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ABSTRACT
It has been shown that the interpretability of search results is en-
hanced when query aspects covered by documents are explicitly
provided. However, existing work on aspect-oriented explanation
of search results explains each document independently. These ex-
planations thus cannot describe the differences between documents.
This issue is also true for existing models on query aspect gener-
ation. Furthermore, these models provide a single query aspect
for each document, even though documents often cover multiple
query aspects. To overcome these limitations, we propose LiEGe,
an approach that jointly explains all documents in a search result
list. LiEGe provides semantic representations at two levels of gran-
ularity – documents and their tokens – using different interaction
signals including cross-document interactions. These allow listwise
modeling of a search result list as well as the generation of coherent
explanations for documents. To appropriately explain documents
that cover multiple query aspects, we introduce two settings for
search result explanation: comprehensive and novelty explanation
generation. LiEGe is trained and evaluated for both settings. We
evaluate LiEGe on datasets built fromWikipedia and real query logs
of the Bing search engine. Our experimental results demonstrate
that LiEGe outperforms all baselines, with improvements that are
substantial and statistically significant.
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Figure 1: Explaining a list of documents in different settings.

1 INTRODUCTION
Search queries are often short and under-specified [25], encourag-
ing the use of search result diversification techniques [59] to cover
different possible query intents in the top-ranked results. To help
the user understand why documents are retrieved, the list com-
monly presents details such as document title, URL, and a snippet –
a 2- or 3-line query-focused summary of the document. Unfortu-
nately, Thomas et al. [66] observed that less than 1% of users were
able to understand the topical diversity in the search results based
on such representation, suggesting huge potential value if we can
improve Search Result Explanation (the SeRE task) to that end.

In an effort in this direction, Rahimi et al. [56] recently proposed
a text generation model for aspect-oriented explanation of doc-
uments in the search results. They showed that aspect-oriented
explanations help users interpret a ranked list of search results
more effectively. They observed that such explanations lead to an
improvement of the inter-annotator agreement on document rele-
vance by 37% and also decrease the average time to find relevant
documents by 22%. Other work has also shown the utility of aspect-
oriented explanation through user studies [18, 24], demonstrating
that displaying aspect coverage of documents significantly helps
users efficiently locate relevant information.

However, a weakness of all those approaches to explanation is
that each document in a search result list is explained individually,
without regard to the other documents or where they appear in the
ordering. The explanations for documents may thus be identical or
at least strongly correlated – after all, they were each responses to
the same query – and thus fail to help users distinguish between
them. Figure 1 shows an example of the potential issue of individual
explanation of documents in a ranked list. Documents 𝑑2 and 𝑑3
are explained with the same query aspect: correct but not helpful.

We propose LiEGe (Listwise Explanation Generator) that jointly
generates aspect-oriented explanations for all documents in a search
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result list. That is, LiEGe creates explanations that are aware of the
entire list, allowing it to highlight their differences using distinct
and finer-grained query aspects as shown on Figure 1’s right.

It is also well known that many documents cover multiple query
aspects [8], something that is often overlooked in existing work
on query aspect generation [20, 56]. Figure 1 shows that providing
only one aspect per document can result in vague/under-specified
explanations (𝑑9) and incomplete explanations (𝑑10). To address this
unexplored challenge in the SeRE task, we introduce two genera-
tion strategies for multi-aspect documents under the joint explana-
tion setting: (1) comprehensive explanation generation (CEG),
where all query aspects covered by each document in the ranked
list are considered as explanations; and (2) novelty explanation
generation (NEG), where the explanation for each document de-
scribes the novel relevant information of the document with respect
to the documents preceding it in the list. One type of explanation
may be more suitable than the other for a particular search task or
search device.

The SeRE task, then, is to generate terse relevance explanations
for each document in a search result list, where explanations (1) de-
scribe the query aspects at the level of phrase, (2) are generated
only from documents’ contents, and (3) are diverse. Although SeRE
is defined to explain search results based on query aspects, exist-
ing models for aspect mining [4, 14, 20, 26, 41, 71] or document
summarization [12, 39, 60] are unfit for the problem. For exam-
ple, generating query aspects and assigning them to documents
does not provide diverse explanations. Section 2 provides a detailed
comparison with models for these two tasks. In SeRE, phrase-level
explanations are generated for results from a black-box ranker,
which are different from word-based explanations through behav-
ior approximation of black-box rankers [61, 69].

LiEGe utilizes a novel Transformer-based encoder-decoder archi-
tecture [68]. It provides multi-granular semantic representations
for documents and their tokens in the whole context of search
results, using different interaction signals. Document embeddings
allow the encoder to leverage cross-document interactions to model
their differences. More fine-grained token embeddings allow the
decoder to generate distinct yet coherent explanation for each doc-
ument. To achieve these representations, the encoder is a stack of
the local and the proposed global encoding layers. A local layer
exploits interactions between a document’s tokens and the query. A
global layer then models the interactions between documents in the
search results. On the decoder side, we propose a cross-document
attention sub-layer, which allows the decoder to attend to the en-
tire search result before attending to the tokens within a single
document to generate its explanation. With our modifications, the
explanation of each document with respect to the query can ap-
propriately reference other documents in the search result. The
provided explanations describe the relevance of each document to
the query and the topical diversity of all results.

To train LiEGe for the CEG andNEG settings, we constructed two
weakly-labeled datasets for multi-aspect explanation from the Eng-
lish Wikipedia. To evaluate the explanation of relevance and topical
diversity of Web search results, we adapt the MIMICS dataset [78],
which is built from real query logs of the Microsoft Bing search
engine, to the SeRE task. We perform extensive experiments to
evaluate LiEGe and competitive baselines under different settings

of SeRE (CEG and NEG). LiEGe outperforms all the baseline models
significantly over both datasets and demonstrates superior transfer
performance from Wiki to MIMICS. In terms of the BLEU metric,
LiEGe outperforms the strongest generation baseline BART [34] by
27.2% and 27.1% on the Wiki and MIMICS datasets, respectively.

