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We presentGenEx, a generative model to explain search results to users beyond just showing matches between
query and document words. Adding GenEx explanations to search results greatly impacts user satisfaction
and search performance. Search engines mostly provide document titles, URLs, and snippets for each result.
Existing model-agnostic explanation methods similarly focus on word matching or content-based features.
However, a recent user study shows that word matching features are quite obvious to users and thus of
slight value. GenEx explains a search result by providing a terse description for the query aspect covered by
that result. We cast the task as a sequence transduction problem and propose a novel model based on the
Transformer architecture. To represent documents with respect to the given queries and yet not generate the
queries themselves as explanations, two query-attention layers and masked-query decoding are added to the
Transformer architecture. The model is trained without using any human-generated explanations. Training
data are instead automatically constructed to ensure a tolerable noise level and a generalizable learned model.
Experimental evaluation shows that our explanation models significantly outperform the baseline models.
Evaluation through user studies also demonstrates that our explanation model generates short yet useful
explanations.
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1 INTRODUCTION
We focus on a new class of explanations for search results that aims to help users gain deeper
understanding of search results and that is suitable for different search scenarios, from ad-hoc to
conversational information seeking, and from desktop computers to voice-based systems.
Search engine result pages currently provide document snippets in addition to document titles

for each result, where the snippets are typically 2- or 3-line extracts highlighting the query words
in the documents’ contents. Although it is known that the quality of that summary can have a
significant effect on user interactions [36], search snippets oftentimes are not coherent [64] and fail

Authors’ addresses: Razieh Rahimi, Center for Intelligent Information Retrieval, University of Massachusetts Amherst, 140
Governors Dr, Amherst, Massachusetts, 01002, rahimi@cs.umass.edu; Youngwoo Kim, Center for Intelligent Information
Retrieval, University of Massachusetts Amherst, youngwookim@cs.umass.edu; Hamed Zamani, Center for Intelligent
Information Retrieval, University of Massachusetts Amherst, zamani@cs.umass.edu; James Allan, Center for Intelligent
Information Retrieval, University of Massachusetts Amherst, allan@cs.umass.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0004-5411/2018/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


111:2 Rahimi, et al.

to explain the documents’ relevance to the submitted query [62]. Thus the users may be confused
as why a document is presented in search results.

To address all these issues, we propose GenEx, an approach that generates terse explanations –
on the level of noun phrases – for search results describing what aspect of the query is covered by a
retrieved document. For example, suppose that in response to the query “Obamacare” a document
is listed that discusses how income is subject to an additional tax. A desired explanation for the
document is “impacts on medicare tax”, which provides information beyond that of the snippet:
“..tax to offset the costs of the OBAMACARE. this tax first took effect in 2013...” (as
automatically generated by the Indri search engine).
We start this work by describing a set of studies to assess the usefulness of explanations like

those produced by GenEx – that is, to explore whether the proposed explanations can help users
make more accurate and/or faster relevance decisions? In Section 3, we describe and then compare
two presentations of search results: 1) showing documents’ snippets only, and 2) showing snippets
and explanations. We demonstrate that when participants have the explanations, they reach
consensus on relevant document in 23% more cases than when they have snippets alone. In
addition, participants could detect the relevant document in 7 fewer seconds on average (22% faster)
when explanations are provided.

The problem of constructing such explanations does not appear to have been studied previ-
ously in works on snippet generation or model-agnostic search result explanation. Prior work on
model-agnostic explanation of information retrieval models is either local, focusing on explaining
individual rankings [59], or global, explaining the model behavior as a whole by training a simpler
“interpretable” ranker, such as decision trees or a linear ranker [58]. Both types of work focus on
explaining content-based features in ranking: which words or word-matching features contributed
more in the provided rankings. Although useful in some cases, the recent study by Thomas et
al. [62] suggests that users of search systems benefit more from explanations describing documents’
relevance beyond word matching.

Explaining documents’ relevance faces the major challenging step of extracting and conceptually
representing the query-related part(s) of the document content (possibly a small part of the docu-
ment [65]) with respect to generally vague short-keyword queries. In addition, as with the simpler
task of general document explanation (such as headline generation [53]), obtaining substantial
amounts of manually-labeled training data is often costly and time consuming.
In Section 4, we cast the task of search result explanation as a sequence transduction problem,

where an attention-based encoder-decoder architecture first provides a topic-focused contextual
representation of a document and then generates desired explanations. We specifically extend the
Transformer architecture [67] by introducing a query attention layer in the encoder to represent
query-focused parts of documents. We then mask the query in the decoder to generate coherent
textual explanations of information in documents that satisfy the user information need.

We propose solutions to automatically obtain training data from the Web to bypass the expensive
human labeling process. Our model is thus trained with no manually labeled training data. To
build weakly-labeled training data with a noise level that a supervised encoder-decoder model can
tolerate and that learns a model that generalizes to open-domain input texts, we combine samples
from two sources: (1) Wikipedia articles as more controlled edited content than the entire Web,
and (2) anchor texts in a collection of general web pages.
In Section 5, we describe extensive experiments on multiple datasets to evaluate GenEx. Our

results show that GenEx significantly outperforms the baselines: it improves BLEU-1 by 67%-73%
as well as ROUGE-1 and ROUGE-L by 47% - 51%, all over the original transformer architecture on
general test samples from the Web.
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Since BLEU and ROUGE do not always correlate with human judgments, we continue in Section 6
with a final study asking people to evaluate the quality of generated explanations, incorporating
both relevance to the query and match to the documents’ content. The results show that GenEx
explanations are preferred over the strongest baseline by a majority of workers in 73% of samples,
and tied in another 7%.

All datasets and user annotations collected in this study will be publicly available.

2 RELATEDWORK
We review the related previous work on document summarization, snippet generation, and explain-
able search and recommendation.

2.1 Document Summarization
Document summarization is related to the defined task of search result explanation. As we aim
to generate coherent and grammatically readable explanations, abstractive models for text sum-
marization [8, 31, 40, 53] better suit as finishing components of explanation generation models,
compared to extractive summarization models [50]. Neural abstractive summarization started by
generating headlines from the first sentence of news articles [53] and was then applied to different
settings, such as longer text inputs [8, 31, 40]. Although search result explanation is beyond sum-
marizing document contents, even exploiting abstractive summarization techniques to different
types of documents in the open-domain Web is not straightforward, as they need domain-specific
fine-tuning at the very least to produce reasonable outputs [9].

Dealing with no readily available labeled data, unsupervised training of sequence transduction
tasks has been studied in some recent work. Since language understanding is required to generate
fluent sequences (texts), using pre-trained language representation models, such as Word2vec and
GloVe embeddings [38, 43], ELMo [44], BERT [14], and UniLM [15] can reduce the amount of
training data required. The pre-trained language representation model Bert is used for ensuring
fluency of generated text in the decoding step or representing input documents in the encoding step
of text summarization models [32, 78]. Beyond using pre-trained components in conjunction with
or as part of a sequence-to-sequence model, there are some pre-trained models for the sequence
generation task [28, 61]. Unsupervised training of machine translation models as another example
of sequence transduction has also been investigated in some studies [3, 4, 27, 47].

