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ABSTRACT

NEURAL METHODS FOR ANSWER PASSAGE
RETRIEVAL OVER SPARSE COLLECTIONS

FEBRUARY 2021

DANIEL COHEN

B.A., NEW YORK UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Recent advances in machine learning have allowed information retrieval (IR)

techniques to advance beyond the stage of handcrafting domain specific features.

Specifically, deep neural models incorporate varying levels of features to learn whether

a document answers the information need of a query. However, these neural models

rely on a large number of parameters to successfully learn a relation between a query

and a relevant document.

This reliance on a large number of parameters, combined with the current methods

of optimization relying on small updates necessitates numerous samples to allow the

neural model to converge on an effective relevance function. This presents a significant

obstacle in the realm of IR as relevance judgements are often sparse or noisy and

combined with a large class imbalance. This is especially true for short text retrieval

where there is often only one relevant passage.

vi



This problem is exacerbated when training these artificial neural networks, as

excessive negative sampling can result in poor performance. Thus, we propose ap-

proaching this task through multiple avenues and examining their effectiveness on a

non-factoid question answering (QA) task.

We first propose learning local embeddings specific to the relevance information of

the collection to improve performance of an upstream neural model. In doing so, we

find significantly improved results over standard pre-trained embeddings, despite only

developing the embeddings on a small collection which would not be sufficient for a full

language model. Leveraging this local representation, and inspired by recent work in

machine translation, we introduce a hybrid embedding based model that incorporates

both pre-trained embeddings while dynamically constructing local representations

from character embeddings. The hybrid approach relies on pre-trained embeddings

to achieve an effective retrieval model, and continually adjusts its character level

abstraction to fit a local representation.

We next approach methods to adapt neural models to multiple IR collections,

therefore reducing the collection specific training required and alleviating the need to

retrain a neural model’s parameters for a new subdomain of a collection. First, we

propose an adversarial retrieval model which achieves state-of-the-art performance

on out of subdomain queries while maintaining in-domain performance. Second, we

establish an informed negative sampling approach using a reinforcement learning

agent. The agent is trained to directly maximize the performance of a neural IR

model using a predefined IR metric by choosing which ranking function from which

to sample negative documents. This policy based sampling allows the neural model

to be exposed to more of a collection and results in a more consistent neural retrieval

model over multiple training instances.

Lastly, we move towards a universal retrieval function. We initially introduce a

probe-based inspection of neural relevance models through the lens of standard nat-
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ural language processing (NLP) tasks and establish that while seemingly similar QA

collections require the same basic abstract information, the final layers that deter-

mine relevance differ significantly. We then introduce Universal Retrieval Functions,

a method to incorporate new collections using a library of previously trained linear

relevance models and a common neural representation.
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CHAPTER 1

INTRODUCTION

The ability to infer whether a document is relevant such that it successfully an-

swers a user’s information need expressed through a query is a difficult task, which is

exemplified by having entire career fields dedicated to retrieving desired information.

While information retrieval models have been successful in this task, they often rely

on having multiple relevant documents for a single training query or use carefully

designed handcrafted text features to learn an effective model. Historically, certain

query types, specifically ones where the information need is topical and commonly

seen in general ad-hoc retrieval, perform well under these constraints. In such situa-

tions, standard features such as term statistics, page rank, or length provide a salient

relevance signal while term order and context are of lesser importance [24, 20, 55].

However, as the information need of a query becomes increasingly specific, such

as progressing from penguins to how do penguins survive the winter without eating,

the majority of a document becomes non-relevant and only a segment of text, from a

sentence to multiple paragraphs, remains useful to the user. This increase in desired

specificity therefore produces a relevant subset from the original set of relevant docu-

ments from the general topical query [55]. While theoretically, the amount of relevant

passages can be equal to the number of topically relevant passages or documents, in

practice this subset is significantly smaller than the original topically relevant set.

This reduction in candidate training data produces a sparsity in the collection where

often there is only a single relevant passage within an entire collection to train on,

motivating the need to develop alternative methods to sufficiently train a retrieval
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model to identify this relevant subset of text for these queries, referred to as answer

passages.

Compounding this issue are the unique characteristics of these subsets of relevant

passages, both in relation to the query as well as with respect to the original set

of topically relevant documents. There exists a significant lexical gap between a

query and a relevant “document” due to the reduced body of text. Traditional IR

methods used for general topical ad-hoc retrieval which ignore word order or heavily

rely on term frequency fail to effectively capture the relevance signal when semantics

play an increasingly important role for answer passage retrieval [20]. Even in cases

where there exists substantial text overlap, it is difficult to discern whether a passage

belongs to the subset of relevant documents when only a topical retrieval model is

used to determine relevance. While there exist handcrafted features that specifically

improve short text retrieval [143], parallels in NLP, topical ad-hoc IR, and computer

vision suggests that the features learned by neural networks can significantly improve

performance.

With the advent of effective deep artificial neural networks [43], these models have

significantly reduced the load on identifying salient features required to bridge the gap

from ad-hoc retrieval to passage level retrieval models. However, these deep neural

models require large amounts of training data and regularization to avoid overfit-

ting [154]. For the task of answer passage retrieval, this issue is further exacerbated

by the type of relevance signal contained in the training data. As mentioned, the

increased specificity of the query results in only a small number of relevant training

instances. While this paradigm is not unusual and is seen in document retrieval, the

degree to which the number of relevant passages is reduced is unique. It is com-

mon for each query to only have a single relevant passage in an entire training set,

which we refer to as a sparse collection. The reduced set of samples presents a sig-

nificant challenge when trying to capture these non-linear relations as large amounts
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of parameters are required for the model that can quickly overfit on a collection if

not enough samples are shown. Thus, we approach this problem via three core ap-

proaches: neural architecture selection, improved use of samples within a collection,

and cross collection transfer learning. While deep neural models are universal function

approximators [47], this flexibility relies on an unlimited amount of data to satisfy

parity. We present methods to reduce this data need by leveraging the architectural

bias of various neural structures, improve robustness to unseen passages, and pro-

pose the foundations of a novel method of implementing a set of small linear retrieval

functions to construct a general neural retrieval function capable of quickly learning

on new collections.

1.1 Outline and Contributions

In Chapter 2, we present a concise overview of information retrieval, passage re-

trieval, and their close relationship with sparse labels. A foundation of past work is

used to contextualize the work proposed. In Chapter 3 we introduce neural methods

for passage retrieval that specifically address the unique obstacles presented through

multiple avenues and demonstrate the necessity for passage level approaches, the

first of which leverages local relations between text at the passage level. In doing

so, retrieval performance is significantly increased, demonstrating that there exists a

significant shift in the mutual information between pairs of words comparing stan-

dard word embedding and collection specific representations. Next, expanding on

the contribution of locally learned embeddings, we introduce a hybrid neural archi-

tecture that successfully transfers pretrained standard Wikipedia embeddings to the

IR passage task, while dynamically constructing local embeddings for semantically

different words as well as out of vocabulary text. This is done by using a character

level convolutional sub-architecture. Concisely, the contributions for this part of the

thesis are:
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1 Contribution: An end to end neural structure is developed where passage spe-

cific word embeddings are learned along with a network’s parameters. This achieves

a significant increase in performance correlated with the change in lexicon and defi-

nitions from the original word embedding corpus.

2 Contribution: A neural model is developed for noisy text, where a hybrid

embedding is constructed from both character and word based embeddings. This further

improves passage retrieval performance from the base end to end architecture.

In Chapter 4, we incorporate additional information across passage collections by

introducing an adversarial approach for subdomain transfer and informed negative

sampling via reinforcement learning (RL) for neural models. Both these approaches

focus on incorporating outside information, either from unseen subdomains or better

covering non-relevant documents within a collection to achieve a more stable neural

retrieval model. The contributions coming from this chapter are:

3 Contribution: We introduce an adversarial framework to allow a single neural

model to robustly handle distribution shifts between subsampling corpus and the full

evaluation collection.

4 Contribution: We improve the sampling of an IR model during training

through reinforcement learning, the first use of reinforcement learning to improve

the training process of an IR model. In doing so, the retrieval model trained by this

policy is more robust to the final re-ranking document distribution and random seeds.

In Chapter 5, we show that neural retrieval models capture similar abstract fea-

tures over different collections but attend to different information within their upper

layers. We demonstrate this impact of neural representation for passage retrieval by

expanding on the work of the previous chapter by viewing passage relevance through

the lens of NLP tasks to understand what language structures correlate with passage

level relevance via a probe based approach. Establishing common information across

tasks, we propose a lifelong learning paradigm to facilitate a universal retrieval model.
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By viewing retrieval from a reinforcement learning perspective, we adopt recent work

in universal value functions to enable a neural retrieval model to effectively incor-

porate new collections or user specific relevance needs. The contributions from this

chapter are:

5 Contribution: A probe-based architecture is applied to question answer col-

lections to demonstrate the information difference between collections with similar

appearances via NLP auxiliary tasks.

6 Contribution: We introduce temporal difference updates for IR, showing that

learning to rank is a specific case of an interpolated value function, to overcome sample

inefficiency and high variance updates present in current RL for IR approaches.

7 Contribution: Collections are modeled as MDPs with over a common state

representation. We introduce universal retrieval functions, where a conventional rel-

evance model is linearly separated to create a shared neural representation component

for multiple collections and individual linear relevance functions.

In summary, these contributions result in the followings impacts to IR. First, we

improve the effectiveness of neural models by understanding architectural biases and

finding structures amenable to the characteristics of answer passage retrieval. Second,

we improve sample efficiency by overcoming the severe class imbalance when training

a neural model without access to industry data. Lastly, we provide the foundations

to transfer relevance and representation functions to new collections to allow for

additional training data. Through these key results, we introduce an alternative

approach to BERT or other very large pre-trained language models [25, 90]: rather

than relying on billions of parameters trained on massive data sets, our work proposes

the idea of iteratively learning the necessary information. In this fashion, a model is

able to effectively retrieve over multiple collections using a small number of parameters

and efficient computation. This lightweight BERT surrogate is supported by Tang
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et al. [1], where a distilled single layer bidirectional LSTM neural model is able to

achieve BERT level performance with a fraction of the parameters.
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CHAPTER 2

RELATED WORK

2.1 Text Representation For Retrieval

The core of information retrieval involves successfully identifying the information

need of the user expressed through a query. This relies on a function, referred to as

a retrieval model, that scores the relevance of a document with respect to a query.

A critical step in achieving an effective retrieval function is identifying what features

should be used as input to the model, referred to as text representation. A common

approach when creating these functions is to leverage descriptive statistics of a col-

lection given a query such as term frequency and document length to rank relevant

documents higher. Two classic methods that rely on this information are BM25 [52]

and query likelihood (QL) [97]. BM25 relies on tunable parameters that weight the

importance of document length and term frequency while QL models the probability

of a document generating a query given the document’s distribution of text. Incor-

porating additional term co-location information, n-grams leverage small windows of

neighboring text to better capture the relation between a document and query. How-

ever, this results in a balancing act as too large of a window results in poor overlap

between a query and document. A remedy to this approach is a backoff model [153],

where if there are too few n sized grams, the model backs off and examines the overlap

using n − 1 grams [112]. Other approaches that rely on trained parameters such as

linear models, support vector machines, or boosted trees[78, 18, 15], use additional

features to represent the text of an input query-document pair such as various term
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frequency statistics, spam score, retrieval models like BM25, characteristics of body

and title text, and other potentially salient information.

A common theme of these above representations is the use of handcrafted fea-

tures to reduce the information that is passed into the retrieval model. While still

a form of compression, this makes vocabulary based distributed representations such

as word2vec, GloVE, and RANDWALK [80, 96, 7] a significant departure in text

representations for retrieval. These word embedding approaches all represent a single

term as a row in a factorized noisy pairwise mutual information matrix between all

vocabulary terms present in a collection [7, 62], which allows a neural retrieval model

generalize across samples [83]. Succinctly, they condense the co-occurrence informa-

tion of terms into a much smaller vector such that a single term’s vector representation

now resembles other terms commonly found near it.

As Arora et al. [7] show, common embedding approaches that leverage co-occurrence

information can be decomposed into a variation of RANDWALK. Levy and Gold-

berg [62] proceed to show that these embeddings can attain comparable performance

on a variety of tasks under reasonable hyperparameter tuning. Thus, for the remain-

der of this work, we use a single embedding approach for each set of experiments

given their equivalency.

2.2 Non Neural Retrieval Models

For general retrieval, BM25 and query likelihood (QL) have shown significant

robustness across collections without any sensitivity to data sparsity [52, 97]. These

models rely on a form of handcrafted features as mentioned above: term occurrence

and document length which are agnostic to the number of training points within a

collection. BM25 heavily relies on a combination of term frequency, inverse document

frequency, and length to determine the importance of query terms within a document,
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and QL uses a probabilistic view of relevance modeled by the document distribution

generating the query.

Other approaches fall into the realm of learning to rank approaches, and are of

particular note as they lay the groundwork for the recent work in deep neural mod-

els. These models, such as support vector machines [18], boosted approaches [15],

and simple linear models [110], all rely on explicit term statistics such as sparse en-

codings of the vocabulary space RV or other handcrafted features requiring domain

knowledge which include the ratio of stop words to non-stop words, inverse document

term frequency, or PageRank score [100]. As IR relevance metrics rely on listwise

evaluations which are discrete and non-convex, these models are often optimized to

minimize the error of a convex surrogate loss like hinge loss in order to form an ef-

fective retrieval model. However, the efficacy of these approaches is bounded by the

information captured by the features used to model the document [22]. While in-

cluding additional handcrafted features is feasible, the kernel choice in support vector

machines and limited representational power of other approaches prevents the use of

unstructured data such as all one hot encodings of terms within a document. As we

discuss shortly, these properties are found in deep neural networks, and allow for a

substantial paradigm shift in retrieval models by enabling the loss function to select

important features via the optimization process.

2.2.1 Passage Retrieval Approaches

The concept of identifying the salient portion of a document, referred to as

a passage, has been studied for a number of years. Earlier work introduced by

O’Connor [91] investigated the retrieval of answer sentences and Al-Hawamdeh and

P. Willett [5] proposed ranking full paragraphs within a document based on their

relevance to the user’s query using the frequency of query terms. However, in this
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dissertation we define passage retrieval as identifying a span of text from a single

sentence to multiple paragraphs of a longer document that adequately addresses the

information need of a non-factoid query while containing little extraneous informa-

tion. This location and length ambiguity is not encountered in traditional fact based

QA such as TREC-QA [131] and SQuAD [101], where the relevant information is

contained within a span of a few tokens. Recent datasets such as MSMARCO [89],

Yahoo Community QA [113], and others have been introduced to evaluate methods

for this answer passage task.

Khalid and Verberne [56] examine two approaches for overcoming the difficulty of

capturing a passage of unknown length within a longer text. Using two approaches

of fixed and sliding windows, where a fixed window divides a document into disjoint

documents and a slider window incrementally advances over sentences. They observe

that a sliding window over sentences within a document provides a better segmenta-

tion of a document for passage retrieval, further establishing the approach introduced

by Callan et al. [17]. In both approaches, BM25, term frequency inverse document

frequency, and KL-divergence approaches are used to retrieve candidate passages.

Understanding the need to model passages differently than full text documents,

Liu and Croft [70] propose adjusting a standard retrieval approach, a language model,

to better fit text distributions over passages. This finding of passages possessing

unique relevance signals when compared to topical ad-hoc retrieval is a driving moti-

vation for incorporating neural approaches into answer passage retrieval. We establish

in previous work [20] that neural methods effective for topical ad-hoc retrieval are not

effective when applied to passage level text.

2.3 Neural Retrieval Models

While the previous learning to rank approaches use a small number of parameters

to model relevance over handcrafted features, neural models use a large number of pa-
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rameters over minimally processed features, and thus are suited to the answer passage

retrieval task given their large number of non-linear transformations and parameters

to manipulate the initial input data. Inspired by the neuronal activity in a brain in

the form of a perceptron [102], these models consist of multiple levels that incremen-

tally map initial raw input into incremental more refined, or abstract, representations

through perceptron-like modules. The non-linear transformations between each layer

allow multiple distinct inputs to map to the same region in the next layer.[86]. In

some constructions, these models can even act as universal function approximators

[47]. These properties result in neural models which are able to take in a large volume

of information and iteratively learn what is important by adjusting their internal lay-

ers, removing the need to identify salient input features or effective kernels for other

learning to rank approaches. While there are a number of different architectures each

with associated biases [108, 36, 126], they all demonstrate the flexibility discussed

above.

With the demonstrated effectiveness of the word embeddings produced from RAND-

WALK or GloVE [96, 7], neural models are able to leverage this wealth of input data

to achieve state of the art results on a variety of tasks overlapping with answer passage

retrieval. Iyyer et al. [50] leverage this for a quiz bowl task by using a recurrent neu-

ral network that captures temporal information. However, this setting does not fully

represent the IR scenario due to the structure of quizbowl retrieval: passage length

queries and documents no longer than a few tokens. Severyn and Moschitti [108] adapt

this approach by implementing a convolutional neural network (CNN) for traditional

factoid QA over term word embeddings and term frequency features. Shortly there-

after, several neural architectures for retrieval were introduced, and Guo et al. [39]

propose a paradigm to view these architectures. They are a combination of interaction

based, where query and documents are combined at an early layer to model relevance,

and representation based that model the query and document independently before
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combining them for a final relevance score. This paradigm incorporates any base

building layer, be it recurrent models such as CNNs, Long Short Term Memory mod-

els (LSTM), or multilayer perceptrons (MLP). There also exist models that contain

both of these paradigms such as the Duet model introduced by Mitra et al. [84].

This architecture has two subnetworks that are interaction and representation based

respectively.

A recent development by Vaswani et al. [126] in neural machine translation intro-

duced the transformer architecture. This architecture removes the need for convo-

lutional or recurrent layers to model text by incorporating a large number of small

attention heads to self attend over each layer. The ability of the transformer to

incorporate large amounts of information within its parameters has allowed it to out-

perform previous neural baselines. One such version of this is Bidirectional Encoder

Representations from Transformers (BERT) [25]. BERT’s representations achieve

state of the art performance on a variety of tasks by extensively pre-training a neural

language model. Neural retrieval models have incorporated this pre-training with

success by adjusting BERT to a retrieval purpose using the model as a black box

phrase embedding and training an MLP as the final retrieval layer [73]. Furthermore,

Yang et al. [144] incorporate this training paradigm and show that this setup is effec-

tive for both ad-hoc and passage retrieval. While effective, we do not include BERT

based models in the experiments within this dissertation as the bulk of work was

done prior to the introduction of the first evidence of the efficacy of this approach.

Furthermore, the work in this dissertation presents an alternative approach to very

large pre-trained language models, relying on efficient use of parameters to achieve

the same end goal.
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2.3.1 Training Deep Neural Models

As discussed, the data sparsity problem is exacerbated in passage retrieval due to

the precise information needs of the query as not only must the model learn general

topical relevance, it must also distinguish candidate passages that only contain par-

tial information. Thus, transfer learning and domain adaptation approaches provide

a promising avenue of leveraging a general relevance function for the precise relevance

need of each collection. The core approach is to reduce the distance between some

portion of a neural representation to allow the relevance function to effectively dis-

criminate relevant and nonrelevant passages from multiple collections. A common

component of this is adversarial networks, which surfaced shortly after they were in-

troduced in the generative adversarial network (GAN) model. Goodfellow et al. [32]

present a generative model that learns a distribution pG(x) that matches a true distri-

bution pdata(x). The generative model receives training updates through a joint loss

function shared with an adversarial network, the discriminator, that learns whether a

sample is from pG(x) or pdata(x) as a binary classification problem. The generator is

penalized when the discriminator can successfully classify the sample origin, framing

the relationship as a minimax game. While initially proposed for generating continu-

ous data, Donahue et al. [27] extend this work by learning an encoder that maps the

data to the latent space z. They show that this can learn useful features for image

classification tasks without the need for supervised training.

Tzeng et al. [125] first propose a form of domain agnostic representation via do-

main confusion, where the maximum mean discrepancy between the final layers of

two identical networks over different domains is directly minimized. With the intro-

duction of adversarial agents, Ganin et al. [31] approach the same task of domain

agnostic representation by using an adversarial discriminator. The representation of

the main network is forced away from a domain specific representation by reversing

the gradient updates outside of the adversarial discriminator.
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As previous methods used shared weights for both domains, Rozantsev et al. [104]

expand on this work showing that unpairing a portion of the classification model,

with only a small number of parameters shared prior to input into the final layers,

can lead to effective adaptation in supervised and unsupervised settings. Recently,

Tzeng et al. [124] have represented a number of past domain adaptation works in

a unified framework, referred to as Adversarial Discriminative Domain Adaptation,

that captures previous approaches as special cases and encompasses a GAN loss into

the training of the classifier and adversarial discriminator. This methodology achieves

robust domain agnostic models over computer vision collections.

