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ABSTRACT
Recent research on conversational information seeking (CIS) mostly
focuses on uni-modal interactions and information items. This per-
spective paper highlights the importance of moving towards de-
veloping and evaluating multi-modal conversational information
seeking (MMCIS) systems as they enable us to leverage richer con-
text, overcome errors, and increase accessibility. We bridge the gap
between the multi-modal and CIS research and provide a formal def-
inition for MMCIS. We discuss potential opportunities and research
challenges in designing, implementing, and evaluating MMCIS sys-
tems. Based on this research, we propose and implement a practical
open-source framework for facilitating MMCIS research.
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1 INTRODUCTION
Interactivity is core to information-seeking tasks, and human con-
versation is the most natural communication tool. This has moti-
vated researchers and practitioners to imagine conversational inter-
actionswith information-seeking systems formany decades [11, 44].
Recent advances in automatic speech recognition (ASR) and deep
learning models for language understanding and generation, includ-
ing the popularity of devices such as smartphones, have created an
increasing interest in the area of conversational information seeking
(CIS). Despite the main focus of previous work on uni-modal inter-
actions and information seeking in conversational environments,
it is widely known that human conversations are multi-modal. We
communicate with each other not only by speech but also using a
multitude of modes. Nevertheless, searching for information is still
mainly conducted over a visual channel (i.e., typed queries and lists
of search results). These properties call for developing CIS systems
that provide multi-modal items and interact with users through
channels with multiple modalities.
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In this perspective paper, we study multi-modal conversational
information seeking (MMCIS) tasks from multiple perspectives. We
defineMMCIS which extends and combines the advantages of multi-
modal and conversational search interactions. We use the notion
of “conversation” as an information exchange with more than two
turns instead of commands such as setting a timer or turning on
the light. Furthermore, we focus on the topical transactional role
of search versus the social chit-chat [9, 60]. Despite the growing
interest in making everything “conversational”, little work has
focused on establishing how conversational search interactions
can be used in a multi-modal system. In addition, little is know
about the variety of devices, contexts, and tasks for MMCIS. We
aim to address this gap by investigating: (1) Why using MMCIS, (2)
Which tasks to support in MMCIS, (3)When to integrate multiple
modalities and conversations to reinforce MMCIS, and (4) How to
research multiple modalities and conversations to enable MMCIS.

The goal of this paper is to act as a starting point for discussions
between several research areas, including information retrieval
(IR), recommender systems (RS), multi-media (MM), and human-
computer interaction (HCI), and link to psychological and cognitive
sciences [29]. The intersection of the research areas as an interdis-
ciplinary field to enable people to search for information through
multi-modal conversations has not received focused attention [10].
Imagine the following example: a person is cycling along the road
on their way to work. She is planning her day, including tasks from
presenting a budget, hosting a new client, picking up their children
after school, and making dinner. The cyclist passes a flower on the
sideroad, which caught her eye and wanted to know what this plant
is. Since she is cycling on a busy road, she quickly stops, takes a
photo, and keeps riding. Meanwhile, she asks her earbuds to tell
her which plant that was by a spoken query such as “what was that
plant and is it edible?”. The MMCIS system combines the GPS loca-
tion, photo, and query (input modalities). The system senses via the
heart-rate monitor that she is still cycling and therefore does not
provide visual information but instead speaks into the earbuds (out-
put modality selection). Next, the cyclist may ask for information
on their work task on budget presentation. We hypothesize a range
of modality combinations to inform and specify the information
need through conversational interactions appropriately.

Our approach is the following. We study past work on multi-
modal interactions and conversations, and propose a set of def-
initions related to MMCIS systems. In this paper, we provide a
background on modality and multi-modality levels for the IR com-
munity (cf. Section 3), and make the following contributions:

• We suggest a formal definition for MMCIS ( Section 4).
• We outline IR challenges and bridge the gap between IR and
other fields such as HCI and MM (Section 5).
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• We propose practical ways for developing and evaluating MM-
CIS systems. More importantly, we extend the Macaw archi-
tecture [64] by supporting different MMCIS tasks and publicly
release the resulted platform, named Macaw-MMCIS (Section 6).

Assumptions: For simplicity of discussion, the term information-
seeking (IS) is used to refer to a set of relevant systems, including
(and not limited to) question answering (QA), recommendation, and
IR systems. We assume all these systems take as input a represen-
tation of the user’s information need, e.g., a keyword query, the
user profile, or a natural language question, to provide information
access to any documents, answers, or information units that satisfy
the user’s information need.

2 RELATEDWORK
In this section, we introduce the main concepts of conversational in-
formation seeking and multi-modal information seeking. We make
a distinction between the two main systems, (i) uni-modal infor-
mation seeking and (ii) multi-modal information seeking (MMIS).

2.1 Uni-Modal Information Seeking
Users often search for information by interacting with a traditional
browser-based search engine such as Google, Bing, or Yandex. Com-
monly, users write queries into a search box representing their in-
formation need. These written queries are usually a short statement
of the user’s knowledge gap [5]. The system uses these queries to
match, rank, retrieve, and present documents to help users solve
their information needs. This process is often completed with solely
textual information and can be classified as uni-modal information
seeking in which both input and output are presented in text.