2 RELATEDWORK AND BACKGROUND
2.1 Explainable Information Retrieval
Efforts toward interpreting ranking models can be categorized into
the development of intrinsically interpretable models and black-
box explanations. The former aims at adopting interpretable mod-
els such as additive models [82] to ranking. Black-box (or model-
agnostic) models generate explanations for rankers without ac-
cessing their internal structure. The existing ranker explainers are
mostly based on the Local Interpretable Model-agnostic Explana-
tions (LIME) [58] for explanation of classification and regression
models. For example, some studies [61, 69] generate word-based
explanations for pointwise ranking models. Such an explanation
indicates the importance of individual words in a ranker’s decision
regarding document relevance. Instead of using LIME, Singh and
Anand [62] approximate complex rankers with simple interpretable
rankers (e.g., relevance-based language model [33]) for the instance
to be explained by expanding the query. Almost all existing expla-
nations of learning-to-ranking models provide insights into their
ranking behavior based on axioms [57, 70], explanation features
such as individual terms [61, 62, 69], or human-engineered ranking
features [63]. These explanations are mostly valuable for developers
of ranking models to understand their systems, and are of limited
help to users in understanding document relevance [56]. In compar-
ison, the SeRE task, as defined by Rahimi et al. [56] and extended
here, is user-oriented – helping users interpret and understand the
documents in a search result list efficiently.

2.2 Query Aspects
Solving the SeRE task is an effort to help interpret and understand
provided search results, as queries are often under-specified or
ambiguous [59]. A considerable number of studies in the field of
information retrieval have been devoted to address issues related
to the ambiguous nature of search queries.

In one direction, several approaches have been developed for
mining query aspects, where they mostly use external resources
such as query logs [4, 28, 54, 72, 78], anchor text [14, 32], knowledge
bases [6, 26], or a mixture of them [15, 22]. Just a few studies have
been conducted to identify query aspects from only documents.
These works extract query aspects from the entire target corpus [5]
or first-stage retrieved documents (e.g., top-1k and more) [71]. They
thus utilize many more documents than our model to extract query
aspects. More related to the SeRE task, Kong and Allan have studied
query facet extraction from search results [29–31]. An extracted
facet is represented by a set of coordinate terms (e.g., {AA, Delta,
JetBlue}), while we aim to directly generate the underlying concept
of extracted facets/aspects, such as airlines for the given example.

More recently, MacAvaney et al. [41] proposed using casual
language model T5 [55] to generate query variants independent of
retrieved documents. Thus, the generated query variants cannot
be used directly for explaining document relevance. Hashemi et al.



[20] introduced NMIR, which is a BART-based [34] model for query
intent generation from top-ranked documents. Those documents
are first clustered using the K-means algorithm [19] and then a short
intent description is generated for each cluster. NMIR is not suitable
to solve the SeRE task, because (1) it assumes that documents cover
a single query aspect, and (2) documents within the same cluster
share the same intent (explanation). Thus, NMIR does not reveal
the differences between the documents within the same cluster.

Providing information related to query aspects has been shown
to improve users’ information seeking experience, through visu-
alizing the document relevance degree to each query aspect [24],
or by providing aspect-oriented explanation in textual format [56].
Based on the proven utility of aspect information for users through
user studies [24, 56, 66], this work focuses on improving the quality
of generating aspect-oriented explanations for search results. The
choice of interface to present the obtained explanations is out of
the scope of this work.

Tasks beyond SeRE can potentially benefit from the improved
quality of generated query aspects, such as coverage-based search
result diversification [27, 38, 53], query suggestion [1, 10], or clari-
fying question selection and generation [2, 77, 79]. Further explo-
ration in those directions is left for future work.

2.3 Summarization and Snippet Generation
Document summarization [75], especially abstractive document
summarization [65], is related to the SeRE task, as explanations
should provide a concise summary of document information that is
relevant to a query. Snippet generation for search results [3, 11, 12],
which has been considered as a query-biased document summariza-
tion task [45], is also related to our task. There are, however, key
differences between those tasks and SeRE that make the existing
works on document summarization or snippet generation unfit for
SeRE. First, our desired explanation for each document provides
noun-phrase descriptions of relevance. These outputs are much
shorter than those in popular summarization datasets [13, 23, 43, 44]
and search snippets where a summary is usually one or more sen-
tences. Second, our task requires a many-to-many sequence-to-
sequence (seq2seq) model to jointly generate explanations for all
documents in a search result list. This scheme is different from
one-to-one seq2seq task considered in single document summa-
rization [60] and existing models for snippet generation. It is also
different from many-to-one seq2seq models for multi-document
summarization [39, 50, 73].

Guided summarization is also conceptually related to our task.
It takes a document and a guidance signal as input [16, 35, 52].
Comparing to these models, our task is more complex as there is
more than one source of guidance signals: the search query and
multiple other documents in the search result.

2.4 Listwise and Setwise Ranking Models
Modeling cross-document interactions has been shown to be useful
for learning-to-rank [47, 49, 76] and diversification-aware ranking
models [64, 74]. LiEGe exploits cross-document interactions differ-
ently from existing ranking models. First, our model is based on
contextual representations of documents that are fine-tuned for

the end-task, instead of a document representation based on hand-
crafted features [47, 49] or Doc2Vec [64, 74] that is not updated
during training. Secondly, our task requires a fine-grained encoding
of each document with respect to other documents in the search
results. Specifically, in addition to a dense representation of each
document considering its interactions with other documents, our
task requires document tokens to be encoded in the context of other
documents. This fine-grained encoding is needed for generation
of natural language explanations. LiEGe also provides a solution
to incorporate cross-document interactions in the decoding stage,
which is unexplored in prior works as those list- or set-wise neural
ranking models use only encoders.

2.5 Transformer
Webriefly overview the Transformer [68] architecture that is needed
to describe LiEGe. Transformer is based on the encoder-decoder
structure, consisting of stacked encoder and decoder layers. The en-
coder layer in Transformer includes self-attention and position-wise
feed-forward sub-layers. The decoder has an additional attention
layer to utilize the encoder representations of input.

The self-attention sub-layer updates token representations using
the Attn() function based on scaled dot product:

Attn(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾⊺
√
𝑚

)
𝑉 , (1)

where 𝑄 ∈ R𝑁𝑄×𝑚 denotes the query matrix, and 𝐾,𝑉 ∈ R𝑁𝐾×𝑚
are the key and value matrix. 𝑁𝑄 is the query size1, 𝑁𝐾 is the
key/value size, and𝑚 is the dimension of hidden vectors. In the
case of multi-head attention, three inputs𝑄 , 𝐾 , and𝑉 are projected
to ℎ different sub-spaces of the new dimension 𝑚̂ = 𝑚/ℎ. The
attention is performed in each sub-space with Attn(·, ·, ·) in Eq. 1,
and the outputs from all sub-spaces are gathered as:

MHA(𝑄,𝐾,𝑉 ) = Concat
( [

Attn(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 )

]ℎ
1

)
, (2)

where𝑊𝑄

𝑖
,𝑊𝐾

𝑖
,𝑊𝑉

𝑖
∈ R𝑚×𝑚̂ are projection weights in the 𝑖-th

subspace. In practice, input matrices have an additional dimension
for batching. Denoting batch size with 𝑏, inputs are of dimensions:

𝑄 ∈ R𝑏×𝑁𝑄×𝑚, 𝐾,𝑉 ∈ R𝑏×𝑁𝐾×𝑚, (3)

Note that MHA(𝑄,𝐾,𝑉 ) always shares the same shape as input𝑄 .