2.4 Reinforcement Learning Based Retrieval

The common evaluation metrics of an IR system often rely on a positive sensitive

function such as precision, recall, or normalized discounted cumulative gain. As

these approaches are non-differentiable, a neural network is not directly optimizable

given standard smooth convex function requirements. Therefore, a common approach

is to approximate the IR metric via softmax, hinge loss or other heuristic smooth

convex functions [73, 83, 24]. While effective, this approach suffers an inherent flaw

as these losses do not take into account the entire ranked list. In doing so, they

suffer a fundamental calibration flaw such that minimizing the heuristic loss does

not mean the IR metric has been optimized [16]. Reinforcement learning (RL) is a

framework that allows a model to directly optimize a non-convex discrete IR metric

based on its actions rather than indirectly through a loss function. In doing so, RL

trained IR models, or policies, no longer suffer the calibration flaw. By modeling

the retrieval process through a Markov Decision Process (MDP), the IR model now

ranks documents via actions that then produce a score, or reward. Discussed below,

this approach has been introduced within IR by a variety of works with success over

handcrafted features.
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Guan et al. [38] use RL in a session query reformulation environment while Zhang

et al. [156] introduce a partially observable MDP framework to rerank documents

based entirely on document ids and search log click information which is able to

learn an effective reranking function despite no access to document content. Wei et

al. introduce MDPRank [136], the framework most similar to our task, that treats

each query and a list of documents as a single episode, and each action selects the

most relevant document of the yet to be ranked documents within that list, which is

competitive with traditional convex optimization methods.

Hu et al. [48] incorporate a variation of actor critic called deep deterministic policy

gradient for the task of e-commerce sessions. This approach further reduces the

variance by allowing the agent to operate only over the state space [67]. In addition,

through a novel construction of an e-commerce session MDP, the critic component

that relies on TD learning is able to perform a full backup.

However, these methods are used in a conventional learning to rank setup with

highly salient domain specific features that include term overlap, document length,

and BM25 scores among others. The closest work with respect to directly oper-

ating over terms is by Xia et al. [140] where the authors use an MDP to diver-

sify search results. Rather than using learning to rank features, they independently

model query embedding and document embeddings via doc2vec, a similar paradigm

to word2vec [80] where a model tries to predict neighboring sentences as contexts.

While allowing for a distributed representation, doc2vec based representations are

not effective for IR purposes [42]. Furthermore, the policy is independent of these

embeddings, and consists of two matrices,

Vq, V ∈ RK×L,Ud,U ∈ RK×L

where q,d represents query and document embeddings of dimension K, and the

learned policy parameters are V,U. While Wang et al. [130] do incorporate RE-
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INFORCE with a CNN based policy, the policy quickly diverges and is not able to

retrieve effectively and instead rely on a paired model trained via a smooth convex

loss.

2.4.1 Reinforcement Learning for Natural Language Processing

While not specifically addressing document retrieval, the common NLP RL envi-

ronment of learning actions over text results in a significant overlap with IR methods.

We therefore provide a short overview of RL based methods for NLP to contextualize

our contribution and the current state of the field for other text based tasks.

For machine translation, RL has been used to overcome the non-differentiable

objective function, BLEU. Rather than trying to optimize at an individual word level

using a heuristic convex loss approximation, Wu et al. [138] propose a REINFORCE

based optimization of a neural machine translation system. Subsequently, Choshen et

al. [19] discuss the shortcomings of REINFORCE’s high variance when applied to the

machine translation task, and we observe this same issue when applying REINFORCE

to deep neural IR models in Section 5.2.

In a similar situation to machine translation, summarization shared a non-differentiable

objective function. Paulus et al. [95] introduce a REINFORCE based model that di-

rectly optimizes this objective. Li et al. [65] expand on this work and introduce an

actor critic based reinforcement learning approach for abstractive summarization.

Addressing work in reading comprehension, Wang and Jin [132] incorporate an

Actor-Critic agent to learn a policy for multi-step coarse to fine question answering

where the largest state in the MDP is a single document. Shen et al. [109] introduce

a policy trained via REINFORCE that can decide when to terminate the multi-hop

reasoning process rather than relying on a fixed number of hops to answer a question.
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CHAPTER 3

ANSWER PASSAGE TEXT REPRESENTATION

As discussed, answer passage retrieval requires a richer information representation

than that of traditional ad-hoc retrieval that focuses on topical relevance. In this

chapter, we present two approaches to increase the effectiveness of neural models.

First, in Section 3.1 we demonstrate that using locally trained embeddings in an end-

to-end approach significantly improves IR over a community question answer (CQA)

passage collection than previous approaches using Word2Vec [80]. Subsequently in

Section 3.2 we introduce a hybrid embedding architecture that dynamically constructs

local embeddings while leveraging general knowledge via GloVE representations.

3.1 Local End to End Embeddings

As word embeddings are noisy factorized pairwise mutual information matrices,

the information contained is entirely dependent on the type of prose used in the

collection. While this representation is useful for relevance, it discards a significant

amount of information that is useful when handcrafting features for determining rel-

evance such as idf, term frequency information, and distributions between relevant

and non-relevant passages [26]. As this type of information is useful even for the

task of passage retrieval [129], we show that an end to end framework, tying in the

representation of the text embeddings to that of an IR loss function, significantly

improves the performance when compared to pre-trained embeddings created over a

collection an order of magnitude larger.
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Figure 3.1: A simplified representation of the BiLSTM network with an n length
question

3.1.1 A Neural Network for non factoid Retrieval

For this task, we use a variant of an LSTM network structure implemented in

Wang and Nyberg [129] and Graves et al.[36]. The standard RNN architecture is

constructed such that each layer not only receives input from the layer below it, but

also its own output from the previous time step. LSTM units replace the standard

neuron of a RNN with additional internal structures to manage vanishing and ex-

ploding gradients. These structures consist of input, forget, and output gates that

manage the information flow of the cell’s internal state.

We utilize a bidirectional neural network as in [36, 129], which can be viewed as

inputting the sequence in reverse order to a second layer at the same level of the graph,

and then merged either through concatenation or element-wise summation. The

bidirectional layers for this paper were implemented via concatenation. A simplified

representation of the network is shown in Figure 3.1 with the output of the network

represented as ŷ.
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3.1.2 Experimental Setup

3.1.2.1 Data

Tokens Webscope L4 nfL6

Min 6 10
Max 350 79
µ 77.4 39.0
σ 62.0 13.2

Table 3.1: Statistical description of tokens per question-answer pair in nfL6 and
Webscope L4 after preprocessing

The datasets used for our experiments were Yahoo’s Webscope L4 and a filtered,

lower quality non-factoid set created from Yahoo’s general Webscope L6, named nfL6.

The L4 set has been used previously [113] for non-factoid QA and is sometimes re-

ferred to as the “manner” collection. It consists of 142,627 questions, of which we

select 138,340 questions that satisfy the condition of being under 351 words when com-

bined with their corresponding answer and do not contain websites. The word limit

was used as LSTM networks are not capable of capturing dependencies on arbitrary

length sequences and would not be able to learn representations of greater length an-

swers. All questions are of the manner “how {to|do|did|does|can|would|could|should}...”

and are high quality. Each question contains a noun and verb, and each answer is

well formed. All answers that were not the highest voted answer were removed for

each question as multiple answers for a question could be correct. This was done so

the network would learn to better differentiate between correct and incorrect answers

and not try to learn which answers would receive the highest votes.

The nfL6 dataset, after processing, consists of 87,361 questions. Unlike L4, the

questions in this dataset are more generic, such as “Why is the sky blue?” and “Why

do people steal?”. Furthermore, answers are not as high quality. This set was cre-

ated from the lower quality L6 collection using a linear kernel with a support vector

machine to remove poor question candidates. Initial training data is from UIUC’s
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question dataset [66]. Fine grained classes of description, manner, and reason within

the coarse grained class DESC were used as positive examples, with all others as

negative examples. 3,500 additional training examples were attained from active

training based on their distances to the hyperplane [122]. Additionally, to reduce

noise, negative classifiers were trained on ENTITY, ABB, LOCATION, NUMERIC,

and HUMAN classes to further reduce factoid questions in the collection.

Training, validation, and testing sets1 for the BiLSTM implementation were cre-

ated in a similar fashion to [50]. A small pool of candidate answers were collected for

each question based on top results in a BM25 search.

3.1.2.2 Network Configuration

For input to the network, each question is concatenated with its answer and a

<?> character is inserted between the two strings as shown in Figure 3.1. Incorrect

answers were concatenated the same way with the question string to create negative

training examples. The <?> character was used similar to the <EOS> and <S> mark

in [114] and [129, 128] respectively. This mark signifies the transition between source

and target sentences and is depicted in Figure 3.1.

The specific network configuration consisted of a 256 dimension embedding matrix

initialized uniformly, which feeds directly into two 512 length BiLSTM layers with

concatenated outputs. The cell activation function for the LSTM nodes is the sigmoid

function, with internal gates using the tanh function. The output of the last BiLSTM

layer is mean pooled across time steps and fed into a single dense node with a sigmoid

activation function. As mentioned previously, the embedding layer is part of the

network during training, and thus will change word representations to best fit the

loss function.

1Available at https://ciir.cs.umass.edu/downloads/nfL6/
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Optimization was done using the Adam algorithm [57] and trained to minimize

the binary cross entropy weighted by how well the answers are separated with respect

to the non-relevant training examples for each query as shown below.

BCEq =
1

|q|
∑
ŷq∈q

(−y log ŷq)− (1− yq) log(1− ŷq) (3.1)

L =
∑
q∈Q

(1− (qr − µqnr))BCEq (3.2)

BCE =
1

|N |
∑
ŷ

(−y log ŷ)− (1− y) log(1− ŷ) (3.3)

(3.4)

With Q as all questions, BCEq as standard binary cross entropy for the question, qr

as the relevant answer score and µqnr as the mean of all non relevant candidate answer

scores for q. As the task cares about relative ranking over binary classifications, this

scales the loss relative to the distance in scores such that weights will change based

on the questions with the hardest to differentiate answers.

3.1.2.3 Evaluation

The evaluation metrics used are mean reciprocal rank (MRR) and precision at 1

(P@1) which are both common in IR and QA evaluations. Precision at 1 is a binary

metric that is 1 if the correct answer is ranked highest, and 0 otherwise. The mean

is then taken to evaluate performance over a collection of questions. The reciprocal

rank is the multiplicative inverse of the highest ranking correct answer retrieved for

a question. Thus the mean is 1
|Q|
∑|Q|

i=1
1

ranki
with Q being the set of questions.

The test collection was created from pooling the top 10 results from a BM25

search for each question, and including the correct answer as the 10th answer if it
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Implementation L4 nfL6
P@1 MRR P@1 MRR

Okapi BM25 0.0783 0.1412 0.1312 0.2660
Severyn and Moschitti 0.0989 0.2434 0.1438 0.2842
Wang and Nyberg 0.4414 0.6152 0.1232 0.3271
BiLSTM 0.4752∗ 0.6377∗ 0.2002∗ 0.4043∗

BiLSTM-Loss 0.5157∗† 0.6642∗† 0.2375∗† 0.4219∗

Table 3.2: Results on Webscope L4 and nfL6. Significant differences relative to Wang
and Nyberg denoted by *, † denotes relative to BiLSTM (using two tailed t-test with
p ¡ 0.05)

is not included in the list. These were then processed into sequences described in

Section 4.2.

3.1.2.4 Results

The end to end LSTM is compared against previous deep learning implementa-

tions and the BM25 baseline in Table 3.2. BM25 was chosen for the baseline as Yih et

al. [146] have shown that tf.idf models are a competitive benchmark. While the CNN

of Severyn and Moschitti [108] fails to capture any dependency between questions

and answers in the L4 data, the BiLSTM implementations are successful in learning

a relation between them. Furthermore, the end to end local embeddings significantly

improves results over using an independently trained word embedding matrix without

the need of an additional model to incorporate term frequency information and BiL-

STM layer as used in Wang and Nyberg [128]. This performance difference becomes

more apparent when the language gap between training and testing of the embed-

ding matrix grows. The nfL6 dataset contains slang and abbreviations not present in

typical training text, which causes a hyperparameter tuned BiLSTM implemented to

perform well below the modifications used in this paper.

The effect of the rank sensitive loss function results in significant improvement

as well, referenced as BiLSTM-Loss in Table 3.2. In training and evaluation, the
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Figure 3.2: Example of a question in which the BiLSTM implementation successfully
returns the correct answer while BM25 does not.

network’s range for ŷ is dependent on the question rather than consistently centered

around one point in [0,1]. As the task focuses on the relative rankings of candidate

answers, embedding weights are updated based on the difference of non-relevant and

relevant answers instead of solely based on their respective entropy.

Lastly, the performance of BM25 is included to further demonstrate the poor

performance of BM25 on both answer passage collections. This reflects in the results

of the Severyn and Moschitti model [108] as the use of term overlap features appended

to the output of a hidden layer does not improve results over the sequence based

approach of the LSTM. While RM3 is a higher performing method than BM25, it

acts as a function over a function on the collection, and is not directly comparable to

the baselines used in this evaluation.

3.2 Hybrid Architecture

While the local embeddings significantly improve the performance of the neural

models for answer passage retrieval, this results in a significant cost as retraining

embeddings to reflect a new collection can consistently improve performance; however,

it is impractical to create new local embeddings at run time as recent methods [26,

80], including the end-to-end approach introduced in Section 3.1.1 rely on a time

consuming optimization process requiring large amounts of data. Thus, we introduce a
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hybrid based embedding approach that leverages pre-trained embeddings, and further

allows for dynamic construction of local representations. This is done via leveraging

the same LSTM network to build phrase level representations of both standard word

embeddings as well as with the flexibility of a character n-gram based approach as

seen in the DSSM and the OCR degraded text task. We adapt the fixed window of the

trigram hashing in DSSM by using varying length convolutional filters to aggregate

multiple length character n-grams and then sequentially building sentence and passage

embeddings using a recurrent network. This approach produces a network that (1) is

robust to degradation in collection quality (2) maintains performance on high quality

collections where standard character based approaches fail to perform, and (3) does

not require the expensive process of retraining embeddings for each collection.

3.2.1 Model

We propose a hybrid CNN-LSTM model that not only constructs passage level

representations from word embeddings, but simultaneously builds an identical rep-

resentation from a separate character representation. This hybrid approach allows

the network to leverage the information contained in pretrained word embeddings

while simultaneously using the character subnetwork to construct collection specific

representation in its hidden layers. A simplified representation of the model is shown

in Figure 3.3 with the three key components illustrated. As each component plays a

critical role in determining the relevance of a candidate passage, the remainder of this

section explains in detail the construction and motivation for each layer’s architecture

within the model.

3.2.1.1 Character Embeddings

As opposed to previous work in IR with neural networks [79, 118, 108, 28], our

model’s input consists of an additional sequence of characters rather than words alone.

The advantage of processing text from a character level representation is that it allows
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Figure 3.3: A compressed representation of the Hybrid architecture.

for the upper layers to learn a word representation tailored to the collection. Given a

sequence of characters from a passage, we concatenate their embeddings into a k × l

matrix where k is the dimension of the embedding and l is the length of the passage.

The embeddings were created via the approach introduced by Mikolov et al. [80] with

a skipgram window of 5 to create the character embeddings.

As in [158], the alphabet consists of 70 characters, 26 lowercase English letters, 10

digits, and 33 other characters. Characters not contained in the alphabet, including

spaces, are represented as k dimensional zero vectors. Uppercase letters were con-

verted to lowercase as they did not improve performance, and k was chosen to be 20.

The 33 other characters are shown below:

-,;.!?:’/\| @#$%^&*~{}+̀-=<>()[]

3.2.1.2 Embedding-level Convolutional Layer

One can view a convolution as sliding a fixed width filter, f , over the sequence of

character embeddings. The filter is constant as it slides over the text, and its weights

are updated via backpropagation to identify specific features. This allows the model

to transform the input of individual characters into words, or words into short phrases
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based on common, repeated patterns within the fixed width filter. In the model, the

character or word sequence is converted into a passage matrix, P ∈ Rk×l, where we

convolve P with a filter f ∈ Rk×w with w as the width of the filter and has the same

dimension as the embeddings. The model in this paper uses the activation function

tanh which allows for faster convergence compared to the standard logistic function.

In order for a convolutional layer to recognize a variety of features, each layer uses a

number of filters within [100,1000] for typical IR and NLP applications. Thus, the

output of a convolutional layer is a matrix, F ∈ Rc×k×l, where c is the number of

filters chosen.

After performing the convolution, temporal max-pooling is performed to select

the most salient features over a portion of F. This eliminates non-maximal values

and reduces the dimensionality and number of parameters needed for the network via

non-linear down-sampling as in [108, 118].

These embedding level convolutions are then passed into the BLSTM structure

introduced in Section 3.1.

3.2.1.3 Joint Representation

As the Hybrid model consists of two unique substructures, each processing word

and character embeddings respectively, the output of the BiLSTM layers are mean

pooled and concatenated across time steps to produce a single vector, v ∈ Rn which

can be viewed as the embedding of the entire phrase. The combination of character

and word level embeddings allows this model to leverage two unique representations,

the character subnetwork is directly tailored to the collection while the word subnet-

work aids in generalization.

It is then fed into three dense layers to learn the interaction between word and

character phrases. The final dense layer maps to a scalar value, ŷ in Figure 3.3, that

represents the relevance of the input.
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3.2.1.4 Attention Mechanism

While LSTM networks are able to store internal states across sections of a se-

quence, they cannot capture arbitrary length dependencies that span across longer

passages [36]. In order to persuade the hidden states of the model to focus on infor-

mation relevant to the query contained in candidate passages, we use an attention

mechanism by allowing the hidden layers of a network to compare query and docu-

ment text when learning abstract representations. This reduces the information load

on the network as the parameters are able to focus on modeling this interaction rather

than each text individually.

With a variety of attention mechanisms available in previous work [147, 79, 107],

we adopt a method that primes the network similar to machine translation [129] to aid

in the LSTM capturing long term dependencies. Given a question-passage pair below,

q1, q2, . . . , qn <? > a1, a2, . . . , an

The network iterates over the query until it reaches the <? > token, at which point

it receives a candidate answer. As discussed in Section 5.1, this method allows the

network to imprint query specific terms and topics within the cell states that produce

selective activations for related information in candidate passages. By priming the

network, the recurrent layers learn to model intermediate representations of relevance

rather than waiting to introduce query similarity within the final few layers [118, 77,

108].

3.2.2 Experiments

Following the local embedding experiments, we use the same two CQA collec-

tions, Yahoo’s Webscope L4 and nfl6, along with more difficult web answer passage

collection, called WebAP2 that has a small number of queries. In contrast to the

2https://ciir.cs.umass.edu/downloads/nfL6
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Layer Char Word BiLSTM

Conv w [6,7] [1,2]
c [450,525] [600,700]
σ tanh tanh

Conv w [3,4]
c [225,300]
σ tanh

Conv w [3,4]
c [225,300]
σ tanh

BiLSTM l [350,350] [550,550] [600,600]
Dense l 500 500 500
Dense l 300 300 300
Dense l 1 1 1

Table 3.3: Architecture of the three networks evaluated. Char and Word represent
the components used for processing character and word embeddings respectively in
the the Hybrid model; w = filter width, c = number of filters, σ = activation function,
l = layer dimension.

previous CQA collections, the queries are more open ended and can have a variety

of passages that are all relevant. An example of this is seen in the query “Describe

the history of the U.S. oil industry”. Non-relevant portions of each document are

split into non-overlapping random length passages. This was done to avoid the net-

work learning certain length passages as non-relevant. Candidate passages with a

word count greater than 4000 were removed from the collection as they significantly

increased the memory footprint of the models when training. This did not impact

the results as they were labeled non-relevant and consistently ranked last during test-

ing. Training, validation, and testing sets were created via a 64-16-20 split. Detailed

statistics for each collection are shown in Table 3.4.

.
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Tokens Webscope L4 nfL6 WebAP

Min 6 10 2
Max 897 722 10885
µ 91.9 50.9 61.2
σ 99.7 25.6 58.1

Table 3.4: Statistical description of tokens per question-answer pair in nfL6, Webscope
L4, and WebAP collections after preprocessing.

3.2.3 Baselines

We compare our Hybrid model to previous deep learning implementations and

BM25. As little neural work has been done specifically on the answer passage re-

trieval task, we include additional networks used for factoid QA. We use Wang and

Nyberg’s [129] non-factoid BiLSTM model prior to boosting, Tan et al.’s [118] factoid

QA CNN-LSTM model, and Severyn and Moschitti’s Convolutional Deep Neural Net-

work (CDNN) [108]. We also evaluate the individual word and char components of

the Hybrid model to isolate the performance difference of word and character embed-

dings denoted as W-Hybrid and C-Hybrid respectively. Exact configurations of the

BiLSTM, C-Hybrid, and W-Hybrid models are shown in Table 3.3. We also include

DSSM [49] as a competitive character level baseline and DRMM [39] as a competitive

neural architecture for document retrieval. All word embedding based neural models

are evaluated both on embeddings training locally on the collection and pre-trained

embeddings from Google’s 300 dimension word2vec model3. Character embeddings

are initialized from Wikipedia’s 05-2015 data dump4.