More recently, with the developments around machine learning
and natural language processing (NLP), the search interactions in
which both input and output are presented via speech has received
considerable attention [33, 58]. This more natural way of express-
ing an information need via speech is considered an advantage
of the spoken conversational search interaction paradigm. Other
benefits include that users can access information even when there
is no screen or keyboard available, on mobile devices, or on-the-go.
Furthermore, people with limited literacy skills may benefit from
non-visual interactions. Nevertheless, presenting search results and
documents without overwhelming the user with information over
a speech-only channel is challenging [57, 59, 62]. Even though all
information should be able to be presented over audio for accessi-
bility reasons, much different information formats benefit from a
non-audio form (i.e., images or tables) [67, 69]. Spoken conversa-
tional search can still be seen as a uni-modal way of interaction.
That is because, although the input and output are presented via
audio in a spoken conversational search setting, ASR and speech
synthesis techniques still transform speech into a text format.

Increasingly, major search companies are using the advantages
of multi-modal interactions. For example, instead of a search query
submitted in a query box, users can now search by submitting an
image to retrieve similar images, names, and locations. Further-
more, with personalizations through accounts, GPS locations, or
multiple devices, everyday search interactions move away from the
traditional desktop search to an even more ubiquitous activity.

2.2 Multi-Modal Information Seeking
MMIS systems are often divided into two sub-systems: (i) classi-
cal multi-modal search and RS, and (ii) multi-modal information
seeking through spoken dialogs. We discuss these two system types.

Classicalmulti-modal information-seeking: It has been shown
that searching through keywords or recommendations often bene-
fit from multi-modal signals, from contextual item recommenda-
tion [32, 63], to visual-based and multimedia recommendation [16,
18, 41], cold-start dilemmas [14, 17, 45], or explaining and visualiz-
ing recommendation outcomes [55]. Furthermore, many IS tasks can
be enhanced by using the available multi-modal domain knowledge.
For instance, what does Persian or Ancient Egyptian architecture
look like, what makes Schindler’s List’s story development strong,
or what kind of outfit is suited for a holiday resort?

A recent survey by Deldjoo et al. [20] provides a frame of ref-
erence for multi-modal RS highlighting how multimedia content
(here referred to as audio, visual, and textual content) can be useful
in real-world recommendation problems. These systems are built in
two recommendation scenarios, both accepting multimedia input
but providing different types of output:
• to suggest a specific media item to a user–for example, a music
track or a video; or

• to suggest a non-media item by exploiting the media (e.g., product
images) associated with the information items–for example, to
recommend fashion items or food based on the visual appearance
of the images associated with the items.
From an algorithmic point-of-view, a major issue in MMIS relates

to the fusion of several modalities (e.g., text and image) to obtain
a meaningful representation. Recent state-of-the-art techniques
employ joint representation techniques to find a latent space in
which multiple modality information can be projected and com-
pared [26]. This can be a challenging task, e.g., while content data
such as text and images might be well-aligned, obtaining a latent
space to perform joint content and user-preference representation
(e.g., ratings, clicks, social-media information) might not be trivial.
Textual (uni-modal) embedding techniques such as word2vec [42],
glove [49], and BERT [21], have been a driving force to design
multi-modal embedding techniques e.g., based on graphs [22], deep
neural networks [8], and general-purpose techniques [27]. These
approaches have now found a long-standing position across various
tasks related to MMCIS, such as QA, recommendation, cross-media
retrieval [8], and multi-modal dialogue systems [43].

Multi-modal dialogues: Due to the advances in deep learn-
ing, research at the intersection of vision and language is unified.
This has led to increasing demand for multi-modal dialogue agents,
which unlike MMCIS that mostly focuses on open-domain informa-
tion seeking tasks, they mostly focus on chit-chat conversations or
task-oriented dialogues in a specific domain. The primary bottle-
neck for advancing research in (deep) multi-modal dialogues is the
availability of large-scale datasets in modalities beyond text. As a
leading study, Saha et al. [53] presented a multi-modal benchmark
dataset for the fashion domain. The authors developed two multi-
modal neural models in the encode-attend-decode paradigm and
demonstrated the proposed systems’ efficacy on two relevant sub-
tasks, namely text response generation and best image response
selection. The MMD dataset paved the path for interesting new

2



challenges on task-oriented dialog systems and visually grounded
dialogues. Later, Liao et al. [38] built a knowledge-aware multi-
modal dialog system (KMD), based on deep reinforcement learning,
and a hierarchical neural system to produce more substantive re-
sponses. Cui et al. [13] present a KMD system in which the authors
pay more attention to user explicit requirement in the attributes by
dynamically encoding the dialog history based on user attention.
Facebook AI released SIMMC [12], the situated interactive multi-
modal conversation dataset, which improves classical task-oriented
dialogues (based on basic tasks such as question-and-answer or
call-and-response) by situating the user in an online store based on
AR/VR and run complex multi-modal actions, such as changing the
view of an object in the scene, searching or adding to cart.

