
PROBABILISTIC MODELS FOR IDENTIFYING AND

EXPLAINING CONTROVERSY

A Thesis Presented

by

MYUNGHA JANG

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2019

College of Information and Computer Sciences



c© Copyright by Myungha Jang 2019

All Rights Reserved



PROBABILISTIC MODELS FOR IDENTIFYING AND

EXPLAINING CONTROVERSY

A Thesis Presented

by

MYUNGHA JANG

Approved as to style and content by:

James Allan, Chair

W. Bruce Croft, Member

Brendan O’Connor, Member

Weiai Wayne Xu, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences



DEDICATION

To my family and friends



ACKNOWLEDGMENTS

I was very lucky to have found James as my advisor. I have learned a lot from him

not just about IR and how to research, but he was a great professional role model

to learn from about communication skills, attention to details, patience, and work

ethics. As one of the most reasonable people I’ve ever met, I have always felt at ease

for communicating about any issue with him, and it has made my graduate life a

lot more stress-free than it could have been. He also has given me a great deal of

freedom in choosing a research topic and was patient until I make it through, but he

also knew well when to push me when I needed to be pushed.

His humors have lightened up many moments, even during my own crisis. In my

first year, I panicked when I realized that there was a small bug in my experiment.

The accuracy of my approach that I was going to report in a conference paper that was

due soon turned out to be slightly lower than what I originally had shown to James.

I ran to James and confessed, “I’m sorry, I found a small bug in my

experiment.”. Sensing my desperate tone, he joked, “Okay, did you sort

the results in a reverse order? Is your method now the worst?”

The joke caught me off guard and lightened me up so much that I felt more comfort-

able telling him about my mistake. If I can keep going with my favorite anecdotes

with James’ jokes, I probably need another chapter in this thesis.

I would like to thank my committee members: Bruce Croft, Brendan O’Connor,

and Wayne Xu. Brendan O’Connor deserves special credit for sharing his Twitter

data, which enabled us a lot of interesting experiments in Chapter 7.

v



I would like to thank Kenneth Church, who was my internship mentor at IBM

Research. He has taught me many research principles and skills that stay relevant

with me to this day.

CIIR has been a great lab where I can always learn something from many col-

leagues: John Foley, Youngwoo Kim, Hamed Zamani, Hamed Rezanejad (Rab),

Shahrzad Naseri, Helia Hashmi, Qingyao Ai, Keping Bi, Liu Yang, Ali Montazer,

Chen Qu, Sheikh Sarwar, Jiepu Jiang, Dan Cohen, Lakshmi Vikraman, and Yen-

Chieh Lien. Especially, “The Night Watch” in the lab, Hamed, Youngwoo, Helia,

Sheikh, and Rab made those long nights in the lab feel much less lonely. Youngwoo

deserves immense credit for his contributions that help me finish this thesis; for being

a great collaborator, a wise friend when I’m being indecisive, a lab Batista , and for

pulling my arm when I procrastinate from writing my thesis. I also received a fair

amount of mentoring from CIIR alumni in my early years including from Jeff Dalton,

Laura Dietz, Weize Kong, Youngho Kim, Ethem Can, Elif Aktolga, Zeki Yalniz, Shiri

Dori-Hacohen and Marc-Allen Cartright.

CIIR has awesome staff members that have helped my life significantly easier.

I’d like to thank Jean Joyce, Kate Moruzzi, Joyce Mazeski, Victoria Rupp, Glenn

Stowell, and Dan Parker for their support. They really got my back from the day one

I joined the lab to the the day I graduated.

Leeanne Leclerc, as a former Graduate Program Manager as well as a caring friend,

has looked out for us for many years and continued to have our back even after she

left the job. When she left the program, it felt like the end of an era, and I was glad

that I lived in that era.

I made a lot of great friends who made Amherst feel like home, including Matteo

Brucato, Kyle Wray, Tiffany Liu, Tamara Rossi Mercanti, Su Lin Blodgett, Luis

Pineda, Niri Karina, Samer Nashed, Justin Svegliato, Pinar Ozisik, Emma Strubell,

Pat Verga, Kristen Atwood, James Atwood, Dirk Ruiken, Philip Thomas, Sandhya

vi



Saisubramanian, Lakshmi Vikraman and Emma Tosch. Especially, I thank Kyle and

Matteo for their great friendship and many fond memories in the Gray st. house

where we play video games or chat about our work, future, relationships, or just

about anything, which often went until late at night. Matteo is probably one of the

wittiest people I have ever met and I thank him for enriching my life with countless

laughs, coffee lessons, and for getting me into Rocket League.

I’d like to thank my 608 housemates, Kevin Winner, Amanda Gentzel, Keen Sung,

Li Yang Ku, Larkin Flodin, Joie Wu for many great years in the house.

Of course, I would not have gone through this journey without my Korean friends.

Having met my best friend, Sangshin Park, was one of the luckiest thing that has

happened to me in Amherst. His emotional support has never failed to hold me

up. My another best friend Saejung Kim, the kind of friend who flew from Korea to

Amherst to come see me, has been there for me day and night whenever I need to talk.

With my fellow Korean CS grad friends, Souyoung Jin, Shinyoung Cho, Yeonsup Lim,

and Youngwoo Kim, we have made an awesome community together. They have been

there for me for any small milestone and achievement throughout the journey. I was

also lucky to have found friends outside of CS: Soo oak Yoo, Kwang-won Park, Dasol

Kim, Jaeyoung Ahn, Jaieun Kim, Yunah Kim, Sunmi Kang. Especially, I thank my

unofficial Amherst family, Soo Oak and Kwang-won, for taking care of me when I

was sick, listening to me when I was sad, and supporting me by training together for

5Ks when I decided to start running.

Last but not least, my real family has been nothing but supportive from the

beginning when I decided to move 6,000 miles away from home to pursue a PhD.

They have always encouraged me, supported me emotionally and financially, and

have sent me many care packages. None of these would have been possible without

their support and love.

vii



This work was supported in part by the Center for Intelligent Information Re-

trieval, in part by the Air Force Research Laboratory (AFRL) and IARPA under

contract #FA8650-17-C-9118 under subcontract #14775 from Raytheon BBN Tech-

nologies Corporation, in part by NSF grant #IIS-0910884, in part by NSF grant

number 1819477, and in part by NSF grant #IIS-1217281. Any opinions, findings

and conclusions or recommendations expressed in this material are those of the au-

thors and do not necessarily reflect those of the sponsor.

viii



ABSTRACT

PROBABILISTIC MODELS FOR IDENTIFYING AND

EXPLAINING CONTROVERSY

MAY 2019

MYUNGHA JANG

B.S., EWHA WOMANS UNIVERSITY

M.S., POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

Navigating controversial topics on the Web encourages social awareness, supports

civil discourse, and promotes critical literacy. While search of controversial topics par-

ticularly requires users to use their critical literacy skills on the content, educating

people to be more critical readers is known to be a complex and long-term process.

Therefore, we are in need of search engines that are equipped with techniques to help

users to understand controversial topics by identifying them and explaining why they

are controversial. A few approaches for identifying controversy have worked reason-

ably well in practice, but they are narrow in scope and exhibit limited performance.

In this thesis, we first focus on understanding the theoretical grounding of the

state-of-the-art algorithm. We derive an underlying probabilistic model that explains

the state-of-the-art controversy detection algorithm. We revisit the properties and as-

sumptions from the derived model, and propose new methods to identify controversy

ix



on Webpages. We then point out that the current approaches for controversy detec-

tion do not consider time while controversy is a dynamically changing phenomenon.

This causes current methods to have delays in recognizing emerging controversial

topics or exaggerated effects on outdated controversies. We address time-adaptable

controversy detection by estimating the dynamically-changing controversy trend of

topic by interpolating the observed level of contention and the public interest over

time on the topic. Finally, we offer a method that explains controversy by generating

a summary of each stance. Our method ranks social media postings using a score of

how likely it is that the given post can be a representative summary of controversy.
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CHAPTER 1

INTRODUCTION

As the primary sources for information are now online (Mitchell et al., 2016),

the internet and social media have a bigger influence than ever on people’s decisions

across various domains of real-life problems. While the information that people ac-

cess might have a tangible and beneficial impact on decisions they make, there is a

caveat: people are easily exposed to lots of biased, unscientific, unproven, untrust-

worthy, or fake information, which reflects that the topic being researched might be

controversial. For this reason, search of controversial topics in particular requires

users to be extra careful not to be misled. In addition, there are a few other factors

that cause understanding the search results of controversial topics to be more chaotic

and challenging. As some controversial topics tend to change quickly, the amount of

information needed to catch up quickly grows to be overwhelming for users. To make

it worse, while social media is one popular place where controversial discourse is held,

its “echo chamber” phenomenon limits users from accessing diverse perspectives on

controversial topics.

To set the stage, we first discuss these factors that make search of controversial

topics particularly challenging. We then briefly discuss the philosophical question

raised around the “facilitator” role that a search engine is expected to play in promot-

ing critical literacy. We argue the necessity of a controversy-aware search system as

a solution to help users to navigate controversial topics and introduce our technical

contributions and challenges towards that goal.
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1.1 Challenges of Search for Controversial Topics

There are a few factors that make search of controversial topics a particularly chal-

lenging task. We discuss three aspects here: misinformation, information overload,

and the echo chamber phenomenon.

1.1.1 Misinformation on the Web

As anyone is free to publish anything on the internet, misinformation or unverified

information is prevalent on the Web. Medicine is one of the fields that frequently faces

challenges with misinformation, for example, fraudulent treatments or spurious links

between two factors such as vaccines and autism. In fact, a recent study shows that

misinformation contained in search results and spread through the social network

threatens public health (Vogel, 2017). Vaccination is one good example of this issue.

In 2014, the United States had one of the largest recent measles outbreaks, which

was caused by vaccine hesitancy (Pannaraj, 2018). Brunson et al. (2013) studied

the impact of the social network on parents’ vaccination decisions for their children.

The study found that parents rarely make their decision alone on whether their child

should be vaccinated or not, but resort to online sources to find information and advice

before making a decision. The influence of the social network was huge particularly

for parents who do not vaccinate at all.

Information that users are exposed to in the political sphere also has a significant

influence on people’s decisions and votes. For example, users might search for presi-

dential candidates to learn about their campaigns or last night’s presidential debate

to make up their mind for whom to vote during a presidential election. Allcott and

Gentzkow (2017) explained that the evidence suggests that false information (or “fake

news”) spread throughout the social network might have changed the result of 2016

U.S. Presidential election. The evidence includes that (1) 62% of U.S. adults use

social media as their primary source of news (Gottfried and Shearer, 2016), (2) the

2



most popular fake news stories went more “viral” than the real news on Facebook

(Silverman, 2016), (3) 75% of American adults who saw fake news headlines viewed

them as accurate (Silverman and Singer-Vine, 2016), and (4) the most popular fake

news stories tended to be in favor of Donald Trump over Hillary Clinton (Silverman,

2016). After the election, several commentators analyzed the situation and ended up

suggesting that Donald Trump would not have been elected without the influence of

fake news on Facebook (Parkinson, 2016; Read, 2016; Dewey, 2016). However, the

study by Guess et al. (2018) also suggests that most fake news were consumed by

Trump supporters. Whether or not the result of the election would have changed,

this demonstrates how significant the effects of misinformation can be to our society,

especially for high-stake controversial topics.

1.1.2 Information Overload

Shahaf and Guestrin (2010) discuss the information overload problem wherein

despite extensive media coverage, people often have difficulty understanding a news

event. For example, David Leonhardt’s New York Times article, “Can’t Grasp Credit

Crisis? Join the Club” suggests that while many people probably felt as if they should

understand the credit crisis with so many stories published, many of them actually

didn’t understand (Leonhardt, 2008). Because the amount of information on a con-

troversial topic quickly grows to be huge, especially when controversy develops from

a “scandal” into a “saga” (Cramer, 2011), it is difficult to stay up-to-date while con-

troversy is happening if you are not closely following the case. Therefore, addressing

the information overload problem to help people understand a controversial topic is

another critical issue that we need to deal with.

To address this, creating a summary of events in a chronological order has been

studied as a solution to help users understand a dynamically-changing news event

(Shahaf and Guestrin, 2010; Allan et al., 2001). However, existing techniques do not
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focus on understanding the aspects of controversy within the event. Therefore, an

algorithmic solution that explains the event from a controversial perspective is needed

to directly handle questions such as “why is this case controversial?” and “what are the

conflicting stances and discourses that are being discussed around this controversy?”.

1.1.3 Echo Chambers

Social media’s news feed algorithms are intentionally biased toward connecting

like-minded people, assuming that users would like to see information they are likely

to agree with. Such algorithmic bias and the growing polarization on controversial

topics have resulted in and contributed to the spread of a “filter bubble” or “echo

chambers” where users are segregated from other viewpoints that are different from

their own (Pariser, 2011; Jackson, 2017). For example, for users who search for a

controversial topic on social media to understand what is going on, current search

system makes this navigation difficult as the top posts are likely to be the ones that

the user agrees with because her friends “liked” the posts or she or her friends follow

the authors. This prevents users from obtaining a balanced holistic view of the issue.

As users get more exposed to content tailored to their view, this echo chambers

phenomenon strengthens over time, causing a vicious cycle (Garimella, 2018).

1.2 The Role of Search Engine to Promote Critical Literacy

Critical literacy (Wikipedia, 2019a) is the ability to identify possible bias or dis-

crimination that the author might have projected in her writing. In an ideal world,

users are well-equipped with critical literacy skills and actively practice them when

they read documents on the Web. In reality, people are more likely to be trusting,

especially when they are not even aware that the topics that they are searching for

are controversial. Educating people to be more critical readers is a complex and

long-term process (Lapowsky, 2017). In the United Kingdom, while the national
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curriculum includes critical literacy skills in every stage, surveys show that 20% of

students tend to believe everything that they read on the internet and 30% of UK

teachers say that students have cited false information found on the internet for their

assignment (Douglas, 2017).

Whether or not, and how a search system should be involved to address the issues

mentioned above are a rather philosophical questions While some believe that the

spread of misinformation on the Web should be blocked by identifying fake news,

others feel repulsed by the idea of censorship, and are not interested in being told

that something is not correct when they feel that it is true (Kolbert, 2017). While

Garimella at al. (2017) proposed an algorithmic solution to reduce controversy by

connecting people with opposing views on social media, some argue that people do

not actually want to get out of their echo chambers (Wiseman, 2016). Some experts

believe that technical solutions will not decrease the spread of misinformation because

technology will create more challenges that will not be countered at scale. A counter

argument is that technology will help label, filter, or ban misinformation and aid

people to be more critical readers (Anderson and Raine, 2017).

While how much a search engine should “meddle” as a facilitator for controversial

topics is left as a controversial issue itself, we argue that a system should at least be

“aware” of controversial topics and assist users to navigate controversial topics more

effectively by addressing misinformation on the Web, information overload, and echo

chambers, to promote critical literacy. Doing so allows the system to act as a minimal

facilitator at least by attempting to provide meta-information to give users sufficient

perception to decide what to trust and what not to trust, explore other opinions, and

understand the various stances of controversial topics. Hence, we propose a develop

a controversy-aware search system.

We define controversy-aware search systems to refer systems that adopts algorith-

mic solutions to process the search results of controversial topics. The goal of the
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system includes not only helping users who actively seek to understand some con-

troversial topic, but also alerting users who are not even aware that this topic that

they are reading is controversial. Therefore, the system overall aims to modulate the

search results for controversial topics by systematically mediating the bias and the

filter bubble phenomenon.