3.2.4 Evaluation

Mean reciprocal rank (MRR) and precision at 1 (P@1) are used for evaluation.

Both metrics are common in IR, and reflect the small number of relevant answer

3https://code.google.com/archive/p/word2vec/

4https://dumps.wikimedia.org/enwiki/20160501/
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Method Embedding L4 nfl6 WebAP

BM25 − .1412 .2660 .4120
DSSM − .2477 .2576 .3127
DRMM − .3291 .3350 .4064
Tan et al. − .4217 .3934 .3612
Tan et al. − .2434 .2842 .3834
BiLSTM Local .6329 .4710 .4618

Pretrained .6129 .4287 .4502
W-Hybrid Local .6206 .5327 .4136

Pretrained .6190 .5236 .4411
C-Hybrid Local .5801 .4987 .5148

Pretrained .5798 .4983 .5150
Hybrid Local .6241 .5429 .4410

Pretrained .6407∗† .5433∗† .4716

Table 3.5: MRR performance of networks on the three test collections. Local and
Pretrained refer to the embedding types used. * denotes significance with p < .05
with respect to baselines using two tailed t test. † denotes same significance against
subnetworks (W/C-Hybrid)

passages as well as the importance on the first passage retrieved for mobile and audio

search. Pooling was done in a similar way to the previous section, but increased

to 100 for the WebAP collection to reflect the larger number of candidate passages

available.

3.2.5 Setup and Training

Our CNN-LSTM based networks were optimized via RMSprop [120] over a binary

cross entropy function. The networks were trained until the metrics over the validation

set stopped improving.

3.2.6 Results and Discussion

In this section, we first evaluate the performance of the Hybrid model with respect

to the baselines. In order to examine the impact of the additional character structure,

we break apart the Hybrid model and evaluate the C-Hybrid and W-Hybrid subnet-

works independently. Lastly, the comparative performance of local and pretrained
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embeddings are discussed in relation to the models. The results for each of these are

shown in Table 3.5. Of particular note is the poor performance of the traditional

factoid or sentence QA models, Severyn and Moschitti’s CDNN [108] and Tan et al.

cosine similarity based approach [118]. While both of these models perform close to

state of the art on WikiQA and TREC QA, they achieve significantly worse results

on the answer passage retrieval task. While not benchmarked, the architecture intro-

duced by Meng et al. [77] possesses a similar structure to CDNN and thus would not

perform well due to the shared structure and lack of temporal structure.

3.2.6.1 Hybrid Embedding Effect

The Hybrid model outperforms the baselines on all but the WebAP collection.

The close performance on L4 when compared to the BiLSTM model can be attributed

to the language contained in the L4 collection. Compared to nfl6, both queries and

answer passages contain significantly less slang, improper syntax, and more consistent

sentence structure. The lack of improvement suggests that the convolutional layers do

not provide any additional benefit when the collection consists of well formed passages.

This is reinforced by the drop in performance on all recurrent word embedding based

models moving from L4 to nfl6. Both the Tan et al. and BiLSTM models are most

impacted by the lower quality collection. However, the character based DSSM, as

well all models with a convolutional component are more robust to this degradation

in quality. In particular, the Hybrid model is shown to be the most adaptable to

this, achieving 0.3516 P@1 and 0.5433 MRR utilizing pretrained embeddings on the

noisier nfl6 collection.

The performance over WebAP highlights the weakness of neural models. Through

the lens of BM25, the baseline DSSM, DRMM, Tan et al. and CDNN models all fail

to outperform the tf.idf baseline. Although the Hybrid model has somewhat better

performance than the BiLSTM model, there is little difference between their scores
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across local/pretrained embeddings. As the WebAP collection only has 82 queries,

with an average of 97 graded passages per query, this prevents the network from seeing

a large portion of the word embedding space as one cannot increase negative sampling

without performance cost if the relevant and non-relevant passages are from different

distributions [135]. Thus, at testing time the model often sees new vocabulary and

passages unseen during training. Just as in the nfl6 dataset, character embeddings

bridge this gap by allowing almost all characters to be seen during training, and the

convolutional layers allows for small morphological differences to exist in the same

area of the manifold. This is reflected in the C-Hybrid component of the Hybrid

model outperforming both a standard BiLSTM and the W-Hybrid on the WebAP

collection.

3.2.6.2 Compositional Impact

To view the additional information gained by including character embeddings that

is omitted from the word level networks, we evaluate the individual components des-

ignated as W-Hybrid and C-Hybrid consisting of only word and character embedding

inputs respectively. Examining W-Hybrid’s metrics suggests that the convolutional

filters learned are somewhat noisy, resulting in lower performance compared to the

LSTM-only baseline as the attention component of the models are in the upper LSTM

layers. However, the addition of the character component provides missing informa-

tion to allow the Hybrid model to outperform all baselines, overcoming the reduced

attention ability of the individual CNN-LSTM component interactions. This com-

pounding effect is present in both the L4 and nfl6 collection but does not pertain

to the WebAP collection. As mentioned in the previous section, the small amount

of training examples allows the C-Hybrid component to achieve the highest metrics

regardless of the embedding origin. This discrepancy can be attributed to the train-

ing process, where the weights associated with the word models converge much faster

32



than the character based network. As such, the lexical gap between training and test

sets in WebAP is exacerbated by the reliance on the quickly converging word network

despite the addition of the character network.

3.2.6.3 Local vs Pre-trained Embeddings

Viewing the results from an embedding initialization perspective, conventional

word based models drop in performance when using pretrained embeddings on all

collections. As discussed in Section 3.1.2.4, updating word embeddings during train-

ing allows for a richer representation for the network to use in the hidden layers.

The collection least effected by this drift in information from pretrained to local em-

bedding is the WebAP collection. We attribute this to the lower volume of training

examples seen compared to the L4 and nfl6 datasets.

Unlike the BiLSTM network, implementing a convolutional layer as input over

the word embeddings causes the upper layers to become less sensitive towards the

type of embedding used. However, only the Hybrid model has the most consistent

performance on the pretrained embeddings, significantly outperforming models using

local embeddings. The Hybrid model allows for this robustness to embedding source

by dynamically leveraging the character embeddings to bridge the gap between word

embedding initializations. This is exemplified on noisier collections such as nfl6, where

even the W-Hybrid model suffers when moving from local to pretrained embeddings.

3.3 Discussion Of Negative Results
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Model Trained Transfer P@1 MRR

BM25 N/A WebAP .3000 .4120
BiLSTM [129] L4+nfl6 WebAP .0941 .2116
W-Hybrid L4+nfl6 WebAP .1176 .2718
C-Hybrid L4+nfl6 WebAP .1602* .2937*
Hybrid L4+nfl6 WebAP .1836* .3115*

Table 3.6: Performance of networks cross-trained on the yahoo CQA data and eval-
uated on the WebAP collection. BM25 score is included for reference. * denotes
significance with p < .05 with respect to baselines using two-tailed t test.

As the Hybrid architecture discussed in Section 3.2 involves a substantial amount

of components, we discuss alternative constructions or hyperparameters which failed

to achieve the same level of performance. We initially constructed the architecture

such that the character and word convolutions were pooled together prior to con-

structing the phrase embedding. While the model still converged, its performance

on L4 was comparable to the base W-Hybrid in Table 3.5. We attribute this to the

learning rate between the Character based representation and the Word components.

As observed in Figure 3.4, the word component is able to quickly achieve an effec-

tive relevance function as opposed to the character component. This characteristic

could then result in the character information being discarded in the upper LSTM

components given the quick convergence of the word level information. Only after

separating them to individual components did we observe the performance gained

Figure 3.4: A compressed representation of the Hybrid architecture.
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from the character level information. As the same learning rate was used for all pa-

rameters of the model, possibly setting individual learning rates for each component

or pre-training the character subnetwork might also be a viable solution to the above

architecture not performing.
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CHAPTER 4

INCORPORATING ADDITIONAL INFORMATION FOR
RETRIEVAL

The class imbalance in IR collections is one of the core challenges of training a

successful neural retrieval model. This imbalance results in only a handful of relevant

documents for each query, which results in a poor setting for neural models. As seen

in all current neural retrieval models [73, 83, 40], as well as the work introduced in

Chapter 2, training neural models involves heavily under-sampling negative docu-

ments and over-sampling relevant instances. While selective over-sampling results in

an effective model for reranking, this biases the model towards performance on a cer-

tain area of the collection manifold and does not optimize performance over the whole

collection [84]. As discussed in Wang et al. [133], this approach results in discarding

potentially informative negative samples, and over-sampling relevant documents via

increasing the presence of the minority class contributes redundant data at the risk

of overfitting.

Therefore, in this Chapter we address two approaches to remedy this issue. In

Section 4.1 we introduce a method that improves robustness when a neural model is

exposed to a new subdomain of a collection unseen during training. Following that,

Section 4.2 provides a policy based method of meta-learning that strives to expose a

neural retrieval model to as much of the collection as possible while still maintaining

IR performance.
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4.1 Ensuring Subdomain Robustness

Neural IR models typically learn to distinguish between the input feature distribu-

tions corresponding to a relevant and a less relevant query-document pair by observing

a large number of relevant and non-relevant samples during training. However, as Mi-

tra et al. [83] discuss, the ability to learn new features may come at the cost of poor

generalization and performance on subdomains not observed during training. The

model, for example, may observe that certain pairs of phrases—, “Theresa May” and

“Prime Minister”—co-occur together more often than others in the training corpus.

During the training of these models, as the neural model continually sees the

same relevant document, the model may conclude that it is more important to learn a

good representation for “Theresa May” than for “John Major” based on their relative

frequency of occurrences in training queries and document. While these correlations

and distributions are important if our goal is to achieve the best performance on only

a portion of the collection, the model must learn to be more robust across subdomains

if we instead care about “out of box” performance on new queries that cover a larger

portion of the collection. In contrast, traditional term based retrieval models and LTR

models based on aggregated count based features—that make fewer distributional

assumptions—typically exhibit more robust cross subdomain performance.

We propose training deep neural ranking models using an adversarial component

to intentionally ablate information local to only single domains that is not vital to

determining relevance.

4.1.1 Cross subdomain regularization using adversarial learning

We train our neural ranking model on a small set of subdomains and evaluate

its performance on held out subdomains. During training, we combine our ranking

model with an adversarial discriminator that tries to predict the subdomain of the

training sample based on the representations learned by the ranking model.

37



biLSTM and 

pooling layers

biLSTM and 

pooling layers 

with attention

cosine 

sim

adversarial discriminator (LSTM)

𝑦

Ԧ𝑧

query

doc

Figure 4.1: CosSim w/ adversarial discriminator
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Figure 4.2: Duet-distributed w/ adversarial discriminator

Figure 4.3: Cross subdomain regularization of the two baseline models—CosSim and
Duet-distributed—using an adversarial discriminator. The discriminator inspects the
learned representations of the ranking model and provides a negative feedback signal
for any representation that aids subdomain discrimination.

The motivation of the adversarial discriminator is to force the neural model to

learn subdomain independent features that are useful to estimate relevance. We

propose using an adversarial agent to force the features learned by the ranking model

to be subdomain agnostic by shifting the model parameters in the opposite direction

to subdomain specific spaces on the manifold. This cross subdomain regularization

via subdomain confusion [124] can be represented as a joint loss function:

L = Lrel(q, docr, dnr, θD, θrel)

+ λ ·
(
Ladv(q, docr, θD) + Ladv(q, docnr, θD)

) (4.1)

where Lrel is a relevance based loss function and Ladv is the adversarial discrimi-

nator loss. q, docr, and docnr are the query, the relevant document, and the non-

relevant documents, respectively. Finally, θrel and θD are the parameters for the

relevance and the adversarial models, respectively. λ determines how strongly the
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subdomain confusion loss should impact the optimization process. We treat it as

a hyper-parameter in our training regime. The ranking model is trained on a set

of subdomains Dtrain = {d1, . . . , dk} separate from the set of held out subdomains

Dtest = {dk+1, . . . , dn} on which it is evaluated.

The discriminator is a classifier that inspects the outputs of the hidden layers of

the ranking model, and tries to predict the subdomain dtrue ∈ Dtrain of the training

sample. The discriminator is trained using a standard cross-entropy loss.

Ladv(q, doc, θD) = −log
(
p(dtrue|q, doc, θD)

)
(4.2)

p(dtrue|q, doc, θD) =
exp(ztrue)∑

j∈Dtrain
exp(zj)

(4.3)

Gradient updates are performed via backpropagation through all subsequent lay-

ers, including those belonging to the ranking model. However, as proposed by Ganin

et al. [31], we utilize a gradient reversal layer. This layer transforms the standard

gradient, δLadv

δθ
to its additive inverse, − δLadv

δθrel
. This results in θrel maximizing the sub-

domain identification loss, while still allowing θD to learn to discriminate subdomains.

While not directly optimized, this can be viewed as modifying (1) via a sign change

for Ladv.

4.1.1.0.1 Passage Retrieval Models We evaluate our adversarial learning ap-

proach on the passage retrieval task. We employ the neural ranking model proposed

by [118]—referred to as CosSim in the remaining sections—and the Duet model [84]

as our baselines. Our focus in this paper is on learning subdomain agnostic text repre-

sentations. Therefore, similar to Zamani et al. [150], we only consider the distributed

sub-network of the Duet model.

The CosSim model is an LSTM-based interaction focused architecture. We train

the CosSim model in the same manner as [118], with a margin of 0.2 over a hinge

39



CosSim Duet-Dist.
source → target Size Original Adv Original Adv

All→All 142627 0.6188 0.6214(+.4%) 0.6136 0.6061(-1%)†

All*→Sports 139000 0.5194 0.5925(+12%)† 0.4567 0.5011(+10%)†

All*→Home 133372 0.5275 0.5433(+3%)† 0.5285 0.5457(+3%)†

All*→Politics 138739 0.5101 0.5507(+8%)† 0.5291 0.5342(+3%)†

All*→Travel 140150 0.4486 0.4723(+5%)† 0.4196 0.4532(+8%)†

Table 4.1: Performance across L4 topics under MRR. All* is the entire L4 collection
with target topic removed. † represents significance against non adversarial model
(p < 0.05, Wilcoxon test)

loss function. The Duet-distributed is trained by maximizing the log likelihood of the

correct passage, as originally proposed in [84]. Similar to [87], we adapt the hyper-

parameters of the Duet model for passage retrieval. The output of the Hadamard

product is significantly reduced by taking the max pooled representation, the query

length is expanded to 20 from 8 tokens, and the max document length is reduced to

300 from the original 1000 tokens.

As opposed to past uses of adversarial approaches [31, 45, 124], ranking requires mod-

eling an interaction between the query and the document. As shown in Figure 4.1, the

adversarial discriminator in our setting, therefore, inspects the joint query-document

representation learned by the neural ranking models. For deeper architectures, such

as the Duet-distributed, we allow the discriminator to inspect additional layers within

the ranking model, as shown in Figure 4.2.

4.1.2 Experiments

4.1.2.1 Data

L4 We use Yahoo’s Webscope L4 high quality ”Manner” collection [113]. For

evaluation and training, all answers that were not the highest voted were removed

from the collection to reduce label noise during training and provide a better judgment

of performance during evaluation. Training, development, and test sets were created
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CosSim Duet-Dist.
source → target Original Adv Original Adv

(InsuranceQA, L4)→ WebAP 0.2410 0.3873 0.1250 0.4567
(InsuranceQA, WebAP)→ L4 0.2957 0.4335† 0.0758 0.193
(L4, WebAP)→ InsuranceQA 0.4267 0.4717† 0.0489 0.1473

Table 4.2: Performance across collections, where metrics under each collections rep-
resents the performance of the model trained on the opposing two collections. †
represents significance against non adversarial model (p < 0.05, Wilcoxon test)

from a 80-10-10 split. Telescoping is used to create answer pools for evaluation from

the top 10 BM25 retrieved answers as in [21].

InsuranceQA In the InsuranceQA dataset, questions are created from real user

submissions and the high quality answers come from insurance professionals. The

dataset consists of 12,887 QA pairs for training, 1,000 pairs for validation, and two

tests sets containing 1,800 pairs. For testing, each of the 1,800 QA pairs is evaluated

with 499 randomly sampled candidate answers.

WebAP As both L4 and InsuranceQA are based on isolated passage retrieval for a

directed question, we include the WebAP collection from Keikha et al. [55] to examine

how well a model trained on isolated passages with specific questions can generalize

to a more general passage retrieval task. The format of this collection consists of 82

TREC queries with a total of 8,027 answer passages in total. As only relevant answer

passages are annotated in this collection, we create non-relevant documents by using

a sliding window of random size. Evaluation is done over a telescoped list of top 100

BM25 retrieved documents.

4.1.2.2 Training

We experimented with two different training settings—updating the ranking model

and the discriminator parameters alternately as proposed by [32], and simultaneously.

We also tried different values for λ. Based on our validation results, we choose to
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train the CosSim model with alternate updates and λ = 1. For the Duet-distributed

model, we see best performance with simultaneous updates and λ = 0.25. All models

were trained with PyTorch 1 and we implement early stopping based on the validation

set.

4.1.2.3 Evaluation

We evaluate our proposed adversarial approach to cross subdomain regularization

under two settings. Under the cross topic setup, we consider the 25 topics in the

L4 dataset. We evaluate separately on four of these topics—Sports, Home, Politics,

and Travel—each time training the corresponding models on the remaining 24 top-

ics. For the cross collection setup, we consider all three collections introduced in

Section 4.1.2.1. Similar to the cross topic setting, we evaluate our models on each

collection individually while training on the remaining two. However, due to more

pronounced differences in both size and distributions between these collections—as

compared to the differences between the L4 topics—our basic adversarial approach

had limited success on the cross collection task. Thus, we adopt two additional

changes to our training regime:

(i) we sample the training data from the training collections equally to avoid over-

fitting to any single collection, and

(ii) we feed training samples from the evaluation collection to the adversarial dis-

criminator.

We make sure that the training samples from the evaluation collection have no overlap

with the test samples. In addition, we clarify that the ranking model receives no

parameter updates from these training samples with respect to relevance judgments.

These samples are only used to train the discriminator model’s loss. This training

1https://github.com/pytorch/pytorch
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setup may be appropriate when we want to train on some collections and evaluate on

a different collection, where we can leverage the unlabeled documents from the target

collection to at least guide the training of the adversarial component.

4.1.3 Results and Discussion

Cross Topic Table 4.1 show the poor performance of the CosSim and Duet-

distributed models on the four target topics when trained on the remaining collection.

Notably, training on the topic specific data alone also performs poorly likely because

of inadequate training data. However, in the presence of the adversarial discrimi-

nator both the models show significant improvement in performance on all held out

topics. The improvements are somewhat bigger on the Duet-distributed baseline. We

posit this is because the Duet-distributed model—with a deeper architecture—fits

the training subdomain better at the cost of further loss in performance on the held

out subdomains. Therefore, the adversarial learning has a stronger regularization

opportunity on the Duet-distributed model.

Cross Collection In a similar vein as the cross topic evaluation, the incorporation

of the adversarial signal significantly increases performance on the held out collec-

tions in Table 4.2. However, the difference in both size and distributional properties

between these collections are far greater. Therefore, while the addition of the adver-

sarial discriminator results in significant improvements—the absolute performance

on the held out collections are still modest, even with adversarial regularization. We

interpret these results as a reminder of the challenges in adapting these models to

unseen subdomains.

4.1.4 Negative Results

As observed in subsequent work [2], the gradient reversal process can significantly

disrupt the training process as it is actively ablating useful transformations to mini-

mize Lrel. This ablation then has the possibility to shift key parameters that upper
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layers rely on, destabilizing the model. We observe that the negative gradient learning

rate is very sensitive, potentially causing the model to diverge even when used with

learning rate values that are amenable to standard training regimes. Furthermore,

the reversal process cannot occur on every step, nor too soon in the training, as the

forward relevance model needs to achieve a stable representation that is robust to the

noise introduced via the adversarial regularization approach.

Furthermore, the adversarial component is sensitive to the input location to the

original IR architecture. While the LSTM based model demonstrated robustness

across layers, the Duet architecture required multiple gradient reversal inputs to

achieve the desired effect.

4.2 Learning a Negative Sampling Policy for Full Collection

Coverage

We now approach fully covering the collection from a sampling perspective as

opposed to regularization in the previous section. For most work, heuristic sampling

approaches, or policies, are created based off of domain experts, such as choosing

samples with high BM25 scores or a random process over candidate documents to

handle the class imbalance problem to avoid overfitting. However, these sampling

approaches are done with the test distribution in mind. In this work, we demonstrate

that the method chosen to sample negative documents during training plays a critical

role in both the stability of training, as well as overall performance. Furthermore,

we establish that using reinforcement learning to optimize a policy over a set of sam-

pling functions can significantly reduce performance variance over standard training

practices with respect to IR metrics and is robust to initial parameter values.

We decompose the training of a neural IR model into two components: an en-

vironment, which optimizes the IR model, and an agent, which learns to control

the optimization process by selecting documents for the IR model to rank. Within
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this paradigm, past approaches of choosing a negative document randomly or from a

retrieved BM25 list are represented as handcrafted sampling policies.