3 LIEGE MODEL
Given a query 𝑞 and the top-ranked documents 𝑅 = {𝑑1, . . . , 𝑑𝑘 }
retrieved by a black-box ranker, the goal of LiEGe is to generate an
explanation for each document describing what information each
document in 𝑅 provides with respect to the query 𝑞. Explanations
provide the query aspect(s) that are covered by each document 𝑑𝑖
in the proposed novelty- or comprehensive-based manner.

In order to describe the relevant and distinct information that
each document in a search result list provides, a document needs to
be encoded with respect to the query and with respect to the other
documents in the list. The former is required to capture the relevant
part of a retrieved document as a small portion of a document may
be all that is related to the query [67]. The latter part of encoding
1 “Query” here is different from an input search query 𝑞.
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Figure 2: The architecture of LiEGe.

exploits cross-document interactions so that generated explanations
can help users distinguish the differences between documents in
the search result. The encoded input is then passed to the decoder
to generate explanations. Figure 2 (b) shows the architecture of
LiEGe. In the following we provide a detailed description of the
encoder and decoder, starting with how an input sequence to the
model is built.

3.1 Input Representation
Given query 𝑞 and retrieved documents 𝑅 = {𝑑1, . . . , 𝑑𝑘 }, the query
is concatenated with each document with a separator token in be-
tween. Each concatenated 𝑞 − 𝑑𝑖 sequence is tokenized and then
truncated or padded up to the max length of 𝑙 tokens. The positional
and segment embeddings are added to the input token embeddings.
For generating novelty explanations, the model requires the doc-
ument ranks in a search result list so that it can detect document
novelty regarding its preceding documents. For this reason, we add
ordinal encodings to the input embeddings. The ordinal encodings
have the same dimension as𝑚 and are learned using an Embedding
function 𝑃 , similar to the one used by Pang et al. [47]. The rank of
document 𝑑𝑖 is passed to the function 𝑃 that encodes the absolute
ranking position into an embedding vector 𝑝𝑖 ∈ R𝑚 . The 𝑝𝑖 embed-
ding is then added to every token embedding of document𝑑𝑖 . Finally,
the query-document pair (𝑞, 𝑑𝑖 ) is represented by 𝑋𝑖 ∈ R𝑙×𝑚 , and
the entire list 𝑅 is represented by 𝑋 = [𝑋1, . . . , 𝑋𝑘 ] ∈ R𝑘×𝑙×𝑚 .

3.2 Encoder
The encoder consists of a stack of local and global attention layers. A
local attention layer updates token representations based on intra-
document self-attention, while a global attention layer updates
representations based on inter-document attention. In other words,
local layers perform per document computation while global layers
perform per result list computation.

We denote the input token representations to the ℎ-th trans-
former layer of the encoder as 𝐸 (ℎ)𝑡 ∈ R𝑘×𝑙×𝑚 . Note that 𝐸 (1)𝑡 = 𝑋

defined above. The output token representations of the layer are
denoted by 𝐸 (ℎ+1)𝑡 ∈ R𝑘×𝑙×𝑚 , which constitute the input to the next
layer if any. A global layer has one additional output compared to
a local one. The additional output is document representations for
all documents in the result list, denoted by 𝐸 (ℎ+1)

𝑑
∈ R𝑘×𝑚 . These

document representations will also be used in the decoder.
Local layers perform multi-head self attention on the token

sequence from a query-document pair (intra-document), similar
to the encoder layers in Transformer [68]. The contextualized rep-
resentations are then linearly transformed. Residual connection
and layer normalization are applied for each of the layers [68]. The
function of a local layer can be formalized as:

𝐿𝑡 = LN(𝐸 (ℎ)𝑡 +MHA(𝐸 (ℎ)𝑡 , 𝐸
(ℎ)
𝑡 , 𝐸

(ℎ)
𝑡 )), (4)

𝐸
(ℎ+1)
𝑡 = LN(𝐿𝑡 + FFN(𝐿𝑡 )), (5)

where LN(·) is layer normalization, and FFN(·) stands for position-
wise feed-forward networks.

Global layer first generates dense document embeddings by
pooling, where each document in the search result is represented
with a single embedding of dimension𝑚. We consider two pooling
strategies: (1) applying multi-head pooling [39] to learn a weighted
average of the embeddings of the document’s tokens; and (2) simply
taking the embedding of the first token ([CLS]) as the representation
of the entire sequence. After acquiring a list of dense embeddings for
documents via pooling, multi-head self-attention is applied across
documents in the search result list. The output is still a list of dense
embeddings, where each document embedding is contextualized
based on the other documents in the search result. In order to
propagate information from document interactions at the document
granularity to the token granularity, the contextualized embedding
of a document is added to the embedding of each of its tokens. We



refer to this function as broadcast & add. Figure 2 (a) shows the
architecture of a global layer. Specifically, the outputs of a global
layer are calculated as:

𝐸
(ℎ)
𝑑

= Pool(𝐸 (ℎ)𝑡 ), (6)

𝐸
(ℎ+1)
𝑑

= MHA(𝐸 (ℎ)
𝑑
, 𝐸

(ℎ)
𝑑
, 𝐸

(ℎ)
𝑑

), (7)

𝐸𝑡 [𝑖, 𝑗] = 𝐸 (ℎ)𝑡 [𝑖, 𝑗] + 𝐸 (ℎ+1)
𝑑

[𝑖], (8)

𝐸
(ℎ+1)
𝑡 = LN(𝐸𝑡 + FFN(𝐸𝑡 )), (9)

where 𝐸 (ℎ)𝑡 [𝑖, 𝑗] is the embedding of the 𝑗-th token of document
𝑖 in the input token representations 𝐸 (ℎ)𝑡 . 𝐸 (ℎ+1)

𝑑
[𝑖] ∈ R𝑚 is the

representation of the 𝑖-th document contextualized based on all doc-
uments in the search result. Eq. 8 shows the broadcast & add opera-
tion, which is performed for all tokens of all documents. Therefore,
information from all documents is considered and appropriately
reflected in the representation of every document token.