1.3 Contributions

This thesis covers the following three topics:

• Modeling controversy detection in Web documents,

• Estimating temporal controversy score trend, and,

• Explaining controversy on social media

We discuss the technical contributions under each topic.

1.3.1 Modeling Controversy Detection in Web documents:

1.3.1.1 Deriving a probabilistic framework

To understand the model behind the prevailing algorithms for controversy detec-

tion, we analyze the state-of-the-art algorithm (kNN-WC) (Dori-Hacohen and Allan,

2015) and derive an underlying model that explains the theoretic grounding of the

algorithm. We show that the underlying model has two probability components: the

probability that a document d retrieves a Wikipage w as a topic, and the probabil-

ity that the people in the relevant population (i.e., Wikipage editors) of w are in

contention. We identify the following properties that the model holds:

• P1: kNN-WC model uses a population-based topic controversy model as a

sub-component.
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• P2: kNN-WC model does not directly model “non-controversiality”. While

the model is tuned to capture the mention of controversial topics, the model

does not actively take into consideration of the balance of the non-controversial

content of the document.

• P3: The text of a query document is only used as a proxy to retrieve docu-

ments’ topics and does not directly affect the probability that the document is

controversial.

1.3.1.2 Improving the kNN-WC algorithm

• We revisit the kNN-WC algorithm, which is the specific implementation that

Dori-Hacohen and Allan proposed, and assess how accurately this algorithm

implements the derived model. In order to implement the kNN-WC model ac-

curately, two probabilistic components are expected to properly estimated. We

point out that the algorithm often fails to meet these assumptions. We propose

two modifications to improve the accuracy of each probability to better imple-

ment kNN-WC model. We suggest two solutions to fix the based on the two

findings: First, generating multiple queries from several semantically-coherent

paragraphs is more effective in finding relevant Wikipedia topics. Second, since

a controversial discussion that contributes to a controversy score usually takes

place in a few representative pages among Wikipedia pages of similar con-

troversial topics, smoothing the controversy score from taxonomically-related

Wikipedia pages makes the controversy score more accurate.

• We evaluate the proposed solutions both intrinsically and extrinsically. To

intrinsically evaluate a new query method, tilequery, to find k Wikipages,

we curate a new annotated dataset that includes relevance judgments on the

Wikipages for the query documents that are used to for controversy detection.
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The new algorithm that combined the two fixes significantly improves the con-

troversy detection task in Webpages by 6% (Jang and Allan, 2016).

1.3.1.3 Proposing Controversy Language Model

• We propose an alternative Controversy Language Model (CLM) where all three

properties (P1, P2, and P3) are challenged. Instead of having a population-

based topic controversy model as a sub-component, which requires the explicit

“contention” features, its “contention” feature was transformed to a “language”

feature by building a language model from contentious topics (challenging P1).

CLM also directly captures the probability that a document is non-controversial

by explicitly considering the probability that the document is generated from

controversial topics and non-controversial topics (challenging P2). Lastly, CLM

directly considers the document’s text to estimate the probability of controver-

siality (challenging P3).

• To evaluate its efficacy, we experiment with various ways of constructing contro-

versial topics. We show that a CLM that is built with Wikipedia articles that

contain several controversy-related keywords was 14% more effective in AUC in

identifying controversial Webpages in our dataset, significantly outperforming

the kNN-WC algorithm (Jang et al., 2016)

• We compare the characteristics of the the kNN-WC model and CLM via a

qualitative analysis. We show that the the kNN-WC+ (our improved version)

algorithm is slightly more prone to make false negative errors whereas CLM is

more prone to make false positive errors. Short documents tend to be classified

as controversial by CLM whereas the kNN-WC+ algorithm has the opposite

tendency, compared to the human labels. We present a case study to explain

the cases where each algorithm makes a classification error.
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1.3.2 Predicting Controversy Score Trend over Time

• We focus on the fact that existing topic-controversy models do not take time

into consideration. As existing Wikipedia controversy models have used accu-

mulated edit history, the controversy scores do not accurately reflect the true

level of controversy that changes over time. Therefore, we develop a new con-

troversy function that estimates the controversy score trend over time. We first

investigate a straightforward solution of computing the automated controversy

scores by only considering the signals that occurred for a window of given time.

We show the trend for topics, even for highly controversial topics, to be highly

bursty, and zero for the majority of the time except for the bursty regions. We

suggest that generating a temporal controversy score by simply considering a

time-window usually yields an unrealistic and impractical trend line.

• We argue that the “observed controversy” does not always accurately reflect the

“true controversy” and propose to distinguish the two concepts. We propose that

“true controversy” can obtained from considering the two factors, the level of

contention and the public interests. We introduce three methods that estimate

the true controversy trend by interpolating the trend of the observed controversy

obtained from M scores and the public interests obtained from Google Trends.

• We provide a qualitative analysis on the predicted trend line of controversy for

various topics.

1.3.3 Explaining controversy on Social Media

• We pose the novel problem of explaining controversy on Twitter via generating

a summary of two conflicting stances that make up the controversy. We first

characterize a few aspects that a desirable summary should satisfy, namely:

stance-indication, articulate level, and topic-relevance.
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• We hypothesize that hashtags contain useful information for stance identifica-

tion and investigate the utility of hashtags in the stance detection task. We

train tweet embedding using hashtags as labels to obtain the probability that

tweets are likely to generate a given hashtag, for all hashtags. We predict the

top relevant hashtags to the given tweet and augment the tweet with them.

Using a publicly available stance identification tweet dataset, we show that

the when predicted hashtags are added to ngrams of the original tweet text as

text features, the F1 score of the stance identification increases from 1% to 5%

points.

• We propose a ranking model to rank the tweets by how likely they are to become

a good summary to explain controversy. It defines good summary tweets as

those whose stance is clearly indicated, whose language is articulate, and whose

content is relevant to the given controversial topic. Specifically, we use Twitter’s

retweet network property to first find user stance communities, and extract the

stance hashtags that are distinctively used in each community. We show that

tweets are semantically-close to the top stance hashtags best describe the stance

community. Being articulate and relevant to the topic makes them even more

likely to be an effective summary.

• We evaluate the quality of the ranked tweets as a summary using Amazon Me-

chanical Turk, compared to other summaries generated from baselines includ-

ing the state-of-the-art tweet summarization technique. Our human evaluation

shows that our summaries are preferred over other baseline summaries (Jang

and Allan, 2018).
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1.4 Challenges

Building controversy-aware search systems is challenging because navigating con-

troversy is a complex search task for a few reasons. One reason is that determining

the extent of the role of the search system is a complicated issue. Dori-Hacohen et

al. (2015) brought up two open questions that need to be considered regarding the

role of the search system. First, how much should the system help users explicitly in

finding content of different stances? For example, should the system only show the

results that match the keywords of the user queries even if the result contains the

biased results, or make users aware that there are other stances if the query involves

controversial topics? Second, should the system deliver every result available, even

those that are ungrounded, fraudulent, and even harmful? For example, should the

system still present a document of “Issel treatment” as a result for “cancer treatment“

when the document contains the query if the system knows that it is also listed as a

“dubious treatment” by QuackWatch.com1?

In addition to these ethical aspects, search of controversial topics bears numerous

technical challenges. While the sub-tasks have a different set of specific challenges,

the commonly-shared challenge is that there is a multitude of subtleties in infor-

mation of controversial topics. For example, while some topics might have a single

correct answer, others, especially those that require moral judgment, have several

possible answers. The same topic can be controversial to those who care more and

know more details about it, while it is not controversial to those who either don’t

care or don’t know much about it (Jang et al., 2017). For these reasons, it is even

challenging to computationally define controversy, hence making other related tasks

(e.g., recognizing controversy, explaining controversy) inherently difficult.

1QuackWatch is a website that allows people to report health-related frauds, myths, or any

quackery-related information in medicine.
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Unfortunately, prevailing techniques in information retrieval, which are typically

designed for retrieving relevant information, are not optimized for controversy search.

For example, existing search engines are unlikely to reveal controversial topics to

users unless they already know about them (Gerhart, 2004). There is a higher call for

search engines to detect these queries and address them appropriately (Dori-Hacohen

et al., 2015). Earlier work presented an algorithm for classifying controversy in Web

documents (Dori-Hacohen and Allan, 2015; Jang and Allan, 2016). However, social

media is also increasingly a place where controversy discourse is being shaped and

dynamically evolves. Regrettably, we currently lack a tool for effectively navigating

the postings around controversy in social media. For example, users have to manu-

ally examine postings to find the arguments of conflicting stances that make up the

controversy.

Towards the goal of building a system that supports controversy-aware search,

we investigate approaches to handle two types of questions: (1) “Does this document

discuss a controversial topic?” and (2) “Why is this topic controversial?” While the

second task is novel as we propose, the first task has been handled via techniques that

classify a document whether it discusses a controversial topic. There have been several

algorithms that have been targeted for this task (Dori-Hacohen and Allan, 2013;

Dori-Hacohen and Allan, 2015; Beelen et al., 2017; Jang and Allan, 2016), however,

little work has explored this problem from a modeling perspective. Therefore, gaps

still remain in our theoretical and practical understanding. In this thesis, we study

probabilistic models that address the above two questions but that also have an

explanatory power in them.

1.5 Thesis Organization

The remainder of this thesis is organized in the following manner. In Chapter

2, we introduce the excising work on controversy detection on the Web and stance
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summarization on social media. In Chapter 3, we introduce a probabilistic framework

for controversy detection on the Web. We point out that while the state-of-the-art

algorithm has proven to perform well empirically, its lack of theoretical underpin-

ning leaves a gap for our understanding. By deriving a theoretical model behind the

algorithm, we identify two major assumptions that the model is built on and three

properties that the model presents. Subsequently, in Chapter 4, we revisit these as-

sumptions and argue that the algorithm makes erroneous predictions mainly when it

fails to reflect the assumptions. To address these challenges, we propose an improved

version of the state-of-the-art algorithm by developing two solutions that more accu-

rately reflect the assumptions. In Chapter 5, we revisit the two properties identified

from the theoretical model and challenge these properties to propose a new model,

controversy language model. In Chapter 6, we propose a method that estimates the

“true controversy” score trend that changes over time by interpolating the “observed

controversy” with public trend. In Chapter 7, we explore a new problem of summa-

rizing controversy on social media and propose a probabilistic model to rank tweets.

Finally, in Chapter 8, we summarize our contributions in this thesis and discuss future

research directions in this area.
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CHAPTER 2

BACKGROUND

This chapter reviews related work that has been done in the area of controversy

detection on the Web and explaining controversy on social media. We discuss the

tasks and effort to address them that have been proposed by the research community

and how our work builds on them.

2.1 Models in Controversy Detection

Detection of controversy has been mostly studied within a specific online medium

such as Wikipedia, social media and online news forums. Existing algorithms, de-

pending on the query, can be categorized into two types: a topic controversy model

and a document controversy model.

2.1.1 Topic Controversy Models

Topic controversy models take a topic as a query and determine the probability

that a query topic is controversial. While a topic is loosely defined here, it can

be defined from an unstructured format such as any keyword to a specific type of

knowledge such as Wikipedia articles1, hashtags in social media, or named entities.

There have been two major aspects in terms of research challenges in designing a

new topic controversy model. First, it is how to define and capture controversy,

a relatively subjective social phenomenon, from a computational perspective. Our

1While Wikipedia articles can technically also be viewed as documents, most existing work in

controversy detection consider Wikipedia as a knowledgebase and their articles as topics rather than

general documents as the documents contain meta-data and auxiliary edit-history information.
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work (not part of this thesis) was the first effort that explicitly investigated the

formal definition of controversy (Jang et al., 2017), and argued that “contention”

among people and “importance” of the topic are at least two primary dimensions that

comprise controversy. However, the “importance” in this context was measured by

the number of people to whom the topic mattered. Hence, it can also be represented

as “popularity” or “public interest” in the topic.

While prior work other than our work had not explicitly discussed the definition

of controversy, most prior work seemed to have the notion of “contention” and “pop-

ularity” in their mind in designing an algorithm to identify controversy as most work

has focused on capturing signs of “disputes” or “conflicts” among people. Another

aspect of the research challenge has been how to capture a few major factors that

comprise controversy, particularly “contention”, which is characterized and hinted at

in a different way in each medium.

For example, in Wikipedia, editors could revert others’ changes back and forth

when they disagree with each other (Yasseri et al., 2012), whereas in Twitter, users

argue back and forth in a thread or exclusively endorse opinions of those who hold

the same view as theirs. Such user behaviors can be captured by analyzing a network

structure, such as the connectivity between identified retweet communities (Awadal-

lah et al., 2012; Garimella et al., 2016) or motifs of local user interaction (Coletto

et al., 2017). Because existing work utilizes the signals that are generated by people

who engage in conflicts and disputes, we call this type of model a “population-based

topic controversy” model in a sense that the controversy is observed from a given pop-

ulation and always requires some population, motivated by Dori-Hacohen’s definition

of controversy (Dori-Hacohen, 2017). Topic controversy models have been mainly

studied within the medium of Wikipedia, social media, and Web queries. In later

sections, we will review how existing work has captured conflicts and contention to

15





entity that comprises a population. The key difference between the two models is

where their “eyes” for observation locates: that topic controversy models take a bird’s

eye view on the discourse on the controversial topic, whereas document controversy

models takes a perspective from one entity that participates in the online discourse.

This is demonstrated in the Figure 2.1.

The document controversy models have been mainly studied within two medium:

general Webpages and news articles. While most existing approaches are topic con-

troversy models, document controversy models have been less studied, especially from

a modeling perspective.

2.2 A Survey of Controversy Detection Algorithms

2.2.1 Detecting Controversy in Wikipedia

Wikipedia probably has been the most-studied medium for controversy because

it has the advantage of having the entire edit-history available, which is user inter-

action log of how discourse of the topic has been developed. Kittur et al’s work

(2007) was a pioneering effort to characterize conflicts in Wikipedia and introduced

the task of identifying articles with high conflicts. They demonstrate that the cost

of coordination and conflicts is increasing at a global level in Wikipedia, meaning

that while direct work on articles is decreasing, indirect work such as discussion and

maintenance activity is increasing, which brings people’s attention to understand and

analyze these conflicts.

To identify articles with high conflict, they trained a SVM regression algorithm.

As a subset of Wikipedia articles are manually labeled with a “controversial ” tag by

editors, they developed a metric called Controversial Revision Count (CRC), which

is the number of “controversial ” tags in the revision history of that article. Their

regression algorithm was trained to predict CRC, which they treat as a proxy of the

level of controversy of the given article. The features they used include the number
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of reverts, the number of edits, the number of anonymous edits, which are intended

to relate the level of conflict to the number of reverts between the two editors.

While Kittur et al.’s model was a supervised approach that requires manually-

labeled data, Vuong et al. (2008) proposed a way to make the model unsupervised:

instead of analyzing the actual article content, they modeled disputes from the inter-

action between two editors. They define a dispute between two editors as the number

of words that have been deleted from each other in the article’s edit history. In their

model, an article is more controversial if it has more disputes between two contribu-

tors who are known to engage with less controversy. The authors also discover that

some of the “disputes” were dedicated to eliminate vandalism. To address this is-

sue, Yasseri et al. (2012) focus on distinguishing such vandalism from meaningful

controversy, introducing M score, which we build upon for our work.