4.2.1 Markov Decision Process

We demonstrate that the negative sampling problem can be formalized as a

Markov Decision Process [115] via the tuple (S,A,R, P, R, d0, γ). Here, S represents

the set of possible states the agent can be in, A is the set of possible actions the agent

can select, and R ⊂ (rmin, rmax) such that rmin > −∞, rmax <∞ is the set of possible

rewards that the agent can receive. P is the transition function, S ×A× S → [0, 1],

such that P (s, a, s′) := Pr(St+1 = s′|St = s, At = a) is the transition function that

characterizes the distribution over states at time t+1 given the state St and action At

at time t. R then represents the reward function that characterizes the distribution

R(s, a, s′, r) := Pr(Rt = r|St = s, At = a, St+1 = s′) such that it maps the agent’s

action between states s, s′ to a real value. Lastly, d0 := Pr(S0 = s) represents the

initial state distribution, and γ ∈ [0, 1] is the reward discount parameter.

We call the method an agent uses to select an action a policy. A policy, π : S ×

A × Rn → [0, 1], is a function parameterized by a weight vector, θ ∈ Rn where

π(s, a, θ) := Pr(At = a|St = s, θ). An agent’s goal is to approximate a policy that

maximizes the expected sum of discounted rewards. This goal is denoted with the

objective function, J(θ) := E[G|θ], where G =
∑∞

t=0 γ
tRt is called the return and

conditioning on θ means actions will be selected according to the policy π using the

weights θ. We assume at some finite number of time-steps, T , the agent enters a

special state called a terminal absorbing state where all the actions transitions back

into this state with probability one and all rewards are zero. The interval of time

t ∈ [0, T ] is called an episode and when t = T the episode ends and time is reset to

t = 0. In the environment used in this paper, an episode represents the training of a

neural IR model over multiple epochs until an early stopping condition is met.
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4.2.1.1 Action

A is a set of retrieval functions, f : Q × C → Cr over the retrieval collection

C given queries Q and produces a ranked set Cr. Thus, the agent selects an action

within the functional space of the document collection rather than choosing individual

documents to sample. In this paper, we restrict this space to two functions, BM25

and a random distribution d ∼ U(C). Once the action is selected, an independent

process then samples from the set of documents retrieved from this function.

4.2.1.2 State

S is a combination of information regarding the IR-Model and the Training Data

as shown in Figure 4.4. Specifically, s ∈ S contains two parts: (1) information about

the incoming batch with respect to queries and positive documents. (2) information

regarding the state of the IR model and training process.

We represent the state set S as a combination of the current batch and the features

of the neural model. The neural retrieval model is represented as the vector

< L(bt−1, ηt−1), β||∇L(bt−1, ηt−1)||2,
t

Te
, e >

where L(bt−1, ηt−1) is the loss of the network from the previous batch given the net-

work’s parameters ηt−1, ||∇L(bt−1, ηt−1)||2 is the `2 norm of the gradient in the top n

layers of the neural model multiplied by a constant size β. The β parameter is intro-

duced as a scaling factor due to the use of a deep reinforcement learning (RL) agent

to bound feature ranges [116]. While neural networks perform best with normalized

inputs, this plays a critical role for RL where significant changes in state can result

in the distribution over actions collapsing to a single point. As the magnitude of the

gradient grows with the number of parameters, β acts as a normalization constant to

prevent the agent from collapsing. Lastly, the current step in the epoch, t is normal-
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ized with the total number of steps Te in each epoch, and the current epoch number,

e, is included.

As seen in Figure 4.4, in addition to the above features, the agent also receives

a compressed representation of the incoming minibatch containing information re-

garding the query and relevant document pairs as well as similarity statistics over

candidate documents. The compressed representation is done at the query-passage

level. For a given sequence w1, . . . , wn, we introduce the compression function that

represents a weighted term frequency based embedding. Formally, this function, φ,

leverages an embedding function fe and term frequency information:

φ(wn1 ) =
n∑
i

fe(wi)

Each query is represented alongside a relevant document in the matrix B ∈ R2|b|×d

such that

B = [φ(Q1), φ(D1r), . . . , φ(Q|b|), φ(D|b|r)]
ᵀ

where |b| is the number of queries in the minibatch and de is the embedding size

of φ. The advantage of structuring the batch in this representation allows for a

series of wide convolutions to be pulled to learn a distributed representation of the

state with respect to the query and positive examples. A feedforward approach was

experimented with, but failed to yield performance better than random.

4.2.1.3 Reward

As discussed by Ng et al. [88], seemingly intuitive reward functions result in dras-

tically different behaviour than what was expected. While reward shaping is still an

active field of research, the authors suggest only rewarding for the event you want

the agent to learn to maximize. We want the agent to learn to maximize the IR
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Figure 4.4: Break down of state information and agent architecture.

model’s performance on the validation set during training. To this end, we consider

the following three reward functions: Rraw,Rceil and Rdiff. The function Rraw rewards

the agent using the mean average precision (MAP) score on held out query set, i.e.,

Rt = MAP (q, ηt), where MAP is a function that computes the MAP score on a set

of queries q, using an IR model with weights ηt. For this reward function the agent

needs to maximize the sum of MAP scores the IR models can achieve. The function

Rceil rewards the agent using the difference of the maximum possible MAP score on

the collection, mmax, and the current MAP score, i.e., Rt = MAP (q, ηt) − mmax.

With this reward function the agent tries to maximize the sum of rewards, which

is non-positive. The hope is the agent will learn to minimize the time it takes to

converge the IR model. The last reward function we define, Rdiff, is computed from

the change in the IR model’s performance, i.e., Rt = MAP (q, ηt+1) −MAP (q, ηt).

With this reward function the agent has to learn to maximize the change in the IR

model’s performance, MAP (q, ηT )−MAP (q, η0). Consider the following,
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Rt+1 +Rt = MAP (q, ηt+2)−MAP (q, ηt+1) (4.4)

+MAP (q, ηt+1)−MAP (q, ηt) (4.5)

= MAP (q, ηt+2)−MAP (q, ηt), (4.6)

for t ∈ [0, T − 1]. Therefore, when γ = 1 the agent maximizes the return,

T−1∑
t=0

γtRt =
T−1∑
t=0

γt(MAP (q, ηt+1)−MAP (q, ηt) (4.7)

=
T−3∑
t=0

γt(MAP (q, ηt+1))−MAP (q, ηt) (4.8)

+MAP (q, ηT )−MAP (q, ηT−2) (4.9)

= MAP (q, ηT )−MAP (q, η0). (4.10)

This property can be made to hold true for all γ ∈ [0, 1] if the reward function is

modified to be Rt = γMAP (q, ηt+1)−MAP (q, ηt). This reward function is a potential

based reward function similar to that used in reward shaping [88]2. However, when

γ < 1 the agent is tasked with maximizing γTMAP (q, ηT )−MAP (q, η0), which does

not reflect our intended objective. In our evaluation of agent performance using Rdiff

we set γ = 1.

4.2.1.4 Gamma

We select γ = 0.995 for L4 and γ = 0.999 for Robust04. While γ = 1 follows from

the reward shaping formulation, its role in the MDP heavily influences the difficulty

of training the agent. The selection of γ reflects a balance between ease of learning a

policy with a smaller γ and the performance of the policy using a larger γ.

2To make Rdiff a potential based reward that preserves optimal when added to another reward
function the following reward function can be used: γϕ(ηt+1)−ϕ(ηt), where ϕ(ηk) = γMAP (q, ηk)−
MAP (q, η0)
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4.2.2 Agent

In this section, we discuss the agent and the approach used to learn a policy.

Algorithm 1: Approach for learning a policy based control method.

Input: Episode limit L, IR Model fIR, Training Data, Dtr, and Validation
Data ,Dval

tr , Reward function R, Stop Condition stop, and initial policy π
for episode l = 1 to L do

t = 0
initialize state s0 from fIR, Dtrt

while not stop(fIR, D
val
tr ) do

at ∼ π(st)
Take action at and generate negative set D−

Update fIR with {Dtrt , D
−}

Observe s′ = st+1, r ←− R(fIR, D
val
tr )

Update Agent via Eq. 4.12,4.13,4.14
t← t+ 1

4.2.2.1 Agent Architecture

Given the distributed representation of S, neural models are prime candidates for

this approach due to their ability to transform the input space into a linearly separable

decision boundary. However, the depth of the network is a critical component as non

linear function approximations significantly contribute to divergence when learning

a policy. Thus, we choose a shallow network to reduce stability issues shown in

Figure 4.4.

As each state is generated from a standard minibatch with only relative locations

playing an important role, we adopt a convolutional perspective. This approach suits

the S distribution as there are two stages of processing. First, a small two dimen-

sional convolutional kernel is used to match neighboring φ(qi), φ(dir) embeddings in

Bi. This is convolved with a large |b|
2

filter size with zero padding to learn a general

batch difficulty representation. This representation is then max-pooled and passed

to three affine transformations of dimensions [500,—A|, |A|]. As discussed in the fol-

lowing section, a softmax is then taken and sampled to determine the action ai. This
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model architecture is used for both the actor and critic with the exception of the final

layer, which maps to a scalar value of the state for the critic.

4.2.2.2 Policy Gradient

Many RL methods exist to optimize the agent’s policy, π. In this work, we focus

on the family of algorithms known as policy gradient methods. That is, we employ

algorithms which approximately optimize J(θ) via gradient ascent with respect to

policy parameters θ, i.e., ∇J(θ). An expression for this gradient is given by the

policy gradient theorem [116], which, states that

∇J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

(π(s, a, θ)(qπ(s, a)− b(s))∂ lnπ(s, a, θ)

∂θ
, (4.11)

where dπ(s) :=
∑∞

t=0 γ
t Pr(St = s) and b(s) is a state dependent baseline, i.e, an

estimate of the value function vπ(s). In practice, one can use the REINFORCE algo-

rithm [137] to estimate the gradient using Monte-Carlo simulation, replacing qπ(s, a)

with the observed return from state s and taking action a. However, this method has

high variance and updates after an episode which makes it a poor fit for this setting.

The Actor-Critic algorithm [115] is a policy gradient method that performs online

updates and estimates qπ(s, a) with a lower variance, but biased approximation. An

actor-critic algorithm is composed of two parts — an actor (the policy) and a critic

that evaluates the quality of the actor’s choices. The critic component in this work

uses a neural network to approximate the state value function and is trained with

temporal difference learning (TD). The TD-error, δt, is the difference of predicted

value of the state St and the prediction after observing the reward Rt and next state

St+1, i.e., δt = Rt + γfv(St+1) − fv(St), where fv is a function that estimate vπ(s)
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with weights v ∈ Rn. This prediction error is used to update both the policy, π, and

function approximator fv. The following updates define the actor critic algorithm:

δt = Rt + γfv(St+1)− fv(St) (4.12)

v = v + αvδt
∂

∂v
fv(St) (4.13)

θ = θ + αθδt
∂

∂θ
lnπ(St, At, θ) (4.14)

where αv and αθ are positive scalar learning rates.

In addition to the actor-critic algorithm we also experiment with the Proximal

Policy Optimization (PPO) [106], an off-policy actor critic algorithm. Off-policy

algorithms optimize the policy π using data collected from some other policy πold.

These algorithms introduce an additional optimization challenge as the distribution of

data collected using πold does not match the data distribution of π. This distribution

mismatch can be corrected using importance sampling [99], but increases the variance

of the gradient estimates. In our experiments below, actor-critic outperforms PPO.

4.2.3 Experiments

In this section, we describe the baseline approaches, data used, and IR models

evaluated. Succinctly, we train and evaluate the learned policy on two different IR

models over two different collections. Once the agent has converged as evidenced

by performance of the IR model on the validation set, we evaluate the IR model’s

performance.

4.2.4 Collections

We use two diverse collections, each representing a different negative sampling

choice. The first collection, Yahoo’s Webscope L4 3 represents an answer passage

3https://webscope.sandbox.yahoo.com
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Figure 4.5: Actor-Critic Setup with IR Environment

retrieval problem, where there is only one relevant answer in the entire collection.

These questions are filtered from Yahoo Answers that meet the criteria of manner

questions, as discussed in [129] and has approximately 120,000 query-answer pairs.

This collection represents the situation when BM25 is not a strong baseline for rel-

evance [129, 21] and includes the task of identifying effective negative passages for

training as there is only one positive passage with all others acting as negatives.

The second collection, Robust04, consists of 500k news documents from TREC

disks 4 and 5, and the query set consists of 250 title queries (TREC topics 301-

450, 601-600). Here, each query has judged negative documents along with multiple

relevant documents. Furthermore, these judged documents were selected from pooled

retrieval runs that are heavily influenced by term frequency information. Thus, this
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Figure 4.6: Compressed architecture of two neural models used. FF represents a
feedforward layer, fMP is MatchPyramid while fFF is a siamese network with dotted
lines representing shared weights. GloVE weighting layer is excluded in diagram for
fFF

represent the case where labeled information is significantly richer, but there exists

an underlying bias as well as much smaller query set for training.

4.2.4.1 Baselines

We examine naive sampling over all functions in A. Once each function retrieves

a list of candidate negative documents, three approaches are examined. First, a naive

random sampling approach is used over the list. Second, we adapt an uncertainty

sampling based approach, expected error reduction (EER), to select the best neg-

ative document to train on [103]. As EER is performed for active learning where

P (y|D) >> 0 for some class y, this is not true in search, where the majority of a

collection is not relevant to a given query. Thus, given a random document, we as-

sume its correct label is non relevant and arrive at the below representation of EER

adapted to a known class:

dneg = arg max
d∈C\Rq

Pη(r|q, d) logPη(r|q, d)
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where C \ Rq represents the set of documents not labeled relevant for query q, and

Pη(r|q, d) represents the probability given parameters η that document d is relevant

to query q. As the third sampling baseline, we implement an approach leveraging a

distribution based view of information gain [157] referred to as Dynamic-λ.

In addition, as the policy will have access to a larger sampling space than some

of the baselines, we include a random agent to ensure that the policy has learned

something besides a random sampling approach. This is a relatively high baseline

given the curated A function space as well as a random policy acting as a competitive

baseline in [37].

Lastly, we include the performance of IRGAN [130] on only the discriminator.

While the authors state that IRGAN consists of two types of retrieval model and often

one outperforms the other, it can be viewed as learning the most difficult sampling

policy via REINFORCE for the discriminator. Thus, we ignore the generator to

properly compare frameworks. We adopt code provided by the authors and tune for

performance on each model and collection.

4.2.4.2 Neural Retrieval Models

We evaluate the efficacy of sampling methods with two deep neural methods that

provide a challenging control problem for the policy due to the large numbers of

parameters. We introduce two neural models of varying complexity as seen in Fig-

ure 4.6.

First, we introduce a feedforward model, referred to as fFF that is typical of a dis-

tributed neural retrieval model [84]. Using a GloVE initiated embedding, fFF treats

the document as a weighted bag of words similar to [24] with a learned weight for

each term. This is then averaged into a vector representing each query and candidate

document. The lower layers, referred to as fl, are of dimension [2048,1024,512] and

process the query and document independently prior which are then concatenated to
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form a query-document vector < fl(Q), fl(D) >. This is then passed into an upper

feedforward network of dimension [512,300,1]. fFF is trained by maximizing the log

likelihood of the correct document over the sampled set, Cs, via taking the softmax.

As fFF leverages an independent query-document representation, we implement

MatchPyramid (MP) using a cosine similarity function over input embeddings to

demonstrate an interaction based model under policy control [94]. The model is

trained as in the original work by using a cross entropy loss function to learn parameter

weights and is referred to as fMP .

4.2.4.3 Evaluation

We evaluate the policy by examining performance on the held out validation

set during each episode. We examine MAP of the top ranked 100 documents for

Webscope L4 and the top 1000 for Robust04. The smaller scope of L4 was selected

due to the computation costs as there are roughly 12,000 queries in the test set.

Significance between methods are determined via two tailed t-test. However, as we are

examining not only total performance, but consistency across different random seeds

and hyperparameters, we include the Kolmogorov-Smirnov test that measures the

probability of two empirical distribution functions belonging to the same distribution.

Both measurements are evaluated with a significance value of p < 0.05.

4.2.5 Results

In this section, we evaluate the method, AC-IR, over two different retrieval tasks

and neural models. We report distribution information by including mean and stan-

dard deviation. As discussed in previous work [11, 53] and bolstered by the lot-

tery ticket hypothesis [29], examining the max run from multiple experiments leads

to an ineffective evaluation of a stochastic process. After discussing indicators of

performance, we provide analysis into the impact of the reward shaping approach,
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hyper-parameter stability, and lastly, the convergence and stability of the agent over

multiple runs and during training.

Method Webscope L4
fFF fMP

BM25rand 0.0706±.029 0.1631±.064
BM25Dynamic−λ 0.0905±.032 0.2083±.040
BM25EER 0.0919±.031 0.2050±.039
Randomrand 0.0679±.004 0.0727±.011
RandomDynamic−λ 0.0621±.073 0.0915±.005
RandomEER 0.0642±.065 0.0899±.005
IRGANpolicy 0.0557±.038 0.0807±.005

AC-IR 0.1239±.011*† 0.1975±.008†

Random AC-IR 0.0603±.003 0.1026±.040

Robust04
fFF fMP

BM25rand 0.0320±.012 0.056±.015
BM25Dynamic−λ 0.0408±.014 0.0549±.012
BM25EER 0.0409±.012 0.0558±.011
Randomrand 0.0390±.001 0.0518±.015
RandomDynamic−λ 0.0401±.002 0.0597±.022
RandomEER 0.0386±.003 0.0600±.021
IRGANpolicy 0.0394±.006 0.0538±.019

AC-IR 0.0496±007*† 0.107±.046
Random AC-IR 0.0455±.003 0.102±0.048

Table 4.3: Performance of sampling methods with respect to mean average precision.
Mean performance is included with standard deviation. *,† refer to significance to
p < 0.05 compared to highest baseline using Student’s t-test and the Kolmogorov-
Smirnov test respectively.

4.2.6 IR Impact

Looking at the runs in Table 4.3, we observe that AC-IR significantly improves

the consistency of performance on Webscope L4 for both fFF and fMP over multiple

random seeds. In the case of fFF , AC-IR is able to outperform that of the EER

and Dynamic-λ approaches on both collections without explicit access to the model’s
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uncertainty on a new batch. The agent is able to capture this internally using only S

and the reward to infer this information. As an example, we plot performance over

many random seeds in Figure 4.7 on L4, and only AC-IR is capable of consistently

achieving the upper bound of performance when compared to other methods. Fur-

thermore, we identify a bimodal distribution on the BM25 baselines, where the model

either successfully converges to values near the max for the given mode or fails to

learn based off of the initial parameter distribution.

For fMP , AC-IR performs slightly worse than Dynamic-λ on L4 with respect to

both mean and distribution characteristics. However, on the case of Robust04, the

policy significantly outperforms all baselines, and reaches parity with the random

agent. This behaviour is learned, as non-linear RL has a tendency to collapse to a

single action [116], and AC-IR is significantly different than the random policy on all

other collections. Furthermore, the BM25 methods have a greater increase in reward

during initial minibatches, and without an effective policy to converge on, AC-IR

would most likely collapse to BM25.

The result of AC-IR not drastically improving the max reported score is particu-

larly interesting, as unlike standard supervised training collections like CIFAR [59],

the information space over IR collections is significantly larger with respect to Shan-

non entropy. This suggests that the neural models are possibly limited by the number

of linear regions the parameters can operate over as discussed by Montufar et al. [86].

Thus, viewing the functions in A as a set of linear regions, the neural IR models are

exposed to a well defined but narrow area of the manifold via BM25, and a much

larger area via the random process with the possibility that the gradient descent

update might not be informative due to multiple linear regions within a minibatch.

Therefore the upper bound of each neural model is not significantly improved by AC-

IR. However, controlling the type of regions exposed to the model during training
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significantly improves mean performance, as well as the number of runs that fall near

the upper bound of performance.

Lastly, the relatively low performance of IRGAN can be attributed to three issues.

First, REINFORCE is high variance given the static state value b(s) in Equation 9

and the fact that the reward can suffer large changes in certain states, such as if the

IR neural model begins overfitting on the training set. This is further exacerbated

by the depth of the neural retrieval models being used in this experiment. Second,

the authors state that the generator applies a hierarchical softmax, but this is a non

trivial structuring of the sample space [33]. Third, we do not use the generator as a

ranking model as it represents the sampling policy to train the discriminator.

Figure 4.7: Distribution of policy performance using kernel density estimation over
Webscope L4. AC-IR demonstrates performance during convergence.
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Succinctly, the learned functional policy of AC-IR is able to take advantage of the

strong performance of the static policies while ensuring the poor performance regions

of their distributions are not reached.