Encoder outputs. We denote the output token representations
from the final encoder layer as 𝐸𝐹𝑡 , and the contextualized document
representations from the final global layer in the encoder as 𝐸𝐹

𝑑
.

Note that 𝐸𝐹𝑡 can be the output of a global or a local transformer
layer, depending on the model composition. 𝐸𝐹𝑡 and 𝐸𝐹

𝑑
are used as

inputs to the decoder.

3.3 Decoder
Each layer in the decoder of the Transformer [68] contains two
attention sub-layers: a self-attention sub-layer and a cross-attention
(also called “encoder-decoder attention”) sub-layer. The purpose
of self-attention in the decoder is to effectively use the already
generated text for the prediction of the next token. The decoder
uses cross-attention to utilize the encoder representations of input
for identifying which part of the input sequence it should focus
on to predict the next token. To avoid confusion, we refer to this
sub-layer as cross-token attention.

Cross-document attention sub-layer.Wepropose a cross-document
attention sub-layer, which is placed between self-attention and
cross-token sub-layers in each decoder layer. The details of a de-
coder layer in LiEGe are depicted in Figure 2 (c).With cross-document
attention, the representation of each token generated so far is up-
dated by information from the contextualized embeddings of all
documents in the search result from the encoder (𝐸𝐹

𝑑
). Attention to

global information 𝐸𝐹
𝑑
helps the model to identify which specific

query aspect should be generated. Then, through attention to lo-
cal document information (𝐸𝐹𝑡 ), the model identifies aspect-related
part(s) of the document to be used for generation of the next token.

Input to theℎ-th layer of the decoder is denoted as𝐷 (ℎ)
𝑡 ∈ R𝑘×𝑙 ′×𝑚 ,

where 𝑙 ′ is the maximum output length (during training) or the
length of currently generated sequence (during inference). The func-
tion of a decoder layer with a cross-document attention sub-layer
is formally formulated as follows.

𝐷𝑡 = LN(𝐷 (ℎ)
𝑡 +MHA(𝐷 (ℎ)

𝑡 , 𝐷
(ℎ)
𝑡 , 𝐷

(ℎ)
𝑡 )), (10)

𝐷𝑡 = LN(𝐷𝑡 +MHA(𝐷𝑡 , 𝐸𝐹𝑑 , 𝐸
𝐹
𝑑
)), (11)

𝐷𝑡 = LN(𝐷𝑡 +MHA(𝐷𝑡 , 𝐸𝐹𝑡 , 𝐸𝐹𝑡 )), (12)

𝐷
(ℎ+1)
𝑡 = LN(𝐷𝑡 + FFN(𝐷𝑡 )) . (13)

After the final decoder layer, a linear and a softmax layer predict the
next token to be generated for the explanation of each document. At
inference time, generation repeats until either the end-of-sentence
token is generated or the maximum output length is reached.

3.4 Training of LiEGe
Batching. Instead of random query-document pairs for mini-batch
training in Eq. 3, we need to group documents from the same search
result together to leverage their interactions. We define group size
𝑘 as the maximum number of documents considered in a search
result for a query. During training, search results with less than 𝑘
documents are padded to the constant list size 𝑘 . We then define
batch size 𝑏 as the number of groups (SERPs) included in a batch. In
other words, 𝑏 ×𝑘 documents are input into the model in one batch,
with𝑏 groups running in parallel. We use the global document mask
to make sure that (1) padded documents are masked in local and
global attention calculation; and (2) global attention is restricted to
documents within the same group. In the experiments, we consider
up to 10 documents per query (i.e., 𝑘 = 10), which is similar to the
first page returned by modern search engines.
Learning objectives. Similar to priorworks on sequence-to-sequence
transduction, we use the cross-entropy of predicted and gold proba-
bility distribution at each position [34] as the loss function to guide
parameter optimization. The loss function is computed over all
positions in sequences to be generated.

4 DATASETS AND EVALUATION METRICS
We evaluate LiEGe for two different types of explanation strate-
gies to fully demonstrate the advantages of listwise modeling in
content-based explanation generation: comprehensive explanation
generation (CEG) and novelty explanation generation (NEG). Each
type of explanation requires its own training and test set. In practice,
these two tasks take the same set of inputs (a query and a list of doc-
uments), but have different outputs. To the best of our knowledge,
there is no public dataset for listwise content-based explanation of
search results.We thus adapt existing datasets for other similar tasks
to the SeRE task. In the following, we describe how those datasets
are built and processed. The processed datasets used in this work
are made public on https://github.com/PxYu/LiEGe-SIGIR2022.

4.1 Wikipedia as a Weakly Labeled Dataset
One solution to automatically build a large-scale training dataset
is to consider a Wikipedia article as a search result: the title of the
article (mostly an entity name) resembles the query, the content of
each section of the article is considered as a document retrieved for
the query, and the section heading is an aspect-based explanation
of how that section is related to the query and to other sections.
Note that most sections (documents in our analogy with a search
result list) in Wikipedia cover a single aspect of the query. This
is because Wikipedia articles have been topically organized into
sections through various iterations by human experts. We thus
refer to this dataset from Wikipedia as Wiki-SA, where SA stands

https://github.com/PxYu/LiEGe-SIGIR2022
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Figure 3: An example of creating multi-aspect documents.

for single-aspect. This dataset is similar to the Wiki dataset used
by Rahimi et al. [56] and to the WikiOG dataset [80].

The Wiki-SA dataset is not suitable for training and evaluation
of explanation generation for documents covering multiple query
aspects. ClueWeb and MS MARCO, used for pointwise explana-
tion [56], are not suitable either. This is because there are very
limited or almost no documents with multiple annotated query
aspects in ClueWeb and MS MARCO, respectively.