2.2 Snippet Generation
Snippet generation has been known a special type of document summarization, in which sentences,
or sentence fragments, are selected to be presented in a search engine result page (SERP) [66]. It was
also called query-biased summarization by Tombros and Sanderson [64]. Snippet generation is an
active area of research and has been studied in the context of Web search [70], XML retrieval [23],
semantic search [74], and more recently dataset search [75]. Early Web search engines presented
query-independent snippets consisting of the first tokens of the result document. Google was
the first Web search engine to provide query-biased summaries [66, 70]. Bast and Celikik [5]
proposed an efficient solution for extractive snippets by taking advantage of inverted index, a
popular data structure used in most information retrieval systems. Recently, Chen et al. [7] proposed
abstractive snippet generation as a potential solution to circumvent copyright issues. The authors
demonstrated that despite the popularity of extractive snippets in the current search engines,
abstractive summarization is equally powerful in terms of user acceptance and expressiveness.

Although snippet generation, and in general query-focused document summarization, is closely
related to GenEx explanation, they are fundamentally different. GenEx explanations are terse,
consisting of a few words, while snippet generation models try to select or generate a few sentences
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or even a paragraph. In addition to the length, the goal of these tasks are different. Query-focused
summarization tries to find a set of sentences or passages containing frequent and close occurrences
of query tokens, while GenEx aims to describe what such sentences convey about the query,
explicitly avoiding the query words themselves. While previous work on snippet generation tries
to select or generate a few sentences or even a paragraph, explaining the documents’ relevance to
a query in a few words is a challenging task.

2.3 Explainable Search and Recommendation
How to define and evaluate interpretability and explainability of machine learning models are
discussed in several studies [16, 20, 30, 39, 49]. But, application of machine learning techniques to
different tasks can impose task-specific requirements on definition and evaluation of suitable expla-
nations. Explaining search results has been briefly studied in recent years. Describing relationships
between entities in queries is considered an explanation of search results and is generated based on
incomplete descriptions of relationships in knowledge graph [71, 72]. As users’ information needs
are very diverse, search result explanations requires description of much more relevance factors
than relationships between entities, which we aim to extract and describe. Some models explain
search results by providing a set of keywords (with their estimated weights) for each document by
training another ranker to simulate the scores of a black-box ranker [51, 57–59, 68]. These models
mainly explain search results following the posthoc explanation method for classifiers - LIME [48].
Specifically, Singh and Anand [58] interpret a base ranker by training a second tree-based learning-
to-rank model with an interpretable subset of content-based ranking features, such as frequency
and TF-IDF. Training data for the second ranker is generated from the outputs of the base ranker.
Sen et al. [56] also use basic retrieval heuristics (frequency of a term in a document, frequency of a
term in a collection, and length of a document) as explanation features. While these interpretable
features seem to be useful for system engineers, how to use them to provide explanations for users
is unexplored.

Singh and Anand [59] uses LIME to explain the output of a ranker, which is based on perturbing
the instance to be explained. The authors cast the ranking task as a classification task and obtain
binary labels of relevant or non-relevant for perturbed documents based on three ways: top-k
binary, score-based, and rank-based. These perturbed instances with their binary labels are then
fed to the LIME explainability model and visualized as in the original, using bar-charts to show
word contributions to the model’s decision.

Fernando et al. [17] explore a model-introspective explainability method for neural ranking
models. They use the DeepSHAP [33] model to generate explanations and defined five different
reference to generate explanations: 1) document only containing OOV words, 2) document built by
sampling words with low IDF values, 3) document consisting of words with low query-likelihood
scores, 4) document sampled from the collection that is not available in the top-1000 ranked list, and
5) document that is sampled from the bottom of the top-1000 documents retrieved. They found that
DeepSHAP’s explanations highly depends on a reference input that needs to be further investigated.
The authors also compared DeepSHAP’s explanations with those generated by EXS [59] based
on LIME and found that they are significantly different. They note that this difference by the
two explanation models is concerning, especially in the absence of gold explanations. Verma and
Ganguly [69] propose a model-agnostic approach based on a weighted squared loss to explain
rankers as well as three sampling approaches to perturb the document in the instance to be
explained: uniform, biased, and masked sampling. Explanation features in their work consist of
words.

Recently, Singh et al. [60] propose a local model-agnostic method for explaining learning-to-rank
models. They define interpretability features based on IR heuristics and propose two metrics,
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validity and completeness, to generate explanations. They propose a greedy approach to find a
subset of the features such that there is a high correlation between the rankings produced by the
selected features and the original black-box model, i.e., high validity. They try to jointly maximize
completeness, which is defined as the negative of the correlation between non-explanation features
and the original ranking. Correlations between ranked lists are measured using the Kendall’s Tau.
Helping users interpret search results can be different than, and thus not possible through,

presenting (partial) information about how search engines work, such as providing (interpretable)
ranking features to users. In a recent study, Thomas et al. [62] investigated how users perceive
rankings provides by a search engine, with the goal of finding out what forms of explanations
may help users. The authors identified six core concepts that used in ranking at Web scale such as
relevance and diversity. Participants are asked about why each result is chosen. Although diversity
had been identified as important ranking factor before collecting user responses, less than 1% of
users found that search results are presented because of diversification to cover different intents
and facets of queries. In more details, diversity has the lowest mentions in the collected responses.
They mainly performed a set of user studies and online surveys to better understand the mental
model of users while using the web search engines. In this work, we propose a model for explaining
to what aspect (or facet) of the query, the document is relevant. We believe adding our explanations
to SERP could address the issue found by Thomas et al. [62] about query intents and facets.

Explainable recommendation has recently attracted considerable attention [80]. For instance, Ai
et al. [2] recently proposed a model based on dynamic relation embedding to produce explanation
for recommendation in the context of e-commerce. Content-based models for explanation of
recommender systems are closer to explanation of search results than those of collaborative
filtering, yet structures in items and user-item interactions are not available in Web search.

2.4 Query Aspects
Mining query aspects to diversify search results [54] is also related to our work. Most approaches in
this category are based on query reformulations found in a query log [6, 46] or existing taxonomy
or knowledge bases such as Open Directory Project [1]. Other than these sources, Wang et al.
[73] cluster the phrases from top retrieved documents to extract query aspects. Ruotsalo et al.
[52] propose to model query intent by incorporating feedback from users. Although expected
explanations to be generated can reveal query aspects, the defined task is different than existing
models for mining query aspects as we are interested in explaining the relevant part of a document’s
content to a given query without using other documents or other sources of information.
Iwata et al. [24] propose AspecTiles to present the degree of relevance of a document to each

query aspect where the query aspects are given. Our focus in this work is not about what is a
good way to present the generated explanations to users, but about how to generate high-quality
explanations. Having explanations, AspecTiles can be one way to present them to users.