4.2.6.1 Document Level Actions

While the AC-IR acts over sampling functions, we investigate the capability of

the AC agent to learn a policy to select individual documents. We convert all doc-

uments in the collection to a tf.idf weighted mean embedding, and for each Q,D

in a batch, we create a candidate list of size sd from the tf.idf weighted embedding

of Q via cosine similarity. We use a new action space, AD = N<sd , where the ith

action represents selecting the ith closest document in cosine space. We modify S

to include additional information about the candidate list for each query by a ma-

trix MinRsd×5, where each tf , document length, unique terms, cosine similarity, and

BM25 ranking. As over 91% of queries have a top 100 ranked BM25 document within

the top sd documents in cosine space, the agent should be able to at least collapse

to a BM25 sampling policy which we empirically determined to be a more effective

policy to cosine similarity. However, the agent fails to converge on this new MDP

despite extensive hyperparameter tuning. We investigate this behaviour further by

incorporating imitation learning to identify what kind of signal is required to learn a

BM25 sampling policy in cosine space. Following work by [13], we pretrain the AC

agent using a supervised signal rather than directly with a reward function. In our

case, the signal consists of a binary label for each document indicating whether the

document is also within the top n retrieved BM25 ranked documents for the query.

In theory, the new state space includes enough information to determine rough BM25

rankings indicated by past work in weak supervision [24]. However, even with the

benefit imitation learning the agent still fails to perform better than random.
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Examining the generalization properties of the model trained via imitation learn-

ing, we observe that the agent is only capable of memorizing the rankings BM25

documents until its parameters are saturated. This suggests that for the case of

document selection in an MDP, actions, and thus the corresponding updates to the

policy, should be ranked rather than treated in isolation as potential future work.

4.2.6.2 Agent Training

Convergence and Stability: Previous work has discussed the instability of

both RL and neural networks using the same hyperparameters over training data [53,

116]. In our case, we observe instability during training of both the neural IR model

and the agent. As shown in Figure 4.7, simply changing the random seed significantly

impacts the performance of a neural model on the majority of sampling methods. This

presents a challenging problem for the agent as it must not only identify how well the

neural model is converging based on the agent’s knowledge from past episodes, but

determine the position of this neural model within its performance distribution. The

way we defined the state space cannot fully capture the underlying mechanisms of the

neural IR models. That is the state of the IR model is only visible to the agent and can

be modeled as a partially observable Markov decision process, using the observation

function O : S × O → R≥0, describes the distributions over observations (features),

ψ, given a state S. The state as we have formulated it are only observations and

the actual state remains unknown to the agent. Currently, function approximation

is used to overcome the partial observability and learn a sampling strategy without

knowing exactly on which queries and documents the IR model can rank correctly. If

instead a set of features that provide this missing information were used, the agent

could then learn a policy to that adapts the sampling strategy to explicitly exploit

the current state of the IR model.
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4.2.6.3 Hyper-parameter Case Study

Reward Shaping: We report AC-IR under Rraw,Rceil,Rdiff over the L4 dataset

shown in Table 4.4. The performance of the policy with respect to the IR task

of training an effective model is clearly shown to be captured most by Rdiff, while

Rceil is able to achieve an effective policy for this task albeit in less than 12% of all

runs for only a small number of episodes. However, the optimal policy for Rraw is

drastically different than what we expected and was similar to findings in [88]. In

this case, as the future discounted return Rraw is monotonic with time due to the

inability for MAP to be negative, the agent learns to prolong training as long as

possible. Rather than maximizing the performance, it avoids triggering the early

stopping condition by ensuring small but consistent gains in performance. Given a

long enough training period, this policy produces a greater return than attempting

to maximize the performance of the neural model at a single epoch. While modifying

γ can reduce the total return and make this process easier to learn for the agent, it

becomes another critical hyperparameter that is tied to collection and neural model

characteristics rather than the overall control problem.

Reward Method MAP Convergence Rate

Rdiff 0.1239 31%
Rraw 0.0603 0%
Rceil 0.0671 12%

Table 4.4: Performance of agent trained to optimize different reward functions. MAP
on Webscope L4 with convergence rates greater than random are reported using fFF .

Limiting the Amount of Epochs: As each episode is defined by training

the neural model until the stopping condition is met, we experiment with setting

a limit on the amount of epochs that can occur in each episode to facilitate faster

training of the agent. We set the maximum number of epochs to four, and identify

that this results in better performance for the agent learning from Rceil, but prevents
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an effective policy to be learned under Rdiff. This result supports the reward shaping

motivation discussed in Section 4.2.1.3, as the hard limit on four epochs relieves the

agent operating underRceil from stopping the training as early as possible and instead

focuses on maximizing performance during this time.

Early Stopping: As the IR model will eventually overfit on the test data re-

gardless of the sampling method, the reward on the held out validation set will start

decreasing. This undesirable tail end behaviour can then result in non optimal up-

dates to the policy with respect to the performance of the neural IR model prior to

overfitting. Furthermore, the choice of γ < 1 biases the expected return by discount-

ing the earlier rewards achieved when the IR model was able to generalize to data

outside of the training set. We experiment by increasing the early stopping criteria to

a patience of ten epochs that fail to improve over the validation set. In doing so, we

observe that no agent is able to successfully converge to an effective sampling policy

that’s significantly different than random. This behaviour suggests that the agent

is not capturing the environment fully, as the critic should be able to learn b(s) as

shown in Equation 4.11.

4.2.7 Negative Results

Properly capturing a neural model’s training process over a large number of sam-

ples is a challenging task. As such, there were a number of hypotheses which failed to

outperform the competitive random baseline. The first of which attempted to include

a survey of the collection to inform the agent of its next actions and choose candidate

documents individually. This approach failed to perform better than random, and

highlights some of the shortcomings of the approach introduced above.

Shown in Figure 4.8, MDP2 redefines the problem from selection retrieval functions

to individual documents. This constitutes a new MDP, as we redefine S and A to

include the ranked list of top n documents through BM25, cosine similarity to the
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Figure 4.8: Individual document selection framework.

relevant positive document in doc2vec space [61], or random. The documents are

encoded via ψ, which is similar to the weighted embedding representation φ used in

Section 4.2.1.2, but with tf.idf weight information included. When trained, AC-IR

over MDP2 did not perform significantly better than random, and the agent would

often fail to converge to a stable sampling policy. Recently, Tang and Yang [119]

introduced a way to view large collections as a single state space for effective RL,

possibly remedying the issues experienced in MDP2.
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CHAPTER 5

TOWARDS A UNIVERSAL RETRIEVAL MODEL

As demonstrated in Sections 4.1 and 3.2, neural retrieval models are extremely

sensitive to small perturbations in data. In this chapter, we propose a novel frame-

work to allow for an effective retrieval model over multiple collections with minimal

training.

Figure 5.1: Parallel between multitask RL and URF.

We first introduce an inspection of the information content needed to determine

relevance between two similar QA collections in Section 5.1. We then incorporate

recent advances in RL to cover the specific training regimes often seen in IR training

where a retrieval model individually scores documents which seemingly contradicts the

paradigm seen in RL where the model operates over the entire state space. Lastly, we

extend this work to cover multiple collections, providing the foundations of universal

retrieval functions(URF) which parallels multitask goals in RL environments. Each

collection’s relevance need can be viewed as an individual task over the combined body
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of passages and documents from multiple collections. This setting is commonly seen

in RL, exemplified in gridworld where the task is the goal location, and the general

environment is the structure of the maze as shown in Figure 5.1. Task transfer and

general value functions within RL literature attempt to reduce the cost of learning

a new task given a similar or fixed environment. We extend this work to IR and

move towards a universal retrieval function (URF) such that, when trained, this

URF is capable of effectively performing on a variety of collections. As RL relies on

a formal MDP definition, we model the retrieval process within this framework, and

demonstrate that related prior works in RL naturally extend to conventional training

paradigms of neural information retrieval models.

5.1 Leveraging Linguistic Structures for Retrieval

Identifying the required information to determine relevance plays an integral role

in selecting more effective models and sheds light on what information is safe to

discard. A motivating advantage of neural models over traditional learning to rank

approaches is the ability to learn increasingly abstract features while ignoring a sig-

nificant amount of detail. Leveraging how information is stratified and discarded in

this process provides insight into whether a portion of a document would be use-

ful for closer inspection of a higher quality neural IR model along with its increased

computation cost. Within the field of NLP, there has been a large body of work inves-

tigating what information is useful for these tasks through attention mechanisms [72],

gradient investigation [63], or cell activation [54]. However, direct application of these

techniques for IR tasks results in identifying traditional features [93, 84] such as term

overlap and related words we have demonstrated to be insufficient for the passage

retrieval task.

IR and NLP have close ties given similar neural structure work across the domains,

and with similar models finding success in both domains [158, 108, 50, 25]. In light of
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this advantage of NLP pre-training, we propose viewing IR neural models as trans-

formations on traditional linguistic structures defined through auxiliary NLP tasks

rather than at the traditional term level. This approach portrays relevance features

as a function of distributed NLP features, and while this is not innately interpretable,

the rigid definition of these auxiliary tasks provide a reference to examine how the

IR model leverages these non traditional features based on an IR model’s ability to

transfer relevance information to these tasks.

To demonstrate the degree to which relevance is composed of linguistic informa-

tion, we provide a novel technique leveraging Alain and Bengio’s [6] probe based

methodology and apply it to measure the information loss with respect to related

tasks. As NLP objectives are often highly structured, they provide a more concrete

environment to understand what information is being captured in a network trained

for retrieval.

5.1.1 Method

We investigate the information captured by an IR answer passage deep neural

model by utilizing the intermediate representations of deep neural networks. The

foundation of this work comes from the data processing inequality [22], where given

a Markov chain of successive representations, X → Y → Z, then

I(X;Z) ≤ I(X;Y )

where I(X;Y ) is the mutual information function. Tishby and Zaslvsky [121] show

that layered neural networks form a Markov chain of representations. Thus from

the perspective of deep neural models, each transformation at best can preserve the

information from an earlier layer and the most information available at any point in

a neural model is contained in the lower layers. The advantage of additional layers
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Figure 5.2: An overview of the probe (P) insertion model. The main LSTM model
attempts to evaluate the input for its main task in embedding (E) format, ŷn while
the probes use each layer’s intermediate representation to predict an auxiliary task
ŷt.

is not to add information, but to identify the salient information with respect to the

target, and transform the representation into a linearly separable space.

We apply this inequality to identify what information is discarded by a passage

retrieval model from the perspective of NLP tasks. Specifically, after training an

IR model for answer passage retrieval, we freeze the weights and pass it over POS,

NER, sentiment, and textual entailment datasets. Each hidden state of the IR model

then goes into separate neural networks, or probes, to predict the input’s true NLP

label. The efficacy of the probes’ ability to learn and predict the various NLP tasks

illustrates what linguistic and semantic properties are being discarded by the network

from the base embeddings.

5.1.1.1 Model

In this paper, we implement a multilayer LSTM network similar to the one used in

Chapter 2 that feeds into a series of dense feed forward layers (Figure 5.2). This model
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Table 5.1: Hyperparameters of Main and Probe models with K as the final classes
for a task

Main Model
Layer Dimension Activation

LSTM 1 512 internal: sigmoid, output: tanh
LSTM 2 512 internal: sigmoid, output: tanh
Dense 300 ReLU
Dense 200 ReLU
Dense K -

Probe
Layer Dimension Activation

Dense 300 ReLU
Dense 200 ReLU
Dense K -

has the advantage of being effective for both NLP and non-factoid passage retrieval

while possessing a simple structure lending itself to easier interpretation [118, 74].

The final layer is a dense layer with the number of nodes equal to the number of

classes where a softmax function is taken to create a probability distribution over the

labels. Additional hyperparameters are provided in Table 5.1. We use a dropout rate

of 0.2 over both LSTM outputs during training of the main network for all tasks as

it has been shown to improve the generalizability of deep neural models to unseen

data [151, 154].

5.1.1.2 Auxiliary Networks

In order to provide an approximate upper bound for the internal representation

and information contained in the IR network described in the previous section, we

train additional LSTM networks identical to the IR network dedicated to each auxil-

iary task. The sole difference between these auxiliary LSTM models and the IR model

is the training data and dimension of the final dense layer. The same hyperparam-

eters and training methods were used across all LSTM networks. The difference in

probe performance between those inserted in the IR model and those in the auxiliary
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network can then be viewed as the discarded information with respect to the auxiliary

signal.

5.1.1.3 Probes

We use small multilayer perceptions which accept as input each intermediate layer

of the main LSTM networks. These probes are trained to predict target labels of the

input using only the current hidden layer of the network they are monitoring. Chang-

ing the input of the main IR network to reflect an auxiliary task allows the probes to

effectively become a measurement tool in how much information the main network is

retaining with respect to these auxiliary labels. An illustrative representation of the

setup is shown in Figure 5.2. Any task that requires individual labeling of tokens,

denoted by the dashed probe symbol P, are fed the LSTM and embedding sequences

in temporal order. Text classification tasks receive (1) a max pooled representation

across time of the recurrent layers, (2) a sum of embeddings or (3) direct output from

a dense layer as shown below,

xi =
t
(|hi,t|) (5.1)

x =
∑
w∈S

Embedding(w) (5.2)

x = σ(Whl−1 + b) (5.3)

where x is the vector input into the probe, hi,t is the hidden LSTM layer at dimension

i at time t, w represents the words contained in the sample S, and hl−1 is input into

the dense layer of the main network and the output is passed to the probe.

5.1.1.4 Tasks

We also evaluate the vocabulary overlap between the IR collection and the auxil-

iary task to ensure that the majority of the new input into the IR network has been
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Table 5.2: Vocabulary overlap measured by
Ai∩Bj

Bj
between auxiliary collections (Bj)

and the two IR collections (Ai).

Task L4+nfl6 WikiQA
Unique Total Unique Total

CoNLL 2003 .595 .649 .424 .565
PTB II .769 .815 .584 .673
IMDB .293 .972 .110 .916
SNLI .720 .994 .383 .952

seen during training. As shown in Table 5.2, there is a significant overlap between IR

training and task evaluation vocabulary with the exception of IMDB, which is most

likely due to the movie and actor entities present in the collection.

Core Task: Answer Passage Retrieval: The core IR task being studied is

answer passage retrieval. As mentioned, this task represents a unique challenge when

compared to ad-hoc retrieval and factoid QA. While factoid retrieval often encounters

questions such as “When did James Dean Die” or “How high is Everest?” that require

only one or two tokens to successfully fulfill the information need of the query, passage

retrieval requires information that spans multiple sentences. This integral difference

results in factoid QA networks failing to beat standard tf-idf baselines on answer

passage retrieval tasks as seen in Section 3.1.2.4.

Auxiliary Task: Part of Speech Tagging: Part of speech (POS) tagging is the

task of labeling each word with its syntactic part of speech, e.g. noun, verb, adjective,

based on its use in a sentence. As shown in past work by Bjerva et al. [12], networks

trained on semantic tagging tasks independently capture part of speech information.

As passage retrieval requires semantic processing to bridge the information across

sentences, we investigate the extent to which an answer passage neural model also

captures POS tags.

Auxiliary Task: Named Entity Recognition: While related to POS tagging,

named entity recognition (NER) requires higher level features which often consist
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of POS information, whether latent or explicit, due to the dependencies across a

sentence and additional information required for accurate entity tagging [60, 64]. We

evaluate a NER auxiliary task to see if the core answer passage network dedicates

some of its parameters to capture information pertaining to named entities. Recent

work in deep neural QA [108] has shown that adding named entity overlap between

question and answer significantly improves performance with respect to IR metrics.

The increase in IR metrics suggests that entity information plays an integral role for

modeling relevance.

Auxiliary Task: Sentiment Classification: As a significantly higher level

task compared to POS tagging and NER due to the need to process and compress

an entire sequence, we implement a sentiment classification task. Here, the objective

is to correctly identify whether a sentence denotes a positive or negative view of the

topic. Li et al.’s [63] work in visualizing LSTM networks for sentiment classification

provides insight on what features are important to predict sentiment. The most

critical components are the ability to capture local context around a word, recognize

negation, qualitative adjectives and key verbs.

Auxiliary Task: Textual Entailment: We use a textual entailment task to

evaluate whether information retrieval at the passage level could be viewed as whether

the query provides evidence for a passage to be considered relevant. The goal of this

task is to determine whether two sentences (1) are contradicting each other, (2) are

unrelated, or (3) that the first sentence (the evidence) entails the hypothesis. The

performance of the probes on the core IR model will help disentangle the semantic

information related to entailment over that which relates a query to its relevant pas-

sage. As each example is an ordered pair of sentences, we concatenate the evidence-

hypothesis sentences the same way as query-passage pairs for the answer passage

retrieval task. The evidence serves as the query and the passage represents the hy-
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pothesis. The auxiliary network and probes for this task have a three node dense

final layer to classify entailment, contradiction, and neutral classes.

5.1.1.5 Multitask Inspection

Figure 5.3: Simplified representation of multitask architecture with LSTM1 acting as
shared layer.

As information retained in each layer has some benefit towards determining rele-

vance, we examine the impact of explicitly reinforcing this signal through a multitask

environment using a similar neural structure as Long and Wang [71] where gradients

are passed through task specific sub-networks into larger main model. Thus the probe

remains task dependent while the layer of the IR network it connects to, and those

below it, become shared layers for the multitask objective. This approach retains the

probe inspection method while simultaneously adopting a competitive neural multi-

task framework. As the IR collections do not have gold NLP labels for training, we

use the trained auxiliary NLP networks to create pseudo labels for training.

The structure of the multitask architecture consists of the main model hyperpa-

rameters described in Table 5.1. The corresponding task-specific substructures are

mirrored. Thus if the shared layer is LSTM 1, then LSTM 2 and the subsequent feed-

forward hyperparameters are used for both tasks with no weight sharing. A depiction
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of this setup is exemplified in Figure 5.3. The multitask model is optimized via the

joint loss function

L = Laux + LIR (5.4)

where Laux and LIR are the respective loss functions used for single task training

discussed in the following section.

5.1.1.6 Training

We use Adam for optimizing both the main models as well as the probes with

a cross-entropy loss function and a learning rate of 10−3 , which provides a robust

value for training [57]. Each main model was trained via PyTorch1 over a 80-10-10

train, development, and test partition and was stopped after the best validation loss

did not improve for four epochs as a form of early stopping. Each probe was trained,

validated, and tested on the same data to measure the amount of information captured

by the main model rather than the probe’s ability to generalize.

Input into the IR network is done in a similar manner to past work [128] by

concatenating question and passage text with an end-of-sentence (EOS) token as

shown below.

< q1, . . . , qn > + < EOS > + < a1, . . . , am >

This allows for query passage interaction while still being easily adaptable to

processing input from auxiliary tasks. In the case of the NLP tasks that do not

have text pairs to partition with <EOS>, we feed the text in directly to simulate

the query stage of an IR task, and then we train another set of probes on samples

where <EOS> is prepended to the same the sample. The IR network views this as

1https://github.com/pytorch/pytorch
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an empty query and a candidate passage, which enables us to identify how captured

information differs for the same text as query and passage in the IR main network.

All tokens are expressed as GLOVE 300D embeddings 2 [96]. In order to provide a

consistent text representation across all tasks, we do not update the initial embeddings

during training at any point. This represents a common baseline across all models.

5.1.1.7 Datasets

Answer Passage Retrieval: We combine the Yahoo’s Webscope L4 and the

noisier nfl6 collections and refer to it as the CQA collection for the remainder of this

framework. In addition, to determine whether there is a distribution of information

specific to that determining the relevance of answer passages, we include a shorter

factoid retrieval collection: WikiQA [145]. The average length of the L4 and nfl6

answer passages are 92 and 60 words respectively, while WikiQA sentences have an

average length of 25 words.

Part of Speech Tagging: The collection used for evaluating this auxiliary task

is the Wall Street Journal set from Penn Treebank III [76]. As mentioned, POS probes

are inserted only into the temporal (LSTM and embedding) layers of the core network.

The POS auxiliary main network was trained over 46 POS using the standard train

(0-20), validation (21, 22), and test (23, 24) splits as seen in past work [81].

Named Entity Recognition: We use the CoNLL-2003 NER for training and

evaluation [105] and use MISC, LOC, ORG, PERS, O tags over the standard BIO

annotation (Begin, Inside, Outside). This was done to investigate whether the IR

main model is able to identify and differentiate among the classes over the more

detailed task of determining whether a token is the beginning of a phrase or inside it.

Sentiment Classification: Like past work [63], we use the Internet Movie

Database (IMDB) review collection [75] where a movie review is either positive or

2http://nlp.stanford.edu/data/glove.840B.300d.zip
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negative with 25k samples for each label. We use binary cross entropy to evaluate

this task.

Textual Entailment: We use Stanford’s Natural Language Inference (SNLI)

corpus [14]. This entailment set is a collection of 570k human-written English sen-

tence pairs with labels of entailment (183,416), contradiction (183,187), and neutral

(182,764). We discard the 785 samples that do not fall under one of these three labels.

Each sample is an ordered pair of sentences, one that serves as the evidence and the

following that is a hypothesis. The auxiliary network and probes for this task have a

three node dense final layer to classify entailment, contradiction, and neutral classes.