3 MULTI-MODAL INTERACTIONS
Multi-modality is a highly inter-disciplinary concept; it concerns in-
tegrating different information sources, enabling expanding knowl-
edge from only one source. In the following, we present the defini-
tion of different modality types (Section 3.1), and the modality prin-
ciples, linking to psychological and cognitive science (Section 3.2).

3.1 Modality Types
Several terms pertinent to multi-modality include multi-modal in-
teractions, multi-modal interfaces, modes and modality, channels,
platforms, multi-sensory, and multimedia. These vocabularies have
adopted different implications in various communities [39, 61].
There are two views on multi-modal interaction: human-centered
and system-oriented view [52]. The human-centered view relates
the term modality to human sensory modalities (the five senses of
vision, hearing, touch, taste, and smell), and multi-modal interac-
tion refers to the capacity of the human to (i) receive, (ii) process,
and (iii) deliver information from/to the outside using more than
one sensory modality. In contrast, the system-oriented view focuses
on the system and regards multi-modal interactions as systems that
accept many different inputs combined in a meaningful manner.
We combine these two views in Figure 1, showing a multi-modal
process starting from the human, hardware, software to the human.
The process displays the different components/features involved:
• The user inputs human actions through the activation of mus-
cles (e.g., vocal cords, hand), corresponding to several human
biological/sensorial modalities.

• The user communicates with the computer using several physical
input devices (keyboard, mouse), or more advanced ones such
as motion or eye-gaze tracking sensors. These input devices
correspond to different interaction channels (see Section 3.1.1).

• The information sensed by the machine’s input devices produce
different representations of data in audio, text, images, video, or
the presentation mediums. These data provide distinctive levels
of understanding of user intention at diverse semantic levels
(i.e., low-level, semantic). Audio, image, and text correspond to
different processing modalities (see Section 3.1.2).

• The computer processes the information coming from constitut-
ing modalities through applying various computer vision, NLP,
audio analysis, and data fusion, corresponding again to the pro-
cessing modalities (see Section 3.1.2).

• The computer outputs the message through appropriate devices
(e.g., screen, loudspeaker). The computer may send statistically

raw data (e.g., static images, audio files, or video clips) or data gen-
erated dynamically from abstract representations (such as gener-
ation of text, graphics, or speech synthesis) (see Section 3.1.3).

• Eventually, several user senses are stimulated by the system
output (e.g., vision, hearing).
Multi-modality can be analyzed with respect to the communi-

cation/interaction channel, processing modalities, presenta-
tion mode, or a combination.

3.1.1 Interaction Channel. A channel is a pathway through
which information is conveyed. We use this term to refer to its
HCI usage, i.e., an interaction technique that exploits a specific
combination of the user’s ability and device capability to enable
human-computer communication. This modality refers to technolo-
gies or tasks related to communication between a person and a
system, as input (to the system) or output (to a human).
• Input channels: they involve various input types based on point-
ing, touch, speech, body gesture; for instance, mice, keyboard
(traditional input devices), or interaction devices based on touch
or vision such as gesture recognition and motion tracking (mod-
ern input devices), where the latter allows user to interact with a
computer more naturally and intuitively.

• Output channels: such as traditional 2D screens, audio output, to
holograms.
Example: The cyclist example in Section 1 uses multiple sen-

sors/devices (GPS, heart-rate monitoring), together with the photo
and the query, which constitute different interaction channels. This
system is a multi-modal system from the channel perspective.

3.1.2 Processing Modality. Processing modalities describe the
processes performed by the system and the data representation of
information items. They are often based on human biological senses
(or sensory modalities), namely visual, auditory, tactile, smell, and
taste. From a processing point-of-view, we can recognize the fol-
lowing primary processing modalities, visual (V), text (T), audio
(A), touch (To), others (O).1 Note that emerging technologies such
as non-evasive sensing of neural activities via a brain-computer
interface may become an indispensable part of multi-modal sys-
tems in the future [61]. We consider signals obtained from such
technologies as part of the category “others”.

Example: A QA system that combines text and images input
(question) or output (answer) level is a multi-modal QA system at
the processing level, where the constituting modalities include T+V.

3.1.3 Presentation Mode. This level is helpful to reason about
modality’s psychological/cultural impact or explains the modality
effects based on the human brain. The presentation mode of com-
munication refers to whether the presented stimulus to human is
verbal or non-verbal.
• Verbal communication (VC): It is the process of sending and re-
ceiving messages through the use of words.

• Non-Verbal communication (NVC): It is the wordless process of
conveyingmessages, e.g., using facial expressions, body language,
gesture, and posture.

1Note that although “text” does not correspond to an individual human sensory modal-
ity due to its predominant use we consider it as a processing modality.
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Figure 1: A conceptual design of a multi-modal system and its different elements (Figure is adapted from [35, 40]).

VC enables humans to convey messages clearly and fast, while
NVC often adds to or complements the verbal message. When
people interact, the nature of their relationships is affected by non-
verbal factors, e.g., their distance from each other, eye contact,
posture, or facial expression. VC and NVC together provide a rich
source of information to develop rapport and trust in communi-
cations. For example, NVC can be vital for communicating with
people with limited communication abilities, such as aphasia [23].
These people heavily rely on NVC, such as gesturing and drawing.