In Yasseri et al.’s work, they define a dispute as a “mutual revert” between two

editors where the two revert each other mutually. As determining whether each

dispute is a meaningful dispute or vandalism is crucial for correctly measuring the

level of conflicts, they estimate the reputation of the two reviewers who participate

in a mutual revert. The idea is to give more weight to the dispute between the two

reviewers who are deemed to be trustworthy, while penalizing the one involving at

least one reviewer who is less credible. Therefore, an article is more controversial

when there are more mutual reverts between the two editors, in which both of them

have higher reputation. A reputation of an editor is measured by the total number

of edits that the editor has contributed to a given article.

Brandes et al. (2009) and Sepehri Rad et al. (2012) turn to a network structure

to characterize conflicts in Wikipedia and analyze polarization of the community in

the editor network. The intuition behind this is that a more controversial topic will

likely have a more polarized editor network. They build a collaboration network

where nodes correspond to editors and signed edges correspond to their positive or
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negative interactions. Negative interactions can be defined in a few ways such as

the number of deletes between two editors (Brandes et al., 2009; Sepehri Rad et al.,

2012), the number of mutual reverts and the presence of negative terms in comments

(Sepehri Rad et al., 2012). However, as the variance of the polarization score between

controversial and featured articles that are popular and of high quality article is known

to be high, its applicability is known to be limited. This is due to the fact that the

positive interactions were not taken into consideration between the two editors while

both negative and positive edges are known to be important in a signed network (Rad

and Barbosa, 2012).

Sepehri Rad and Barbosa (2012) argue that a powerful controversy detection

algorithm should have a high discriminative power and satisfy monotonicity. They

performed a comparative study on the five existing controversy algorithms that utilize

different features. In their evaluation, while a mutual-reverts based classifier (Yasseri

et al., 2012) (M score) has less discriminative power than a meta-data based classifier

(Kittur et al., 2007), it is the only classifier that satisfies the monotonicity criteria.

Their monotonicity criteria defines that a controversy function should have less or an

equal score to a given article if some parts of the article were removed from it. The

authors explain that the intuition behind monotonicity is that removing some parts

will only likely remove some of the disputes, hence it cannot increase the controversy

level of that article. However, note that this is based on the assumption that the level

of controversy is proportional to the number of disputes. One could argue that as

more non-controversial content exists in the document, the level of controversy goes

down. We will revisit later the fact that M score is not only monotonic within a given

article but also over time because as the longer the edit history gets, the amount of

mutual reverts get accumulated. We discuss that this does not accurately reflect the

reality that controversy changes over time and propose a time-adaptable controversy

score that changes over time rather than being cumulative.
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Finally, we summarize the dispute signals and features used for controversy de-

tection in Wikipedia in Table 2.1. We categorize existing work by how and whether

it utilizes the four types of signals – disputes, meta-data of articles, the language of

articles (e.g., keywords, n-grams of the article content) and a network structure of

editors. – that are used to identify controversy in Wikipedia.

2.2.2 Detecting Controversy in Social Media

In an era in which new controversies rapidly emerge and evolve on social me-

dia, there have been numerous efforts that aim to analyze, characterize, and identify

controversial topics from social media, particularly in Twitter. Popescu and Penna-

chiotti (2010) were the first to pose the problem of identifying controversial events

from Twitter and explore an extensive set of features such as linguistic and structural

features, sentiments, and controversy features. Their controversy features include the

ratio of mixed sentiments, the fraction of terms that are in a controversy lexicon, or

controversy-indicative hashtags.

Conover et al. (2011) discover that the retweet network exhibits highly segregated

communities for controversial topics. This important finding has motivated other

subsequent work (Guerra et al., 2013; Garimella et al., 2016; Fraisier et al., 2017)

to focus on the retweet network structure and model the polarization of the network

as a key feature in the models for controversy detection on social media. Garimella

et al. (2016) develop this model further to quantify how controversial the topic is

by proposing a random-walk based measure between two partitioned-graphs (i.e.,

communities) from the retweet network. For the focus of their study, Garimella et al.

make a simplifying assumption that there are always only two conflicting communities

and that those two communities are of the same size, and uses a graph partitioning

algorithm, METIS (Karypis and Kumar, 1998), which aims to cut the graph into two

subgraphs of the similar size.
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Colleto et al. (2017) focused on capturing local patterns of user interactions to

identify controversial tweets by analyzing the reply threads. They construct two types

of edges in an user graph, “reply” and “retweet”, and use the patterns of dyadic or

triadic relations as features for controversy classification. They discover that a pattern

of two users where they do not follow each other but one replies to the other is the most

useful feature that distinguishes controversy from non-controversy, whereas replies to

someone he/she follows is not a relevant feature.

Fraisier et al. (2017) experimented with various community detection algorithms

to identify user stances on Twitter. For the two topics of “Scottish Independence

Referendum” and “US Midterm Elections”, they attempted to predict user stances

between two conflicting stances, such as “Favor vs Against” or “Democrat vs Re-

publican”. They discovered that the retweet networks are a generally better way to

detect like-minded communities than mention graphs. On the retweet networks, algo-

rithms that rely on information diffusion such as label propagation (Raghavan et al.,

2007) and infomap (Rosvall and Axelsson, 2009) were shown to be the leading ones.

Based on the fact that Infomap finds communities based on the flow of information

present in the network, they argue that in some way, stances “follow” the information

on Twitter.

In our earlier work (which is not included in this thesis), we proposed a theoretical

model to formally define controversy and argued that controversy is not a static uni-

versal value and is better measured with respect to a given population (Jang et al.,

2017). Our model suggests that “contention” among people and “importance” of the

topic to the people are the primary dimensions that contribute to the level of con-

troversy. To compute contention, our model considers the size ratio of two groups

of people who take each conflicting side on the controversial topic. We validate our

model by analyzing a few controversial topics in social media. As a hashtag-based ap-

proach was studied as a high-precision method for collecting stanced-tweets by using
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Table 2.1: Controversy detection algorithm in Wikipedia and features used. X

indicates that the corresponding feature is used and △ indicates that the feature was
indirectly used.

Work Dispute signals Meta-data Language Network

Kittur et al. (2007) - X - -
Vuong et al. (2008) deletes - - -
Brandes et al. (2009) - - - X

Sepehri Rad et al. (2012)
mutual reverts, deletes,
negative terms in comments - - X

Yasseri et al. (2012) mutual reverts - - -
Dori-Hacohen et al. (2016) - X △ -
Zielinski et al. (2018) sentiments - - -

a manually-curated hashtags (Mohammad et al., 2016c), we also manually curated

stance-indicative hashtags (e.g., #MAGA to support Donald Trump, #ImWithHer to

support Hillary Clinton in the 2016 US Presidential Election) for each topic and esti-

mated the size of the communities of conflict from the tweets that use such hashtags.

Our results demonstrate that they align well with reality by showing a spike in the

level of controversy where we can easily find an external event that can explain this

phenomenon. This hashtag-based approach further motivated our work in controversy

summarization in social media in Chapter 7.

While dispute signals are the most prominent features that most existing work

have utilized in Wikiepdia, a network structure that globally characterizes the segre-

gation between the communities or locally characterizes the disputes between users

has been understood as the most useful property to identify controversy in social

media. We categorize the existing work by the three types of main signals, sentiment,

language, and the network structure, that have been used to understand controversy

in social media in Table ??.

2.2.3 Detecting Controversy in Online News and Webpages

Identifying controversy in online news and webpages requires different models

from the ones used to identify controversy in Wikipedia or social media, because they
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Table 2.2: Controversy detection algorithm in Social media and features used. X

indicates that the corresponding feature is used.

Work Dispute signals Sentiments Language Network

Popescu and Pennacchiotti (2010) - X X

Conover et al. (2011) - - - X

Guerra et al. (2013) - - - X

Garimella et al. (2016) - - - X

Jang et al. (2017) - X

Coletto et al. (2017) - X

Fraisier et al. (2017) - - - X

Table 2.3: Controversy detection algorithm in Web pages and news articles and
features used. X indicates that the corresponding feature is used.

Work Medium Dispute Signals Sentiment Language

Choi et al. (2010) News - X

Mejova et al. (2014) News - X

Dori-Hacohen and Allan (2015) Webpages - X X

Jang and Allan (2016) Webpages - - X

Jang et al. (2016) Webpages - - X

Beelen et al. (2017) News news comments X

usually do not have any structured meta-data or user interaction signal to identify

controversy from, except for some work that considered the user comment thread in

online news data. While the presence of polarization of a user interaction network

or dispute signals have been studied to be useful signals to identify controversy from

Wikpedia and social media, we have to rely on text analysis of the documents without

extra features. Naturally, sentiment analysis of text is considered to estimate the

features.

Choi et al.’s work (2010) was one of the pioneering work that investigates iden-

tifying controversial issues and subtopics from news articles using various features,

particularly a mixture model of topic and sentiment. They define controversial issues

as concept that invokes conflicting sentiment or views and a subtopic as a noun phrase

that provides a reason that the issue has conflicting sentiment. They measure the

level of controversy of a given phrase based on the topic importance and the difference
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of the sentiment of the terms in it. They performed a qualitative analysis for their

results.

While some past work uses sentiment as a signal when researching controversy,

others have argued that opinion and controversy are distinct and non-overlapping

concepts. Awadallah et al. (2012) explain that political controversies are much more

complex and opinions are often expressed in subtle forms, which makes determining

polarities much more difficult than in product reviews, in which sentiment analysis

and opinion mining techniques have been used. Mejova et al (2014). argue that

controversy and sentiment are not directly related.

Dori-Hacohen and Allan’s work (2015) was the first attempt to extend the con-

troversy detection problem to general webpages in an open-domain. They first in-

vestigate the usefulness of sentiment in identifying controversy in Webpages. They

demonstrate that sentiment alone cannot be a good signal to identify controversy

by showing that a sentiment analysis baseline fails to identify controversial topics in

Wikipedia, which supports the claim from other work (Awadallah et al., 2012; Mejova

et al., 2014).

They begin by generating a query from a web page, and retrieving the K nearest

neighbors from Wikipedia. They create a binary classifier by aggregating controversy

features that are computed in retrieved Wikipedia pages (Yasseri et al., 2012; Das

et al., 2013),

There also have been a few attempts to detect controversial content with lexi-

cons. Roitman et al. (2014) focused on a claim-oriented document retrieval task.

They retrieve Wikipedia articles that contain relevant claims about a controversial

query topic using manually-curated controversy lexicon. Mejova et al. (2014) use

crowdsourcing to label controversial words.

Beelen et al. (2017) also studied identifying controversy from news articles by

investigating extensive features that indicate controversy from the document text as
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well as people’s comments. They showed that their comment-based method that

considers the meta-data of comments of the news articles, was more effective than a

content-based approach that considers the text of the news articles for controversy

detection in news articles.

2.2.4 Detecting Controversy in Search Queries

There has been little work done in finding controversial topics from search queries

except for the work of Gyllstrom et al. (2011). They observed popular claims in search

query log to identify controversial topics. Specifically, they create a claim search query

that has a pattern of ’X [is/was/are/were] Y’ to obtain an insight whether popular

claim queries from a search engine contain conflicting sentiments. They send ’X

[is/was/are/were]’ to a search engine to obtain the top suggestions to find the claims.

Among the claims, they observe whether a claim that is a negation of another claim

exists, such as ’X is fake’ and ’X is real ’. When there is a pair of claim queries

that negate each other, they determine that the entity in the claim is controversial.

However, this approach is limited in several ways. First, they require abundant

search query log for the approach to be effective. Second, their approach is limited to

controversies that can be summarized in the form of simple claims using an adjective

or a noun. There are many controversies that are too complex to be described as

simple claims, and not all controversial claims necessarily have the negating claims.

For example, a controversial claim has been raised whether Apple has purposely

slowed down the performance of the old iPhones to accommodate their aging batteries

(Nusca, 2017). Not only is this controversy too complicated to be written as a simple

‘X is Y’ type of claim but also negating claim was not raised from users.

2.2.5 Summary

Controversy detection methods have been studied within a given medium, mainly

among Wikipedia, social media, webpages and news article. While how controversy, as
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a complicated and subjective social phenomenon, should be computationally defined

and characterized itself is still an open question, we summarize previous work by the

type of features they captured to estimate controversy in each medium in Table 2.1,

2.2, and 2.3.

In Wikipedia, capturing disputes and conflicts between the editors has been the

main focus of previous work. While how editor network is structured and the meta-

data features of Wikipages have been also studied, the disputes between the editors

have shown to be the most prominent signals characterize controversy in Wikipedia.

However, existing approaches focus on analyzing “present” dispute signals on

Wikipedia, which leads them to be a precision-oriented approach than a recall. For

example, topics that are less popular tend to get less edits in general, hence seem-

ingly less controversial than they actually are. We address this issue in Chapter 4 and

Chapter 6 to improve Wikipedia-based controversy approaches to be more reliable.

In social media, controversy has been mostly characterized by how strongly people

with similar opinions form a community on a controversial topic rather unlike explicit

conflicts in Wikipedia. In Wikipedia and social media, the existing approaches pro-

posed fall into the category of topic controversy models.

On the other hand, Web pages and news articles differ from the other mediums

because they do not have auxiliary information such as conflict history between users

user interaction behaviors, and the focus of their problem is to judge the controversy

of a given object, they use document controversy models. The main signals that have

been studied are sentiment and the text of the document to find topics. One type of

model is used within another model. The state-of-the-art algorithm (Dori-Hacohen

and Allan, 2015) uses Wikipedia controversy models to identify controversy in the

document bu using similar Wikipedia topics from the document.

Existing sentiment-based algorithms to find controversy in documents are mostly

lexicon-based approaches where they look for matching keywords from the predefined
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lexicon list. Such approaches are not scalable and limited as in sentiment does not

always reflect controversy. Therefore, we investigate a probabilistic approach to use

the language of the document to estimate the probability later in Chapter 5.

2.3 Detecting Subjectivity and Bias

Cartright et al. (2009) attempted to characterize subjectivity in Web documents

by proposing two new metrics, provocativeness and balance, which could suggest the

document’s topic is controversial. They define the provocativeness as the average

level of subjectivity of all relevant units (e.g., documents) to the topic and the balance

as the amount of imbalance between the negative and positive opinions of a topic.

They applied the two metrics to characterize the topics from TREC Blog Track and

presented an analysis that the topics used in the blog track tend to be provocative.

As controversial topics are likely to use biased language with regard to a certain

stance that the author takes on the given controversial topic, bias is often related to

controversial topics. To identify biased language from text, Recasens et al. (2013)

discovers two classes of biases, framing bias, which injects a certain perspective and

subjectivity, and epidemiological bias, which is related to truthfulness of the state-

ment. Between the two, framing bias is more closely related to the controversial topics.

They observe that framing bias occurs when subjective intensifiers or one-sided terms

are used, which reveal the author’s stance on the given topic.

While one-sided terms are more closely related to controversy, such terms are

topic-dependent and difficult to obtain as it require stance detection on corpus. Pre-

vious literature has focused on a two-way classification of classifying the author’s

stance to two conflicting stances such as “support” vs. “against” or support “Donald

Trump” vs “Hillary Clinton”). For stance classification, the subjectivity of language

and sentiment lexicons were considered as features as well as unigrams, bigrams, dis-

tributional similarity, etc (Recasens et al., 2013). In Ricasens et al.’s work, Riloff et
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al.’s work where the linguistic patterns that indicate a subjectivity in a sentence were

used as part of the features to capture bias. We will discuss about research effort in

stance detection focusing on social media in Section 7.2.

2.4 Explaining Controversy on Social Media

Explaining controversy is a relatively new area and there has been little prior work

on this problem. In our work, we focus on explaining the two conflicting stances that

make up controversy. For this problem, two research areas are mainly related, stance

detection and summarization on social media.