In order to build a large amount of training data from Wikipedia
for the CEG and NEG settings, we propose a simple approach to
intentionally create overlapping contents between documents in a
search result, such that some documents cover multiple aspects of
the query. We call this process “fusing” with an example shown in
Figure 3. Given documents from the sameWikipedia article, we ran-
domly sample three documents 𝑑𝑖 , 𝑑𝑘 , and 𝑑 𝑗 , without replacement,
whose original aspect-based explanations are 𝑒𝑖 , 𝑒𝑘 and 𝑒 𝑗 , respec-
tively. Using 𝑑𝑘 to create overlapping content, we concatenate 𝑑𝑖
and 𝑑𝑘 into 𝑑 ′

𝑖
, and concatenate 𝑑 𝑗 and 𝑑𝑘 into 𝑑 ′

𝑗
. Documents are

concatenated in random order to make sure that an explanation
model is able to detect document novelty, instead of memorizing the
position of novel information in documents. The new documents 𝑑 ′

𝑖
and 𝑑 ′

𝑗
are used to create two datasets referred to asWiki-CEG and

Wiki-NEG. For Wiki-CEG, the explanations for 𝑑 ′
𝑖
and 𝑑 ′

𝑗
are la-

beled as “𝑒𝑖 & 𝑒𝑘 ” and “𝑒 𝑗 & 𝑒𝑘 ”, respectively. To build ground-truth
explanations for Wiki-NEG, the ranks of documents in a search
result list are needed. We assume, without loss of generality, that
𝑑 ′
𝑖
is ranked higher than 𝑑 ′

𝑗
in the result list. Then 𝑑 ′

𝑖
and 𝑑 ′

𝑗
are

explained with “𝑒𝑖 & 𝑒𝑘 ” and ‘𝑒 𝑗 ”, respectively. Although 𝑑 ′𝑗 covers
𝑒𝑖 , this aspect is already covered by the preceding document 𝑑 ′

𝑖
.

The fusing process creates two documents from three sections in a
Wikipedia article. From a Wikipedia article with 𝑠 sections, we thus
build ⌊𝑠/3⌋ × 2 documents. If there are any sections not used by
fusing (there will be at most two such sections), those sections will
be kept in the search result even though they each cover a single
query aspect.

All three datasets Wiki-SA, Wiki-CEG, and Wiki-NEG are built
from the same set of Wikipedia articles. We select Wikipedia arti-
cles with at least six sections of 128-256 words apiece. The reason
for a minimum of 128 words in a section is to have documents
with enough content. The max section length is set to due to the
maximum length of 512 tokens as the input of BERT and the con-
catenation of sections in construction of Wiki-CEG and Wiki-NEG.
The last constraint of six sections makes sure that after fusing, a
search result list contains at least four documents.

Filtering with the above constraints, 39,287 Wikipedia articles
remained. Each article constitutes an instance of a query and search

Table 1: Statistics of created datasets.

Dataset Wiki MIMICS
-SA -CEG -NEG -CEG -NEG

#query 39,287 39,287 39,287 1,992 1,992
#docs-per-query 7.5 5.4 5.4 5.2 3.0
#words-per-doc 184.9 344.2 344.2 54.0 54.0
#words-per-explanation 2.7 5.1 3.9 1.9 1.4

result list (𝑞, 𝑅) in the Wiki-SA, Wiki-CEG, and Wiki-NEG datasets.
The instances are split into train/dev/test in the 80%/10%/10% ratio.
The dev set is used for tuning hyper-parameters and early stopping
of training. TheWiki-CEG andWiki-NEG datasets differ fromWiki-
SA in terms of the number of documents in search results and the
document length because of fusing. Table 1 reports the statistics
of Wiki datasets: the number of instances, the average number of
documents in search results, the average length of documents, and
the average length of explanations.

4.2 MIMICS Dataset
MIMICS [78] is a collection of datasets for search clarification built
from real search queries sampled from the Bing query logs. Besides
its real queries and search results, MIMICS has another advantage
over the Wiki datasets: two documents in a search result list can
cover the same query aspect without having exactly the same con-
tent for the common aspect. This property makes the evaluation of
CEG and NEG more realistic.

Each clarification in MIMICS consists of a query, a clarifying
question, up to five candidate answers for the clarifying question
which are aspects of the query, and the top-10 documents retrieved
by Bing. For SeRE, we need to have gold explanations for documents
based on query aspects. However, MIMICS does not contain aspect-
level relevance information. In other words, the top-10 documents
retrieved w.r.t. a query as well as the query aspects are provided,
but which documents are relevant to which query aspects are not
specified. To adapt MIMICS for the SeRE task, we make the con-
servative assumption that a document is considered relevant to a
query aspect only if it contains the aspect terms. We thus obtain
high quality labels for aspect-level relevance, at the cost of missing
some relevance labels.

We chose the ClickExplore version of MIMICS as it contains the
largest number of unique queries.We perform the following process-
ing steps. (1) Query terms are removed from aspects as repeating
query terms in explanations does not provide additional informa-
tion; (2) The concatenation of a document’s heading and snippet
is used as the document content [20]. Note that full document
contents are not released in the MIMICS dataset; (3) Documents
that are not labeled as relevant to any query aspects are removed;
(4) Query aspects that are not associated with any documents in
a search result list are also removed. If the number of remaining
query aspects is less than three, the query is removed; (5) Queries
whose clarification has engagement level below 4 (out of 10) are
removed. Engagement level indicates the quality of clarification and
query aspects perceived by users [78]. In the end, we acquired 1,992
queries from the original dataset, which are split into train/test set
evenly. Similar to the Wiki datasets, we create two variants from
MIMICS to separately evaluate CEG and NEG. For MIMICS-CEG,



Table 2: Results for comprehensive explanation generation, evaluated on the Wiki-SA and Wiki-CEG datasets.

Dataset Wiki-SA (single-aspect) Wiki-CEG (multi-aspect)
Metric BLEU B-1 R-1 R-L BERTScore Div (↓) BLEU B-1 R-1 R-L BERTScore Div (↓)
TextRank 0.12 12.58 15.74 13.84 37.97 62.02 0.11 16.59 14.91 12.73 42.35 70.33
TS-TextRank 0.23 11.19 13.91 12.21 37.65 62.75 0.26 14.01 12.47 10.74 41.83 71.08
BERT-LIME 0.30 6.50 8.31 7.93 42.06 60.07 0.16 7.10 8.63 8.18 43.58 68.56
KeyBERT 2.11 13.81 16.87 16.40 46.04 58.43 1.52 15.11 12.98 12.51 49.90 66.98
GenEx 6.55 25.56 21.06 20.94 54.85 53.20 0.30 11.72 6.41 6.37 47.16 69.72
HiStGen 8.86 22.59 17.49 17.23 53.92 48.29 11.73 42.47 39.30 34.90 64.10 55.82
BERT 17.28 40.14 39.71 39.45 65.60 45.29 15.61 48.86 46.54 41.28 67.77 53.46
LiEGe (BERT) 19.27 41.40 40.76 40.55 65.98 45.03 17.36 50.46 47.69 42.52 68.40 53.00
BART 18.51 42.13 42.16 41.90 67.03 45.23 16.53 49.54 47.42 42.23 68.33 53.42
LiEGe 21.97∗ 45.56∗ 45.84∗ 45.65∗ 69.01∗ 44.47∗ 18.79∗ 51.72∗ 49.37∗ 44.32∗ 69.46∗ 52.73∗

the explanation of a document contains all associated query aspects.
ForMIMICS-NEG, a document’s explanation only contains aspects
that are novel considering its preceding documents. In cases that
a document contains no novel aspects, we discard it. Statistics of
these datasets are also reported in Table 1.