Example: We can further categorize VC and NVC according to
vocal (spoken) and non-vocal (written). For instance, the spoken
words “put that there” are the VC’s vocal elements, whereas its
writing is the VC’s non-vocal element. On the other hand, the tone
of the voice, sighs, and vocal qualities such as the rate of speech
are the vocal element of the NVC, and lastly, the sign language of
“put that there” is the non-vocal part of the NVC. Human-human
communication has a higher chance of success when VC and NVC
work in harmony together.

Table 1 provides a list of examples of different interaction chan-
nels, involved modalities from a processing and presentation mode.

3.2 Modality Principles
Mayer andMoreno [40] formalized the cognitive theory of multime-
dia learning, defined as learning from text and images, based upon
three principles, (i) dual-channel: human mind uses two processing
channels, for individual processing of visual/pictorial information;
(ii) limited capacity: each channel has limited capacity for process-
ing information; and (iii) active processing: that involves the coordi-
nation of the cognitive processes (selecting and organizing relevant
words and pictures into coherent representations and integrating
them with prior knowledge).

According to Mayer and Moreno [40] (see left side Figure 1),
when words and pictures are presented to the learner, they enter
via sensory organs (ears and eyes). Based on the learner’s attention
level, she captures some of the auditory and visual sensations, la-
beled as “selectingwords/images”. The learner constructs a coherent
verbal and pictorial representation from the incoming words and

images represented with “organizing words/images”. Finally, the
verbal and visual models are mentally connected and with relevant
prior knowledge activated from long-term memory. Meaningful
learning from words and images happens when the learner engages
in these central cognitive processes during learning.

Example: In an information-seeking scenario, where animation is
used together with the concurrent subtitles (dual-channel), this cre-
ates the so-called split-attention effect, which means, due to limited
processing capacity, the learner’s visual attention is split between
viewing the animation and reading the on-screen text. The situation
can be remedied if the text is narrated by the animation since it
would off-load the visual channel into the auditory channel, increas-
ing the effective working memory capacity. Furthermore, according
to active processing theory, the best multimedia learning occurs
when cognitive processing occurs both in the verbal and non-verbal
channels. We can observe that multi-modality in presentation mode,
i.e., verbal and non-verbal, improves multimedia learning quality.

4 MMCIS: DEFINITIONS AND APPLICATIONS
Recent conversational approaches to finding information through
dialogue have mainly been viewed from natural language inter-
actions (i.e., search in which input and output are mediated via
“conversations” [33, 51, 60]). Even though several mentions towards
conversational multi-modal systems suggested an expansion in
the in- and output options [28, 46], limited research has been de-
voted to interacting with IS systems in a range of modalities which
complement each other. We aim to address this.

4.1 Multi-Modality in CIS
Section 3 introduced modality types in multi-modal systems. How-
ever, multi-modality becomes even more complex when it comes to
MMCIS systems, mainly due to the multi-turn and information ac-
cess nature of MMCIS systems. Therefore, given the multi-modality
basics presented earlier, we define MMCIS as follows.

Definition 4.1 (Multi-modality in CIS). Multi-modality in CIS can
be defined based on three dimensions: (I) processing modality in
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Table 1: Comparison of different modality types (refer to Section 3.1). Input/Output represent the input and output channels
to the system. The information was originally obtained from Glinert and Blattner [25], Turk [61], and extended thereby.

Input/
Output

Interaction
channel

Processing modality Presentation mode

Visual Textual Audio Touch Others Verbal Non-verbal
Vocal Non-vocal Non-vocal

I Structured layouts (forms, lists) ✓ ✓

I Speech ✓ ✓ ✓

I Facial expression, gestures, lip reading ✓ ✓

I Emotion recognition from EEG ✓ ✓

I Eye/gaze tracking ✓ ✓

I Pressure ✓ ✓

I Interactive map ✓ ✓ ✓

I Motion capture (non-visual) ✓ ✓

O Animation + on-screen text (subtitle) ✓ ✓ ✓ ✓

O Narrating animation ✓ ✓ ✓ ✓ ✓

* Note that although speech is by definition a multi-modal signal (spoken words+atmosphere noise), we refer to it as a uni-modal signal.
** The vocal element of NVC may include tone of the voice, sighs and other vocal qualities, which are not used in this table.

conversation (C), (II) multi-modality in user-system interaction (I),
and (III) multi-modality in processing and accessing information
items (D). Therefore, multi-modality in each MMCIS system can
be formally represented as:

Multi-Modality in MMCIS = C + I + D (1)

We define the multi-modality dimensions C, I, and D as follows:

Dimension I: Processing Modality in conversation (C). Let
𝐶 = [𝑐1, 𝑐2, · · · , 𝑐𝑚] denote a conversation with 𝑚 conversation
interactions, between the user and the system, where 𝑐𝑖 contains all
the information about the 𝑖th interaction, including the actor (user(s)
or system(s)), the content, and the context (e.g., time, location, or
device). We define multi-modality in processing the conversation
𝐶 based on two concepts of processing modality alternation and
combination as follows:

• Processing modality alternation in conversation: If each
conversation interaction uses a single processing modality, but
the processing modality between two adjacent interactions al-
ters, then the conversation is multi-modal by processing modality
alternation. Formally, the conversation𝐶 is multi-modal by alter-
nation if both of the following conditions are satisfied.{

|modalityp (𝑐𝑖 ) | = 1 ∀𝑖 : 1 ≤ 𝑖 ≤ 𝑚

modalityp (𝑐𝑖 ) ≠ modalityp (𝑐𝑖+1) ∃𝑖 : 1 ≤ 𝑖 < 𝑚
(2)

where modalityp (·) denotes the processing modality of a given
conversation interaction. Note that the definition of processing
is provided in Section 3. Example: a user asks a natural language
question in a conversation and the system responds with an
image.