3 USABILITY STUDY
We start with a user study1 to investigate whether GenEx-style explanations can actually improve
the effectiveness and efficiency of search, as two main goals of explanations proposed by Tintarev
and Masthoff [63]. More specifically, we investigate whether providing the explanation to users
helps them predict the relevance status of documents faster and/or more accurately. We developed
two schemes for presentation of search results, illustrated in Figure 1: in one scheme (on the left),
document are represented by their snippets alone; in the other, documents are presented using the
same snippets but also an explanation in a column on the right side of the page.

1Location omitted for review Institutional Review Board number omitted-for-review.
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Query
Narrative

Query
Narrative

Snippet Presentation Snippet + Explanation Presentation

Fig. 1. Different schemes of search result presentation.

We simulate the output of a search engine and creation of explanations for this study. We
randomly selected 40 articles from Wikipedia that have at least five sections with headers other
than “stop headers” such as references or see also. Each section of that article is treated as an “aspect”
of the query that a user might be interested in. We manually developed TREC-style narrative
descriptions of the aspects to reduce ambiguity. For four selected articles, the narratives were
sufficiently difficult to construct that we discarded the articles. The snippets were obtained using
the Indri toolkit2.

For each query (article title), we created a document per section where the section was deemed
relevant to its heading (aspect). By construction, each query had at least five aspects: in the end we
had 36 queries leading to 240 unique query-aspect pairs each of which had its section content as a
single relevant document. (We will use Wikipedia similarly later in Section 5.)

Each search result in this study was associated with a query-aspect pair. We select the aspect’s
relevant document and four other documents from the same article so exactly one of the five is
relevant. The ordering is random for each pair but is the same for both conditions (with and without
the explanation).

We carried out the study on Amazon Mechanical Turk using master workers in the United States
who had a high task approval rate. Subjects were provided with search results using one of these
presentation schemes and asked to select the document that was relevant to the user’s intent (as
described by the aspect narrative). A worker was presented with four search results in sequence
but could opt to do additional sets. A set comprised four distinct queries and either all included or
all excluded explanations. We captured the selected documents as well as workers’ response time.
If the mouse was idle for 2 minutes, we assume the worker is not active and reset the timer. Each
presentation of the result list of a query-aspect pair is judged by three different workers.

By construction, every query-aspect pair has a relevant document. Users who selected the wrong
document more than twice in a set were deemed to have failed – possibly because they were
randomly clicking and not attending to the task – and the set was rejected (and put back in the
pool for annotation). However, if workers felt that there was not a relevant document, we required
them to describe why they felt that way. If their reasoning was solid, we accepted the set that
would otherwise have been rejected. In the end, 240 query-aspect pairs were presented in two
styles (with or without explanation) and annotated by three distinct workers, for a total of 1,440
accepted judgments. A total of 51 unique workers participated.

2https://www.lemurproject.org/indri.php
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Table 1. Usability study results.

Style K𝑓
Correct Majority Avg. res.
relevant relevant time (s)

Snippet only 0.67 66% 168 (70%) 35.7
Snippet + Expl. 0.92 91% 224 (93%) 23.1

Recall that our question is whether the explanation helped users identify relevant documents
faster and/or more accurately. Table 1 summarizes the results of this study. To consider accuracy,
we first look at the agreement among the three annotators, measured by Fleiss’ Kappa (K𝑓 ) [55].
We find that agreement is substantially greater with the explanation: K𝑓 increases by 37% from
0.67 (substantial agreement) to 0.92 (almost perfect). The fraction of all judgments that are correct
increases by 38% with the explanation and the proportion of the 240 instances where the majority
judgment is correct show a 33% climb from 168 to 224. We conclude that the explanation presented
greatly increased the consistency and accuracy of identifying relevant documents.

We also compare the average response time for query-aspect pairs. The average time for selecting
the correct relevant document decreases from 32.4 to 25.4 seconds when explanations are also
provided, which is a 22% decrease. To be sure we were ignoring times when the worker was
perhaps unfaithful to the task (so rapidly clicking), we only include cases where the majority of
workers selected the relevant document in both presentation schemes. There was one case that
the majority voted on non-relevant documents when explanations are provided, but voted on
the relevant document given just the snippets. The average response time is thus evaluated over
167 query-aspect pairs. Each query-aspect pair thus had 2 or 3 correct responses. We report the
macro-average of response times for correct responses in Table 1, showing a 35% decrease when
explanations are also provided for search results.
We highlight that this study used manually generated search results and relevance judgments.

Nonetheless, the results strongly suggest that adding explanations to snippets can greatly improve
both the accuracy and speed of judging documents for relevance. Buoyed by those results, we next
propose GenEx, an approach for creating these explanations.

4 GENERATING TERSE EXPLANATIONS
Neural approaches to explanation generation conceptualize the task as a sequence transduction
problem. A major approach to this problem is based on the encoder-decoder architecture, where an
encoder processes the input tokens and a decoder generates explanation tokens, autoregressively.
In the defined task of explaining documents’ relevance to a search query, the encoder is expected
to learn a contextual representation of the document, capturing the query related parts of the
document. The decoder, on the other hand, should generate a text that explains how the document is
relevant to the query. In this section, we introduceGenEx, our approach for generating documents’
relevance explanations.

4.1 Problem Formulation
Given a query q and a document d, the goal is to learn an abstractive explanation model e = F (q, d)
to generate a text sequence e that explains how the given document d is relevant to the query
q. The explanation generated by the model may include tokens that do not actually occur in the
document. A training instance for this task is thus denoted as the triplet (q, d, e).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Fig. 2. GenEx Architecture (residual connection and layer normalization for each sub-layer in green boxes
have been omitted to enhance the clarity of the figure).

4.2 Input Representation
We first tokenize queries, documents, and target explanations using subword tokenization following
Wu et al. [76] and encode tokens with a pre-trained vocabulary embeddings [14].

We then add positional encodings to the token embedding using the sine function following
the Transformer model [67] to capture the relative positions of tokens in input and target sequences
given to the encoder and decoder, respectively.
Finally, as the input to the explanation task consists of query and document parts, we add a

special token at the end of each part of the input. We also construct a segment embedding in two
ways as the input to our explanation models: (1) segment embeddings indicating whether a token
belongs to the query or to the document, and (2) embeddings indicating whether a token occurs in
the query or not. The choice of segment embedding is based on the model architecture and will be
discussed later.

4.3 Contextual Encoding ofQuery and Document
A straightforward solution to handle the two-input characteristic of the explanation task is to
concatenate query and document tokens separated using a special token, and then feed the obtained
vector to the encoder of a sequence-to-sequence model, such as the Transformer encoder [67]. The
input sequence to the model is thus as follows:

(𝑞1, . . . , 𝑞𝑚, 𝜎, 𝑑1, . . . , 𝑑𝑛), (1)

where 𝜎 is a special separation token, similar to the input of several Bert based models for different
tasks such passage/document ranking [41] or question answering. We observed, however, that
concatenation of short keyword queries with long documents does not lead to sufficient atten-
tion weights from document tokens to the query tokens. This is while learning a query-focused
representation of documents is crucial for generating explanations.
To learn proper attention from document tokens to query tokens, we first build two input

sequences for a given query and document. These inputs are then separately fed to the Transformer-
based encoder model with shared weights. The self-attention mechanism in the Transformer
leads to contextual representations of query and document tokens. The query and document

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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representations obtained by this encoding component are denoted as 𝒛𝑞 and 𝒛𝑑 , respectively.
This architecture also allows pre-computation of document representations similar to the recent
Bert-based rankers [25, 34].