4.3 Evaluation Metrics
To evaluate the quality of generated explanations, we mainly use
BLEU 𝐹1 [48] (using sacreBLEU [51]) which is a standard metric for
evaluation of natural language explanations [37] and text genera-
tion models [34, 56, 68]. We report BLEU-1 as B-1 and the weighted
geometric mean of BLEU-𝑘 (𝑘=1,2,3,4) as BLEU. We also report
ROUGE-1 𝐹1 and ROUGE-L 𝐹1 [36] as R-1 and R-L, respectively.
For evaluation of multi-aspect explanations, we consider differ-
ent aspects as multiple references in computation of the BLEU
and ROUGE metrics. To measure the semantic similarity between
generated and ground-truth explanations, we use BERTScore [81].
We report micro-averaged BLEU, ROUGE, and BERTScore on all
document-explanation pairs in a test set.

In addition to accuracy-based metrics, we measure the diversity
of generated explanations for a search result list, referred to as Div.
For this purpose, we compute the average semantic similarity of all
pairs of explanations that are generated for a search result list. The
semantic similarity of explanations is computed using BERTScore.
A lower Div score indicates more diversity in the explanations of a
search result list.

We use t-test with Bonferroni correction for statistical signifi-
cance test at the level of 95%. Statistical significant improvements
of LiEGe over all baselines are marked with ∗ in the result tables.

5 EXPERIMENTAL SETTINGS AND RESULTS
5.1 Compared Models
To the best of our knowledge, there is no model for listwise content-
based explanation of search results. For evaluation of LiEGe, we
thus adapt some representative models for tasks similar to SeRE
and report their performance. The compared models are as follows.

TextRank [42] is an unsupervised model for extraction of docu-
ment keywords using the PageRank algorithm.

TS-TextRank is a modified version of TextRank based on topic-
sensitive PageRank [21] where query terms are used as the topic [56].

BERT-LIME uses LIME [58] to explain the basic BERT-based ranker
as fine-tuned by Nogueira and Cho [46]. This is done similar to
the EXS model [61] except that LIME is applied on the real-valued
(perturbed) document scores, instead of using heuristics to convert
document scores into binary relevance labels. This difference can
increase the fidelity of the explainer.

KeyBERT [17] is a pretrained BERT-based keyphrase extraction
model, which uses BERT embeddings and their cosine similarity
to find the phrases in a document that are the most similar to the
document itself. We consider 𝑛-grams where 𝑛 varies from 1 to 5,
and take the top-ranked keyphrase as an explanation.

KeyBERT-MMR is a variant of KeyBERT for generating novelty ex-
planations. It scores phrases using maximal marginal relevance [7]
considering both the similarity with the document and novelty
compared to the preceding document(s). Given document 𝑑 and its
preceding documents 𝑆𝑑 , a phrase 𝑝 in 𝑑 is scored with

𝜆 Sim(𝑝,𝑑) − (1 − 𝜆) max
𝑑′∈𝑆𝑑

Sim(𝑝, 𝑑 ′),

where Sim(·, ·) represents cosine similarity of their BERT embed-
dings. We set 𝜆 = 0.7 because it yields the best performance on the
dev set of Wiki-NEG.

GenEx [56] is a BERT-basedmodel for generating an aspect-oriented
explanation for individual documents with a noun phrase, even
documents covering multiple query aspects. We report the results
of GenEx trained on a dataset similar to Wiki-SA, but larger in size.

HiStGen [80] is a hierarchically structured model for detecting sec-
tion boundaries and generating headings for the obtained sections.
As documents in a search result list have clear boundaries, we only
train and test HiStGen to generate headings as explanations. We
implement this approach in PyTorch since its implementation is
not publicly available.

NMIR [20] is a BART-based model for generating query intents by
clustering the top search results (details in Section 2.2). We treat
the generated intent description as explanations for all documents
in a cluster. NMIR was trained on the full MIMICS dataset (approxi-
mately 340K SERPs; in comparison, our training/test set contains
about 1K SERPs). We try different trained checkpoints of NMIR,
and report the best performing results on MIMICS-CEG. NMIR is
used as a baseline to demonstrate the difference between query
intent generation and the SeRE task.



Table 3: Results for NEG evaluated on Wiki-NEG.

BLEU B-1 R-1 R-L BERTScore Div (↓)
KeyBERT 1.65 12.03 11.89 11.51 46.04 60.47
KeyBERT-MMR 1.77 12.90 12.83 12.30 47.14 58.62
HiStGen 8.31 29.47 25.64 23.98 56.65 51.68
BERT 10.75 34.50 31.69 29.71 59.47 49.66
LiEGe (BERT) 13.35 36.86 33.91 31.62 60.13 47.46
BART 11.84 35.94 33.80 31.84 60.82 49.38
LiEGe 15.06∗ 39.45∗ 38.02∗ 35.80∗ 62.74∗ 47.13∗

BART [34] is a powerful seq2seq generation model. It has 12 lo-
cal layers in the encoder and 12 decoding layers in the decoder,
where the decoder layers do not have a cross-document attention
sub-layer. BART explains each document in the search result in-
dividually, and thus is a pointwise explanation model. We report
the performance of BART to show the effectiveness of listwise
generation of explanations for search results.
LiEGe (Section 3) in its default configuration with 12 local layers
followed by 2 global layers, using multi-head pooling (8 attention
heads) for the dense embeddings of documents, and employing
ordinal encoding.
BERT and LiEGe (BERT) are other baselines to provide a fair com-
parison with the GenEx and KeyBERT models as they are based on
a pre-trained BERT. These baselines demonstrate that performance
gains by LiEGe is not due to a pre-trained decoder in BART.

