row shows that 𝜌 values have more impact on NDCG for deeper
rankings (higher 𝑘). We make similar observations for Precision,
but the results are omitted due to space limitations.

We repeat this simulation by varying the 𝜖+ and 𝜖− values. The
results are presented in the bottom row of Figure 3. It shows that
the higher these values (the less accurate the reranking model) the
more impact 𝜌 has on the ultimate NDCG@10 values. The left plot
(𝜖+ = 𝜖− = 0.001) demonstrates the performance for an almost-
optimal reranker. This observation is inline with our theoretical
findings for an optimal reranker.

RQ2. How does the proposed ECR optimization algorithm
work compared to existing optimization approaches? To ad-
dress this research question, we consider a number of optimization
algorithms for reranking the results produced by BM25 as the first-
stage retrieval model. In this set of experiments, we rerank the top



1000 documents returned by BM25 using a BERTmodel as described
in Section 5.1. This is a popular and competitive approach for re-
trieval. Therefore, the architecture of the reranking model is fixed,
while we use various optimization approaches from popular point-
wise to pairwise and to listwise approaches for training reranking
models. We also include two stochastic optimization approaches
(i.e., E(ApproxNDCG) and E(_MART)) recently proposed by Bruch
et al. [7]. Note that this paper does not focus on dense retrieval or
knowledge distillation, so methods like [20, 21, 44, 46, 51, 59] are
out of the scope of this work. According to results presented in
Table 3, all reranking methods improve the retrieval model’s per-
formance in terms of NDCG metrics (@1, @3, and @10), which is
expected. We also show that listwise approaches generally produce
better results than pointwise and pairwise models. Some additional
improvements can be observed by considering the stochastic opti-
mization solutions. That being said, the proposed optimization ap-
proach (ECR) outperforms all the baselines across all three datasets.
The improvements are statistically significant in nearly all cases.
We observe substantially larger improvements on the ANTIQUE
dataset. The reason is due to the larger training set that ANTIQUE
provides for training ECR. The training set of ANTIQUE is 10 times
larger than the training set of the other two datasets (recall that it
is different from the initial warm-up training on MS MARCO that
is used for all three datasets; see Section 5.1 for more details).

RQ3. How do our theoretical findings about retrieval stage
convey into practice? In Section 4.1, we showed that optimizing
the first stage retrieval for recall is sub-optimal, and instead we
suggested to minimize 𝜌 if there are more than 𝑘 retrieved relevant
documents. Addressing this research question empirically validates
this theoretical finding. To do so, we consider an Oracle ranked list
truncation model that finds the optimal cutoff of the ranked list
produced by BM25 for the BERT reranker. The maximum cutoff
value is set to 1000. Therefore, the recall for a fixed ranked-list with
𝑁 = 1000 documents is greater than or equal to the recall of the

Oracle, denoted BM25
Oracle−−−−−→ BERT. As reported in Table 3, this

Oracle model substantially outperforms BM25
𝑁=1000−−−−−−→ BERT with

ECR optimization. This suggests that even though the reranking
model and its optimization are the same for both approaches, higher
retrieval recall (obtained by 𝑁 = 1000) leads to worse performance.
Thus, optimizing recall for the retrieval stage is not desired, which
validates our theoretical findings. This is due to the number of
non-relevant documents that are included by this fixed cutoff value.
The next research question goes beyond Oracle models.

RQ4. How does the proposed joint reranking and rank trun-
cationmodel perform compared to the baselines? According to
the results presented in Table 3, the proposed Joint ECR model that
jointly optimizes for cutoff prediction and reranking outperforms
the ECR model (and thus all the reranking baselines discussed in
response to RQ1). Improvements obtained over all the baselines are
statistically significant on all datasets. However, comparing ECR
and Joint ECR suggests that significant differences are not generally
observed on TREC DL and Robust datasets. One possible reason
for this observation is that the number of relevant documents in
these two datasets is substantially higher than in ANTIQUE, and
thus increase in 𝜌 by the rank truncation is more difficult.
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Figure 4: Robustness of E(𝝀MART), ECR, and Joint ECR
to incomplete relevance annotation on TREC Robust 2004
dataset, in terms of NDCG@10.