4.4 Query Attention Layer
To obtain query-focused representations of documents, we propose another encoder model on top
of the learned contextual representations of document tokens. The architecture is shown in Figure 2.
This second encoder model is based on the Transformer encoder where self-attention layers are
replaced with masked-document query attention layers. This layer consists of three parameter
matrices𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 . The query attention layer computes the following attention matrices
based on inputs different from the self-attention mechanism:

𝑄 = 𝒛𝑑 ×𝑊𝑄 , (2)
𝐾 =

(
𝒛𝑞 ∥𝒛𝑑

)
×𝑊𝐾 , (3)

𝑉 =
(
𝒛𝑞 ∥𝒛𝑑

)
×𝑊𝑉 , (4)

where ∥ donates concatenation of representations build from previous encoder layers. The repre-
sentation of each document token is then updated using the scaled dot-product attention function
of the Transformer as below:

Attention(𝑄,𝐾,𝑉 ) = softmax
(𝑄𝐾𝑇
√
𝑘

)
𝑉 , (5)

where𝑘 is the dimension of the keys𝐾 . However, wemask the scaled dot product in a way to prevent
a document token from attending to other document tokens. Therefore, the output representation
of a document token is computed as a weighted sum of the attention values corresponding to
itself and query tokens. Lastly, representations are obtained by concatenation of outputs from
multiple attention functions, each projecting its inputs to a different subspace. The input and output
dimensionality of query attention layers are the same and a stack of 𝑁 query attention layers is
used in the second encoder component. The representations of document tokens from the second
encoder component constitute the input of the decoder.

4.5 Query-Masked Decoding
Documents on top of a search engine result page often contain query tokens with high frequen-
cies [35]. In addition, our encoder consists of masked-document query attention layers, which
highlight the query related part of the document. Therefore, it is likely that the decoder generates
query tokens as the explanation of a document’s relevance. However, this is not desired; the model
should generate explanations that provide more information other than the query itself, otherwise
the generated explanation is useless. Therefore, we generate explanations by extending the Trans-
formers Decoder architecture [67] using a query masking mechanism to reduce the probability of
generating query tokens by the decoder. To achieve this, we use a masked multi-headed attention
for the encoder-decoder attention layer in which the query tokens in both query and document
are masked. This makes every decoder position to attend over only non-query tokens in the input
sequence.
Note that query tokens are not replaced with a special mask token, because these tokens are

central in building the representation of documents. Instead, the representations of query tokens are
masked during the decoding process to allow the model to describe the query-related information
that the document provides.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Table 2. Wiki dataset statistics, where each sample consists of a query-document-explanation triple, and
average values of length are calculated on the specified element of samples.

Train Dev Test
number of samples 6,386,916 336,425 10,000
average length of queries 4.2 4.2 4.2
average length of documents 231.8 231.8 233.2
average length of explanations 2.4 2.5 2.5

5 EXPERIMENTS
5.1 Datasets
We constructed Wiki training data using Wikipedia articles. In this dataset, each section of a
Wikipedia article is treated as a document. The section documents extracted from a Wikipedia
article are all relevant to the query built from the article’s title, with their section headers as
their explanation labels. For the work discussed here, we use a March 2019 dump of English
Wikipedia. Only Wikipedia articles are used for building the dataset, and Wikipedia pages such
as disambiguation and redirect pages as well as administration pages such as talk, user, and
maintenance pages are removed. Articles with URL links as their titles are also removed. We extract
all text from each Wikipedia article, filtering out unwanted data such as HTML markup, using
WikiExtractor3 and then discard any article that has fewer than 500 characters of text. A section
is not included unless it contains at least 20 tokens. Sections with highly-frequent headers such
as “references” and “see also” are removed. The obtained samples are randomly divided into train,
validation, and test samples referred to as the Wiki test set. Statistics of Wiki dataset are reported in
Table 2. The reported length values are based on tokens obtained by using sub-word tokenization.
Explanations having a token not occurred in the query or document are counted as abstractive
explanations. Almost 98% of explanations have a token not occurred in the input sequence.
We also built Anchor training data to improve the generalizability of learned explanation

models. Ideally, we could have used Web search logs for mining different facets of a head query,
but they are not publicly available due to concerns about user privacy. However, it has been shown
that anchor text can effectively simulate real user logs for query reformulation techniques [13].
Based on that work, we approximate query facets using widely available anchor text data, where
different anchor texts linking to a particular page approximate query facets relevant to that page.
For this purpose, we follow the subtopic clarification by keyword observation through user log
analysis [22]. We used the external version of the anchor text for ClueWeb09 dataset4 to build
training data for the explanation task. All anchor texts to one page that start with the same prefix
words are grouped together. The common prefix is then considered as a query, and each suffix
is considered as a facet of the query. The linked page is considered to be a relevant document to
the query. We performed a number of post-processing steps on the extracted query facets. For
examples, facets containing words such as “homepage” or “website” are disregarded. Stopwords
such as “of” or “and” are removed from the beginning of query facets.

Clue-Res test data is generated from the ClueWeb09 category B dataset5 which is a standard
TREC collection and has been used in the TREC Web track for several years [10, 11]. Topics from
TREC Web track 2009 to 2012 are used to build test samples. We use the title of a TREC topic as the
query, and subtopics of relevant documents in judgments as the set of explanations. Some topics
3https://github.com/attardi/wikiextractor
4http://lemurproject.org/clueweb09/anchortext-querylog/
5http://lemurproject.org/clueweb09/
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have multiple subtopics. Navigational subtopics as well as the first subtopic of queries are discarded
since first subtopics mainly provide general description of queries and are not focused around a
query facet. Subtopic descriptions are manually rephrased by removing phrases such as “I’d like to
find information about”. This test set contains 543 samples.
We built Passex test data using the passage ranking dataset of TREC 2019’s Deep Learning

Track6. The TREC passage ranking dataset is built based on the MS MARCO dataset where passages
retrieved with respect to the test questions are judged for relevance in much more details. Questions
having more than 30 relevant passages in the dataset are chosen for building our evaluation samples.
Questions are then manually rephrased as short keyword queries and explanations. Some questions
whose conversion to query and explanation were not straightforward are ignored in this step. Also
relevant passages with less than 100 tokens are removed. In the end, there are 27 unique queries
and 188 evaluation samples in the built Passex dataset.

Note that target outputs in the built test samples are not precise explanations. These test sets are
constructed to have approximate out-of-domain samples to guide the development of a generalized
explanation model. In the current study, we focus on explaining why a document is relevant to a
query by providing the query aspect that the document covers as supportive evidence. Explanation
of non-relevant documents to a query is left for future work.