5.2 Details about Training and Inference
All local layers in the encoder and all decoder sub-layers except
cross-document sub-layers (if any) of BART and LiEGe are initial-
izedwithweights from a pre-trained BART checkpoint2. LiEGe (BERT)
is initializedwith BERTweights3. For training BERT and LiEGe (BERT),
we set the batch size to 20, i.e., 200 documents from 20 search re-
sult lists in one batch, evenly distributed across 4 Nvidia RTX-8000
GPUs. For BART and LiEGe, batch size is set to 8 due to the larger
model size compared to BERT. Each model is trained on each train-
ing dataset, with the learning rate decreasing linearly from 5e-5 to
0. We use AdamW optimizer (𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 1𝑒 − 6)
with bias correction for optimization [40]. Training on datasets for
the CEG and NEG settings (such as Wiki-CEG or MIMICS-CEG),
multiple aspects in the gold explanations of some documents are
ordered randomly. If a search result in a Wiki dataset contains more
than 10 documents, we randomly select 10 of them. For generation-
based models GenEx, HiStGen, NMIR, BERT, BART, and LiEGe, we
use greedy search as the decoding strategy. The maximum number
of tokens to be generated by the decoder is set to 32. In practice,
the generated outputs are much shorter than this maximum length.

5.3 Results
Comprehensive explanation generation onWiki. Performance
of LiEGe and baseline models over the Wiki-SA and Wiki-CEG
datasets are reported in Table 2. The first block in the table contains
the unsupervised models TextRank and TS-TextRank, BERT-LIME,
and the two BERT-based models KeyBERT and GenEx. NMIR [20]
is trained on the MIMICS dataset, thus instances from the Wiki
datasets are out of its distribution. Performance of NMIR on the
2 https://huggingface.co/facebook/bart-base
3 https://huggingface.co/bert-base-uncased

Table 4: Results for CEG evaluated on MIMICS-CEG.

BLEU B-1 R-1 R-L BERTScore Div (↓)
TextRank 0.12 8.62 12.03 11.36 34.68 78.86
TS-TextRank 0.19 8.27 11.76 11.23 34.70 78.45
BERT-LIME 0.05 1.47 0.29 0.29 36.65 78.28
KeyBERT 0.79 9.36 12.81 12.61 39.46 77.00
GenEx 0.35 3.92 3.23 3.23 40.45 75.93
NMIR 0.03 3.34 6.91 6.28 32.19 99.70
HiStGen 19.82 39.65 31.14 30.56 55.60 64.16
BART 41.59 59.90 51.76 51.53 68.50 59.25
LiEGe 39.25 62.85 57.02 56.50 71.06 57.73
BART (Wiki) 45.61 63.65 59.06 58.10 72.13 57.52
LiEGe (Wiki) 49.11∗ 68.91∗ 64.96∗ 64.09∗ 76.37∗ 56.34∗

Table 5: Results for NEG evaluated on MIMICS-NEG.

BLEU B-1 R-1 R-L BERTScore Div (↓)
KeyBERT 0.79 7.00 10.43 10.42 37.29 75.34
KeyBERT-MMR 0.85 7.54 11.25 11.15 39.94 72.66
HiStGen 13.14 23.21 18.29 18.29 53.47 63.85
BART 25.49 44.74 42.08 41.99 64.93 55.28
LiEGe 33.17 55.94 52.83 52.67 71.26 51.39
BART (Wiki) 29.10 49.98 47.46 47.36 67.51 51.51
LiEGe (Wiki) 37.00∗ 61.02∗ 59.02∗ 58.87∗ 75.40∗ 50.68∗

Wiki datasets is not thus comparable to other models, and omit-
ted here. Note that GenEx is trained on a dataset very similar to
Wiki-SA. Thus, GenEx performs the best on Wiki-SA within this
category. However, the performance of GenEx dropped significantly
on Wiki-CEG. This is because GenEx is trained to generate one
terse explanation for a document, and does not generate a list of as-
pects. Other baseline models rank the terms/phrases in a document
and thus it is possible to select more outputs for each document,
complying with our setting of SeRE. TextRank and TS-TextRank
extract a set of keywords, while KeyBERT extracts coherent noun
phrases. The BLEU performance of TextRank and TS-TextRank is
significantly lower than that of KeyBERT, because the BLEU metric
considers higher-order 𝑛-grams (B-2, B-3 and B-4) as well.

The second block only contains HiStGen. It is separated from
the models in the first block in that it is trained on our datasets
before testing. Note that we removed the review mechanism [9] in
HiStGen on Wiki-CEG because it prevents duplicate terms among
outputs for different documents in the search result, while ground-
truth labels for these documents in Wiki-CEG have common query
aspects, and thus common terms. In the third block, we include
BERT and LiEGe (BERT). The final block contains BART and the
complete version of LiEGe. In all cases, LiEGe is able to outperform
its counterpart base model significantly. In addition, LiEGe substan-
tially outperforms all the baselines where the improvements are
also statistically significant. BERT and LiEGe (BERT) underperform
BART and LiEGe (BART), respectively, and are thus omitted from
Tables 4 and 5 due to space limit.

Improvements of LiEGe over pointwise explanationmodels GenEx,
BERT, and BART demonstrate the importance of listwise encoding
and explanation of search results. Improvements over HistGen show
that LiEGe successfully leverages information from cross-document
interaction in the comprehensive setting of the SeRE task.
Novelty explanation generation on Wiki. For evaluation of the
novelty explanations, we do not compare against TextRank, TS-
TextRank, LIME, and GenEx, because these models do not exploit

https://huggingface.co/facebook/bart-base
https://huggingface.co/bert-base-uncased


Table 6: Example generated explanations. Multiple aspects in explanations are separated by “||”. The strikethrough aspects are
removed from gold explanations in the NEG setting. Differences between BART and LiEGe are highlighted.