2.4.1 Stance Detection on Twitter

In order to find tweets that represents each conflicting stance for a summary,

stances identified in each tweet would be an useful knowledge.

Stance classification on Twitter usually consists of two main tasks: (1) classifying

the text’s stance (against, favor, or neutral) given a topic, and (2) classifying the

twitter users’ stances. The former task drew attention when 2016-SemEval Task

6 released a dataset of tweets with stance annotations (Mohammad et al., 2016b).

The results of various approaches were shared after the competition (Mohammad

et al., 2016c), and later more successful approaches were proposed including one

that uses a bi-directional conditional LSTM for classifying the stance and opinion

target on Twitter (Augenstein et al., 2016). For the latter type of task, Johnson and

Goldwasser developed a method to classify stances of politicians on Twitter using

relational representation (Johnson and Goldwasser, 2016).

The 2017 Fake News Challenge Stage 1 (FNC-1) shared task focused on a stance

detection task as a crucial first step towards fake news detection (Pomerleau and

Rao, 2017). In this task, an input is given as a headline and a body text either from

the same news article or two different articles. Then an algorithm should classify the
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stance of the body text with respect to the claim made in the headline into one of four

categories – “Agrees” (the body text agrees with the headline), “Disagrees” (the body

text disagrees with the headline), “Discusses” (the body text discusses the topic of

the headline but does not take any stance), and “Unrelated” (the body text discusses

a different topic from the headline).

Because the stance detection in this task deals with a longer document than

a tweet, it poses a new challenge from the stance detection in tweets. In tweets,

the challenge comes from the fact that short text give little hint and context for

identifying a stance. On the other hand, a long document may contain statements

that suggest one stance when considered in isolation, but imply the opposite stance

given the context of the document. The top ranked FNC system was from Talos

Intelligence’s SLOAT in the SWEN team, who used a weighted average model of a

deep convolutional neural network and a gradient-boosted decision tree model. For

their decision tree model, they used word count, TFIDF, sentiment, and singular-

value decomposition features with the pre-trained word2vec embedding (tal, 2017;

Hanselowski et al., 2018).

From these recent two stance detection shared task, one common lesson we learned

is that the investigated stance detection task is a difficult problem. In the SemEval

2016 Stance Detection in Tweet share task, none of the participating team consistently

outperformed the baseline. Hanselowski et al. 2018 analyzed the top-performing ap-

proaches in FNC-1 share task and concluded that more sophisticated machine learning

techniques that have a deeper semantic understanding are needed as the best perform-

ing features are not yet able to resolve the difficult cases yet. However, we argue that

while stance detection is closely related to our problem, our goal is not to accurately

classify the stances of all tweets. Our problem is also more robust to misclassification

errors of stances as we can take the tweets with highest stance confidence as part of

the summary.
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2.4.2 Twitter Summarization

There has been much work on summarizing Twitter postings through most of them

focuses on summarizing events (Sharifi et al., 2010; Duan et al., 2012; Chakrabarti

and Punera, 2011; Inouye and Kalita, 2011; Yulianti et al., 2016). Inouye et al.

2011 compare multiple summarization algorithms for Tweet data, and their extensive

experiments suggest that the SumBasic algorithm (Nenkova and Vanderwende, 2005)

produced the best F1-result in human evaluation. SumBasic is a summarization

algorithm that uses the term frequency exclusively to create summaries. As a simple

system based on word frequency in the document set, SumBasic outperformed any

other complex system at the time. SumBasic computes the best k posts from the

input documents that contain a lot of high frequency terms. We choose SumBasic as

our baseline method.

Some work has focused on generating contrastive summaries from opinionated text

(Paul et al., 2010; Guo et al., 2015). Particularly, Guo et al. studied tweet data to

find a controversy summary. They find a pair of contrastive opinions by integrating

manually-curated expert opinions and clustering the pairs to generate a summary.

However, their model needs curated expert opinions, which requires constant human

effort to maintain as the topic evolves.
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CHAPTER 3

PROBABILISTIC MODELING OF CONTROVERSY

DETECTION

3.1 Introduction

This chapter discusses a probabilistic framework for the task of detecting con-

troversy of a given web document. Dori-Hacohen and Allan (2013) first introduced

the problem of detecting controversial topics in Web documents. The goal of this

task is to make a binary classification on whether or not a given document discusses

controversial topics. Dori-Hacohen and Allan proposed a k-nearest-neighbor (kNN)

classification approach for this task and conducted a proof-of-concept experiment.

Their pilot study demonstrates that given a query document, identifying similar k

Wikipedia pages and their controversy levels can effectively identify controversy in

the document. They first mapped each query webpage to k related Wikipedia pages

(Wikipages) that are manually identified, and used the annotated controversy level of

the selected Wikipages to produce a final controversy score for the document. Later,

they proposed the first fully-automated algorithm that implements the kNN approach

(2015), which we call “kNN-WC algorithm”.

The kNN-WC algorithm has been shown to be effective. However, its lack of

theoretical underpinning leaves a gap between our theoretical and empirical under-

standing in this problem. While the kNN-WC algorithm is an implementation of the

underlying kNN approach, the algorithm adopts a few assumptions that were not

specified in the kNN model. Although Dori-Hacohen and Allan leave the theoretical

groundwork of the kNN-WC algorithm largely unexamined, we propose that the algo-

rithm has been implicitly instantiated from an underlying probabilistic model, which
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we name as kNN-WC model. We aim to derive the probabilistic kNN-WC model that

can explain the assumptions and the behaviors of this algorithm in a more general

sense.

Why do we need a model when we already have an algorithm that works reasonably

well? When an algorithm is instantiated from a theoretically-grounded model, we can

obtain a better intuition of why the algorithm works. Having a model allows us to

understand mathematical foundations and to evaluate a set of assumptions made to

design the algorithm. This can help us to challenge the existing assumptions and

develop better algorithms.

We therefore analyze and derive a model for the kNN-WC algorithm. Our goal

here is not to design a new model but instead to derive a probabilistic model that ex-

plains the kNN-WC algorithm. Deriving a probabilistic model for the state-of-the-art

algorithm sets a path for us to investigate controversy detection task in a probabilistic

framework. We identify the assumptions that the kNN-WC algorithm made beyond

the underlying KNN approach and resultant properties that the model has. We

later demonstrate that deriving such a model can be used to extend the approach

and design models and algorithms with substantially improved efficiency, accuracy,

and generalizability. Specifically, deriving this model is a crucial step towards un-

derstanding this problem in many ways because it allows us to answer the following

research questions:

• Theoretical Understanding of the Problem (Chapter 3): What is the

mathematical background of the model and what assumptions were made in

the model?

• Revisiting the algorithm (Chapter 4): How reasonably did the algorithm

implement the assumptions of the model? How accurately do the heuristics

adopted by the algorithm estimate certain probabilities? Are there better ways

to estimate them?
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• Testing a new hypothesis (Chapter 5): What are the drawbacks of the as-

sumptions and what could be an alternative model that has different properties

than the given model?

We know of only two efforts to examine a theoretic model for controversy (Dori-

Hacohen, 2017; Zielinski et al., 2018). Because both of the proposed models compu-

tationally define controversy as the disputes within a given community (or a ‘pop-

ulation’), they require auxiliary signals of disputes to estimate controversy, such as

Wikipedia’s edit history or user interaction behaviors on social media. Therefore,

those models are not directly applicable to Webpages that do not have any external

signal but just text.

3.2 Background: Theoretical Models to Define Controversy

While there has been little work toward developing theoretical models in the

domain of controversy, we introduce two related efforts that have modeled controversy.

Dori-Hacohen (2017) presented a theoretical model to define controversy within a

group of people, or a population. Her model is inspired by growing disparity between

scientific understanding and public opinion on certain controversial topics, such as

climate change, evolution, and vaccination. While many scientists think that there

is no controversy with regard to those topics, in a general population, non-scientific

claims and arguments proliferate causing the topics to be highly controversial. Hence,

she argues that controversy is not a global and static value for a topic, but rather

defined by a function that takes a given population as well as the topic.

Let Ω be a population of n people. Let T be a topic of interest to at least one person

in Ω. Her model assumes that controversy is a multi-dimensional factor of traits that

can be observed in Ω. She hypothesizes that such dimensions include contention to

measure how contentious the topic is, importance to measure how important the topic
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is to people, and conviction to encode who strongly holds their belief in their stances

as follows:

controversy(Ω, T ) = f(contention(Ω, T ), conviction(Ω, T ), importance(Ω, T ))

Dori-Hacohen defines the probability of contention within a population as the proba-

bility of randomly drawing two people that have different stances that are in conflict

with each other on a given topic. While she modeled “contention” in her work, she

left other dimensions unexplored. In work outside of this proposal, we explored the

dimension of “importance” by suggesting that the importance of the topic should also

be measured with regard to the population, specifically by the ratio of people who

are affected by T in Ω (Jang et al., 2017). This was measured by counting people

who post tweets on the topic at least once during the time of observation.

Zielinski et al. (2018) later also recognized the necessity of having a conceptual

model that formally defines controversy, which supports our definition of controversy.

Their work is based on a Merriam-Webster dictionary definition of controversy as an

“argument that involves many people who strongly disagree about something: strong

disagreement about something among a large group of people.” Their proposed func-

tion takes three variables, a given object d (e.g., a webpage, a Wikipage, search

queries), a given community Ω, and an empirical distribution of opinions given by

members in Ω in d (Ed
Ω), to output a binary classification as follows:

f(d,Ω, Ed
Ω) = {controversial, non-controversial} (3.1)

Although they used a slightly different terminology such as referring to population

in Dori-Hacohen’s model as community, the underlying assumption of the model

captures the same intuition that “contention” within a given set of people is the main

feature to measure controversy of a given object or topic itself. In this thesis, we will
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use the term “population”. While this model shares the same goal with our model,

they assume that there is a community attached to the query object where disputes

can be observed from.

3.3 A Probabilistic Model of the knn-WC Algorithm

In this section, we analyze and derive a model for the kNN-WC algorithm. We

stress that our goal is not to design a new model, but to propose a theoretical model

that explains the kNN-WC algorithm. The kNN approach proposed by Dori-Hacohen

and Allan (2013) for controversy detection takes the following steps:

1. Finding k similar topics: When a webpage is given as an input, it finds k

nearest-neighbor similar topics.

2. Identifying the level of controversy for the k topics: For the k similar

topics, it identifies the level of controversy of each topic.

3. Classify: Based on the level of controversy on the k topics, it aggregates them

to finally classify whether or not the query document is controversial.

As this approach has been shown effective, they proposed a fully-automated imple-

mentation of the kNN model, named the kNN-WC algorithm (2015). We summarize

the kNN-WC algorithm as the following four steps:

1. Retrieving k Wikipages via a document query: When a webpage is given

as an input, they find k nearest-neighbor Wikipages by generating a query of

keywords extracted from the document.

2. Computing controversy score on Wikipages: From each of the k Wikipages,

they automatically computed three controversy scores: C score (Das et al.,

2013), M score (Yasseri et al., 2012), P score (Dori-Hacohen, 2017). In addi-

tion to these, they extracted D score that is a binary score that indicates the

presence of Dispute tags assigned by Wikipedia editors (Kittur et al., 2007).
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3. Aggregate: They aggregated the multiple scores of k Wikipages using average

or max operators.

4. Vote and classify: They apply a voting scheme to turn the aggregated scores

into a final binary decision, controversial or non-controversial.

Let us define a probabilistic framework that explains those steps by estimating

the probablistic components. Let D be the text of document, and T be the topic of

the document D. In this model, a topic is defined by a Wikipedia page (Wikipage)

including its meta-data such as edit history. For example, T would be the most rele-

vant Wikipage to D from the setW that contains all possible topics (i.e., Wikipages).

We will interchangeably use the term topics and Wikipages from this point.

Finally, we define C be the binary variable to denote the controversiality of D.

P (C = 1|D) indicates that D is controversial, and P (C = 0|D) means the opposite.

For simplicity, we define the constant variable c to denote C = 1 and represent the

query probability in a concise form: P (c|D) to denote the probability that D contains

controversiality and P (nc|D) to mean that D does not contain controversiality (i.e.,

contains non-controversiality). The model aims to estimate P (c|D) to determine

whether or not the given document D contains controversiality. We summarize the

notations used in our modeling in Table 3.1.

Table 3.1: A summary of notations used in our probabilistic framework

Symbol Meaning
D A document text consisting of words
T A topic of D. In this model, a Wikipage.
W A set of all topics. In this model, Wikipedia pages
C A binary variable to denote a D contains a controversiality
c A constant to denote that C = 1
P (c|D) P (C = 1|D), the probability D contains controversiality.
P (nc|D) P (C = 0|D), the probability D does not contain controversiality.
Ωw A set of Wikipedia editors who contributed Wikipage w
qD A query generated from D
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Figure 3.1: A simple Bayesian network kNN-WC model is based on. D: Document,
T: Topic, and C: Controversiality.

First, we interpret “D containing controversiality” to mean that D discusses a

controversial topic. P (c|D) can be obtained from a marginal probability of the joint

probability P (c,D, T ) for all possible topics of w in W .

P (c|D) =
P (c,D)

P (D)
=

∑

w∈W P (c,D, T = w)

P (D)
(3.2)

Because the probabilities P (c|D), P (T |D), and P (c|T ) are closely associated with

each other, we represent their relationship with a probabilistic graphical model that

has three random variables, D, T , and C. We capture the following algorithm’s flow

by constructing a linearly-structured Bayesian network as shown in Figure 3.1: the

topics (T ) are determined by the query from the document (D), the controversiality

(C) is determined by the contention level of topics. Intuitively, if the topic of the

document is known, controversiality can be derived from that topic, which explains

why C and D are conditionally independent given T . Based on the network, a joint

probability distribution, P (c,D, T ) is defined as follows:

P (c,D, T ) = P (c|T ) · P (T |D) · P (D) (3.3)

Finally, we derive P (c|D) from Eq. (3.2) and Eq. (3.3). P (c|D) is broken down

to two components, the probability that a given document D retrieves a topic T , and

the probability that T is controversial. For estimating P (w|D), instead of considering

all of D, they generate a query qD from D to retrieve w. In addition, instead of

considering all Wikipedia pages to aggregate the probabilities from, they take the top

k most relevant Wikipages and estimate the probabilities from them. Let the top k

most relevant Wikipages of D as WD:

37



P (c|D) =
∑

w∈WD

[

P (c|w) · P (w|qD)
]

(3.4)

3.3.1 Estimating P (c|w) using Contention

In our model, P (c|w) indicates the probability that a given Wikipage w is contro-

versial. There has been some work that focused on estimating the level of controversy

of Wikipages. For the kNN-WC algorithm, three state-of-the-art techniques (Yasseri

et al., 2012; Dori-Hacohen, 2017; Das et al., 2013) as well as binary dispute tags that

are manually-curated by Wikipedia editors have been tested. We call them Wikipedia

Controversy Features (WCF). Among these, M score has been shown to be most ef-

fective for their framework. Therefore, we discuss M score as well as P score that

captures the same intuition as M score but that is derived from a more probabilistic

grounds.

P score (Dori-Hacohen, 2017) and M score (Yasseri et al., 2012) both measure

controversy as the level of “contention” within a group of people. This viewpoint

is proposed to define controversy by the population model. While P score is an

application of the population model in Wikipedia, the viewpoint retrospectively1

explains the intuition behind M score.