Figure 5.4: Performance of probes over each layer on all auxiliary tasks as queries.
IR represents the probes inserted into the answer passage network and Auxiliary
represents probes inserted into the identical network trained for the auxiliary task.
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5.1.2 Results and Discussion

As shown in Table 5.3, there is a steady decline in information loss as the initial

embeddings flow up through the layers. Following work found in computer vision [148]

where each layer captures increasingly abstract representations, the answer passage

model also reflects this tendency. Lower level POS and NER information is captured

consistently in the first LSTM layer and discarded in the upper layers, while the

abstract entailment information persists into the model’s upper layers, even sharing

some of the transformations needed to determine passage relevance. This reinforces

the analysis done by Søogaard and Goldberg [111], where they had greater success

with a neural architecture that supervised POS information at the lower layers for

multitask learning. Lastly, we show that two seemingly similar IR tasks that are

considered closely related have significantly different information needs.

Part of Speech Tagging: The performance during training (Figure 5.4) high-

lights the large degree of stratification of information that the IR network is under-

going when learning relevance. Reflected in the loss function, the initial embeddings

retain the most POS information while the subsequent LSTM layers suffer a decrease

in F1 within the IR model. However, moving from the first to second LSTM layer

in the core IR model receives a much greater 50% loss in performance. This large

degradation suggests that as a somewhat low level feature, POS information is still

captured in the hidden representation of the higher LSTM layer albeit in a much

weaker representation. The slower slope of the loss function on LSTM2 and signifi-

cantly degraded F1 score, combined with Palangi et al.’s [93] work on LSTM networks

learning a rough topical model, suggests that the probe is learning to recognize more

abstract topical representations and mapping them to POS labels. The difference in

performance across query and passage representations indicates that the IR network

attends to POS information equally.
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Table 5.3: F1 score for NER and POS, and Accuracy for Sentiment and Entailment
tasks of each layer of the IR network over auxiliary NLP tasks with input treated as
the query. Aux in the second column represents the probes inserted into an identical
LSTM network trained directly on the auxiliary task. Parenthesis indicates perfor-
mance difference when placing <EOS> prior to sample input, bold shows best layer
on each task, and ‘-’ is a space placeholder as the values cannot be computed given
the mean pooling after the LSTM component.

CQA

Layer NER POS Sentiment Entailment

IR Aux IR Aux IR Aux IR Aux

Random .200 .022 .500 .333
Embedding .963 .917 .844 .590

LSTM1 .927(-.001) .987 .751(-.001) .951 .721(-.004) .900 .522(+.036) .715
LSTM2 .810(-.002) .987 .305(-.002) .954 .666(-.001) .900 .518(+.040) .873
Dense300 - - - - .689(-.005) .926 .527(+.039) .877
Dense200 - - - - .668(-.007) .932 .454(+.031) .881
Densey - - - - .498(+.006) .934 .366(-.008) .885

WikiQA

Layer NER POS Sentiment Entailment

IR Aux IR Aux IR Aux IR Aux

Random .200 .022 .500 .333
Embedding .963 .917 .844 .590

LSTM1 .934(-.001) .987 .794(-.000) .951 .638(+.001) .900 .464(-.010) .715
LSTM2 .845(-.001) .987 .386(+.051) .954 .593(-.001) .900 .425(+.020) .873
Dense300 - - - - .572(-.003) .926 .400(+.018) .877
Dense200 - - - - .557(-.001) .932 .377(+.021) .881
Densey - - - - .503(+.003) .934 .355(-.002) .885

Named Entity Recognition: Closely related to POS tagging, we analyze the

probes’ performance on the NER auxiliary task. Probe performance on the auxiliary

network shows a greater need for capturing abstract and contextual information than

POS tagging due to the separation in performance of the embeddings and LSTM

layers in both loss and F1 over epochs on the auxiliary NER network.

Examining the probes within the IR network reinforces the evidence that the sec-

ond LSTM layer is learning a more topical representation. However, as the second

LSTM layer discards a significant amount of POS information, the sustained perfor-

mance on the NER task across LSTM layers suggests that the IR model uses named
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entities for passage length relevance judgements either through explicit capturing at

the cell level, or in a latent representation in the hidden layer independent of POS

information. The F1 drop when processing the same samples from a passage per-

spective indicates that the IR network focuses on capturing more information related

to named entities when processing text at the query stage. However, the drop in

performance could also be due to the lack of relevant query text priming the network

to focus on named entity information.

Sentiment Classification: Moving to a more abstract task requiring an entire

sentence, probes trained to label sentiment result in a significantly different outcome

than NER and POS. Each layer remains a close neighbor to its subsequent one when

viewed from the probes’ perspectives. The small decrease in sentiment classification

performance, accompanied with the large loss of POS information suggests that some

form of more abstract sentiment information is captured in each layer. However, while

sentiment information is used for establishing relevance, there is no signal present

in the actual relevance label, as shown by Densey’s result of 0.49 and the random

model receiving a 0.50 accuracy score. In addition, the IR network does not seem to

process sentiment information differently across query and passage text as seen by

the relatively stable performance in Table 5.3.

Entailment: Confirming the results in the previous paragraphs, the most ab-

stract task of capturing entailment suffers the least across layers. Additionally, con-

trary to the other auxiliary tasks, higher layers significantly outperform the lower

ones as seen in the difference between LSTM1 and Dense300 in Table 5.3. Account-

ing for the accuracy across other tasks, the increased performance of the third layer,

Dense300, suggests that the transformations used to determine relevance at this point

also act to move entailment classes into a more linearly separable space.

Lastly, the performance of the probe on the relevance score, Densey, shows that the

relevance of a query passage pair has some information with respect to logical entail-
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Table 5.4: Per label accuracy performance over SNLI entailment collection on CQA
model. E, N, C represent the classes Entailment, Neutral, and Contradiction.

Layer E N C

Random .333 .333 .333
Embedding .593 .531 .624

LSTM1 .569 .466 .517
LSTM2 .596 .473 .470
Dense300 .610 .476 .480
Dense200 .529 .403 .422
Densey .424 .372 .296

ment. We expand this insight and investigate individual label performance as shown

in Table 5.4. The individual label evaluations show that each of the three classes

requires unique information. In addition, the relevance model retains information for

detecting entailment, while information for neutral and contradictory labels is itera-

tively discarded at each layer. The following dip in performance in Dense200 indicates

that the upper layers put less emphasis on entailment. Finally, looking at the relation

between the scalar relevance value, Densey, and the individual label metrics shows

that positive entailment information is related to the relevance of a passage, although

non relevant documents provide no indication that the query and passage pair do not

contain some type of entailment.

5.1.2.1 Multitask Inspection

Examining the impact of the auxiliary loss signal for IR, the same trend as seen

in Table 5.3 occurs in Figure 5.5, where the layer that captures the most information

with respect to the auxiliary task is also the most effective layer within the multitask

environment for retrieval. Of particular interest is the NER performance on WikiQA.

This task significantly improves performance when using LSTM1 as the shared layer,

and subsequently suffers the greatest performance decrease across all tasks when

moving upward. This suggests that for retrieval on this collection, the use of named
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Figure 5.5: Per-layer performance of NER, POS, and Entailment tasks measured by
MAP on WikiQA and CQA collections.

entities within a neural model is heavily biased towards the first layer, not only from an

information perspective, but also from a performance view as well. Lastly, following

the trend in Table 5.4, the multitask model over CQA benefits from using LSTM2 as

the shared layer, where the most information used for entailment is captured. This

also demonstrates that the optimal shared multitask layer for retrieval is not the

lowest by default, as it is for POS and NER auxiliary tasks.

5.1.2.2 Dataset Comparison

WikiQA vs CQA: As mentioned in section 5.1.1.6, we perform the same NLP

auxiliary analysis on an additional factoid QA dataset. Shown in Table 5.3, there

exists a consistent decline in performance from the lower to upper layers. However,

due to the greater amount of factoid type queries, the WikiQA model retains more

information with respect to NER and POS information at the cost of reduced perfor-

mance on sentiment and entailment tasks. Not only does the WikiQA model perform
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worse than the CQA model on these tasks, but the hidden transformations used for

determining relevance fail to provide any assistance regarding separating entailment

unlike the CQA model. While the WikiQA dataset shares significantly less vocabu-

lary overlap than the CQA collection as seen in Table 5.2, examining the impact of

missing vocabulary on the incorrectly classified auxiliary samples reveals a Pearson’s

correlation of 0.194, and restricting the CQA collection to the same as the WikiQA

training set, 12,888 random samples, does not significantly reduce performance on

the auxiliary tasks. This provides insight in why some past models that perform

successfully on shorter QA tasks struggle on passage retrieval [20].

5.2 Towards a Universal Retrieval Function - Temporal Dif-

ference Updates for Information Retrieval

Having identified substantial information overlap across collections in the previous

section, we introduce a modification of an established reinforcement learning method

to facilitate widespread use of a branch of reinforcement learning for IR, temporal

difference (TD) learning needed for recent work in task transfer with neural archi-

tectures over sparse collections [10, 23]. While reinforcement learning methods have

shown success in document ranking, these contributions have relied on a specific pol-

icy gradient method: REINFORCE [136, 140, 142]. This brings associated issues like

high variance gradient estimations and sample inefficiency, which is a pronounced

problem in answer passage retrieval over noisy collections with limited training data.

Within the reinforcement learning community, there exists a substantial body of work

on alternative methods of training which revolve around temporal difference updates,

such as Q-learning, Actor-Critic or SARSA, and resolve some of the issues seen in

REINFORCE [58, 115]. However, TD methods require the full size of the state to

be modeled internally within a single ranking instance, which is unrealistic for neural

text retrieval as a single model would have to process |C| documents simultaneously
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for each query where C is the set of documents in the collection. We therefore pro-

pose interpolated sub-state temporal difference (ISSTD), operating on the sub-state,

or individual documents in the case of matching models, and interpolating the tem-

poral difference updates to the rest of the state, or candidate documents. We further

demonstrate that traditional IR neural models that score documents independently

are a valid approach under ISSTD, allowing us to use universal retrieval functions

(URF) with any current ranking architecture.

5.2.1 Reinforcement Learning for Information Retrieval

Reinforcement learning presents a framework for an agent to learn from its ac-

tions within an environment. This can range from canonical examples like robotic

control [141] and game playing [44] to even machine translation [139]. The agent can

be a neural model, program, or any process that is able to improve its future actions

based on the input it receives from the environment. In the case of game playing, the

environment could be Atari, while for machine translation it could be represented as

the space of possible translations and training examples. This environment partially

determines the reward to convey how well an agent’s decisions satisfy some unknown

objective. The last core principle of RL is the sequential nature of decision making.

Previously introduced in Section 4.2, we provide a brief overview of RL required for

the following work. We defined the MDP as the tuple (S,A, P, R, d0, γ) representing

the state space, action space, transition function P : S × A × S → [0, 1], reward

function R : S ×A → R , initial state distribution d0 and decay parameter γ.

The objective is then to find a policy π : S → A that maximizes J , the expected

total discounted reward Rt ∼ r(st, at) that the agent can obtain,

J(π) = E
[ ∞∑
t=0

γtRt

∣∣∣π].
Closely related to this goal is the value function,
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V π(s) = E
[ ∞∑
k=0

γtRt+k

∣∣∣st = s, π
]

= E
[
Gt

∣∣∣st = s, π
]
, (5.5)

which is the expected discounted return if the agent follows policy π from state s.

The goal is then to find some π∗ that achieves

V ∗(s) = max
π∈Π

E
[
Gt

∣∣∣st = s, π
]
∀s ∈ S. (5.6)

As discussed, there exists a large body of work on finding π∗, with policy gradient

as the main approach used for learning to rank [136, 140, 142, 152, 130]. The alter-

native approach, which we use for URF, is temporal difference (TD) learning. In this

framework, π∗ is achieved via bootstrapping under the Bellman equation:

TV (s) = r(s, a) + γE[V (s′)] (5.7)

where s′ is the next state visited and will converge under certain conditions [115]. It

is straightforward to see where the concept of TD comes from, T updates V based

on the expected next state’s discounted cumulative reward. Q-learning, SARSA, and

other TD based methods update via the function Q : S ×A → R shown below

Qπ(s, a) = E
[
Gt

∣∣∣st = s, at = a, π
]

(5.8)

under the same contraction operator T . While V represents the cumulative reward

from state s, Q captures the cumulative reward from state s having taken action a.

The advantage with Q-learning or SARSA is that one does not need to model the

the environment directly, and so these approaches are therefore referred to as model

free methods. This is advantageous in large or challenging environments where the

transition or reward functions P and R are difficult to capture.

We highlight a key difference between Q-learning and SARSA: the update for

Q-learning will always be greedy, meaning that the update under T will take Q
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value of whatever action is best in the next state s′. However, SARSA will follow

the underlying π and take an ε-greedy approach. While this difference only occurs

with probability ε, Q-learning is off-policy and suffers from divergence under function

approximation whereas SARSA will converge [115]. This plays an integral role for

interpolated sub state learning later in this work.

Lastly, there or no limits on what defines Q or V in terms of a function. These can

be modeled via a table and trained under dynamic programming, a linear function ap-

proximatorQ(s, a) = θᵀφ(s) where φ is some state representation, or a non linear func-

tion approximator like a neural net. Currently non-linear function approximations of

Q or V discard all convergence guarantees when using TD; nonetheless, these non-

linear approaches achieve remarkable results in challenging environments [44, 141, 30].

5.2.2 A Markov Decision Process for Deep Neural Retrieval

MDP construction directly impacts what the agent learns, and is a non trivial

task when translating real world environments (IR) into this formulation. As such,

we adopt the well defined MDP proposed by Wei et al. [136].

State We construct the state s ∈ S as

[Qry,Dur, t] (5.9)

where query of length L, Qry = [q1, q2, ..., qL], Dur is a list of unranked documents

where di ∈ Dur = [d1, d2, ..., dn], and t represents the current timestep in an episode.

The terminal state occurs when |Dur| = 1. A sub-state zi can then be viewed as

[Qry, di, t] where di ∈ Dur.

Action: At each step, the policy chooses a document to rank next from the set of

unranked documents, Dur. Each candidate represents an element in the set of actions

A.
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Reward: We use reciprocal rank as defined below, where Dr is the set of all

relevant documents with respect to Qry and Dnr are all other non-relevant documents.

r(s, a) =


0 at ∈ Dnr

1
t

at ∈ Dr

Transition: As the transition function P : S × A → S models the dynamics

of the environment and maps a state, action pair to a new state. We structure the

transition function as

P (st, at) = [Qry,Dur \ dat , t+ 1],

where dat represents the document chosen at step t by action at.

We set Dur in the initial state d0 to be n documents from the collection generated

via BM25 [52] from a random query in the training set. We select n = 10 for ease of

analysis in our evaluation of our findings.

In this section, we discuss why TD methods fail in the current IR regime, and

then formally introduce the ISSTD to gracefully handle these conditions. A typical

ranking model scores each document independently and a ranking is produced from

these independent scores. For each query, one can view individual documents di of

a collection as a sub-state zi ∈ s. In this representation, zi is a partition of s such

that
⋃
zi = s,

⋂
zi = ∅. However, a state s ∈ S consists of all documents to be

ranked for a query or session. As discussed, policy gradient based methods are a drop

in optimization method to directly optimize a non-convex or discrete metric. These

methods accomplish this by creating a distribution over all possible documents via

the softmax function when selecting the next document:

π(s) =
exp(fIR(q, di))∑

j∈|Dur| exp(fIR(q, dj))
=

exp(fIR(zi))∑
j∈|Z| exp(fIR(zj))

.

86



This representation enables independent computation of f(q, d) regardless of the

amount of candidate documents in s. In the case of TD learning, this isn’t necessarily

true. For example, in Q-learning [134] where the TD update occurs via

Q(s, a) = Q(s, a) + α(s, a)(r(s, a) + γmax
a′

Q(s′, a′)−Q(s, a)), (5.10)

where s′, a′ is the next state, action in the environment. The update, in either table

lookup, linear, or non-linear function approximation is reducing the error for the entire

state’s representation. However, in the case of IR situations, we are unable to model

a single s entirely, and substitute Q(s, a) on the right hand side of Equation 5.10 for

the IR model operating over a single document. Thus the actual update that would

occur is

Q(s, a) = fIR(z) + α(s, a)(r(s, a) + γmax
z′

fIR(z′)− fIR(z)). (5.11)

This now computes the value of a sub-state trajectory through the MDP, removing

information about actions except for the reward and learning rate and assigns it to the

entire state. In order for TD to be used in IR, it would require careful construction of

an MDP to avoid any sub-state computation or a significantly large compute cluster

to handle the entire s efficiently in the case of deep learning, allowing the use of

Equation 5.10. Hu et al. [48] demonstrate one such construction, but this relegates TD

based methods to niche problems despite their powerful abilities [44, 30]. In addition,

competitive TD methods rely on large memory replay buffers, which compounds

this issue due to the need to recompute 2|bm||s| documents for each update where

|bm| is the batch size of the buffer. In the remainder of this section, we introduce

machinery such that Equation 5.11, with a small modification, is a valid substitute

for Equation 5.10 without loss of guarantees and facilitates the drop in use for any

typical IR task by showing that a standard learning to rank process is a special case

of an interpolated value function maintaining convergence properties.
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5.2.3 Interpolated Sub-State Temporal Difference Learning

Consider θ ∈ Rb as the paramaterization of some Qθ : B(S × A)→ R which acts

as a function approximator for Q. Then shown in Szepesvári and Smart [117], a TD

update under the Bellman operator can be done via

∆θti = αtiβ(si, ai, s)(Rt + γmax
a′

Qθt(s
′, a′)− θti), (5.12)

where si = {(s1, v1), . . . , (sn, vn)} is a set of basis points of S, Qθt is the Q function

paramaterized by θt and is a barycentric interpolator over S, αti is the learning rate

for dimension i of θ at time t, and β is a bounded measurable smoothing function.

A key note is that in this formulation, β allows the potential updating of multiple

components of θt for each basis point. We introduce two definitions necessary to show

equivalence to Equation 5.11, enabling the full use of TD methods for IR, along with

potential modification to improve sample efficiency.

Definition 5.2.1. P : B(S)→ Rb is a composite pointwise evaluation operator with

respect to a fixed set of basis points Z = {(z1, v1), . . . , (zn, vn)} if (PV )i = V (si).

Definition 5.2.2. Let F : Rb → B(S) be a mapping from parameters to functions.

Then F is interpolative with respect to the set of basis points S if for all V ∈ B(S),

PFP = P .

Lemma 5.2.1. The zero order spline interpolation F, Fu =
∑b

i=1 ui1Ai
is a measurable

non-expansion in the sup-norm over some basis set Z and 1Ai
as the measurable

indicator function of A such that

1Ai
(x) =


1 x ∈ Ai

0 x /∈ Ai

Proof. We define Ai to be a partition of Z such that Ai covers the k-nearest neigh-

borhood around zi with k = 1. This results in the a piecewise continuous evaluation
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over basis Z where Fui = ui for the entire space space Ai around point zi. Then we

observe ||Fu||∞ = ||u||∞. For any u, g in the same Banach space,

||Fu− Fg||∞ = ||u− g||∞ (5.13)

which satisfies the requirement of a non-expansion. F is also piecewise continuous and

measurable as the sum of measurable functions, i.e.
∑b

i=1 ui1Ai
is also measurable.

Let V : B(S) → R be a linear function approximator defined by Equation 5.5,

then the sub-state update

V (s) = fIR(z) + α(s)(r(s, a) + γE[fIR(z′)]− fIR(z)) (5.14)

converges to a V̂ ∗ if (i) PV exists, (ii) F is a non-expansive interpolation such that

||Ff1 − Ff2|| ≤ γ||f1 − f2||, and (iii) Z = {(zi, vi)}n1 is the set of basis points of s

such that Z creates a partition of s with
⋃
zi = s,

⋂
zi = ∅.

Proof. In order to do so, we use the algorithm

θt+1 = PTFθt, (5.15)

where T is the Bellman operator, and P is composite pointwise evaluation operator,

and F : Rb → B(S) [34].

Then we can see that value iteration can be modeled via

Vt+1 = TFPVt. (5.16)

This provides the critical first step of the drop in placement of TD updates for learning

to rank. In this representation, P acts as a decomposition of V to the point wise
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evaluation of the expected return of that basis point. As FP is a non-expansion,

then Fθt converges to θ̂∗ [34]. We observe a direct mapping of a satisfactory P to the

case seen in Equation 5.14 where fIR is a composite pointwise evaluation of V such

that each basis point consists of di. Formally,

θIR(zi) = (PV )i (5.17)

deconstructs some larger retrieval model that fully captures all possible documents

within a reranking list or a collection as its input and decomposes it to individual

functions over each zi.

Next, we select an F that can interpolate the mapping from the parameter θ to

a V ∈ B(S) with respect to S. Intuitively, Definition 5.2.2 means that F (θ)(zi) = vi

at each zi in S. Then the operation P acts as an initial decomposition of V and F

interpolates its values across the parameter space. Szepesvári and Smart [117] prove

that if FP is a interpolative non-expansion, then Vt+1 = FPTVt converges to V ∗. By

Lemma 5.2.1, a zero order spline is a non-expansion. As the smoothing is 0 everywhere

except where the characteristic function is active, β(si, a, s) in Equation 5.12 becomes

an indicator variable. This results in βti = 0 for everywhere except for basis si, or zi

in the case of the initial IR learning to rank TD based Equation 5.11.