• Processing modality combination in conversation: If one
conversational interaction in a conversation consists of multiple
processing modalities, then the conversation is multi-modal by
combination. Formally, the conversation 𝐶 is multi-modal by
combination if:

|modalityp (𝑐𝑖 ) | > 1 ∃𝑖 : 1 ≤ 𝑖 ≤ 𝑚 (3)

Example: a user selects an image of a plant and asks a ques-
tion about the image, therefore, the interaction consists of two
processing modalities.

In the above equations, uni- or multi-modality of a conversation
interaction 𝑐𝑖 are defined on the processing modalities reviewed
in Section 3.1. If there is no (at least one) modality alternation or
combination in the conversation 𝐶 , then 𝐶 is uni-modal (multi-
modal) with respect to the first multi-modality dimension (C).

Dimension II: Multi-modality in user-system interaction
(I). Independent from the processing modality of conversational
interactions in 𝐶 , if the interaction channel or the result presenta-
tion mode (see Section 3.1) involves multiple interaction modalities,
then the conversational information access system is multi-modal
with respect to Dimension II or user-system interactions. Example:
a user interacts with the system using a speech interface and/or a
visual screen.

Dimension III: Multi-modality in processing and accessing
information items (D). If the information items used in the in-
formation access systems (for example, the documents that are
retrieved or recommended) require different processing modali-
ties (see Section 3.1) or the modality of the information items and
the conversation interactions in 𝐶 are different, then the system
is multi-modal with respect to Dimension III (D). Example: the
system retrieves music in response to a keyword search query of
the user in a multi-turn conversation.

In summary, C represents what information the system is re-
ceiving from the user during the conversation. Thus, C focuses on
the system-side of the interaction in which multi-modality refers
to processing modality. I represent all the interaction channels
used by the user to interact with the system and by the system
to interact with the user. D focuses on the information items and
processing data. Thus, D has a system oriented view of the data
collection and is centered on processing modality.
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4.2 Why use MMCIS
In essence, conversations are multi-modal. Humans interact with
their environment and fellow humans through a myriad of modal-
ities. We talk, look, and touch our physical world concurrently.
We observe a friend’s tone of voice, facial expressions, and hand
movements to understand which message they convey beyond the
spoken language. All these different inputs provide us with a holis-
tic view of the conversation’s topic, our friend’s sentiment towards
the topic, or their mental state. However, all this information is
lost in a simple interface which we typically navigate in a uni-
modal way with a mouse, keyboard, or touchscreen. The simplicity
of uni-modality leaves us as humans wanting more satisfactory,
rich, and human-like interactions, which leads us to consider how
multi-modal interactions can be incorporated into search.

In particular, for search formulations, users can expand their
information need input modality from a typically written query to
multi-modal input. The different ways of expressing an informa-
tion need may overcome the difficulty to express our thoughts or
information gap [5, 56].

4.2.1 Advantages of MMCIS. We highlight some advantages to
searching over a multi-modal channel, incorporating context, over-
coming errors, improving learning, and enhancing accessibility.

Context. Muchwork has been done to include context into search;
however, advanced multi-modal interactions and data should in-
creasingly be included in future models. In addition, intentionally
incorporation contextual features enables the move from sequential
(uni-modal) to parallel design (multi-modal). Furthermore, informa-
tion needs can be expressed in more than keywords, facilitating the
use of suitable modalities for particular needs and thus enabling to
interact beyond spoken language. Instead of relying on the context
which can be sensed by a system, users can actively disclose their
context by sharing photos or videos as query (i.e., the context) in-
cluding voice as a proxy of the user’s mental or emotional state. The
increased usage of context through multi-modal interactions also
can be more human-like (including “socialness”), that is, because
all the extra context features can be included in the model.

Errors and Accuracy. The multi-modal system can help over-
come errors and increase accuracy from both input and output
from systems. For input signals, multi-modal input can help with
overcoming errors (i.e., multi-modal can deal with speech disfluen-
cies better by combining speech recognition and lipreading [24, 69]).
For output, a combination of speech and subtitles can overcome
issues of presenting results in a noisy environment.

Learning. Since human learning is a complex multidimensional
activity, it makes sense to consuming information through multi-
modal interactions (see Section 3.2). This novel interaction mode
can enhance users’ different kinds of thinking and reasoning, adapt-
ing to the information seeker’s needs.