Another natural baseline for our joint model is a ranked trun-
cation model followed by the reranking model that are trained
independently. Similar to our approach, we used the Choppy model
[4], which is a state-of-the-art ranked list truncation approach. Ac-
cording to the results, independent training of ranked list truncation
actually hurts the model performance. The model that reranks all
the top 1000 documents returned by BM25 produces a better re-
sult. Consequently, this independent training performs significantly
worse than the joint optimization model.

Comparing Joint ECR and the Oracle rank truncation model
suggests that there is still a large room for improvement, and more
accurate modeling of rank truncation is likely to lead to further
improvements.

RQ5. How robust is the proposed model to incomplete rel-
evance annotation? As mentioned in Section 4.2, the proposed
calculation of𝑀 (𝑞, 𝐷, 𝑘) introduces a robust estimation for metrics.
In this research question, we empirically evaluate the robustness
of the proposed solution. To this aim, we compared ECR and Joint
ECR to our most effective baseline in TREC Robust 2004 in terms
of NDCG@10, i.e., E(_MART). For the sake of space, we only re-
port NDCG@10 on the TREC Robust 2004 dataset for addressing
this research question. The rational for selecting this dataset is
that TREC Robust 2004 has the highest number of relevant doc-
uments per query. Thus, it is the most appropriate baseline for
evaluating robustness to incomplete relevance annotation by ran-
domly withholding some of the relevance documents. The results
are presented in Figure 4. The x-axis represents the percentage
of labeled documents used for training the models. We observe
larger improvements compared to the baseline model when we use
partial relevance annotations for training. According to the curves,
both ECR and Joint ECR are more robust to incomplete relevance
annotations than the baseline model.

Ablation Study. The majority of cases for ablation study has
already been discussed (e.g., ECR vs. Joint ECR). In this last set of



Table 4: Evaluating the impact of proposed estimation
method for 𝑴 (𝒒, 𝑫, 𝒌) on the ANTIQUE dataset, in terms of
NDCG@k. The superscript * denotes statistically significant
improvement compared to the baseline model that directly
computes NDCG for modeling𝑀 .

Method - 𝑴 (𝒒, 𝑫, 𝒌) @1 @3 @10
ECR- NDCG 0.7814 0.7195 0.7143
ECR- Ours 0.8044* 0.7423* 0.7336*
Joint ECR- NDCG 0.7881 0.7240 0.7207
Joint ECR- Ours 0.8123* 0.7639* 0.7591*

experiments, we demonstrate the impact of the proposed robust
estimation for 𝑀 (𝑞, 𝐷, 𝑘). A simple approach would be using the
target metric formula for computing 𝑀 . We replace the function
𝑀 in our model with NDCG formula and report the results on our
dataset with the largest training set (i.e., ANTIQUE) in Table 4. It
shows that the proposed smooth estimation of NDCG (i.e., Ours)
leads to better reranking quality than the exact calculation. We
observe a similar behavior on other datasets too.

6 CONCLUSIONS
In this paper, we introduced ECR, a framework for multi-stage cas-
caded retrieval that models the performance of reranking models
conditioned on the first-stage retrieval model. Through theoretical
investigation, we demonstrated that the popular belief of “optimiz-
ing Recall@N for the first-stage retrieval model” is not accurate. By
theoretical modeling of both optimal and sub-optimal reranking
models, we showed that including many non-relevant documents in
the reranking set can hurt the retrieval performance, so we should
not aim for high recall. Instead, we should aim for high precision
as long as sufficient relevant documents are retrieved. Building on
the proposed ECR framework, we introduced a novel optimization
algorithms based on stochastic modeling of sampling without re-
placement. We further extended the proposed algorithm and jointly
modeled reranking and truncation of the retrieval results. Extensive
experiments on three diverse datasets suggest that the proposed
solutions are effective in practice and our models significantly out-
perform the baseline optimization methods.
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