Thus, as long as
∞∑
i=0

α =∞,
∞∑
i=0

α2 <∞ (5.18)

meaning all states are visited infinitely often, then TV (z) → V̂ ∗ and TQ → Q̂∗

even when individual sub states are updated independently for value iteration and

Q-learning respectively [117].

While we show that typical learning to rank updates are a special case of interpo-

lation, observe that more suitable smoothing functions such as radial basis function
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kernels or Gaussian processes satisfy the non-expansive properties of F while poten-

tially improving sample efficiency. We leave the evaluation of alternative smoothing

methods to future work.

Corollary 5.2.1.1. Let ||maxz fIR(z)−Q(s, a)|| ≤ ε such that

E[||max
z
fIR(z)−Q(s, a)||] = 0

under any MDP such that every state is visitable, limt→∞ P (st = sterminal) = 1, and∑∞
i=0 α =∞,

∑∞
i=0 α

2 <∞, then

QISS(s, a) = fIR(z) + α(s, a)(r(s, a) + γmax
z′

fIR(z′)− fIR(z)) (5.19)

oscillates within a region C of the fixed a point Q̂∗ defined by

Q(s, a) = Q(s, a) + α(s, a)(r(s, a) + γmax
a′

Q(s′, a′)−Q(s, a)) (5.20)

Proof. If we treat a π that operates on an entire s as an epsilon greedy π(s) =

argmaxaQ(s, a), thenQISS follows the exact policy as the underlying generating policy

Q and becomes SARSA in this instance. We then represent QISS to be a linear

function approximator of Q. If we define Q(s, ·) as

Q(s, ·) =< fIR(z1), . . . , fIR(zn) > (5.21)

then, we observe that QISS is the operation θISS
ᵀQ(s, ·) and acts as a linear function

approximator over Q such that ||θISS||∞ = 1, ||θISS||2 = 1. Then this is a linear

function approximator of the π generated by following Q-learning, .i.e. SARSA.
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Figure 5.6: Caption

We leverage the result from Gordon [35] that states that SARSA will converge to

region around the generating π under linear function approximation. Thus QISS will

converge to a region C around the fixed point Q̂∗.

Having established that operating on individual documents is a valid extension

of TD methods over the entire candidate document set without the need to develop

specialized retrieval models, we now introduce the TD method used for URF with

the ISS modification.

5.2.4 Successor Features for IR

With the machinery developed above, we are now able to incorporate successor

feature (SF) learning [9], a powerful TD technique with unique properties which pair

well with IR tasks. We introduce SF learning in the standard s, a notation for clarity,

and apply FP discussed above during training.

This framework offers two significant advantages over conventional Q-learning:

(1) it formally separates representation and relevance judgements, and (2) it better
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captures uncertainty of a current state due to the successive state representations [51,

9]. We provide a brief outline of this approach.

The SF representation is based on the concept that the reward function r(s, a)

can be decomposed into an inner product of a state representation φ : S → RK and

reward vector w ∈ RK such that

r(s, a) = φ(s, a)ᵀw. (5.22)

This representation is not restrictive to any environment as it can be trivially decon-

structed to recover any reward function. We derive SF, ψπ ,by incorporating φ and

w into the standard Q-function to produce SF ψπ.

Qπ(s, a) = E[Σ∞i=0γ
ir(si, ai)|S0 = s, A0 = a, π] (5.23)

= E[Σ∞i=0γ
iφ(si, ai)

ᵀw|S0 = s, A0 = a, π] (5.24)

= E[Σ∞i=0γ
iφ(si, ai)|S0 = s, A0 = a, π]ᵀw (5.25)

= ψπ(s, a)ᵀw (5.26)

To conceptualize what ψ means: in the tabular case such as Gridworld using

one hot encodings, the ith component of ψπ is the discounted sum of occurrences

of reaching (si, ai) of each possible transition while following π. As SF maintains

linearity across time, any TD method can be used,

ψπ(s, a) = φ(s, a) + α[γψπ(s′, a)− ψπ(s, a)], (5.27)

and therefore can be trained in the same manner as Q-learning, referred to as SFQL.

With Proposition 5.2.3 and Corollary 5.2.1.1, we see that this new approach can be

applied within ISS framework (ISS-SFQL). In the non-tabular case where a gradient
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is used to learn φ, w, and ψ, the optimization occurs via a two step process where ψ

is optimized via the loss function:

L(θψ) = E[||φ(s)− γmax
a′

ψ(s′, a′)− ψ(φ(s), a)||22] (5.28)

and w, φ via:

L(θw, θφ) = E[||r(s, a)− φ(s)ᵀw||22] (5.29)

Algorithm 2 provides an overview of the entire learning process and Figure 5.6 il-

lustrates the overall framework. We adopt target networks and a memory buffer

as recommended in Hessel et al. [44] to improve stability of deep Q-learning agents

during training.

Algorithm 2: Approach for ISS-SF.

Input: Memory replay B, parameters θφ, θw, θψ, exploration probability
ε ≤ 1, MDP: (S,A, P, R, d0, γ)

for episode l = 1 to L do
initialize s ∼ d0

if Bernoulli(ε) then
sample action a uniformly

else

φ(s) = {fIR(zi)}|s|0

a = argmaxi ψ(zi, i)
ᵀw

Store transition (z, i, r(s, a), s′) in B
Randomly sample minibatch from B
Update θφ, θw via Equation 5.29
Update θψ via Equation 5.28
s← s′

By defining a SF approach for IR, we force search to be decomposed into a rep-

resentation component and a relevance component. Furthermore, ψπ(s, a) captures

expected future steps within its construction forcing our model to predict a multi-step

function even in sparse environments. Within the realm of IR, this is akin to rank-

ing trajectories of documents such that when given new documents φ(st), the model
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needs to predict what would be the most relevant decision given potential related

documents captured in ψπ.

5.2.5 Experimental Setup

To evaluate the efficacy of TD based updates for IR, we examine representative

IR models of varying complexities as policies over MSMARCO and Yahoo L4. The

datasets were chosen due to their significant performance increase when used with

deep learning models, requiring the use of ISS modification for Q-learning and SFQL.

5.2.5.1 Data

MSMARCO: [89] This collection is based on Bing queries and their correspond-

ing results. Originally proposed for a question answering task, the annotated data

was used to create a passage re-ranking task. The collection consists of 400M training

tuples of query, relevant, and non-relevant passages with the development set contain-

ing ∼6,900 queries with each query corresponding to the top 1,000 passages retrieved

via BM25.

Yahoo L4: [113] Consists of non-factoid questions which take the form of “Man-

ner” questions. The collection consists of ∼142,000 queries and corresponding an-

swers. The train, dev, and eval splits were 80%, 10%, and 10% respectively.

5.2.5.2 IR Policies – Network Architectures

In order to demonstrate the feasibility of a TD based RL approach for answer

passage retrieval, we use three different representative architectures as policies for

this task which cover recurrent, convolutional, and transformer paradigms. We note

the absence of a BERT based model, as the experiments are to demonstrate the

feasibility of ISSTD learning to varying architecture complexities. As BERT is used

as a pretrained base [144], it does not offer additional insight into the behaviour of

95



ISS. We note that while past works have effectively incorporated RL techniques into

IR, they have not used neural models beyond a single layer perceptron successfully.

MatchPyramid: This model consists of an initial interaction matrix of the query

and document’s embeddings that acts as an input into a series of convolutional layers.

While a deep network, this model has shown to perform well on only a small number

of training queries, as demonstrated on Robust04 and other TREC collections [94].

BLSTM: As these architectures have been used extensively for retrieval and are well

studied [128, 82, 93], they provide a stable candidate to evaluate ISS-SFQL. The model

consists of concatenating the query and document and feeding it into a bidirectional

LSTM model. Max pooling over time is used prior to an upper feedforward network.

Transformer Kernel: Lastly, we introduce a state of the art model representative

of the current neural retrieval architectures [126]. This approach uses transformer

modules with a kernel pooling approach to learn a relevance score between a query

and candidate document, and is the largest model of the architectures evaluated in

this paper [46].

As φ is a multidimensional representation of a document, the standard architecture

of the above models results in a scalar output. Therefore, we use the layers prior to

the final output as φ and fix the output of each IR model to a fixed dimension.

MatchPyramid and BLSTM use a 200 dimension final layer, and Transformer Kernel

uses φ ∈ R22. While significantly smaller than the other two approaches, this is due

to the number of kernels used in the original paper and already offers a salient and

compressed representation of the query-document relation.

5.2.5.3 Optimization

As SFQL is an optimization method over a neural model, π, we evaluate perfor-

mance over the two other common learning methods: Pairwise hinge loss (supervised)

and REINFORCE (PG).
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Method BLSTM TK MP
REINFORCE 0.288 0.319 0.304
ISS-Q-Learning 0.409 0.421 0.416
ISS-SFQL 0.556 0.535 0.484
Hinge loss (Supervised) 0.542 0.587 0.545

Table 5.5: Performance of training regimes over Yahoo L4 data evaluated via MRR.

Method BLSTM TK MP
REINFORCE 0.338 0.295 0.306
ISS-Q-Learning 0.331 0.325 0.374
ISS-SFQL 0.541 0.653 0.488
Hinge loss (Supervised) 0.552 0.687 0.481

Table 5.6: Performance of training regimes over MSMARCO passage validation data
under MRR.

All models and optimization methods use the Adam optimizer with tuned learning

rates via search over [10−5, 10−1]. We initialize all embeddings with GloVE [96]

with dimension of 300. Other hyperparameters for the models were taken from their

corresponding works and demonstrated robustness across collections. The memory

buffer for ISS-SFQL was constructed from {500, 2000, 10000, 20000}, and the target

network and policy’s updates per steps were selected from {1, 5, 10, 50}. The memory

was not reset at each new episode. γ was selected from {0.5, 0.7, 0.9, 0.99}. We discuss

the sensitivity of the algorithm to these hyperparameters below.

5.2.6 Results and Discussion

In this section, we investigate whether the results from Proposition 5.2.3 and

Corollary 5.2.1.1 hold for real world examples and can achieve competitive results on

deep neural architectures. In addition we perform a hyperparameter study to gain

insight into the properties of ISSTD for IR.
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5.2.6.1 Performance Benchmarks

Examining the performance on Yahoo L4 and MSMARCO, we see consistent per-

formance across models and training regimes as shown in Tables 5.5 and 5.6. We

remark on the competitive performance of ISS-SFQL, suggesting that ISSTD ap-

proaches are viable for IR tasks even in the case of deep neural models. While not

the purpose of this paper, the surprising result of the close performance difference

between the supervised pairwise hinge loss and ISS-SFQL suggests that RL methods

can act as an effective training alternative to supervised approaches even in a sparse

reward setting. Furthermore, this suggests that ISS-SFQL is a powerful option when

one needs to include non-differentiable signals into a retrieval model such as diver-

sity, fairness, or personification. Given the nature of instability of RL methods and

the stability of supervised approaches, this provides promising insight into situations

where no supervised training signal is available, such as query reformulation [85] or

online recommendation systems where the input is significantly large. However, in the

case of TK on MSMARCO, ISS-SFQL is not able to reach parity with the supervised

approach whereas it does with BLSTM and MP models. As Popel and Martin [98]

discuss, the transformer architecture is sensitive to both noise in the data and its

updates. Q-learning methods essentially bootstrap up to an effective model so the

additional noise introduced via this method prevents TK from properly learning.

Of particular note is the poor performance of REINFORCE. We attribute the close

to random performance of these policies due to the point collapse of the policy. While

training, the distribution π(s) would collapse to a single action despite our efforts due

to the gradient variance introduced via Markov chain Monte Carlo sampling [137] and

the non-linear function approximation. We are careful to comment that this is not

indicative that policy gradient methods are worse than TD approaches. However, by

incorporating additional structures into a TD framework (SF), we can significantly

increase the performance of RL based methods in cases where REINFORCE fails.
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While not examined in this work, ISS-Actor Critic or ISS-DDPG could be alternative,

more stable, options to use policy gradient in IR.

5.2.6.2 Convergence

Table 5.7 reflects the benefit of incorporating novel RL methods. ISS-SFQL is

able to quarter the required number of episodes compared to ISS-Q-learning in or-

der to converge to a stable policy with respect to performance on a validation set.

Furthermore, ISS-SFQL only requires twice as many samples as the supervised ap-

proach while undergoing a bootstrap procedure. Shown in Figure 5.7, we observe the

behaviour of ISS-SF learning for IR. Characteristic of RL, we see an initial plateau

around 10,000 samples prior to the agent identifying an effective retrieval function

and continually refining it.

Method BLSTM TK MP
REINFORCE ∞ ∞ ∞
ISS-Q-Learning 210k 410k 205k
ISS-SFQL 35k 135k 35k
Hinge loss (Supervised) 20k 90k 15k

Table 5.7: Number of episodes (queries) needed to converge to a stable retrieval
model on Yahoo L4. Evaluation was done every 5,000 episodes. While epoch training
is common in supervised approaches, we maintain the same sampling method for
queries for all methods to maintain consistency. ∞ denotes that the method diverges.
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Figure 5.7: Training set curves of ISS-SF and hinge loss approaches.

5.2.6.3 Hyperparameter Sensitivity

(a) Episode Length (b) Memory Buffer (c) Update Frequency

Figure 5.8: Performance of ISS-SFQL across key hyperparameters on MSMARCO
dataset.

Any RL algorithm has a substantial amount of hyperpameters which can drasti-

cally impact performance. We highlight the key aspects in Figure 5.8. Following from

the discussion of the transformer’s architecture being sensitive to noise, we observe

a similar sensitivity to hyperparameters. One example of this is the impact of the

update frequency of φ,w, and ψ. As the actual update to these values occur via mini-
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batch from the memory buffer, updating too frequently has the potential to introduce

too much noise into these minibatches. By slowing down the update frequency such

that the model changes once every m steps, we increase the likelihood of sampling a

more uniform batch to update.

This sensitivity is supported by the impact of replay size. We observe a decrease

in performance with respect to TK as the memory buffer size increases. As Liu and

Zou [68] discuss the impact of buffers with respect to agent performance, it is not

uncommon to see this sensitivity. We hypothesize that it is due to storing older

transitions which no longer benefit the agent during the minibatch updates. While

the more stable BLSTM and MP models are robust to this noise, the transformer

based architecture, TK, diverges.

Lastly, we examine the episode length, or initial size of Dur from the MDP for-

mulation. For reference, when set to 2, this mirrors the bandit situation as the final

document acts as the terminal state and no future decisions need to be considered.

Therefore, as the agent is allowed to make more decisions and observe more docu-

ments, it is able to better determine what is a relevant document and what is not.

This can be potentially attributed to the multi-step nature of ψ. Not only does it

need to estimate the reward directly via w, but the construction requires the predic-

tion of the subsequent documents. So when given a query and document φ(zi), ψ has

to estimate what other similar documents are in the collection. This auxiliary task

defined in SF updates is supported by the episode length curve. The sharp decline

for TK when the episode length equals 10 is due to limited capacity of its φ, which

only has 22 dimensions by construction [46]. In this case, a slight modification for

ISS-SFQL by expanding the number of kernels used might be a better alternative

than directly truncating the final layer. A similar saturation occurs in the case of MP

and BLSTM models, though without the performance drop off observed for TK.
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5.3 Universal Retrieval Functions

Having defined w, φ and ψ, as well as the heavily shared information across non-

factoid QA collections as shown in Section 5.1, we are now able to construct the

framework for URF which naturally follows from SF. The motivation behind URF is

that every IR collection consists of ordered permutations created from the vocabulary

V . If we extend V to cover words found across multiple collections, or the common

crawl [96], we are able to cover the majority of text found in an IR collection. In the

case of SF, we can represent the useful information for IR over the permutations of

terms in V as φ, and then learn small relevance functions ψ and w that are sensitive

to the relevance signal found across the different information needs of each collection.

With a stable φ for representing text across multiple collections, we can create a

federated IR model (URF) from W = [w1, . . . ,wN ]. While saving a traditional neural

IR model for each collection and evaluating these models on every new IR collection

is infeasible due to the cost of storing and executing each full model, φ is recycled

and ranking only requires N inner products. Furthermore, an URF framework can

easily be extended to new collections by combining the relevance functions W if the

information need of the queries is sufficiently close to a previous collection, or update

W with wN+1. As we demonstrate, there exists substantial overlap when N = 2 for

certain task combinations, enabling W to grow slowly.

5.3.1 Multitask to Multicollection Retrieval

We frame the multitask retrieval problem as a multicollection relevance model.

Let {M1,M2, . . .} = M represent the set of all collection-query pairs and their cor-

responding relevance needs defined by human judgements or click through logs. The

objective then is that for any permutation of basis tasks B, a retrieval model trained

on these basis tasks and a new task Mi not in B should be able to achieve parity

with a retrieval model trained directly on Mi and sustain performance on all ba-
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sis tasks under performance metric η(f,M) . Formally, given a subset MB ⊂ M,

Mi /∈ MB and a retrieval model f , η(fθ|MB ,Mi
,Mi) = η(fθ|Mi

,Mi) while maintaining

η(fθ|MB
,Mb) ∀b ∈ B. Furthermore, an effective multitask retrieval approach will

minimize the samples needed to determine which Mj most closely resembles Mi as

well as the number of updates needed to converge on parameters θ|MB,Mi. By ad-

dressing these secondary constraints, an ideal multitask framework will be able to

quickly infer which collection is most similar to a new collection and fit an effective

ranking function, making this approach viable for sparse collections.

While past work has investigated the use of multitask training for IR, the task

is often framed over facets of IR such as query completion-ranking, NLP-ranking or

recommendation-ranking rather than ranking multiple collections [3, 69, 149]. Fur-

thermore, the domain regularization and domain shift approaches such as the one

introduced in Section 4.1 and subsequent work do not seek to preserve information

on the original collection as much as it seeks to identify salient information to trans-

fer [123]. The area of work that most closely resembles the multicollection framework

leverages large models. Nogueira et al. [90] use a large sequence-to-sequence model

pretrained on a variety of NLP tasks with the final upper layer fine tuned for the spe-

cific IR task. Yang et al. [144], use a similar approach with a different large pretrained

model, BERT. Lastly, Yilmaz et al. [4] directly apply BERT to the multicollection

objective, treating BERT as φ, and using multiple collections to iteratively tune a

general relevance model on top. However, the authors do not report the results of the

tuned model on the original collections.

In Section 5.2.2, we defined the single collection MDP, (S,A,R, P, R, d0, γ), to de-

scribe the environment over a single collection. S then represented the set of possible

documents permutations within a collection, with s ∈ S as the actual candidate set of

documents to be ranked for a given query. We expand the notion of S to cover all an-

swer passage documents such that the MDP defined on Yahoo L4’s, SL4 ⊂ SC, where
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C is the collection of all document permutations across all candidate collections [9].

This reconstruction of our MDP allows us to extend the notion of the environment

to a general representation

M := {(SC,A, ·, P, ·, d0, γ)} (5.30)

where M is now the collection of all MDPs over SC, regardless of their rewards,

or relevance judgements. This means that it also includes environments where the

rewards are not a linear combination of φ constructed in Section 5.2. Thus, Mφ ⊂

M. However, Section 5.1 demonstrates the high amount of shared information, and

we propose leveraging this shared information to best cover all of M despite the

limitations of φ.

5.3.2 Method

We discuss the two core components of URF: (1) building an initial structure of

the environment via φ, while collecting linear relevance functions w. (2) After the

basis set is completed, we introduce the concept of general policy improvement (GPI),

which enables us to transfer information from the basis collections to a new retrieval

task [9].

5.3.2.1 Building Basis Functions

We introduce a modified version of ISS-SF’s Algorithm 2, which constructs poli-

cies, or retrieval models, from multiple collections shown in Algorithm 3 in order to

create a basis set of functions. In this setting, we are able to run on N collections

in parallel to train our SF state representation φ. This can be viewed a multitask

framework of ISS-SF. A key advantage of ISS-SF is that φ does not model relevance

directly, enabling it to retain additional information for use outside of Mi ∈M.
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Algorithm 3: Building URF basis with ISS-SF

Input: N tasks, Memory replay B1...N , parameters θφ, θw1,...,N
, θψ1,...,N

,
exploration probability ε ≤ 1, MDP: (S,A, P, R, d0, γ)

for episode l = 1 to L do
for task M = 1 to N do

if task done(M) then
continue to next task

initialize s ∼ d0 from task M
if Bernoulli(ε) then

sample action a uniformly

else

φ(s) = {fIR(zi)}|s|0

a = argmaxi ψ(zi, i)
ᵀw

Store transition (z, i, r(s, a), s′) in BM
Randomly sample minibatch from BM
Update θφ, θwM

via Equation 5.29
Update θψM

via Equation 5.28

return φ, W = [w1, . . . ,wN ], Ψ = [ψ1, . . . , ψN ]

Each episode is considered a single retrieval process for a query, and as we use a

reranking process of the top n candidate documents retrieved by BM25, φ frequently

iterates over all tasks. However, as opposed to RL where the training data is the

same as the test data, a policy in IR must generalize to the unseen test data.