Accessibility. People differ in capabilities, needs, or preferences.
Even though a particular task can be achieved with a specific modal-
ity, providing users with several modalities and the opportunity to
switch between modalities enhances equal information access. For
example, a personwith dyslexiamay be very capable of typing a key-
word; however, being able to verbalise it to a system may overcome

spelling difficulties. Different modalities have different benefits, and
it is often easier to point to an object instead of describing it. Finally,
multi-modal output can adapt to the most informative mediums
overcoming the limitations of a single-medium output [24] and
thus making it more “natural” to interact with MMCIS systems.

4.3 When to Integrate Multiple Modalities and
Conversations to support MMCIS

Natural language statements or short queries are not always suitable
to search. Hence, MMCIS is suitable in the following conditions:

• the person who is searching has device(s) available which allow
for more than one interaction mode (multi-device and multi-
modal),

• when the task’s context is important and can be captured with
a device in a suitable modality enhancing personalization,

• when task complexity can be supported by the mode of device
interaction,

• when the results can be returned in an appropriate outputmodal-
ity given the device, context, and complexity.

Next, we illustrate these differences and expand on when MMCIS
may not be or less suitable.

Example task 1: Classic information retrieval. Let us consider a
classic IR task of the Robust TREC 2004 topic. This task has been
identified by Bailey et al. [4] as a medium complexity task as per
Taxonomy of Learning objectives [3]. Let us imagine a user is in
their home environment at their desk while listening to a podcast.

• Topic ID: 314
• Title: Marine Vegetation
• Description: Commercial harvesting of marine vegetation such
as algae, seaweed and kelp for food and drug purposes.

Since our user has access to a desktop (device) at their desk
(context), and the task involves more than one keyword search
(complexity), it makes sense to conduct the search over a keyword
browser-based retrieval. Nevertheless, the engine may pro-actively
converse to narrow down or specify the search [58, 65]. Further-
more, depending on how the user anticipates the results, the browser
could use visual or auditory information to satisfy the information
need (e.g., video fragments from news broadcasts). Thus, making
use of the multi-modal response presentation techniques and con-
versational feedback loops to refine results.

Example task 2: On-the-go and longitudinal information seeking.
Let us revisit the example stated in Section 1, in which a person was
cycling (non-stationary context), had multiple mobile electronic
devices available, and several information needs with ranging com-
plexity. The user instigated a conversation with the system by
submitting numerous queries (photo and voice query) to build their
information need. However, many of these information needs were
not addressed on the spot while the person was cycling but instead
queued until the user was able to receive the information through
the appropriate modality. It was thus enabling the user to gather
and access information over a long period.

Example task 3: Multi-party or collaborative search. The previ-
ous examples illustrate single-party information needs with one
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or multiple devices and information needs. The following exam-
ple demonstrates the advantages of multi-modal interactions for
collaborative (or multi-party) CIS.

Imagine you are driving with some friends for a day out, sud-
denly your car has a warning sign indicating you need to stop
and pull over. You and your friends start to search online by sub-
mitting the information need to diagnose the problem. You start
submitting keywords via voice and photographs to a search en-
gine, watch videos to establish the problem, and upload the car
diagnostics to your dealer. Simultaneously, one of the friend’s films
and photographs the car and uploads it to a forum on cars to ask
experts for advice while searching for alternative transportation
to get back home. The other friend just hung up the phone with
the car mechanic, who is now adding their search terms and found
the information to the search session. The use of different devices
to submit the multiple information needs to support the accom-
plishment of several tasks at the same time while triangulating,
fusing, or “meshing” sources to improve overall recognition ro-
bustness [36, 50]. This complex information task allows you, your
friends, and your car mechanic to corroborate information from
multiple devices and modalities while supporting sense-making
of the issue. Furthermore, this example illustrates the utility of
both synchronous and asynchronous searching while the curated
conversation with information through the system can alleviate
the cognitive burden of the information-seeking task. Again, dif-
ferent modalities to consume the information may be appropriate
at given times. Furthermore, we hypothesize that the systems will
play an active role in selecting, organisation, and presenting the
information as the knowledge expert.

Summary. As seen in the examples, different electronic devices
(e.g., desktop, mobile device, smart speaker, or car) supporting
multiple modalities, user contexts (stable or changing context), and
task complexities (simple to complex) can be accommodated in a
multi-modal conversation with information. The examples show
that searching through the web with ever-growing corpora is not
an easy task. MMCIS is inherently an interactive process and we
believe that supporting cooperative user–system conversations will
improve existing IR systems.

Scenarios Which May Not Invite For MMCIS. MMCIS may
not always be a good idea and can add burden for simple infor-
mation needs, especially when existing channels work well [7].
Furthermore, some disadvantage of the multi-modal conversations
include strong computational and continuous network capabilities.
That is, users may not be able to searchwhen they are not connected
over the internet. On a user level, there is the possibility of cog-
nitive overload users by too much information, device-switching,
or modality changes. Challenges such as privacy concerns about
all the gathered data need to be investigated. Furthermore, on a
more technical level, multi-modal research is expensive to collect,
build, and test. It has been suggested that interdisciplinary know-
how is needed to optimise the complex and challenging needs of a
multi-modal system [31].

5 MMCIS CHALLENGES
In this section, we discuss challenges in designing and building
MMCIS systems. These challenges are divided into five categories.