Recall that the population model argues that the level of controversy of a given

topic can only be answered with respect to a given population, and specifically, with

regards to how contentious the topic is within the population. Both P score and

M score assume that a population was given as the set of Wikipedia editors who

contributed to the given topic. We explicitly transform the query P (c|T ) to an equiv-

alent population-aware query by treating Ωw, a population of Wikipedia editors on

Wikipage w as a given parameter when w corresponds to the topic T .

1The controversy-population model was proposed 5 years later than the M score.
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P (c|T ) = P (c|w) = P (Contention|w; Ωw) (3.5)

To estimate the level of contention, M score and P score both use “mutual reverts”,

online activities of Wikipedia editors where two editors have reverted each other’s

contribution, as a sign of disputes. The common intuition that both measures try to

capture is that the contention increases as there are more reliable mutual reverts.

We first denote a set of Wikipedia editors that have contributed to a Wikipage w

as Ωw = {p1, p2, ...pn}. We define mutualrevert(pi, pj) as a binary relationship that

indicates whether reviewers pi and pj have mutually reverted each other. However,

not all mutual reverts are meaningful. Vandalism is an act of maliciously editing

Wikipages. Some mutual reverts are caused to fix these malicious activities, and

should not be counted towards measuring contention.

Let MRD = {(pi, pj)|pi, pj ∈ Ωw, s.t., i < j ∧ mutualreverts(pi, pj)} be the set

of unique pairs of editors that have mutually reverted each other on D. Sumi et al.

(2011) define Np,D be a reputation score of editor p, which indicates how credible p

is (we omit the details here). The higher the reputation score is, the less likely p is

to be a vandal.

M Score: To estimate if a given mutual revert is not caused by vandalism, they

use a heuristic, min(Npi,D, Npj ,D), to indicate how unlikely it is that any of the editors

are vandals. M Score is computed as follows:

M = |ΩR
w| ·

∑

(pi,pj)∈MRD

min(Npi,D, Npj ,D) (3.6)

where ΩR
w is a sub-population of Ωw that is involved in at least one mutual revert

that occurred in w. Since M score is not a probability, but an unbounded integer.

We convert M score to a probability score by normalizing by the maximum M score

among all Wikipedia pages.
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P Score: Dori-Hacohen (2017) defines P score as the probability of drawing two

random editors and the two editors have a mutual revert. Each mutual revert is

discounted by the probability that each editor is not a vandal:

P =
1

|Ωw|2
·

∑

(pi,pj)∈MRD

Npi,D

ND
max + 1

·
Npj ,D

ND
max + 1

(3.7)

where ND
max is the maximum reputation score of any editor who contributed to D.

By using the estimated probability from P or M score, we can develop the model

as follows:

P (c|D) =
∑

w∈WD

[

P (contention|w; Ωw) · P (w|qD)
]

(3.8)

Given this model, the kNN-WC algorithm makes a few approximation for the

purpose of binary classification in a way that it uses cut-offs to turn the probability

score into binary labels. First, based on the principle of a kNN classification, it

considers the top k Wikipages instead of all pages. The kNN-WC algorithm chooses

to aggregate the controversy scores of k topics via an average or a max aggregator.

While the average aggregator more directly fits in our model, they show that the max

aggregator is another heuristic that empirically works well. They also use a threshold

for the controversy scores to turn them into binary flags for voting. While the kNN-

WC algorithm makes effective choices for the purpose of the binary classification, the

derived probabilistic model presents a discriminative power by being able to measure

the level of controversy. It also suggests that alternatively, the level of relevance

of the topic to the query document can be weighted differently to the final level of

controversy as well as the level of the controversy level of each topic.

3.4 Discussion

From deriving the model of kNN-WC in Eq. 4.3, we learned the following prop-

erties about the kNN-WC model.
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P1: The model has a population-based topic controversy
model as a sub-component.

Because the level of controversy is determined from a topic-controversy model (Eq.

4.3), kNN-WC inherits the limitations that population-based controversy models gen-

erally have: it assumes that finding the evidence of “dispute” between people is a nec-

essary condition for identifying controversy, while in reality, disputes are sparingly

observed. For example, even for highly controversial topics, disputes are not observed

constantly for all times as the human attention naturally is limited. The disputes

are likely to be observed again when a new event spikes the interests. Topics that

are controversial but less popular also suffer from the lack of dispute signals because

it simply did not receive enough attention to generate contentious discussions for.

Lastly, there are many similar topic instances (e.g., news articles, Wikipiedia pages)

and it is impossible for all instances to show the same level of high disputes even

for controversial topics. For example, we don’t see the same level of disputes for all

news articles on the comment section on the same controversial topic. We cannot

simply expect all the articles to receive enough attention to generate a contentious

discussion. Therefore, we need to ensure that errors caused from dispute sparsity are

not propagated to the final prediction.

P2: Non-controversiality is not directly modeled.

kNN-WC is tuned to capture controversial signals by adding the controversy scores

from each topic. When the document is non-controversial, the model expects to catch

its non-controversiality because the topics retrieved would be non-controversial and

contributes zero or small number of score values to the final score. However, the

non-controversial topics only act in a way that it does not increase the probability

that the document is controversial. It does not significantly differentiate the two

cases where one mainly talks about the controversial topics and the other one mostly

talks about non-controversial topics but briefly mention the controversial topic as a
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passing comment. Theoretically, the latter case is penalized because the relevance to

the topic should be lower when the given topic is not the main theme of the document.

However, it is still susceptible to lean towards “controversial” because it is likely to

contribute more to the final score than a non-controversial topic would with its high

contention score. This is hinted from that in Eq. 4.3, the probability is a summation

of non-zero components in the retrieved topic list. In fact, this issue is aggravated

in the kNN-WC algorithm, a specific implementation that Dori-Hacohen and Allan

proposed, when they treat the top K retrieved topics to have the same relevance

probability. As long as the highly-controversial topic is retrieved in the top K list,

the document’s probability of being controversial is highly likely to be overrated.

kNN-WC adopts a principle that if there are controversial topics mentioned in the

documents, it is likely to be controversial and the model is ready to “listen” to the

controversial signals that is present in the documents, However, alternative principle

could be considered: even if the controversial topics are mentioned, if the document

mostly discusses non-controversial topics, the probability of controversilaity should

be decreased. Perhaps, the balance of the controversial and non-controversial content

could be considered.

P3: A documents’ text is only a proxy to find topics.

In this model, the document’s text is only considered as a proxy to find topics.

The intuition of the model is that the controversiality of a document is determined by

its latent topics. The graphical model behind kNN-WC model suggests that once the

document’s topic is given, the text of the document does not affect the probability that

the document is controversial anymore via the conditional independence assumption.

In other words, the documents’ text is only used to identify the topics and it does not

directly affect the probability that the document is controversial. In another model,

alternatively, we could consider documents’ text directly to estimate the probability

of controversiality.
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In the next two chapters, we will revisit the above three properties. In Chapter 4,

we revisit the kNN-WC algorithm, a specific implementation of kNN-WC model. We

show that the empirical performance of the algorithm is bounded by how realistically

two probability components in Eq. 4.3 are estimated, and particularly limited by

the issues presented in P1. We then propose methods to fix them to improve the

algorithm. In Chapter 5, we propose Controversial Language Model (CLM), which

addresses all P1, P2 and P3. We finally compare CLM and kNN-WC model in their

empirical performance and via a qualitative analysis.
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CHAPTER 4

REVISITING AND IMPROVING WIKIPEDIA-BASED

CONTROVERSY DETECTION

We discussed in the previous chapter (Section 3.3) that the kNN-WC algorithm

can be viewed as an instantiation of the probabilistic model presented in Eq. 4.3. In

this context, while the kNN-WC model specifies the general probabilistic components,

we use “kNN-WC algorithm” to refer to a specific implementation of the model,

including how the probabilistic components are chosen to be estimated as proposed

by Dori-Hacohen and Allan (2015). From the derived model, we discovered that any

implementation of kNN-WC model should satisfy the following two assumptions:

A1: P (w|qD) assumes that a query generated from the docu-
ment retrieves Wikipages that represent the document’s topics.

A2: P (contention|w; Ωw) assumes that Wikipages that discuss
controversial topics will show a high level of contention among
the editors of the page, and vice versa.

In this chapter, we revisit the kNN-WC algorithm and discuss how each assump-

tions often fail to be met in the current algorithm. We propose two solutions to

improve the accuracy of each probability to implement the kNN-WC model more

accurately.

4.1 Revisiting the assumptions for the kNN-WC algorithm

4.1.1 The Limitation of a Single Document Query

kNN-WC model assumes that a query generated from a document retrieves k rele-

vant Wikipages to estimate the level of controversy from. To generate a query for the
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document (i.e., a document query), the kNN-WC algorithm takes a straightforward

solution of simply using the “best” k keywords. In the algorithm, they used the top

k frequent terms.

However, we observe that generating a single global query from a document for

retrieving relevant Wikipedia pages inherently brings two issues. First, as the doc-

ument almost always contains multiple sub-topics, the generated query contains an

unknown mixture of different sub-topics. This makes the query’s intent less clear,

as it targets many sub-topics at the same time and in unknown balance. Second,

it is unlikely that all sub-topics are covered in the query – or covered appropriately

– because keywords are extracted from a bag-of-words, which does not model the

existence of sub-topics as it is. To address this issue, we investigate an alternate

way of query generation, namely tilequery: generating multiple local queries from

topically-segmented documents (i.e., tiles) and aggregating multiple ranked lists from

each query. We discuss this approach in Section 4.2.

4.1.2 The Limitation of Wikipedia Controversy Features

To estimate the level of controversy of a Wikipage, Dori-Hacohen and Allan ex-

amined previous work that studies the signals of dispute in Wikipedia (Kittur et al.,

2007; Das et al., 2013; Yasseri et al., 2012). We refer to these signals as Wikipedia

Controversy Features (WCF). The algorithms that were used to generate WCF use

meta-data of Wikipages, dispute signals in the page’s edit history, or manual dispute

tags assigned by Wikipedia editors.

The kNN-WC algorithm uses WCF to estimate P (Contention|w,Ωw) because

WCF is inspired by algorithms that model “edit-wars”, the evidence of multiple editors

(Ωw) exchanging opposing opinions on the given Wikipage (w). We introduce the

three features used in kNN-WC algorithm, which we also use for realization of our

new model later:
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C score This score was generated by a regression-based method (Kittur et al., 2007)

that estimates the revision count of controversial Wikipedia pages, which are

labeled with {controversial} tags. The algorithm was trained with edit-history

information, such as the number of unique editors and number of reverts, as

well as some metadata of Wikipedia pages . The score is normalized so that it

ranges between 0-1.

M score Another controversy score studied by Yasseri et al. (2012) is based on

statistical features of edits, which signify how fierce the “edit war” is. The

statistical features include the number of mutual reverts of two editors, the

number of editors participating in this edit-war, and the editor’s reputation. M

score is theoretically unbounded ranging from 0 to a few billions.

D score This is a Boolean value indicating whether a Wikipedia page contains a dis-

pute tag in it. This tag is assigned by the page’s contributors if the Wikipage’s

talk page shows some level of dispute. Unlike the above two scores, this label

is manually curated. Hence, this score is extremely sparse; only 0.03% of the

articles have a positive D score (Kittur et al., 2007).

Unfortunately, these approaches are all limited for the same reason: many Wikipages

with controversial topics do not have sufficient edit-history to form an edit-war or the

relevant edit-war has been delegated in other pages on the similar topic. There is a

tendency that the heat of the edit-wars be focused on one Wikipage of a general and

broad topic, leaving other related but sub-topical pages less attended. After all, there

is simply no point of having the same “war” on all similar Wikipages. Table 4.1 shows

an example of a few “abortion” related topics and their M and C score. While the

“Abortion” page received a lot of attention, other pages with more specific topics such

as Abortion in certain countries and Abortion Act had virtually no edit-wars. Unless

there is a specific issue or event specifically tied to the page, all general disputes on
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abortion have been delegated to the “Abortion” page. In other words, not having

the “edit-war” does not necessarily mean that there was no war in this topic, but

that the war has been happening somewhere else instead. This phenomenon causes

the algorithm to easily make false negative errors (i.e., classifying “controversial” as

“non-controversial”).

Table 4.1: An example of M score and C score for Wikipages on “Abortion” that most
sub-pages on “Abortion” have controversy scores close to 0.

M score C score

Abortion 4,102,593 0.300
Abortion_Act 0 0
Abortion_in_China 0 0
Abortion_in_England 0 0
Abortion_in_the_US 0 0.002

For the two limitations discussed, we propose two modifications in the framework,

each of which tackles one issue.

4.2 Solution 1: Improving Document Topic Retrieval by Local

Queries

The kNN-WC algorithm finds relevant Wikipages for a given query webpage by

generating a query from the document. Querying By Document (QBD) is a well-

motivated problem of finding other related documents for a given query document.

There are numerous applications in real life where users can benefit from QBD: for

example, research problems such as patent retrieval that returns similar patents to

a new patent application, blog retrieval that finds related blog postings to a text

document, and citation retrieval that finds related articles to an academic paper have

all been studied (Kim and Croft, 2014; Yang et al., 2009; El-Arini and Guestrin,

2011).
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Compared to traditional user queries, the main challenge of QBD stems from the

fact that a document usually contains more and more aspects (i.e., sub-topics) as it

becomes longer. If the document contains heterogeneous topics, the retrieved results

should also contain heterogeneous topics. However, whether the query used to retrieve

that list itself should be heterogeneous is questionable. We explore the interaction

between a single query that models the entire document and a set of queries intended

to capture each of the sub-topics of the document.

One straightforward solution for generating a document query is simply to use the

“best” k keywords. However, generating the global keyword query from the document

has two issues. First, as the document almost always contains multiple sub-topics,

the generated query would contain an unknown mixture of different sub-topics. This

would make the query’s intent less clear, as it targets many sub-topics at the same

time and in unknown balance. Second, it is unlikely that all sub-topics are covered

in the query – or covered appropriately – because keywords are extracted from a

bag-of-words, which does not model the existence of sub-topics as it is.

We consider a text-segmentation based query generation approach to address these

issues. To generate a query of clear intent focusing on one sub-topic at one time and

cover all present sub-topics, we model the document as a bag-of-tiles, where “tile”

refers to a segment of text, similar to “TextTile” in the TextTiling technique (Hearst,

1997). In this model, we first segment the document into multiple tiles. Each tile

is intended to contain fewer sub-topics than the document, ideally one sub-topic per

tile. We generate a query from each tile and then aggregate the ranked lists obtained

from the tiles. This can be viewed as a “divide-and-conquer” approach for document

query generation.

Tiling the document for query generation is motivated by a general process of how

documents are written. People tend to write a paragraph on a coherent sub-topic and

have sub-topics flow in the document. Text segmentation is a relatively light-weight
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way of considering sub-topics. Although topic modeling (Blei et al., 2001) can also

be used to learn the sub-topics in a document, those topics are best learned from a

corpus and are expensive to train as the collection grows. Hence, linearly segmenting

the document is not only computationally efficient but also has the advantage of

preserving the document structure property.

4.2.1 Related Work

Various approaches have been introduced to generate queries from a document as a

whole. Smucker and Allan (2006) studied this find-similar items problem extensively.

One of their valuable findings is that extracting a query from the document performs

better for finding similar items than simply using the document alone as a query.

Keyword-based approaches assume that a good query from a document would

be keywords that best summarize the document. A simple approach is to take k

terms with the highest term frequency (TF) or TF·IDF score. Other popular term

ranking functions include mutual information, KL divergence, and the χ2 test. The

RelevanceRank algorithm (Yang et al., 2009) constructed a Wikipedia graph with

phrases extracted from the webpage and then identified keywords using a random

surfer model.