Query Wiki-CEG: “Madrid”4

Labels 𝒅1: Etymology || Middle Ages 𝒅2: Etymology || Francoist dictatorship 𝒅3: Location || Literature 𝒅4: Location || Cuisine
KeyBERT [17] villa de realengo substandard housing oldest urban core culinary specialty
NMIR [20] madrid in spanish madrid in spanish madrid italian in italian madrussian in english
HistGen [80] history background location culture
BART [34] etymology and history etymology and history culture and location culture and location
LiEGe (ours) etymology and middle ages franco regime and etymology location and literature location and the madrilenian cuisine

Query MIMICS-NEG: “Chlortalidone”
Labels 𝒅1: side effects 𝒅2: side effects || interactions 𝒅3: side effects || warnings 𝒅4: brand name
KeyBERT-MMR [17] adjunctive therapy the blood vessels educational purposes hormone or steroid
NMIR [20] chlorthalidone china chlenthalidone uk chlenthalidone uk charlorthalidones usa
HistGen [80] information medication indications description
BART [34] side effects side effects warnings and side effects brand
LiEGe (ours) side effects interactions warnings brand names

the contexts of other documents, and thus cannot detect document
novelty. Results on the Wiki-NEG dataset are shown in Table 3.
First, we observe that adding the MMR component to KeyBERT im-
proves its performance. It promotes novelty by penalizing phrases
that are more similar to those selected for the preceding documents.
HiStGen can also generate novelty explanations because it incorpo-
rates a review mechanism [9]. LiEGe is the best performing model
in the novelty setting of SeRE. Though listwise modeling of search
results for comprehensive explanation generation is shown to be ef-
fective (Table 2), it is more critical for novelty explanations because
information from preceding documents is essential. The results in
Tables 3 and 2 show that LiEGe (BART) achieves higher percentages
of improvements over baselines in Wiki-NEG compared to Wiki-SA
and Wiki-CEG datasets.

Explanation generation on MIMICS. Performance of LiEGe and
baseline models on MIMICS-CEG and MIMICS-NEG are reported
in Tables 4 and 5. The tables show the results of LiEGe and BART
models when they are first pre-trained on the Wiki dataset and
then fine-tuned on the corresponding MIMICS dataset (marked
with “Wiki”), as well as when they are just trained on a MIMICS
dataset. LiEGe almost always outperforms all baselines and its
counterpart base model in both CEG and NEG settings. The only
exception is the BLEU performance of LiEGe compared to BART in
the comprehensive setting, when the two models are only trained
on the MIMICS-CEG dataset. A possible reason for this observation
is that MIMICS data is rather small, and thus not enough for an
effective training of the additional parameters in LiEGe compared
to BART. This impact is also evident when the performance of
BART (Wiki)/LiEGe (Wiki) is compared against its corresponding
model BART/LiEGe, in both CEG and NEG settings. These compar-
isons show that knowledge learned from pre-training on a Wiki
dataset can effectively transfer to real Web data of MIMICS.

To the best of our knowledge, NMIR [20] is the state-of-the-art
model for generation of query intents/aspects. Using NMIR for
aspect-oriented explanation, however, generates explanations with
the least amount of diversity compared to other baselines. The main
reason for this observation is that documents in the same cluster

Table 7: Performance of ablated variants. Symbol ▽ shows
statistical significant differences with LiEGe.

Dataset Wiki-CEG Wiki-NEG
Metric BLEU R-L BLEU R-L
BART 16.53 42.23 11.84 31.84
LiEGe 18.79 44.32 15.06 35.80
LiEGe w/o MHP 18.81 44.36 14.52▽ 34.53▽
LiEGe w/o OE 18.87 44.39 14.23▽ 34.58▽
LiEGe w/o BA 17.55▽ 43.58▽ 13.32▽ 33.73▽
LiEGe w/o CDA 18.33▽ 43.59▽ 14.04▽ 34.13▽

share the same explanation. This demonstrates that NMIR, and thus
existing query intent generation models, do not address SeRE.
Sample outputs. Table 6 shows the outputs of some models for
two samples from the test set of Wiki-CEG and MIMICS-NEG. The
document contents are not provided due to space limitations, and
can be found in Wikipedia or the MIMICS dataset. In the example
from Wiki-CEG, BART generates “history” and “culture”, which
are not wrong. However, the explanations from LiEGe are more
detailed and informative in differentiating document contents. In
the example from MIMICS-NEG, the aspect “side effects” is covered
in 𝑑1 and should not be repeated in the explanations for 𝑑2 and 𝑑3.
HistGen and LiEGe perform better than other models in terms of
not repeating previously generated explanations. LiEGe generates
better explanations for this example compared to HistGen.

5.4 Ablation Study
We train and test variants of LiEGe, leaving one component out at a
time, on Wiki-CEG and Wiki-NEG separately. The ablated versions
are as follows.
LiEGew/oOE does not add ordinal encodings to token embeddings
in the encoder or the decoder.
LiEGe w/o MHP uses the [CLS] token embeddings in each layer
as pooled document representations.
LiEGe w/o BA does not add contextualized document embeddings
to the embeddings of their tokens. More specifically, Eq. (8) is
4 https://en.wikipedia.org/wiki/Madrid

https://en.wikipedia.org/wiki/Madrid


skipped and Eq. (9) becomes 𝐸 (ℎ+1)𝑡 = LN(𝐸 (ℎ)𝑡 ). A global layer
thus only generates contextualized document embeddings as its
output, and the final token embeddings from the encoder are not
impacted by information from cross-document interactions.
LiEGe w/o CDA does not have cross-document attention sub-
layers in its decoding layers. In other words, this model incorporates
cross-document interactions only during encoding.

The performance of ablated models are reported in Table 7. The
results of models for generation of novelty explanations over Wiki-
NEG show that LiEGe constantly outperforms its ablated versions
and the observed improvements are statistically significant. Evalu-
ation over Wiki-CEG for the comprehensive explanation however
shows that LiEGe outperforms two of its ablated models where
broadcast & add or cross-document interactions is removed. The
performance differences with the other two ablated versions are
not statistically significant. An on-par performance of LiEGe with
the one without ordinal document encoding for comprehensive ex-
planations is expected as these explanations are not dependent on
the document position in a ranked list. Document representation
by MHP is more important for novelty explanations compared to
comprehensive ones. A possible reason for this observation is that
the MHP representation of documents provides more flexibility to
attend to a specific part of a document content compared to the
[CLS] representation. This specific attention to a small part of a
document is needed for novelty explanations, while comprehensive
explanations can also be generated based on the [CLS] encoding
of documents. Finally, cross-document interactions and broadcast &
add are found to be essential for both novelty and comprehensive
explanations. This demonstrates the necessity and utility of listwise
modeling of the SeRE task.

6 CONCLUSION AND FUTUREWORK
We studied the problem of content-based explanation of search re-
sults in the two newly defined settings: novelty and comprehensive
explanation generation. We proposed LiEGe that jointly explains all
documents in a search results through exploiting cross-document
interactions both in the encoder and the decoder. Experimental
results demonstrate the effectiveness of LiEGe in explanation gen-
eration compared to state-of-the-art baselines. In the future, we
would like to investigate the possibility of models for joint expla-
nation generation and relevance ranking. To apply and adapt our
explanation paradigm to search tasks other than ad-hoc information
retrieval such as product search, is another interesting direction.
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