5.1 Multi-Modal Conversational Interactions
Multi-modal conversational input interactions result in several
research challenges that do not exist or has been overlooked in
uni-modal conversational systems which are addressed next.

Designing devices that support different interaction chan-
nels. Each interaction channel requires unique sensors, processing
units, and user interfaces. Some of them are common in existing
devices, such as smartphones and speech-only intelligent assis-
tants. However, there exist several multi-modal interactions that
are not supported by current devices. For instance, even though
eye-tracking is extensively used for understanding user interactions
research [6], it has not been widely deployed in popular devices. We
believe that advancing technology, reducing deployment cost, and
increasing applications are the key to introducing new interaction
channels to the devices for MMCIS. One can imagine that inter-
acting with virtual and augmented reality devices for information
seeking purposes becomes widely accessible soon.

Recognizing interactions. MMCIS systems should recognize
multi-modal interactions. For instance, for speech interactions, it
is often difficult to find the answer to the user request in the form
of speech signals, and this is why ASR is used to transcribe speech
interactions. Different interaction modalities require unique mod-
els for recognizing the interactions, and developing these models
is necessary to advance MMCIS research. An important research
question is what representation should be used for different inter-
action modalities. Converting all modalities to text is not optimal
and producing a unified representation across modalities seems
an unavoidable research challenge. Moreover, some modalities are
context-rich and useful information can be inferred from the con-
text. For instance, the background noise in speech interactions can
provide useful information, e.g. user’s location. Similarly, speech
can provide rich cues about user’s emotion and sentiment, a use-
ful piece of information omitted in text-based CIS. Extracting and
inferring such information from context introduce new research
problems for MMCIS systems. Note that using such information
may have privacy implications and user consent may be required.

Correcting the recognized interactions and errormitigation.
Automatic recognition of multi-modal interactions is not errorless.
Different techniques, such as language modeling or computing the
probability of observing each recognized interaction, are required
for correcting these mistakes. If the system cannot accurately cor-
rect the recognized interaction, it may bring the user in the loop
by asking a clarifying question, e.g., see [54].

Discoverability of interaction channels. Like most new tech-
nologies, users can be educated on how and when to use different
interaction channels in the conversation. This can be simply ig-
nored with the hope that users will discover the capabilities of
the system themselves. However, different models can be devel-
oped to make this process more efficient, thus resolving the tension
between exploration and instructions [47].
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5.2 Multi-Modal Conversational
Understanding

Conversational understanding in information seeking conversa-
tions refers to a process of accurate representation of user informa-
tion need in a multi-turn user–system conversation. Topic tracking,
co-reference, and ellipsis resolutions are major challenges in con-
versation understanding [2]. Different levels of multi-modality in
conversation, as explained in Section 3.1, makes conversation under-
standing tasks challenging. We review a number of these challenges
that should be addressed for developing successful MMCIS systems:

Resolving co-references and ellipsis across modalities. Co-
reference resolution, i.e., finding all expressions that refer to the
same entity, and ellipsis resolution, i.e., identifying all omissions
from a clause of one or more words, are at the core of conversation
understanding. Existing work mainly focuses on co-reference and
ellipsis resolutions from a conversation in the form of text [37].
These problems also exist in multi-modal conversations and yet to
be appropriately explored.

Multi-modal query rewriting. Rewriting the last user request
within the context of the existing conversation in order to pro-
duce a history-independent request (query) is one of the common
tasks in conversation understanding. Multi-modal query rewriting
models should be able to draw the connection across modalities
that appeared in the conversation. For instance, modelling such
connections, the connection between the text and images used in a
conversation, is a challenging and essential task to be explored.

Learning conversation representation acrossmodalities. Con-
versation understanding models are mainly trained based on user–
system interactions. Learning from different conversations, each in
different modalities, is a challenging task. A straightforward solu-
tion is to train different models for each modality. However, this is
not an optimal solution. Transferring knowledge across modalities
is an exciting and essential challenge in MMCIS systems.

Conversation understanding for cold-start modalities. Ad-
vancing in technology leads to the development of new sensors,
devices, and interfaces, and thus new interactionmodalities. Adding
a new modality to an existing MMCIS system is yet another chal-
lenge in conversation understanding. We call this problem studying
cold-start modalities and this can be another case of transferring
knowledge across modalities.

5.3 Multi-Modal Conversational Ranking and
Generation

Multi-modality further results in various research challenges in
conversational result ranking and generation. They include com-
puting the similarity between conversation representation and the
retrieved items. If the modality of items in the collection is different
from the conversation modality, the MMCIS system should bridge
this gap by learning shared representations or transforming one
modality to another. Due to the nature of retrieval tasks, these
solutions should be efficient and scalable. Besides, generating multi-
modal results requires developing new generative models [19] to
keep the connection between different modalities in a generation.

5.4 Multi-Modal Response Presentation
As frequently mentioned throughout the paper, conversational
systems create challenging research problems related to result pre-
sentation. Here we review these challenges:

Selecting outputmodality. In the case ofmultiple outputmodal-
ities, deciding which modality to use for results presentation is
important. Selecting the output modality can depend on the type
of request and response, user preferences, system properties (e.g.,
screen size), and situational context (e.g., using speech outputs
while driving a car).