Retrieval-based approaches use relevance feedback or pseudo-relevance feedback

results to identify keywords. Queries can be iteratively refined by adding more terms

from the top-ranked documents, and the newly modified query is issued again to

obtain a new feedback list. The Rocchio formula and RM3 are used most popular

for this task. In the patent retrieval domain, algorithms also use pseudo-relevance

feedback (Ganguly et al., 2011b). Using an initial patent query, it obtains top-ranked

documents and then formulates queries by selecting the sentences in the original

document that have more likelihood given those pseudo-relevant documents.
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Learning-based approaches use machine learning algorithms to learn keywords.

Lee and Croft (2012) extracted important noun phrases and named entities and

trained a CRF model given a user-specified passage in a document. This model

uses various features such as Web n-gram, query logs, Wikipedia titles, and so on.

However, their graph model does not scale well to a longer passage, such as a doc-

ument. Kim et al. (Kim, 2014; Kim and Croft, 2014) used both pseudo-relevance

feedback and machine learning technique. They trained a decision tree and used it to

generate Boolean queries. From a baseline query extracted from a query document,

it takes the top k pseudo-relevant documents and beyond k non-relevant documents

as training examples and trains a decision tree to generate multiple Boolean queries.

They then rank the queries to suggest top k queries to the user.

The closest existing work to using text segmentation for query generation is Gan-

guly et al.’s work on query reformulation (Ganguly et al., 2011a). They suggest that

to reformulate a given query to increase its specification on the particular topic com-

pared to the previous query, the terms from the document segment with the maximum

number of matching terms can be added.

4.2.2 TileQuery Generation

The past work has typically treated a document as a single, monolithic span of text

and generated one or more queries to represent the full document. We aim to explore

the impact of treating a document as a series of tiles and generating local queries

from them to improve retrieval of relevant Wikipedia pages for controversy detection.

We call our approach TileQuery as it is based on the TextTiling technique (Hearst,

1997).

We use the block comparison algorithm described by the TextTiling technique

to segment a document into multiple paragraphs or “tiles”. The block comparison

method defines a block with k sentences, and computes a lexical similarity score for
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every gap between two blocks. When the similarity score dramatically changes at a

gap, we assume that is where a sub-topic shift occurs. In this approach, we choose

the gaps with the biggest similarity drop between passages as tile breakpoints.

Once we segment the document into tiles, we generate a query that represents

each tile. We propose two types of TileQuery depending on whether we treat each

tile as a separate document or as part of the document. Note that there are more

sophisticated methods for extracting keywords from the given text but that is not

the main scope of this work. We aim to compare the effectiveness of a single global

query and multiple local queries to retrieve topics of the document in the context of

controversy detection, where it is important to retrieve all sub-topics that are covered

in the document. To compare the effect of the single global query that are used by

Dori-Hacohen and Allan 2013, we use the same query method of selecting top frequent

terms. While more sophisticated query generation methods can be applied, this is

acceptable in this context because our only goal is to compare the effect of the single

vs. multiple local queries.

• Context-free TileQuery: Context-free (cf) tilequery takes a view that

a document is an aggregation of independent tiles. Each tile is treat is as an

independent unit of text and each tile query is generated only within the given

tile.

• Context-aware TileQuery: Context-aware (ca) tilequery treats each tile

as part of a document. A potential issue with the cf-tilequery is that there

are some tiles that are hard to understand locally without considering the global

context of the document. For example, a document about an author contains

multiple tiles on the author’s biography, awards, or any excerpt from the au-

thor’s book. The excerpt should be understood as a context of the author’s

information, rather than the content of the excerpt itself. In this case, adding

the global context helps clarify the topic of each tile, anchoring the tile’s query
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to the original document. To test this idea, we construct ca-tilequery in the

following two ways:

(1) Global/local hybrid Query: This tilequery contains the terms

that are selected from each tile as well as the terms that are globally selected

from the document. Using the TF query method, we take d most frequent terms

from the document, and the t− d most frequent terms from the tile.

(2) Tile Keywords: In this method, tiles are considered as separate doc-

uments whereas the document is a collection of those tiles. We compute TF ·

IDF score among the tiles to find keywords from each tile in the context of the

document. TF is considered within the tile, whereas IDF is considered among

the tiles of the document. This method, unlike all the other methods, tends to

penalize the globally frequent terms throughout the document as they get a low

IDF score whereas the terms that are locally frequent within the same tile will

be considered to be important keywords.

4.2.3 Aggregating the Ranked Lists

Each tilequery returns a ranked list for relevant Wikipedia pages. We combine

these lists to generate a final ranked list for the given document. The intuition

behind this aggregation scoring prioritizes documents are ranked high in many tiles.

Our scoring function assumes that documents that are retrieved multiple times in

several queries and that are ranked high in a ranked list are likely to be more relevant

to the overall query document.

RelScore(w) =
∑

l∈RD

(k − rankl(w)) (4.1)

where k is the number of documents that are retrieved in each ranked list, RD

is a set of ranked lists retrieved from each tilequery of a document query D, and

rankl(w) is the rank of Wikpage w in the ranked list l.
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Figure 4.1: An interface snapshot of our annotation website

4.2.4 Intrinsic Evaluation

We first evaluate the query performance on retrieving relevant Wikipages for in-

trinsic evaluation. We also present the extrinsic evaluation of the query method with

regard to controversy detection accuracy in section 4.4.

4.2.4.1 Dataset

To evaluate the performance of tilequery in retrieving relevant Wikipedia topics

for a given document, we need an annotated dataset of Wikipedia articles to the query

documents. Dori-Hacohen and Allan (2013) previously annotated the relevance of

Wikipedia articles to the query documents. For the 377 pages in the controversy

dataset, they found the nearest Wikipedia articles using TF10 (i.e., taking the most

frequent 10 terms) queries to search engine blekko. For 8,755 unique Wikipedia

articles they obtained, they annotated 1,761 articles. We expand this dataset to

include more judgments on articles including the ones retrieved by tilequery and

AllQuery that uses all terms in a document as a query, as another baseline.

For the 377 clueweb documents in the annotated controversy dataset, we generated

a candidate set of Wikipedia articles using pooling with TF10, tilequery10 (i.e.,

taking up to 10 terms for each tile), AllQuery (i.e., using all terms in a document).

We asked annotators to judge the level of relevance of each Wikipedia article presented

in a random order for the given document. Relevance was judged on a five point scale

(0 - 4), following the same fashion as Dori-Hacohen and Allan did. We ask how

relevant is the given Wikipedia article is to the topic discussed by the Webpage with
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the options: “1 - highly on topic”, “2 - slightly on topic”, “3 - slightly off topic”, “4 -

highly off topic”. Figure 7.1 shows an interface of our annotation website where the

left panel shows the Webpage content and the right panel shows the list of titles of

Wikipedia articles, which are linked to the articles so that annotators can read the

content when they are not sure of the relevance. 21 graduate students in Computer

Science were recruited as annotators and asked them to judge as many as possible.

We obtained 2,248 ratings. For the binarized relevance where the score of 1 and 2 are

treated as relevant and 3 and 4 are treated as irrelevant, the judgments show the inter-

rater agreement of 74.1%. Out of 303 documents, we obtained at least one judgment

rating for 217 documents. Because some documents did not have enough annotations,

we evaluated the 132 documents out of 303 that had at least 10 judgments on the

binarized relevance.

Table 4.2: The query performance of the three types of tilequery compared to the
baseline of TF10 query. * indicates that the difference was statistically significant
compared to the baseline.

MAP P@5 P@10 P@20

TF10 0.017 0.052 0.041 0.030
CF-TileQuery TF10 0.017 0.061 0.037 0.025
CA-TileQuery TFIDF10 0.008 0.021 0.012 0.009
CA-TileQuery Hybrid 3:7 0.023 0.070* 0.053* 0.033

4.2.4.2 Experiments

We considered three types of tilequery: CF-tilequery, which takes N terms

from each tile, two versions of CA-tilequery, one that takes K local terms from each

tile and N −K global terms from the document, another one that takes N keywords

that have a high TF·IDF score treating tiles as separate documents in a context of

the document. As our goal is to investigate the effect of document segmentation in

query generation, we similarly use the simple term-statistics-based method such as
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TF or TF·IDF as used in the baseline. The average number of tiles within documents

was 6.

Table 4.2 shows the query performance of the three types of tilequery compared

against the baseline of TF10 method. While the performance of CF-TileQuery

TF10 and CA-TileQuery TFIDF10 performed poorly except for P@5 in CF-

TileQuery TF10, the results were not statistically significant. The CA-TileQuery

hybrid query that had global and local terms with 3:7 ratio performed the best, im-

proving 38% in P@5 and 29% in P@10 over the baseline.

This result confirms that our hypothesis that considering the topically-coherent

local document text within the global context of the document is more effective in

retrieving relevant Wikipedia topics than generating a single query of keywords from

multiple subtopics. Adding globally frequent terms to the locally frequent terms

helped to keep track of the main topic. CA-TileQuery TFIDF10 performed the

worst. In that method, since the globally-frequent terms are penalized as they tend to

have a low IDF. Among the globally-frequent terms, those who frequently appeared

within a tile are more likely to be selected than the the terms that are spread out

throughout the document. The result suggests penalizing the globally-frequent terms

has the negative effect.

4.3 Solution 2: Smoothing Controversy score of Wikipages

Once the topics of the document are identified in Wikipedia, kNN-WC aggregates

the controversy score of the identified topics to estimate the level of controversy of

the query document. However, because the existing approaches to estimate the level

of controversy are limited in that they rely on dispute signals, the framework is still

limited due to the underestimated controversy scores on pages that have not received

enough attention.
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Due to this phenomenon, even if we retrieve the more relevant topics, if the level

of controversy on each topic is erroneous, the final prediction would still be erroneous.

Hence, it is necessary to revise these scores to reflect the level of controversy more

accurately. If the purpose of the M or C score was to measure the controversy level

presented in the Wikipage per se, we need newly revised scores that accurately signify

controversiality of the topic of the Wikipage in general. To do so, we construct a

network that connects topically related articles within the Wikipedia. We then revise

the controversy score by “smoothing” using the controversy scores of neighbors with

more edit history, whose controversy scores can be trusted with a higher confidence.

4.3.1 Constructing a Wikipage Graph with Topically-related Pages

One of the primary reasons why many Wikipages’ controversy scores are under-

rated is that the most controversial discussion has already been delegated in another

Wikipage that has a more general topic (Table 4.1). In order to fix the controversy

scores of the sub-topical Wikipages, we first construct a tree to identify topically-

related neighbors of a Wikipage. Let G = (V,E) be a directed graph where V is a set

of nodes and E is a set of edges. In this graph, each node corresponds to a Wikipage

and two topically-related Wikipages are connected by a directed edge where edge

e(u, v) represents that node v is a sub-topic of u.

As a simple and straightforward yet a high-precision-based method to construct

the edges, we consider the pages’ titles. If a Wikipage u’s title is used as a prefix

of other v’s title, we assume that u must be a super-topic of v. Because a title is a

unique property that each node has and we use nodes’ titles to construct edges, we

will treat “nodes” and “titles” interchangeably in this context.

To construct a tree for topically-related Wikipages, we define that a node v is a

sub-topic of u if v is a child of u, and vice versa. Let the title of v be denoted as Tv

an ordered list [t1, t2, ..., tn], where ti is an i-th space-delimited token of a title. For
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Figure 4.2: An example of the constructed graph for Abortion and two different sub-
graphs selected based on the two methods. The nodes have more specific titles as
they go down from the root as a child node’s title has more details added to the
current node’s title.

example, the title Abortion act 1967 is represented as [Abortion, act, 1967]. From

the list of tokens, we iteratively construct sub-strings by taking the first k terms for

k = 1...n − 1 when n is the number of tokens in the list. The generated sub-strings

are sorted in a decreasing order by the length. For example, the generated substrings

for the title Abortion act 1967 would be [“Abortion act”, “Abortion”].

While iterating each sub-string from the beginning of the list, the first Wikipage

whose title matches to the first sub-string in the list (i.e., the longest sub-string that

matches to another Wikipage’s title) becomes the direct parent node of this node.

For example, when examining “abortion act 1967”, the algorithm first encounters

“abortion act” as the first longest substring that matches to another page’s title. It

connects “abortion act” as a parent node of “abortion act 1967”. Similarly, “abortion”

becomes a parent node of “abortion act” and a grandparent node of “abortion act

1967”. Algorithm 1 describes a function to search and construct a parent-child edge

for a given Wikipage node.

The graph also contains many noisy relations when the prefix is an ambiguous

entity, or a simply too general word, such as “American”. To filter out such noisy

relations, we only consider that two pages are related if there is a link from one to

another in their Wikipage content in addition to this title-relation. Hence, we remove
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the edges between two nodes when there is no link between the two Wikipages either

any direction. For this, we use publicly available Wikiepdia page-to-page link dataset

(Haselgrove, 2009). Figure 4.2 shows an example of constructed graph for the topic

of “Abortion”. From the filtered graph, we finally revise the controversy score using

smoothing.

Algorithm 1 An algorithm for finding parent nodes for a given Wikipage node

1: procedure findTopicParent(v, V ) ⊲ Find parent nodes for v in V
2: parents = set()
3: l = list(tokenize(v.title))
4: n = len(l)
5: for i = n-1 to 1 do
6: titleSubstr ← concatenate(l, 0, i)
7: for all w ∈ V do
8: if titleSubstr = w.title then
9: v.parent = w

10: w.child.add(v)
11: return
12: end if
13: end for
14: end for
15: end procedure
16:

17: procedure constructTree(V )
18: for all w ∈ V do
19: findTopicalParents(w, V )
20: end for
21: return V
22: end procedure

4.3.2 Graph-based Smoothing

When a Wikipage is given as a query, we extract a sub-graph around the node

from the constructed graph using one of the two methods, whose examples are demon-

strated in Figure 4.2:
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• Direct Family: A sub-graph around the query node including its children

and its parent. The resultant graph only consists of nodes that have a direct

prefix-contain relation with the query node.

• Extended Family: In addition to the sub-graph obtained by the above method,

sibling nodes that share the same parent with the query node are added. Al-

though siblings may not be topically related to the query node especially if the

parent (i.e., prefix) is a general term, this allows broader coverage of potentially

related pages.

Once we obtain the sub-graph, we treat all nodes in the sub-graph as topically-

related neighbors of the query node. Using these topically-related neighbors, we

perform smoothing on each node’s controversy score. For smoothing, we assume that

the controversy score of a Wikipage with more revision history is more reliable. For

the query node w, We first obtain a weighted sum between w and a neighbor node v

based on their “reliablitily”, which is computed from the ratio of their revision counts.

The smoothed scores between w and other neighbors are aggregated via another

weighted sum based on how reliable each neighbor is. Given an original controversy

score c(w) of a node w, the smoothed score c′(w) is computed as follows:

c′(w) =
∑

wi∈N (w)

f(ri) ·

(

c(w) · (
r

r + ri
) + c(wi) · (

ri
r + ri

)

)

(4.2)

where w is a given Wikipage, c(w) is a controversy score of w, ri is a revision count

of wi, N (w) is a set of neighbor Wikipages of w, f(ri) is a fraction of ri among the

revision counts of neighbors and computed as ri
z

and z =
∑

wk∈N (w) rk.

4.3.3 Aggregation and Voting

We summarize the aggregation and voting schemes introduced by previous work.