Pre-processing steps. Document texts, queries, and ground truth explanations are lowercased,
and encoded using sub-word tokenization following Wu et al. [2016] with Bert vocabulary7 of size
30,522. We consider only documents that have more than 20 tokens, and truncate long documents.
Documents of the Wikipedia dataset are truncated if required by keeping the first 𝐿 tokens. We
do not truncate the output sequence, but we ignore training samples whose explanations (sub-
headings) are longer than 15 tokens. Documents chosen from the ClueWeb dataset for building
anchor dataset are extractively summarized as below.

Extractive summarization of long documents. Documents are segmented into sentences
using the NLTK toolkit8. Sentences with exact occurrences of query terms where document and
query terms are stemmed using the Porter stemmer, are chosen to be in the query-biased extractive
summary of the document. To capture all query-related information of the document, we also
compare the Word2vec pre-trained embeddings of all pairs of query-document terms. A sentence
whose most similar term to a query term has a score higher than a defined threshold of 0.8 is
retained for the summarized version of the document. If the length of selected sentences is less
than 𝐿, then additional sentences with the highest contextual similarity to the query are added in
the order of their occurrence until no other sentences can be added to the summary while keeping
the length lower than or equal to the length cap 𝐿.

5.2 Evaluation Metrics
Following the text summarization and machine translation communities, we use BLEU [42] and
different variations of the ROUGEmetric [29] such as ROUGE-1 (unigrams), ROUGE-2 (bigrams), and
ROUGE-L (longest-common substring)9 for evaluation of generated explanations: the more words
and n-grams that are in common between the predicted output and the target subtopics, the more
likely the explanation is to be good. We also use BERTScore [79] to semantically compare generated
explanations with reference explanations. BERTScore uses pre-trained contextual embeddings
from BERT or its variants to compute cosine similarity between tokens in candidate and reference
text segments. Zhang et al. [79] showed that BERTScore better correlates with human judgements
6https://microsoft.github.io/TREC-2019-Deep-Learning/
7https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
8https://www.nltk.org/
9https://github.com/google-research/google-research/tree/master/rouge
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and thus is a stronger metric for comparing text generation models. Two-tailed paired 𝑡-test is
used to test whether the differences between performance of models are statistically significant.
Content-based explanation of a single document with respect to a query does not produce any
rankings, therefore metrics for evaluation of rankings such as Mean Average Precision are not
suitable to measure the quality of explanations.

5.3 Baseline Models
To the best of our knowledge, this is the first study to explain search results from a black-box
ranker by generating abstractive and concise explanations beyond term matching. The unique
characteristics of the defined problemmakemodels for related task not suitablewhere the differences
are discussed in Section 2. The first baseline is to use TextRank algorithm [37] to extract document
keywords. The TextRank algorithm represents a document as a graph of terms linked by co-
occurrence relation. Two terms are connected if they co-occur within a window of fixed size, set to
10 terms in our experiments. Then, the PageRank algorithm is applied to the graph to rank terms.
The top ranked terms of a document are identified as its keywords. For the defined explanation
problem, we are interested in describing a document with respect to a query. To accommodate
this setting, we also tried the TextRank algorithm by using topic-sensitive PageRank [21] to rank
graph vertices. We refer to this modified version as topic-sensitive TextRank. We also compare with
KeyBERT [19] which uses BERT to extract keyphrases from a document. This baseline demonstrates
the necessity of attending to queries for explanation of document relevance, therefore models for
keyword or keyphrase extraction from documents cannot fulfill the task of relevance explanation
with noun phrases. Due to the lack of training data for query-focused keyword extraction, we chose
the unsupervised and widely used TextRank model as well as recent BERT-base model KeyBERT.
The next group of baselines is based on using local model-agnostic explanation methods to

describe the relevance of a document with respect to a query. For this group, we use LIME [48] and
Sensitivity [77] that explain the prediction of a black-box classifier for a given input sample. For
the purpose of our task, explanation features are defined as document tokens [48, 59]. Specifically,
the LIME method generates a number of perturbed samples of the input and learns a linear model,
based on the classifier’s predictions for perturbed samples. We trained a linear SVM model as
the explanation model in our experiments. Features with large coefficients in the learned linear
model are considered as explanation. The Sensitivity method estimates the score of a token by
measuring the change in the predicted relevance probabilities of perturbed samples that do not
include that token [77]. The higher the contribution of a token in the relevance probability is, the
more important the token is in understanding the relevance of the document with respect to the
query.
We used two different types of rankers as the black-box model whose predictions are to be

explained by LIME and sensitivity. These rankers are used to get the relevance probabilities of
perturbed documents with respect to the query. The first ranker for this purpose is the classic TF.IDF
ranker. For this ranker, documents are represented as bag of words and perturbed samples are
obtained by randomly changing one dimension of document vectors to zero. We also used the BERT-
based ranker [41] since it has been shown to achieve the current state-of-the-art performance [12,
18]. In this ranker, document tokens that are semantically similar to query tokens can impact the
relevance probability of a document, in contrast to the TF.IDF ranker which is only based on exact
term matching between a query and document.
The input of the BERT-based ranker is built by concatenating the query and document with a

separate token. The pre-trained BERT-based model is fine-tuned for the ranking task using the
training data of the MS MARCO passage-ranking dataset [41]. As the BERT-based ranker uses
sub-word tokens, the term-level score is obtained by summing the score of each token’s subword.
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Table 3. Performance of different explanation models. Symbols ▼ and ▽ show statistical significant differences
with GenEx at levels 0.01 and 0.05, respectively.

Wiki Clue-Res Passex
BLEU-1 R-1 BLEU-1 R-1 BLEU-1 R-1

TextRank 0.0862▼ 0.1427▼ 0.0331 0.0435 0.0319▼ 0.0880▼
TS-TextRank 0.0736▼ 0.1169▼ 0.0313▼ 0.0369 0.0248▼ 0.0715▼
KeyBERT 0.0567▼ 0.0666▼ 0.0437 0.0404 0.0160▼ 0.0222▼
LIME + TF.IDF 0.0454▼ 0.0366▼ 0.0281▼ 0.0288▼ 0.0059▼ 0.0044▼
LIME + BERT 0.0104▼ 0.0085▼ 0.0178▼ 0.0257▼ 0.0089▼ 0.0418▼
Sensitivity + BERT 0.0062▼ 0.0046▼ 0.0330▽ 0.0398▼ 0.0019▼ 0.0018▼
GenEx 0.2313 0.3582 0.0520 0.0617 0.1264 0.1179

Table 4. Performance of generative explanation models based on R-1 F-measure, R-2 F-measure, and R-L
F-measure metrics. Symbols ▲ and △ show statistical significant differences with Orig-Trans at levels 0.01
and 0.05, respectively.