Changing themodality of the retrieved or generated response.
If the selected output modality is different from the retrieved or
generated response, a model should be employed to convert its
modality to the selected one. Some examples include automatic
speech generation (converting text to speech), generating text from
images and diagrams and vice versa.

Response presentation in multiple modalities. A response
can be presented in multiple different modalities. For example, the
response to a user request may be an image (or diagram) in addition
to a text or speech description of that image (or diagram). Presenting
the results using multiple modalities may need further research in
terms of user interface and response ranking and generation.

5.5 MMCIS Evaluation Challenges
Evaluating IIR models is challenging. The reusable test collections
for CIS tasks are built based on several simplifying assumptions
about the system abilities and user behavior. For instance, the TREC
Conversational Assistance Track [15] assumes that users always
ask related natural language questions in each session and the
system can only retrieve several passages. As another example,
the Qulac dataset [1] considers clarifying questions in response
to search queries with the assumption that users always submit a
single keyword query in each session. Such assumptions do not
often hold in real-life settings. This is why online evaluation of
CIS systems is critical. However, large-scale online evaluation is
expensive and time-consuming and is only accessible to a small
fraction of researchers. Therefore, building reusable test collections
is still one of the most important parts of CIS research. All the
mentioned facts are relevant to all types of CIS systems, including
MMCIS. That being said, evaluating MMCIS systems requires some
unique properties. They include evaluating the system’s ability to (i)
represent and utilize different input modalities and item modalities
in the collection, (ii) present the responses in different modalities,
and (iii) select the most appropriate modality for response presen-
tation. Little is known about the guidelines for evaluating MMCIS
systems. Methodologies used for creating reusable test collections
presented in previous work for CIS research [1, 15, 48, 65, 67, 68],
user simulation [66], and online evaluation [30, 34] are generally
applicable to MMCIS evaluation.

6 A PLATFORM FOR MMCIS RESEARCH
We introduce a platform for developing and evaluating MMCIS
models by extending the Macaw’s platform [64] to handle multiple
interaction and processing modalities. Macaw is an open-source
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Figure 2: A high-level architecture for the Macaw-MMCIS platform.

platform implemented in Python for CIS research. It uses the Tele-
gram interface that supports multi-modal interactions, however,
its original architecture fails at handling different types of multi-
modal interactions. This has motivated us to extend its architecture
by multi-modal components. We open-source our implementation,
called Macaw-MMCIS, for research purposes.2

The high-level architecture of Macaw-MMCIS is depicted in
Figure 2. The new components, with respect to theMacaw’s original
architecture include:
• Multi-modal Request Recognition: The goal of this component is
to convert the user’s Request Message to a unified format, e.g.,
converting everything to text or producing a high-dimensional
latent shared representation for all modalities. The output of this
component is a Message that extends the Request Message with
the recognized unified representation. Note that each Message
in Macaw is a JSON object.

• Multi-modal Conversation Understanding: Once the whole con-
versation history for the current request is retrieved, this com-
ponent is responsible for helping the downstream information-
seeking tasks utilize the conversation. This may include multi-
modal co-reference and ellipsis resolution and/or learning a joint
representation from the given conversation.

• Multi-Modal Information Seeking Processes: These components
are responsible for response retrieval or generation. Eachmay use
different algorithms or perform additional information seeking
tasks. Note that these components are equivalent to Actions in
the original Macaw’s architecture with the difference that they
can retrieve or generate multi-modal items.

• Output Modality Selection: This component is a classifier that
selects the modality that should be used for presenting the pro-
duced response to the user.

• Modality Conversation: If the selected output is different from
the produced response modality, this component converts the

2Macaw-MMCIS is integrated into the Macaw project and is available at https://github.
com/hamed-zamani/macaw.

response’s modality and returns a Response Message object. This
component can be as simple of speech generation when the
produced result is text and the selected modality is speech.
For the rest of components, we refer the reader to Zamani and

Craswell [64], as they have not been significantly modified from
their original implementations in Macaw. The developed platform
supports different modalities, including text, speech, image, and
video, in addition to other interaction channels such as click.

7 CONCLUSION AND FUTUREWORK
This perspectives paper explored information-seeking through
multi-modal conversations. We consolidated existing research on
multi-modal interactions and CIS to define MMCIS. We imple-
mented a clear definition of modality types (i.e., interaction channel,
processing modality, and presentation mode), including examples
enabling a proper understanding of multi-modality and its signifi-
cance. We consider the contribution of the MMCIS definition and
dimensions (i.e., multi-modality in conversations, user–system in-
teractions, and processing and accessing information items) to sup-
port the research and development for dedicated MMCIS systems.
Furthermore, by illustrating possible MMCIS tasks and research
challenges, we identified conditions in which this emerging interac-
tion paradigm is suitable. Additionally, we released a research plat-
form for MMCIS. To the best of our knowledge, no formal MMCIS
definitions have been proposed. Finally, overcoming the identified
research challenges with our proposed MMCIS research platform,
MACAW-MMCIS, is a critical extension of this work. We argue
that this highly multi-disciplinary research can bridge research
communities and positively impact information accessibility.
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