Thus, we modify the general multitask SF algorithm to handle the risk of over-

fitting. Using a validation set, the task is removed from rotation once it satisfies the

early stopping criteria. At that point, wM , ψM is saved. Once Algorithm 3 finishes,

W,Ψ, φ are tuned for 500 updates with their memory buffers merged. The best per-

formance on the validation set during the tuning process is then selected for the basis

function. While Tran et al. [123] introduce an approach to prevent overfitting on

unbalanced collections, we leave improving the fine tuning process for future work.

5.3.2.2 General Policy Iteration

Incorporating recent work by Barreto et al. [10, 9], we are able to leverage the idea

of the policy improvement theorem where a policy’s value function is able to produce
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another policy that is at least no worse than the former’s. In the case where we have

multiple policies represented by W,Ψ, GPI is able to produce a policy a new policy

no worse than the set of previous policies by acting greedily.

Succinctly, GPI states if M ∈ M and let Q
π∗j
i be the action value function of

an optimal policy of Mj ∈ M when executed in Mi ∈ M. Given approximations

{Qπ1
i , Q

π2
i , . . . , Q

πn

i } such that ||Qπ∗j
i −Q

πj
i ||∞ ≤ ε ∀j ∈ {1, 2, . . . , n}, and let

π(s) ∈ argmaxa max
j
Q
πj
i . (5.31)

Then

||Q∗ −Qπ||∞ ≤
2

1− γ
(||r − ri||∞ + min

j
||ri − rj||∞ + ε). (5.32)

Where Q∗ is an optimal action-value function on M and Qπ is the value function

of π in M. Examining the GPI proposition demonstrates that it satisfies our task

requirement. If Mi = Mj then the right error term goes to 0 and we are left with the

same error as found in Mi.. If we now consider Mi 6= Mj, the objective is to identify

some wi such that φ(s, a)ᵀwi ≈ r(s, a). Therefore, the first term on the right hand

side captures the distance between M and any Mφ [9].

We use this result as a foundation for URF, which is a modification of GPI&SF

framework introduce by Barreto et al [9]. While RL often has to deal with potential

long term rewards, Ψ plays an important role in identifying effective actions to take

in a given state, retrieval is an entirely greedy option and φᵀw provides an effective

ranking choice as it provides the estimated reward of ranking the current document

highest. Therefore in Algorithm 4, we focus on w to reduce possible transfer issues

across collections. As φ is fixed once finished training on the collections in M, URF

has two options to incorporate a new task. (1) It can extend its basis by learning

a new wN+1 relevance function directly from φ. (2) Alternatively, if the basis tasks
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are sufficiently close to the new task, the new relevance function can be a linear

combinations of previous N relevance functions,

wN+1 =

|W|∑
i=0

βiwi, (5.33)

such that
∑|W|

i=0 βi = 1. This can be viewed a modification of the GPI proposition,

where the action value function becomes a composition and the worst case becomes

2ε, but has the benefit of creating “new” tasks by interpolation and reducing ||r− ri||

and ||ri − rj|| by allowing ri to lie in the convex hull of all M ∈MB.

Algorithm 4: URF’s Pseudo-GPI

Input: W,Ψ, exploration probability ε ≤ 1, MDP: (S,A, P,R, d0, γ), extend
for episode l = 1 to L do

initialize s ∼ d0 from task M
if Bernoulli(ε) then

sample action a uniformly

else

φ(s) = maxi{fIR(zi)}|s|ᵀ0 w
a = i

r ← take action a in MDP
if extend then

w← ||r(s, a)− φ(s)ᵀw||22]

else

β ← ||r(s, a)− φ(s)ᵀ
∑|W|

i=0 βiwi||22

5.3.3 Experimental Setup

5.3.3.1 Collections

We evaluate URF on two collections from previous sections. Yahoo L4 has been

used consistently across this thesis, and InsuranceQA in Section 4.1.2.1. In addition,

we use the MSMARCO collection, which acts as a non sparse collection given the

number of relevant documents.
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L4 We use Yahoo’s Webscope L4 high quality “Manner” collection [113]. For

evaluation and training, all answers that were not the highest voted were removed

from the collection to reduce label noise during training and provide a better judgment

of performance during evaluation. Training, development, and test sets were created

from a 80-10-10 split. Telescoping is used to create answer pools for evaluation from

the top 10 BM25 retrieved answers as in [21].

InsuranceQA: In the InsuranceQA dataset, questions are created from real user

submissions and the high quality answers come from insurance professionals. The

dataset consists of 12,887 QA pairs for training, 1,000 pairs for validation, and two

tests sets containing 1,800 pairs. For testing, each of the 1,800 QA pairs is evaluated

with top 10 candidate answers from the 100 candidate version.

MSMARCO: This collection is based on Bing queries and their corresponding

results. Originally proposed for a question answering task, the annotated data was

used to create a passage re-ranking task. The collection consists of 400M training

tuples of query, relevant, and non-relevant passages with the development set contain-

ing ∼6,900 queries with each query corresponding to the top 1,000 passages retrieved

via BM25 [89].

5.3.3.2 Architectures

As URF is intended to be used over any neural retrieval model in the same vein

as ISS-TD, we use the same architectures from the Section 5.2.5.2: MatchPyramid

(MP) [94], BLSTM [128, 92], and Transformer Kernel (TK) [46].

5.3.3.3 Evaluation

We evaluate the performance of the URF across three tasks which represent the

three collections L4, MSMARCO, and InsuranceQA. For each collection, URF is ini-

tialized using the other two collections as its basis relevance models in W, and then

incorporates the last collection under Algorithm 4. We consider both the extension
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where another w is added to W that operates over φ as well as using only a linear

combination of W to evaluate the third task. In addition, we benchmark the perfor-

mance of URF on its basis set with respect to ISS-SF as to determine the amount of

degradation that occurs when φ must capture a larger subset of SC. As all collections

have a single relevant document per query, we use MRR to evaluate the performance

of URF.

5.3.3.4 Baselines

To the the best of our knowledge, there has been little work investigating multi

collection performance for neural retrieval models. The adversarial regularization ap-

proach introduced in Section 4.1 requires extensive study of the regularized model

as demonstrated by the Duet architecture in the discussion of negative results. Ex-

panding this approach to cover MP and TK is non-trivial, and reasonable attempts

were made with no success as the models diverged. Lastly, the domain regularization

approach covers the zero shot learning problem, whereas URF specifically covers the

situation of incorporating additional data into a trained model. Nogueira et al. [90]

and Yilmaz et al. [4] have explored incorporating very large transformer architectures

for retrieval over collections with minimal training data. However, these approaches

are not comparable as they rely on the billions of parameters of a general language

model (BERT, T5) trained independently of any retrieval task.

Therefore, we consider the reasonable baseline of fine tuning the upper layer of

a supervised retrieval model. In this paradigm, the model is trained on alternating

batches of the two collections in the same manner as URF, and then subsequently

fine tuned on the target collection by incorporating an additional final layer.

5.3.3.5 Training and Hyperparameters

The learning rate and other hyperparameters were selected from the top perform-

ing hyperparameters in Section 5.2.5.3. The new w was trained with a learning rate
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of 10−3 and the Adam [57] optimizer. The tuning stage was done over 500 updates,

and evaluated on the validation set every 50 updates. The tuned model with the best

performance for both collections over the 500 updates was then selected as the basis

for URF.

5.3.4 Results and Discussion

In this section, we discuss the overall performance of URF with and without

extension, as well as an investigation into the behaviour of the algorithm under certain

hyperparameters.

5.3.4.1 New Task Performance

BLSTM MP TK
source → target Mono Cross Mono Cross Mono Cross

Supervised
(L4, InsuranceQA)→ MSMARCO 0.5512 0.4118 0.4806 0.4199 0.6873 0.4682
(MSMARCO, InsuranceQA)→ L4 0.5497 0.4094 0.4870 0.4746 0.5863 0.4903
(L4, MSMARCO)→ InsuranceQA 0.6970 0.6259 0.6196 0.6340 0.7216 0.4319

URF - Restricted
(L4, InsuranceQA)→ MSMARCO 0.5314 0.3613 0.4884 0.4876 0.6526 0.5205
(MSMARCO, InsuranceQA)→ L4 0.5569 0.4305 0.4835 0.4357 0.5353 0.5081
(L4, MSMARCO)→ InsuranceQA 0.6931 0.4469 0.6213 0.6012 0.7306 0.6103

URF - Extended
(L4, InsuranceQA)→ MSMARCO 0.5314 0.4339∗ 0.4884 0.5040∗ 0.6526 0.5496∗

(MSMARCO, InsuranceQA)→ L4 0.5569 0.5223∗ 0.4835 0.4855∗ 0.5353 0.5318∗

(L4, MSMARCO)→ InsuranceQA 0.6931 0.6197 0.6213 0.6476 0.7306 0.6193

Table 5.8: Performance over new collections where the collections in parentheses rep-
resent the basis tasks. Cross and Mono compares the performance of incorporating
the collection as a new task as opposed to being directly trained on it. Lastly. re-
stricted and extended refer to extending the basis of URF. ∗ indicates p < .05 with
respect to baseline. Bold represents best performance for the transfer task.

URF - Supervised: Shown in Table 5.8, we observe the advantage of URF over

supervised fine tuning, as URF is able to consistently improve over the baseline fine
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tuning approach despite having less tunable parameters (URF - Restricted). This is

particularly true for the TK architecture across all collections, where URF improves

scores from 5% - 37% when compared to supervised fine tuning. Furthermore, we

observe URF-Expanded significantly outperforming supervised fine tuning for almost

every permutation of basis set and architecture choice demonstrating the strength of

this approach. Furthermore, as URF-Restricted is not shown φ directly, the improved

performance of URF-Restricted when compared to supervised fine tuning reflects the

advantage of creating a new relevance function from within the convex hull of W.

Extended vs Restricted: In the same Table 5.8, examining these two regimes

under URF - Restricted and URF - Extended, we are able to observe the similarity in

relevance signals across collections. While significantly outperforming the supervised

fine tuning approach, there are certain basis configurations that can approximate a

retrieval function learned over the significantly richer representation φ. In particular,

URF-Restricted TK on InsuranceQA can approximate URF-Extended which has ac-

cess to φ. Lastly, there is an architecture sensitive response under URF. While TK

has similar performance on both versions of URF, BLSTM based URF undergoes

a dramatic improvement between operating in the convex hull and learning a new

relevance function. One possible cause of this is that W in the BLSTM architecture

is not leveraging all of φ’s output, which becomes a critical issue as the neural model

operates over a new text distribution.

5.3.4.2 URF - Single Task Comparison:

Model (L4, MSMARCO) (MSMARCO, InsuranceQA) (L4, InsuranceQA)

BLSTM (-1.9%, -3.9%) (+1.7%, 0.0%) (-8.2%, -0.6%)
MP (-1.3%, -1.5%) (0.0%, -0.3%) (-7.7%, -1.0%)
TK (+0.1%, -24.3%) (+5.5%, +3.8%) (-8.8%, -5.7%)

Table 5.9: MRR Performance of URF on basis set after tuning.
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While we have demonstrated the feasibility of URF covering new datasets, we now

address the question of whether Algorithm 3 preserves basis task performance. As

shown in Table 5.9, the final basis relevance models used for URF suffer a collection

dependent degradation, with the exception of (MSMARCO, InsuranceQA) where

these two collections have a synergistic effect. However, this discrepancy is the effect

of the imbalance between collections and the tuning process as we observe less than

0.5% degradation during training the basis sets. Specifically, a model will achieve

parity with its single task performance prior to early stopping, and if two collections

differ in the required time to converge to an effective model, φ will have significantly

changed by the tuning process to the point where it is no longer effective for one of

the basis collections and is not recoverable via simple tuning. We then observe the

8-24% degradation if this occurs. This phenomena is also observed in Guo et al. [41],

where a general IR model over multiple collections is not as effective as an in-domain

trained model.

5.3.4.3 Hyperparameter Study

Depth-Width L4 MSMARCO

3-700 0.5587 0.3943
3-400 0.5548 0.4371
2-700 0.5508 0.3743
2-400 0.5203 0.3675
1-400 0.4824 0.3441

Table 5.10: MRR Performance of URF on basis set as a function of number of layers
(depth) and width of BLSTM model. Both L4 and MSMARCO are part of the basis
set.

With respect to incorporating a new task, we observed a high propensity towards

basis models within the first 100 tuning steps, to the point where there is poor gen-

eralization occurring towards the end of the tuning stage, despite consistent on task

generalization performance. This result is unsurprising as one can view both training
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and validation datasets for the on task performance as part of the training distribu-

tion. While the IR model might not overfit within L4 or MSMARCO for example,

its transformations are becoming more refined on that data leading to poor out of

distribution performance, even for relevance separated φ.

Model Capacity: Shown in Table 5.10, the effectiveness of φ is dependent on

the size of the model with respect to |Mφ|. On the single collection retrieval task, a

single layer BLSTM is able to achieve comparable performance with multiple layers.

However, when φ must model a larger state space, the same model is not able to fully

capture the needed high level features for ψ and w to determine relevance. This is

demonstrated as the single layer model performs significantly worse on both collec-

tions, with a 14% and 22% decay in performance for L4 and MSMARCO respectively.

As discussed in Montufar et al. [86], narrower and deep models are able to recycle

mappings as the model can use the depth to map the input space to a few common

points in the upper layers. This provides a potential reason as to why the 3-700

BLSTM model failed to generalize to MSMARCO despite the stability afforded to

BLSTM based architectures. An interesting note is that MP and TK architectures do

not suffer this degradation. This is possibly due to the deeper architecture handling

multiple collections or the models were constructed with enough parameters.
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CHAPTER 6

CONCLUSION

In this work, we introduce approaches in three core areas to overcome the lack of

training data that is needed to train neural models for the answer passage retrieval

task: text representation, domain transfer, and robust temporal difference methods

for URF. In Chapter 3, we introduce text representation approaches for answer pas-

sage retrieval which leverage local embeddings to reduce the training demand on the

downstream neural model. Expanding on this work to cover text not present in the

training data, we incorporate a hybrid architecture to dynamically construct out of

vocabulary terms and cover unique collection specific term uses. Both of these ap-

proaches demonstrate increasing effectiveness as the collections consistently become

more sparse or noisy.

In Chapter 4, we leverage data from similar domains to further increase per-

formance over portions of the collection when there is no training data available.

Designing an adversarial system where the reverse gradient specifically ablates do-

main information, we produce a neural answer passage retrieval model that is able to

retrieve over a new domain without any training data, achieving a 3%-12% increase in

performance. Expanding on the definition of domain, we examine the situation where

the sparse labels result in a neural model only seeing a portion of the collection dur-

ing training, we introduce a policy based negative sampling strategy to better cover

a collection during training. We observe that while this approach does not result in

improved peak performance, the policy is able to ensure more consistent performance

across starting parameter distributions.
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In Chapter 5, we demonstrate there exists a significant overlap of information

within the layers of a neural model for different QA collections. Acting on this infor-

mation, we extend reinforcement learning to sparse answer passage collections by ISS-

TD which enables the use of successor features [10] and substantially improves per-

formance on sparse collections when compared to alternative RL approaches. Lastly,

we introduce URF, a method to incorporate relevance models in an incremental fash-

ion acting as the first instance of gracefully incorporating new collections into an IR

model. Under this regime, we are able to reach parity with on task performance un-

der certain settings, which provides a promising direction of future study. While not

discussed in this thesis, one can easily expand URF to address specific demographic

or diversity constraints on a relevance function by updating the relevance vector w

directly through the ISS-TD updates.

6.1 Future Work

Despite the contributions made in this thesis, there remains a substantial amount

of work to be done in this direction. As we have seen with BERT [25], the potential

to incorporate effective information from non-traditional resources to improve perfor-

mance on a new collection warrants future study. In the case of IR and our work, this

direction would address a more detailed policy based sampling approach able to select

individual documents, improve the stability of adversarial retrieval, and incorporate

lifelong learning into URF.

Larger action space for policy based sample selection: As AC-IR demon-

strated capable control over a BM25-random action space, an open research direction

is individual document selection to allow a neural model to make the most out of

a limited query set. Tang and Hui [119] suggest a way to view an entire document

collection to allow the agent to move away from function based actions. Alterna-
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tively, one can incorporate a diversification function over various retrieval functions

to enable greater coverage of a collection [127].

Adversarial domain adaptation with improved convergence: While ef-

fective when converged, the adversarial framework is sensitive to learning rate, and

can potentially ablate vital information which causes the IR model to diverge. A

possible cause of this is due the pathological curvature found in neural network opti-

mization [155]. While Adam [57] is effective while still being a first order optimization

method, the combination of two gradient updates in opposing directions under a first

order method might lead to this observed instability. A natural gradient based ap-

proach, while second order, would provide insight into improving the behaviour of

the adversarial regularization.

Expanding φ gracefully in URF: Although the URF framework is able to

outperform supervised fine-tuning, it suffers from the information bound in φ. Fu-

ture work would include incorporating additional collections with the hypothesis that

as MB grows, φ is able to adequately perform on new collections. However, an

alternative approach could incorporate lifelong learning for φ while maintaining a

linear relation to previous relevance functions. This feature would allow for a flexible

starting basis such that an IR system would be able to iteratively incorporate new

collections, with less and less samples needed for each additional collection. One pos-

sible way is to leverage work in linear programming, delayed column generation [8],

where we can adaptively expand the dimension of φ and w to incorporate new collec-

tions while maintaining the constraints that φᵀw maintains performance on the basis

set. This significantly reduces the complexity of the task as increasing the dimension

of φ is significantly less challenging than requiring the output of a non-linear function

remain consistent when updating its parameters.
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[98] Popel, Martin, and Bojar, Ondřej. Training Tips for the Transformer Model.
The Prague Bulletin of Mathematical Linguistics 110, 1 (Apr. 2018), 43–70.

[99] Precup, Doina, Sutton, Richard S., and Singh, Satinder P. Eligibility traces for
off-policy policy evaluation. In Proceedings of ICML (2000), Morgan Kaufmann.

[100] Qin, Tao, and Liu, Tie-Yan. Introducing letor 4.0 datasets, 2013.

[101] Rajpurkar, Pranav, Zhang, Jian, Lopyrev, Konstantin, and Liang, Percy.
Squad: 100, 000+ questions for machine comprehension of text. CoRR
abs/1606.05250 (2016).

[102] Rosenblatt, F. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review (1958), 65–386.

[103] Roy, Nicholas, and Mccallum, Andrew. Toward optimal active learning through
monte carlo estimation of error reduction. In ICML (2001).

[104] Rozantsev, Artem, Salzmann, Mathieu, and Fua, Pascal. Beyond sharing
weights for deep domain adaptation. CoRR abs/1603.06432 (2016).

125



[105] Sang, Erik F. Tjong Kim, and Meulder, Fien De. Introduction to the conll-
2003 shared task: Language-independent named entity recognition. In CoNLL
2003, Held in cooperation with HLT-NAACL 2003, Edmonton, Canada, May
31 - June 1, 2003 (2003), pp. 142–147.

[106] Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, and Klimov,
Oleg. Proximal policy optimization algorithms. CoRR abs/1707.06347 (2017).

[107] Seo, Min Joon, Kembhavi, Aniruddha, Farhadi, Ali, and Hajishirzi, Hannaneh.
Bidirectional attention flow for machine comprehension. In ICLR (Toulon,
France, 2017).

[108] Severyn, Aliaksei, and Moschitti, Alessandro. Learning to rank short text pairs
with convolutional deep neural networks. In SIGIR (New York, NY, USA,
2015), SIGIR ’15, ACM, pp. 373–382.

[109] Shen, Yelong, Huang, Po-Sen, Gao, Jianfeng, and Chen, Weizhu. Reasonet:
Learning to stop reading in machine comprehension. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (New York, NY, USA, 2017), KDD ’17, Association for Computing
Machinery, p. 1047–1055.

[110] Singhal, Amit. Modern information retrieval: a brief overview. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering 24 (2001),
2001.

[111] Søgaard, Anders, and Goldberg, Yoav. Deep multi-task learning with low level
tasks supervised at lower layers. In ACL (2) (2016), The Association for Com-
puter Linguistics.

[112] Song, Fei, and Croft, W. Bruce. A general language model for information
retrieval. In Proceedings of the Eighth International Conference on Information
and Knowledge Management (New York, NY, USA, 1999), CIKM ’99, ACM,
pp. 316–321.

[113] Surdeanu, Mihai, Ciaramita, Massimiliano, and Zaragoza, Hugo. Learning to
rank answers on large online qa collections. In ACL:HLT (2008), pp. 719–727.

[114] Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence to sequence learning
with neural networks. CoRR abs/1409.3215 (2014).

[115] Sutton, Richard, and Barto, Andrew. Reinforcement Learning. MIT, 2016.

[116] Sutton, Richard S, McAllester, David A., Singh, Satinder P., and Mansour,
Yishay. Policy gradient methods for reinforcement learning with function ap-
proximation. In Advances in NIPS. MIT Press, 2000.
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