Once the controversy scores are obtained for k Wikipages, we aggregate the k scores
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Table 4.3: An example of two controversy scores on several Wikipages on “Abortion”,
before and after score smoothing

Original scores Revised scores
Revision Count

M C M C

Abortion 4,102,593 0.300 3,718,532 0.269 12,300

Abortion_Act_1967 0 0 1,966,410 0.146 168

Abortion_in_Canada 0 0 1,906,494 0.142 942

Abortion_in_the_United_States 0 0.002 1,828,736 0.135 2,281

Abortion_Law 0 0.003 1,877,349 0.139 1,387

Table 4.4: Accuracy, F1, and the best parameters in 5-fold runs for different query
and inferred score settings.

ID Query Smoothing K C Threshold M Threshold Aggregation Acc. F1
1

ALL
None {5, 20} 4.18 ·10−2 20000 {M, Maj.} 0.73147 0.678

2 Direct 15 4.18 · 10−2 {84930,20000} {M, Maj.} 0.76014 0.679
3 Extended {5, 20} 4.18 · 10−2 {20000, 84930} {M, Maj.} 0.76414 0.675
4

TF10
None 20 0.17, 4.18 · 10−2 {20000, 40000} {M, Maj.} 0.720 0.575

5 Direct 20 4.18 · 10−2 {20000, 84930} {M, Maj.} 0.75714 0.680
6 Extended {10, 20} 4.18 · 10−2 {20000, 84930} {M, Maj.} 0.76114 0.678
7

TILE
None {10,15,20} 4.18 · 10−2 {20000, 84930} {M, Maj.} 0.7234 0.635

8 Direct 20 4.18 · 10−2 20000 M 0.812146 0.766
9 Extended {10,15,20} 4.18 · 10−2 20000 {M, Maj.} 0.79623467 0.745

by taking the average or max of them. Since we use three different scores, M, C,

and D, three aggregated scores, Magg, Cagg, and Dagg are computed. We turn these

scores into binary label indicating controversial (1) or non-controversial (0), using

corresponding thresholds. Mlabel = 1 if Magg ≥ ThresholdM , and 0 otherwise. Using

the three generated labels, we use a voting scheme to make a final decision. We test

6 voting schemes as parameters in our experiments.

The webpage is controversial if:

— C/M/D: {Clabel, Mlabel, Dlabel} is 1, respectively.

— Majority: the majority (i.e., at least two) of {Clabel, Mlabel, Dlabel} is 1.

— Or/And: Clabel{∨/∧}Mlabel {∨/∧}Dlabel is 1.
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4.4 Experiments

4.4.1 Dataset

We use the publicly available controversy dataset1 released by Dori-Hacohen and

Allan (2013). The dataset consists of 303 webpages from the ClueWeb09 collec-

tion, which is a publicly available dataset of crawled general webpages (Callan and

Hoy, 2009). Note that the annotated webpages do not include any Wikipages. Each

document is annotated with the controversy level of four scales: 1 - “clearly contro-

versial”, 2 - “possibly controversial”, 3 - “possibly non-controversial”, and 4 - “clearly

non-controversial”. To convert the annotations to binary judgments, we treated the

documents with average ratings among annotators of less than 2.5 as controversial,

and otherwise non-controversial as done by the previous work (Dori-Hacohen and Al-

lan, 2015). Of 303 documents, 42% of them are labeled as controversial. For retrieving

Wikipedia pages as topics, we leverage the Wikipedia dump of 2013-Jun-05.

To extract queries from the actual content of a webpage, we remove peripheral text

that specifies layout (e.g., HTML, CSS, and JavaScript) and so-called “boilerplate"

material (e.g., navigation links, advertisements, headers, and footers). Leaving these

material in the document leads to over-representation of several non-content words

and phrases, such as “home” in the menu, or “all rights reserved” in the footer, that

otherwise might cause noisy terms to be included in a query. We removed this non-

content information using the open source library jusText2.

4.4.2 Experiment Setup

To test the effectiveness of tilequery and controversy smoothing, we consider

two other query methods as the baselines. One is TF10, the 10 most frequent terms,

as in the prior work. As taking only k terms as in a query might miss information,

1http://ciir.cs.umass.edu/downloads

2https://code.google.com/p/justext/
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Table 4.5: Improvements of accuracy and F1 score between runs and their statistical
significance tests

Run 1 Run 2 (Better) |Acc1-Acc2| |F11-F12| p value Significant?

All & None All & Smoothing (D) 2.9% 0.1% 0.0003 *
All & None All & Smoothing (E) 3.3% 0.3% 4.11e-05 *
All & None TF & None 1.1% 10.3% 1.54e-10 *
All & Smoothing (E) TF & None 4.9% 10.0% 0.0017 *
All & Smoothing (E) TF & Smoothing (D) 0.7% 0.5% 0.0889 *
TF & None TF & Smoothing (E) 4.1% 10.3% 1.96e-05 *
TF & None Tile & None 0.3% 6.0% 1.96e-05 *
Tile & None All & None 0.8% 4.3% 0.0035 *
TF & Smoothing (D) Tile & Smoothing (D) 5.5% 8.6% 0.0909
Tile & Smoothing (D) Tile & Smoothing (E) 1.6% 2.1% 1.0000

we consider another baseline, all query that uses all terms in a document as a query

to observe the extreme case of TFN . Therefore, we have three query methods –

TF10, AllQuery, tilequery – and three score smoothing setup – None (baseline),

smoothing with a direct family (D), smoothing with an extended family (E) –. Finally,

we consider all 9 pairwise setting of three query methods and three score smoothing

setups (Table 4.4).

In each setting, we varied the four sets of parameters, the number of neighbors K

(1, 5, 10, 15, 20), aggregation method (avg, max), voting methods (C, M, D, Majority,

Or, And, D∨(C ∧M)), and thresholds for C and M as tested in the prior work. Run 4

is the setting proposed in the prior work (Dori-Hacohen and Allan, 2015). We found

the best parameter setting for each run using 5-fold cross validation with the target

metric accuracy. Thus, for the 9 settings, there are 5 sets of parameters learned for

each fold. We used McNemar’s Test (1947) for statistical significance test.

4.4.3 Results and Discussion

We present our experimental results in Table 4.4 and its statistical significance test

results in Table 4.5. When there is no smoothing on the controversy scores, among

the three query methods considered – AllQuery, TF10, tilequery –, AllQuery

showed the highest performance both in accuracy and F1 score, followed by tile-
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query (run 1, 4, 7 in Table 4.4). In all settings, using controversy score smoothing

significantly improved the classification accuracy and F1 score. In fact, runs with

smoothing outperforms runs with any of the query method without smoothing. For

example, the runs with any type of smoothing (run 2,3,5,6,8,9) show higher perfor-

mance than the run 1 of AllQuery, the best query method without smoothing.

While without smoothing AllQuery performed the best, tilequery is shown to

be most effective with any smoothing combined. Between using two types of smooth-

ing of a direct and an extended family, the “extended family” performed better with

AllQUery and TF10 while the “direct family” performed better with tilequery.

However, our statistical significance test suggests that the differences are not statis-

tically significant.

4.5 Conclusion

In this chapter, we revisited two assumptions of the kNN-WC model: Based on

the derived model in Eq.4.3, the success of the algorithm depends on how accurately

the two probabilistic components are being estimated: P (w|qD), the probability that

a given Wikipage is a relevant topic to the query qD and P (contention|w), the proba-

bility that a retrieved Wikipage shows a high contention among the Wikipedia editors.

P (c|D) =
∑

w∈WD

[

P (contention|w; Ωw) · P (w|qD)
]

(4.3)

We revisit the kNN-WC algorithm, a specific implementation proposed by Dori-

Hacohen and Allan (2015). We point out that the algorithm could be improved to

better implement the model by ensuring that the algorithm satisfies the two assump-

tions more accurately. We recap the two assumptions here and how we addressed to

satisfy the assumptions better.

A1: P (w|qD) assumes that a query generated from the docu-
ment retrieves Wikipages that represent the document’s topic.
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To generate more effective query to retrieve the relevant Wikipedia topics, we

have proposed a new query method named tilequery that extracts multiple queries

from topically-coherent paragraphs in a document.

A2: P (contention|w; Ωw) assumes that Wikipages that discuss
controversial topics will show a high level of contention among
the editors of the page, and vice versa.

We have observed that P (contention|w) that is estimated from existing Wikipedia

controversy scores is often inaccurate and underrated for Wikipages that did not

receive enough attention, or whose controversial discussion has been delegated in

another page with a broader topic. We proposed a modification to the existing

Wikipedia controversy scores to infer more accurate and reliable scores via smoothing

using topically-related neighbors in Wikiepdia. From our experiments, the effect of

the controversy smoothing alone seems to be more significant than the effect of a

query method alone. Using the proposed query method along with the smoothing

showed the best performance, increasing the accuracy by 9% and F1-score by 19%

points.

However, we would like to point out that this issue stems from not just the im-

plementation choice, but from the inherent property of the model to some extent.

We previously stated via P1 that kNN-WC model is designed to be bounded by the

potential limitations of the models of P (c|w). The kNN-WC model calls a population-

based topic-controversy model as sub-component, which require evidence of disputes

for the given topic instance. These models tend to have a high precision but suffer

from relatively low recall. They are good for analyzing the given controversial signals

but tend to make false judgments when the contentious signals are not present. It is

hard to distinguish the cases where the topic is not controversial or controversial but

simply missing the signals of contention for the moment or for that topic instance.

Therefore, we address this issue in Chapter 6 by estimating the controversy score

of topics that change over time beyond the observed signals. Lastly, we would like
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to stress that any implementation of the kNN-WC model should take this issue into

consideration to expect a good performance in a real dataset.
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CHAPTER 5

CONTROVERSY LANGUAGE MODELS

5.1 Counter Properties for the New Model

We have identified three properties that kNN-WC model has in Chapter 3.2.

While we have proposed modifications for a better implementation of kNN-WC model

to improve the empirical performance, the proposed algorithm is still likely to be

bounded by the assumptions and the properties of the underlying model. In this

chapter, we propose a new model that challenges these properties in the pursuit of an

approach that has complementary characteristics to kNN-WC model. We recap the

three properties of kNN-WC model and propose the counter property that the new

model should have by challenging each property:

P1: The model has a population-based topic controversy
model as a sub-component.

P1′: A model does not depend on explicit “contention” signals
that are generated from people’s reactions and behaviors.

Due to P1, kNN-WC model is inherently limited in efficacy and adaptability be-

cause “contention” signals such as disputes are expensive signals because they require

people to engage in the discussion or to show reactions. In addition, the presence of

“contention” signals are easily delayed until enough people participate and generate

a contentious discussion, if they do, ever. We have shown in Chapter 4 that the

“contention” signal is not reliable because it is selectively available, which resulted

in many Wikipages whose topics are controversial but do not contain such signals.

Hence, for the new model, we consider an alternative property that the model does
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not depend on the population-based contention signals to estimate the probability of

controversiality. We do so by transferring “contention” signals to “language” features.

P2: Non-controversiality is not directly modeled.

P2′: Non-controversiality is explicitly considered for the clas-
sification of a document’s controversiality.

The kNN-WC model does not directly consider the probability that a document is

non-controversial. This means that when a document contains more non-controversial

keywords, it does not directly decrease the probability of controversy because the

probability of controversy is more affected by the presence of controversial keywords.

Instead of defining non-controversiality simply as a lack of controversy signals, we

consider a counter property of explicitly considering non-controversiality of the doc-

ument for the final decision. For example, the new property assumes that the docu-

ment is controversial if the controversial content is dominant compared to the non-

controversial content.

P3: A document’s text is only a proxy to find topics.

P3′: A document’s text is directly considered for estimating
the probability of controversiality.

Instead of only using the documents’ text as a proxy to find topics, alternatively,

we propose to directly the documents’ text to estimate the probability of controversy.

While this original property of kNN-WC model is likely to yield the same probability

of controversy for the two documents once they retrieve the same controversial topics,

the alternative property of the new model will allow to distinguish if one document

is more controversial by considering the language of the original text.

5.2 Proposed Model

Therefore, we explore another probabilistic model of controversy to satisfy the

new counter properties. We aim to use an alternative “language” signal and also di-

rectly model non-controversiality for the controversy classification. Lastly, we directly
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consider the language of the document’s text to estimate the probability of contro-

versiality. As part of our effort to find a new model for controversy detection, we first

turn to social science research to understand how controversy is being identified and

shaped.

The most relevant work to our interests would be Cramer’s (2011). Cramer ex-

plains that “controversy” cannot necessarily be verified to exist in the world indepen-

dent of its appearance in text, but rather it is created and shaped by the discourse

surrounding it, particularly in news outlets. He refrains from defining the term di-

rectly, referring to it as a “metadiscursive” (terms that are used to denote a discussion

of discussion) and “indexical” (terms whose specific meaning changes from context to

context) term, meaning that it may be difficult to formulate a mathematical or tech-

nical definition of controversy, and it can be loosely defined as something that you

would know when you see it. However, Cramer’s work suggests that language could

be a key feature in identifying controversy.

Cramer manually studies patterns of text surrounding specific terms such as

controversy, dispute, scandal, and saga within the Reuters corpus (Rose

and Whitehead, 2002), as being indicative of controversy. Motivated by Cramer’s

research, we propose a new probabilistic model of controversy that considers how

similar the document’s language is to the one that discusses a range of controversial

topics.

Table 5.1: The notation summary of controversy language model

Symbol Meaning
LC A language model of controversy
LNC A language model of non-controversy
LG A background language model of all topics
DC A set of controversial documents used to build LC

DNC A set of controversial documents used to build LNC

tf(w,D) The frequency of term w in a document D
P (w|L) The probability of term w in the language model L

68



We defined that P (c|D) indicate the probability that D is controversial and

P (nc|D) the probability that D is non-controversial. We set P (c|D) + P (nc|D) = 1

in Chapter 3.3. In this model, we classify that the document is controversial if

P (c|D) > P (nc|D) holds. The idea behind this assumption is that the controversiality

of the document should dominate the non-controversiality of the document to be clas-

sified as “controversial.” Because we are only interested in whether P (c|D) > P (nc|D)

holds rather than the actual probabilities, so we can use rank-safe approximations.

Each of P (c|D) and P (nc|D) can be represented using Bayes’ theorem, which

allows us to consider the following odds-ratio:

P (c|D)

P (nc|D)
=

P (D|c)

P (D|nc)
·
P (c)

P (nc)
> 1 (5.1)

Now our test condition can be expressed as:

P (D|c)

P (D|nc)
>

P (nc)

P (c)
(5.2)

where for our purposes, we can treat the right hand side as a constant threshold (since

it is independent of the document D), which can be learned with training data. To

avoid underflow, we actually calculate the log of this ratio. The higher this log-odd

score is, the more distinctively a given term appears in the controversial topic corpus

than in the non-controversial topic corpus:

logP (D|c)− logP (D|nc) > α (5.3)

Therefore, we only have to estimate the probabilities P (D|c) and P (D|nc), which

we do using the language modeling framework by the construction of a language

model of controversy LC , and a non-controversial language model LNC . We make the

standard term independence assumption for each word (v) in our document (D), and
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avoid zero probabilities with linear smoothing. We create another language model LG

for the purpose of smoothing using a broad “background” collection of documents, as

opposed to controversial and non-controversial collections. In practice, we estimate

both the general language model (LG) and the non-controversial language model

(LNC) as the same by constructing them from the set of all documents.