Wiki
R-1 R-2 R-L

Orig-Trans 0.3180 0.0940 0.3173
Seg-q-toks 0.4103▲ 0.1251▲ 0.4086▲
Sep-q-doc 0.4056▲ 0.1247▲ 0.4044▲
GenEx 0.3582▲ 0.0868 0.3575
Clue-Res

R-1 R-2 R-L
Orig-Trans 0.0421 0.0005 0.0418
Seg-q-toks 0.0515 0.0031 0.0510
Sep-q-doc 0.0572 0.0043 0.0562
GenEx 0.0617△ 0.0055 0.0614△

Passex
R-1 R-2 R-L

Orig-Trans 0.0780 0.0319 0.0752
Seg-q-toks 0.0975 0.0372 0.0993
Sep-q-doc 0.1330△ 0.0426 0.1339
GenEx 0.1179△ 0.0479 0.1179△

For BERT-based ranker, a given input sample which is a query-document pair in the setting of our
task, is perturbed by masking a token from a random position in the document. The final score of
each document token is calculated by summing the scores obtained for all occurrences of the token
in the document. Document tokens are sorted by the obtained scores and the top-ranked tokens
are considered as the explanation of the document. The top-ranked tokens are considered to be
tokens whose scores are not less than 10% of the token with the highest score. We consider the top
three tokens if more than 3 are selected by the thresholding function. The cut-off value is chosen
based on the average length of gold explanations in the test sets. Note that the average length of
gold explanations is not used by the GenEx model.
The last baseline is training the original Transformer model where input sequences are con-

structed by concatenating query and document tokens in the training dataset as Eq. (1). The model
input is constructed by adding segment embeddings differentiating query and document segments
in addition to the separator token 𝜎 between them. These segment embeddings have the value of 0
for query tokens and 1 for all document tokens. We refer to this model as Orig-Trans.
Ablation study. There are two main architectural choices in the proposed explanation model;

query attention layer, and query-masking during the decoding. To show the effectiveness of each
choice, we compare our final model with the following variants, gradually constructed on top of
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Table 5. Performance of generative explanation models based on BLEU metrics. Symbols ▲ and △ show
statistical significant differences with Orig-Trans at levels 0.01 and 0.05, respectively.

Wiki Clue-Res Passex
BLEU-1 BLEU-2 BLEU-1 BLEU-2 BLEU-1 BLEU-2

Orig-Trans 0.2269 0.1357 0.0301 0.0056 0.0755 0.0468
Seg-q-toks 0.2918▲ 0.1791▲ 0.0385 0.0108 0.1038 0.0595
Sep-q-doc 0.2979▲ 0.1845▲ 0.0473△ 0.0156▲ 0.1212▲ 0.0651
GenEx 0.2313▲ 0.1236 0.0520▲ 0.0099▲ 0.1264▲ 0.0718

Table 6. Performance of generative explanation models based on F1-score of BERTScore. Statistical significant
differences between the GenEx andOrig-Trans at the levels of 0.01 and 0.1 are shownwith ▼ and ▽, respectively.

Wiki Clue-Res Passex
Orig-Trans 0.4071▼ 0.2985▼ 0.3596▽
Seg-q-toks 0.4796 0.3172 0.3989
Sep-q-doc 0.4705 0.2898 0.3786
GenEx 0.4472 0.3303 0.4430

Table 7. Examples of explanations generated by GenEx, TextRank, and LIME-TF.IDF.

Query diversity
Doc. title Equality & Diversity: Athena Report and Action Plan
TextRank “oxford", “athena", “women"
LIME+TF.IDF diversity
GenEx women s career development

Query OCD
Doc. title OCD Obsessive-Compulsive Disorder - Mahalo
TextRank “ocd”, “disorder”, “help”
LIME+TF.IDF ocd
GenEx obsessive

the Orig-Trans model. The first variant uses separate encoders for queries and documents with an
additional encoder for documents which consists of query attention layers. However, query tokens
are not masked in the decoder. We refer to this model as Sep-q-doc. We also test another variant
by segment embeddings that differentiate query tokens from other tokens in the input sequence,
having 0 for query tokens in the input sequence and a value of 1 for other tokens. Therefore, query
tokens in a document are also masked during the decoding process, and only the final hidden
vectors corresponding to non-query tokens in a document are fed into the decoder. This is similar
to the decoder input of the GenEx model. This variant is referred to as Seg-q-toks model.

5.4 Experimental Details
All baseline based on the Transformer architecture and GenEx are all built and trained using
the same settings of hyperparameters and on the same training data to ensure a fair comparison
between them. Hyperparameters are mainly set following the base Transformer model. Each
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Table 8. Example documents from the Clue-Res dataset. Only the beginning of the first document is copied
here.

Doc. 1 university of oxford athena project 2000 1 action plan encouraging applications from
women scientists summary in 1999 2000 the university of oxford applied successfully to
the national athena project 1 for funding to assist with a programme of positive action
aimed at encouraging applications from women scientists for academic appointments
at the university . positive action with the objective of encouraging applications from
an under represented sex is defined and authorised by the sex discrimination act 1975
. the university s application was based on an analysis of data from its recruitment
monitoring scheme . this consistently demonstrates that women are appointed to
academic posts , including those in science , engineering and technology set , at least
in proportion to their applications , but that the rate of applications from women is
low compared with numbers suggested by the available data to exist in recruitment
pools such as contract research staff at oxford and elsewhere and lecturers at other
institutions . the acceptance of athena funding commits the university to develop and
carry out an action plan based on the experience of its project . this action plan pdf
file , 12kb is annexed in tabular form and further information on the oxford athena
project is provided below . although the oxford athena project , and therefore this
report , deal with the scientific disciplines , there is evidence that women are similarly
under represented at oxford in some areas of the humanities and social sciences and ,
where appropriate , the action plan is intended to cover all disciplines .

Doc. 2 obsessive compulsive disorder ocd is an acronym for the mental disorder known
specifically as obsessive compulsive disorder . ocd is a type of anxiety disorder . ocd
can persist throughout a persons life . the symptoms of ocd can be mild to severe .
if severe , they can interfere with a persons ability to function at work , school and
home . symptoms ocd involves uncontrollable urges , rituals , or thoughts that cannot
be put out of a persons mind . such behavior , may be all consuming , and eventually
take over the person s life . a person with ocd feels the need to repeat the same thing
over and over to keep bad things from happening . the symptoms of ocd consist of
obsession , the constant idea that something bad is going to happen , and compulsion
, the constant action to try to prevent the bad things . for example , someone that is
worried about germs will wash their hands over and over . cause the precise cause of
ocd is still not known . while some researchers believe it is a chemical imbalance ,
others see it as a physical condition .

encoder/decoder module consists of a stack of 6 identical layers. We used 8 attention heads in
each layer, each with depth of 96. The input dimension is 768. Deep contextualized representations
of queries and documents can be obtained by fine-tuning BERT. However, our pilot experiments
showed that we can obtain reasonable contextual representation using 6-layer Transformer encoder,
mainly because these representations will be updated by the next encoder component. Therefore,
considering computational constraint and having large amount of weakly labeled training data,
we decided to use Transformer encoder with pre-trained input embeddings from BERT, instead of
using the entire pre-trained BERT model. Training samples are batched by their total length. Each
batch consists of samples with approximately 2048 tokens in total. The input sequence to encoder
modules are truncated if required by keeping the first 256 tokens. The models are trained for 10
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epochs. We used the Adam optimizer [26] with 𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 10−9, and a fixed learning
rate of 0.00001. Dropout rate of 0.1 is used during the training of models. In addition, target outputs
are smoothed with a value of 0.1. Explanations for test samples are generated by greedy decoding.

5.5 Results and Analysis
In this section, we provide the evaluation results of the proposed model. Performance of GenEx and
baseline models on Wikipedia test fold (Wiki), Clue-Res, and Passex datasets in terms of ROUGE
and BLEU metrics is shown in Table 3. As baseline models do not consider the order of words
that are selected as explanation, we do not compare them with GenEx based on the performance
metrics that depend on higher order n-grams. The difficulty of the task at hand, the limitations
of the noisy automatically-generated training data, and imprecise labels of test data are the main
reasons for low performance values. GenEx outperforms all baselines over all three test sets where
the improvements are mostly substantial and statistically significant. The BLEU improvements
of GenEx over the best performing baseline are 168%, 18%, and 296% over Wiki, Clue-Res, and
Passex datasets respectively. In terms of the BLEU metric, the best performing baseline over Wiki
and Passex is TextRank, and KeyBERT shows the highest performance over the Clue-Res test set.
In terms of the ROUGE metric, the best performing baselines over all datasets is TextRank. The
ROUGE improvements of GenEx over TextRank are 151%, 41%, and 34%.
The first group of baselines is keyword extraction by TextRank and its topic-sensitive variant.

TextRank provides a query-independent explanation of a document, while topic-sensitive TextRank
is developed to explain documents with respect to a given query. As a small part of a document may
be relevant to the query [65] and in such cases we are not interested in the document keywords
related to its general topic, the topic-sensitive variant of the TextRank algorithm should intuitively
select document words that are more suitable for explanation of document relevance. The reported
results in Table 3 show that these models are among the best performing baselines. However, the
TextRank algorithms shows higher performance than its topic-sensitive variant based on BLEU and
ROUGE metrics. Further investigation of TextRank and its topic-sensitive variant, we observed that
topic-sensitive TextRank provides superior keywords when all query tokens occur in the document
to be explained. When the document contains only one or a subset of query tokens, topic-sensitive
PageRank leads to lower weights for document tokens related to non-present query tokens in the
document compared to those by the original PageRank algorithm, and this hurts the quality of
explanations for such cases by topic-sensitive TextRank.

LIME and Sensitivity methods underperform the GenEx model where the performance difference
is considerable and statistically significant. These models extract document tokens that highly
impact the relevance probability of a document with respect to a query. Consequently, tokens that
are exact match or semantically similar to query tokens, get the highest importance scores. While
this type of explanation show document relevance in terms of keyword matching, they mostly
fail to provide words related to query aspects in their top keywords. These models thus provide
different but complementary explanation than the GenEx model. LIME explanation of the TF.IDF
ranker achieves better performance than that of the BERT-based ranker over the Wiki and Clue-Res
test sets. The TF.IDF and BERT-based rankers are used to get the relevance probability of perturbed
documents. The lower performance of LIME for the BERT-based ranker could be related to the
complex structure of BERT, where the widely used explanation based on linear approximation is
not accurate enough to predicate its function.

GenEx significantly outperforms KeyBERT that shows explanations of interest are beyond finding
important noun phrases of a text segment.
Tables 4 and 5 report the performance of the ablations of the GenEx model. As the results

show, all model variants almost always outperform the original transformer model. The obtained
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Table 9. Comparing GenEx, TextRank, and LIME-TF.IDF explanations based on human evaluation.

K𝑓
Majority prefer #individual prefer (GenEx)

#individual prefer (TextRank)GenEx TextRank
0.50 73% 20% 3.3

K𝑓
Majority prefer #individual prefer (GenEx)

#individual prefer (LIME)GenEx LIME
0.37 50% 32% 2.3

improvements are also mostly statistically significant, with exceptional cases of the Bleu-2/R-2
performance. This observation demonstrates the effectiveness of adding query-attention layers and
masked-query decoding.

Seg-q-toks and Sep-q-docmodels show similar performance on test sets, however our analysis
of their generated explanations reveals that the two model perform well on almost disjoint sets
of query-document pairs. Comparing the generated explanations by these two models, the main
difference seems to arise from query ambiguity. The Seg-q-toks model generates better explana-
tions for ambiguous queries than the Sep-q-doc model. One example of ambiguous queries in the
Clue-Res dataset is query 73 of TREC Web track 2010, “the sun”, with documents about the star in
solar system, the U.K. newspaper, and the Baltimore Sun newspaper. In case of ambiguous queries,
we believe that it would be helpful to encode queries using document tokens as their contexts.
That is likely the main reason that the Seg-q-toks model outperforms the Sep-q-doc model for
ambiguous queries.

Semantic evaluation of explanations. To semantically compare the generated explanations
with respect to gold explanations, we use the BERTScore metric. This evaluation is necessary for
abstractive text generation as BLEU and ROUGE metrics only consider the exact matching between
generated and gold text segments, while a concept can be expressed in different ways. The default
setting of BERTScore, “roberta-large_L17_no-idf_version = 0.3.2 (hug_trans = 2.8.0)-rescaled”,
is used in our evaluations. The results are shown in Table 6. GenEx outperforms the original
Transformer by 9.9%, 10.7%, and 23.2% over Wiki, Clue-Res, and Passex datasets, respectively,
and all improvements are statistically significant. These results demonstrate the higher quality
of generated explanations by GenEx compared to those by the original Transformer. As both
models are trained on the same data, these improvements also demonstrate the suitability of GenEx
architecture for the task in hand.

The semantic evaluation results over Clue-Res and Passex datasets are almost consistent with
those of Rouge and BLEU metrics; GenEx greatly outperforms the original transformer and its
variants, and is not the best performing model variant on the Wiki test set. Although GenEx is
not the best performing variant on the Wiki test set, it still outperforms the original Transformer
and the improvements are statistically significant. The difference between model variants could be
related to the special structure of Wikipedia articles that is not the case for all pages in the Web. As
the goal of our study is to explain a relevant document to a query, a model that is not dependent
on the structure of document’s content is more desirable. Thus, GenEx is designed and trained to
perform well on general documents in Clue-Res and Passex without being trained on them.
Explanations of keyword-based baselines are not evaluated using this metric as the BERT

representations of input sequences in BERTScore are sensitive to input grammaticality and the
order of words.
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Table 10. Quality of GenEx explanations.

Grammaticality Relevance to query Relevanct to document
Avg. score 4.06 3.23 3.07
K𝑓 (binary) 0.49 0.42 0.51

5.6 Example Generated Explanations
Table 7 shows two examples of explanations generated by the GenEx model. Document contents are
shown in Table 8. In addition to the generated explanations, the table shows the document titles and
the top 3 keywords of documents obtained by the TextRank and LIME+TF.IDF models. Document
titles show the general topic of the documents, which are not necessarily good explanations for
queries that seek to find these documents. The GenEx model generates a reasonable explanation
for the first example in the table. As this example shows query-focused explanation of the retrieved
document is different than the document title which can be considered as general explanation of
the document. The generated explanation for example 1 is more useful than the document title
to reveal the relevancy of the document to the query. Note that document titles are not used as
input of explanation generation models. Although it may be helpful to have document titles for
contextual representation of documents, we do not want the model to rely on a feature that may
not be available for some webpages and reduces the applicability of the model in practice.

Second example in Table 7 shows a failure of the GenEx model, where the generated explanation
is part of the expansion of the given abbreviated query. A reasonable explanation for the second
document with respect to the given query can be “symptoms". Desired explanations to be generated
by a model should not repeat query terms as long as explanation readability is not sacrificed. This
is the reason that masked query decoding is proposed in our GenEx model. However, expansion
tokens of abbreviated queries in documents have high similarity values with query tokens, and
they are not masked during the decoding since query masking is done based on exact matching of
tokens. This input characteristic makes it highly probable that the decoder generates expansion
tokens of abbreviations as explanations. Abbreviated queries thus constitute one category of failure
cases of our GenEx model.

6 HUMAN EVALUATION
In Section 3 we found that people could use GenEx-style synthetic explanations to more accurately
and more efficiently identify relevant documents. In Section 5 we evaluated the effectiveness of
GenEx explanations using automatic evaluations. We now close the loop by exploring whether
the automatically generated explanations serve to help people as the initial study suggested. The
GenEx model as well as existing baseline models explain a single document with respect to a query,
and thus the user studies in this section are designed according to the nature of models, and are
different than the one conducted in Section 3. We leave the explanation of the entire search results
for future work.

We randomly selected 25 query-document pairs from each of the Clue-Res, Passex, and Wiki test
sets (Section 5). For Clue-Res, we had the additional requirements that the documents must have a
maximum length of 600 tokens (for ease of human review). In this study10, performed on Amazon
Mechanical Turk, we presented each worker with a query-document pair and asked questions
addressing preference between explanations of different approaches, their linguistic quality, and
their relevance to the query and document pair. The worker is shown two illustrative examples for

10Institutional Review Board number 1381.
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orientation. Each query-document pair is evaluated by three different master workers located in
the United States to reduce subjectivity.

6.1 Comparison with Baseline Models
For each query-document pair, workers are asked to answer whether: (1) GenEx explanation is
better, (2) Explanation by a baseline (LIME-TF.IDF or TextRank) is better, (3) both are equally good,
or (4) both are equally bad.

TextRank is mostly the best performing baseline in terms of BLEU and ROUGE metrics according
to the results in Table 3. LIME is a successful and widely-used model for explanation of black-box
models, which is also the state-of-the-art model in the explanation of black-box rankers [59]. LIME
has shown a better performance in explaining the TF.IDF ranker in our experiments with results
reported in Table 3. LIME does not use any information about the structure of the TF.IDF ranker, it
only uses its outputs for the perturbed instances of the document to be explained. This baseline is
chosen as GenEx explains why a document is relevant to a query without having any knowledge
of the underlying ranker model.

Table 9 summarizes the obtained results which demonstrate that themajority of workers preferred
explanations generated by GenEx over those by LIME-TF.IDF and TextRank in 18%-53% more
samples, respectively. In addition, the ratios of individual workerswho preferredGenEx explanations
over LIME-TF.IDF and TextRank are 2.3 and 3.3, respectively. Results of human evaluation show
the higher quality of explanations generated by GenEx compared to baseline models.

6.2 ExplanationsQuality
We also conducted a user study to capture human evaluation of quality of the GenEx explanations.
Three different dimensions are considered for this evaluation: linguistic quality, relevance of
explanation to the query topic, and relevance of explanation to the document content. The last two
questions provide a proxy for the utility of generated explanations’ ability to connect the query
and document. We use the 5-point Likert Scale to evaluate the subjective quality of generated
explanations, as Very poor, Poor, Acceptable, Good, and Very good, with assigned scores from 1 to
5, respectively. Because differences between the levels can be subtle, we calculated Fleiss’ Kappa
agreement by collapsing negative scores (1 and 2) to no and the others to yes. Table 10 summarizes
the obtained results.

Linguistic quality. We evaluated the grammaticality and coherence of the explanations gener-
ated by the GenEx model. As shown in Table 10, we observed that the average of grammaticality
scores is 4.06. Only 9% of all answers to the grammaticality questions were Poor or Very poor. Part
of this strong result can be due to the short length of explanations, as all generated explanations
are terse (up to four terms). Yet as explanations are generated in an abstractive way, this result
strongly indicates the potential of our GenEx model in generation relevance explanations.

Relevance to query and document pairs. We asked workers if the generated explanations
were relevant to the query topic and document content. Note that, following annotation guidelines,
explanations that do not provide additional information compared to the query, such as explanations
that are a subsequence of queries, should be rated as very poor for both questions. An explanation
that is relevant to the topic of the query without repeating the query, provides additional useful
information with respect to the query that can help users in understanding the information space.
When an explanation is relevant to the document, it means that the explanation is describing the
content of the document, and the model is not generating a general or a high-frequent phrase in
the training data, which is a common issue of text generation models.

The obtained results in Table 10 show that on average, workers rated GenEx explanations have
acceptable degree of relevance to both query topic without repeating the query and document
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content. These results demonstrate that generated explanations can reasonably describe document
content with respect to the query topic and provide more information than the given query.

We chose not to run this part of the study for LIME explanations, since by their nature, they are
unlikely to be grammatical. On the other hand, extractive explanations by LIME are likely to be
relevant to the document, and do not require the same evaluations as abstractive explanations by
GenEx. Note that abstractive generation of texts at the level of noun-phrase has a lower risk of
topic drift compared to abstractive snippet generation which has been motivated recently [7], and
is confirmed by the results of human evaluation on relevance to document content.

7 CONCLUSIONS AND FUTUREWORK
We studied how a retrieved document can be explained with respect to the given query. We
proposed a Transformer-based architecture with query attention layers andmasked-query decoding,
called GenEx. The proposed solution is not trained using any manually labeled training data.
Comprehensive evaluation of GenEx demonstrated its superior performance.

We believe that this work opens up new directions towards explainable document retrieval. In the
recent search scenarios with limited bandwidth interfaces, such as conversational search systems
using speech-only or small-screen devices [45], presenting result lists with long snippets is not
plausible, emphasizing the need for a new form of explanation conforming to their characteristics.
We intend to incorporate explanation into conversational search systems with limited bandwidth
interfaces. Another interesting direction to pursue is to design an end-to-end explanation model
that can handle documents of any length. Given the memory constraints of current hardware,
GenEx works on query-biased extraction of long documents which may not be optimal. We also
would like to extend GenEx to make it more robust with respect to diverse types of queries in Web
search. Furthermore, the proposed solution generates an explanation for a query-document pair.
Future work can explore document-level explanation based on the top results. Incorporating the
generated explanations on a web search interface in order to improve search experience for users
is another interesting future direction.
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