P (D|c) ≈ P (D|LC) =
∏

v∈D

(λP (v|LC) + (1− λ)P (v|LG)) (5.4)

P (D|nc) ≈ P (D|LNC) ≈ P (D|LG) =
∏

w∈D

P (v|LG) (5.5)

Here, DC is a set of controversial documents, and DNC is a set of non-controversial

documents, which we estimate in our collections as the background collection, DBG.

P (w|LC) =

∑

d∈DC
tf(w, d)

∑

d∈DC
|d|

, P (w|LNC) =

∑

d∈DBG
tf(w, d)

∑

d∈DBG
|d|

(5.6)

where tf(w, d) in dicates the term frequency of w in d and |d| is the length of d.

Therefore, to build a language model of controversy, we need to find DC . We explore

Wikipedia Controversy Features (WCF) and Cramer-inspired query based models to

construct DC as following:

• Highly Contentious Articles While the normalized WCF features are used

to estimate P (Contention|w; Ωw) in kNN-WC model, we simply take the top

K articles that have high WCF values in Wikipedia. In our experiments, three

types of WCF, M/C/D scores are considered.

• Controversy-indicative terms: Documents that are retrieved by a query

believed to indicate controversy. We explore Cramer’s terms as well as man-

ual lexicons from past work (Mejova et al., 2014; Roitman et al., 2016). The

examples of these terms is shown in Table 5.2.
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Table 5.2: An example of controversy-indicative terms.

Reference Search Terms

Roitman et al.

dispute, disputable, disagreement, debate, polemic, feud, question, schism
wrangle, controversy, dispeace, dissension, criticism, argue, disagree, claim
argument, conflict, opposition, adversary, antagonism, oppose, object, case,
loggerheads, quarrel, fuss, moot, hassle, altercate, evidence, clash, issue,
problem, emphasize, recommend, suggest, assert, defend, maintain, reject,
support, challenge, doubt, refute, confirm, prove, validate, establish, concur
substantiate, verify, against, resist, support, agree, consent, accept, refuse
plead, right, justify, justification

Mejova et al.

abuse, administration, afghanistan, aid, american, army, attack, authority,
ban, banks, benefits, bill, border, budget, campaign, candidate, catholic
china, church, concerns, congress, conservative, control, country, court, crime,
crisis, cuts, debate, debt, defense, deficit, democrats, disease, dollar, drug,
economy, education, egypt, election, enforcement, fighting, finance,
fiscal, force, funding, gas, government, gun, health, immigration, ...

Cramer et al. controversy, dispute, saga, scandal

5.3 Evaluation

We leverage the same controversy dataset introduced in Chapter 4 that consists of

judgments for 303 webpages. We perform 5-fold cross-validation and report measures

on the reconstructed test set.

We implement the kNN-WC model as the baseline, both the original algorithm

and the improved version of it introduced in Chapter 3. In order to construct DC ,

we needed the text of Wikipedia itself. Unfortunately, obtaining the same version

of dumps as those used in prior work (Das et al., 2013; Dori-Hacohen and Allan,

2015; Yasseri et al., 2012) is nearly impossible. For ease of future reproducibility,

we leverage the long abstracts from the 2015-04 release of DBPedia (Lehmann et al.,

2015)

Prior work reported accuracy; we note that 65% of the 303 documents were non-

controversial, so that accuracy does not provide the best view of this dataset. In this

work, we primarily present results using the Area Under the Curve (AUC) measure, as

we can compare performance without tuning thresholds. While AP and MAP have

the same advantage for not requiring a threshold, AP explicitly gives advantages
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Table 5.3: The accuracy of the models.

Models Accuracy

The kNN-WC algorithm (Dori-Hacohen and Allan, 2015) 0.737
The improved kNN-WC algorithm (Chapter 4) 0.796
CLM 0.779

Table 5.4: Wikipedia-Based Controversy Detection Approaches. All Controversy Lan-
guage Model (CLM) approaches have significant improvements over their respective
kNN-WC counterpart at the p < 0.05 level.

Method WCF AUC
kNN-WC model M 0.733
kNN-WC model C 0.743
kNN-WC model D 0.500†
CLM M 0.801
CLM C 0.835
CLM D 0.795

† In the kNN-WC-D approach, no neighbors were found with dispute tags, so it is equivalent

to the weak baseline performance of the NO classifier.

to a method that correctly predicts a few top-ranked items, which makes it mores

suitable for Information Retrieval tasks rather than classification tasks like ours (Su

et al., 2015). Since accuracy was used in prior work, we report it as well in Table

5.3: Compared to kNN-WC algorithm, we improve from 0.72 accuracy (as reported

by Dori-Hacohen and Allan (2015) and 0.737 accuracy (as reproduced) to 0.779 (p <

0.001). We also report the accuracy of the improved version of the kNN-WC algorithm

proposed in Chapter 4. For our statistical significance tests, we follow in the footsteps

of the pROC (Robin et al., 2014), and obtain confidence intervals from bootstrap

resamples of the predictions.

For each fold, we trained two parameters by grid search: K, the number of top

documents to choose, and λ, the smoothing parameter. For example, to create our

M-score-based language model, we ranked the documents in our Wikipedia collection

by their M score, and derived a language model based on the concatenation of the

top K documents. These models are presented in Table 5.4.
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Table 5.5: Language Models built from documents relevant to Cramer’s controversial
terms (Cramer, 2011). Collection size |C| in millions of documents and type is shown
for comparison of results. We found that our wiki dataset was significantly better
than all others, which had no pairwise differences otherwise.

Expansion Dataset Type |C| AUC
DBPedia Wiki 4.6M 0.853
ClueWeb09B (Spam60) Web 33.8M 0.741
Reuters News 0.8M 0.745
NYT-LDC News 1.8M 0.710
Robust04 News 0.5M 0.711
Signal-1M News 1M 0.710

Table 5.6: Language Models built from Cramer’s terms and existing lexicons on
DBPedia. We find that “controversy” is the most indicative term, and that “saga” is
no better than random. Combining terms led to no improvement over “controversy”
alone.

Query to build DC AUC
controversy 0.856
Roitman (Roitman et al., 2016) 0.823
dispute 0.740
scandal 0.721
Mejova (Mejova et al., 2014) 0.698
saga 0.500

For building Cramer language models, where the relevant document sets were not

created by WCF, we used the Galago search engine to rank documents using a query-

likelihood retrieval. We explore 6 different corpora as document sources (Table 5.5).

The K highest-scoring documents were then used as our controversial document set:

DC .

5.4 Results

In Table 5.4, we present results of our models built around WCF. All our language

modeling approaches are significantly stronger than the k-NN derived approaches. We

only report results of WCF features independently because methods of aggregating
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Table 5.7: A comparison of lexicons built manually and through crowd-sourcing in
prior work to our automatically derived language models. A (∗) indicates significant
improvement over the best lexicon approach. “TF10” indicates that the TF10 query
is used to represent a document whereas “Full” indicates that the full text of the
document is used as a query.

Method Document Query AUC
Roitman Lexicon (Roitman et al., 2016) TF10 0.543
Mejova Lexicon (Mejova et al., 2014) TF10 0.562
Mejova Lexicon (Mejova et al., 2014) Full 0.615
Roitman Lexicon (Roitman et al., 2016) Full 0.695
Cramer Language Model Full 0.783
WCF Language Model Full 0.823∗

WCF Language Model TF10 0.835∗

Cramer Language Model TF10 0.856∗

these features did not improve significantly over the best feature, and these methods

were not quite comparable across kNN-WC and LM approaches.

In Table 5.5, we present an initial exploration of Cramer’s hypothesis that news

is able to name and define controversy. While we were pleasantly surprised by the

efficacy of this simple approach, we did not see the best performance in the news

corpora (Rose and Whitehead, 2002) used by Cramer, but rather in using DBPedia as

the expansion set. We also explored this approach on other news datasets (Robust04,

NYT-LDC (Sandhaus, 2008), and Signal1M (Corney et al., 2016) but results were

statistically equivalent on all news corpora we tried. Attempting to correct for the

fact that some news corpora are no longer modern, we explored the contemporary

Signal Media News Dataset (Corney et al., 2016), and attempting to correct for the

size differences in the better-performing corpora (DBPedia (Auer et al., 2007) and

ClueWeb), we explored the larger NYT-LDC corpus (Sandhaus, 2008).

While Cramer defined four keywords to be indicative of controversy, we find that

“controversy” dominates effectiveness on this dataset. We explore these keywords

as queries into an expansion corpus, and construct a language model from the highest

scoring documents for the given query. That language model is then used for classi-

74



Figure 5.1: The top controversial terms of CLM that have a high log odds score (Eq.
5.3) and are frequent in the corpus. Note that the size of the font is a layout choice
and does not mean that the term has a higher probability. Colors of the text are
chosen arbitrary.

Figure 5.2: The top controversial terms of CLM that have a high log odds score (Eq.
5.3) and are frequent in the corpus. Colors of the text are chosen arbitrary.

fication. Mejova et al. (2014) and Roitman et al. (2016) presented manually-curated

lexicons for controversy tasks. We explore their use intrinsically, with Jaccard Sim-
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ilarity between the lexicon and the document terms in Table 5.7 and as queries to

build a language model in Table 5.6.

Lastly, to understand the characteristics of the model, we extract the top represen-

tative controversial terms and non-controversial terms in CLM. Because the top terms

that have the high log-odd scores (Eq. 5.3) are often extremely rare terms (e.g., rare

terms that only occurred in the controversial corpus but not in the non-controversial

corpus at all), we also weighted the terms by its frequency multiplied by the log-odd

score for the presentation in Figure 5.1 and 5.2. While the “controversy-indicative

terms” proposed from past work contain metadiscursive terms that signal disputes

such as “dispute”, “disputable”, “refuse” (refer to Table 5.2), the terms from CLM are

mostly topical. The top controversial terms of CLM include topical terms such as

“homemopathy”, “falun gong”, “jehovahs”, “anarchism”, whereas the non-controversial

terms tend to have broader topics such as “university”, “company”, “family”, and “al-

bums”.

As the controversy test dataset is relatively small, we were concerned about the

possibility that the controversy document collection used for building CLM happen to

include all of the specific controversial topics appeared in our test set. The best run

from CLM was built with DBPedia using the query “controversy”. As the best

run used the top 241 documents, we examined those documents to look at the overlap

between the train and test collection (see Appendix A). The list contained a lot of

specific controversy cases unlike the list from high M scores. Several controversial

topics in the test set documents such as “creationism”, “homeopathy”, and “capital-

ism” were not included in the training corpus, but CLM was still able to identify

controversy from those documents.
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Table 5.8: The ratio of the documents that are correctly and incorrectly classified by
kNN-WC and CLM).

Controversial Correct by KNN Wrong by KNN

Correct by CLM 69 (65%) 8 (8%)
Wrong by CLM 7 (6%) 22 (21%)

Non-controversial Correct by KNN Wrong by KNN

Correct by CLM 153 (78%) 8 (4%)
Wrong by CLM 13 (7%) 23 (12%)

5.5 A Comparison Between kNN-WC and CLM

To understand the different characteristics of the two approaches, we examine the

cases where one makes a correct classification and the other does not, and vice versa.

The kNN-WC algorithm made slightly more errors than CLM for classifying contro-

versial documents with the mis-classification rate of 8% for the kNN-WC algorithm

and 6% for CLM. On the other hand, CLM made more errors than the kNN-WC

algorithm for classifying non-controversial documents with the mis-classification rate

of 7% for CLM and 4% for the kNN-WC algorithm. This suggests that kNN-WC

algorithm is slightly more prone to make false negative errors whereas CLM is more

prone to make false positive errors.

We observed the distribution of the document length of the documents (i.e., the

number of terms) that are labeled as controversial and non-controversial by each

method to see how the document length affects each method’s classification decision.

Figure 5.3 and 5.4 show the distributions of the document length that are classified by

each method for controversial and non-controversial documents. Shorter documents

tend to be classified as controversial more often by CLM whereas the kNN-WC algo-

rithm has the opposite tendency compared to the human labels.

We manually analyzed the cases of the documents that were correctly classified

by kNN-WC while being incorrectly classified by CLM and vice versa to understand

the reasons for mis-classifications. In the kNN-WC model, because the controversy
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Table 5.9: The top 10 log-odd score terms of four documents as well as their gold
standard label and CLM labels.

Document ID Top 10 log-odd score terms Gold label CLM label

clueweb09-en0008-16-31383
analogy creationist intelligent crucify naturalism
evolutionary evolution argument objection debate C C

clueweb09-en0000-47-35377
monotheistic devotions analogy mecca hadith
quran racial prophet muhammad tenet NC C

clueweb09-en0011-89-02679
homeopathy people speak speaker 2009
raise running friends back june C NC

clueweb09-en0007-51-03335
editorial including resources mention
bring recording any the to com NC NC

judgment. However, once the controversial topic of Wikipage is retrieved, highly

controversial topics tend to dominate the probability of document’s controversiality.

Once a highly controversial topic is retrieved in the list, no other non-controversial

topics in the list can cancel it out. On the other hand, in CLM, the mention of

a certain controversial keyword might not be likely to dominate the probability of

controversiality. However, each mention of the controversy keyword directly affects

the document’s probability of being controversial in CLM.

While in kNN-WC, the effect of controversy keywords is diluted because the level

of controversy is measured from the retrieved topics from the query, whereas in CLM,

the effect of having controversy keywords is more direct. However, the impact of

retrieving controversial topics is more influential in kNN-WC model than in CLM.

This suggests that kNN-WC implements the principle that as long as the document

discusses a controversial topic, no matter how much it also discusses non-controversial

topics, it should still be classified controversial.

Table 5.11 shows an example of a highly controversial document that argues that

abortion is a cause of breast cancer. The document was correctly labeled as “con-

troversial” by kNN-WC while being inaccurately labeled by CLM. In kNN-WC, the

top-ranked topic “Abortion-breast cancer hypothesis” was highly relevant to the con-

tent of the document. The original M score and C score of this topic was 1550 and

0, which is considered to be non-controversial by the threshold of the algorithm. The
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smoothing method introduced in Chapter 4 corrected the scores to be 178,961 and

0.0131, respectively. The Wikipage ranked at 10, “Abortion” that has a high M and

C score, also helps to classify this page to be controversial. Being able to retrieve

specifically relevant topics such as “Abortion-breast cancer hypothesis” is one of the

biggest advantages of kNN-WC model, which comes from the benefits of a general

k-nearest-neighbor model.

In kNN-WC, the presence of the highly controversial topic “Abortion-breast cancer

hypothesis” and “Abortion” in the ranked list, which had a very high M and C score,

often dominantly determines the document to be controversial, as either using the

average or max aggregator of the retrieved scores, it results in a highly controversial

score. However, in CLM, while the terms such as “abortion” and “pregnancy” had

a high probability of controversy, the decision is usually made by considering other

factors. Having more non-controversial terms may cancel out the controversiality of

the document in CLM.

Table 5.9 shows another example of four documents with their top 10 log-odd score

terms as well as their gold standard and CLM labels. While for the two cases where

the gold labels and CLM labels match, the extracted terms reasonably contained

the controversial and non-controversial keywords. For the other two cases where the

labels do not match, they illustrates the situation where the topic of the document was

controversial, but the document did not particularly say anything controversial. For

example, document ‘clueweb09-en0011-89-02679’ contains an advertising text for their

homeopathy-related events. While the topic of homeopathy itself is controversial, the

annotator decided that the document does not contain any controversial content.

5.6 Limitations

While CLM is constructed from the language of controversial topics, it is obviously

not aware of newly-emerged keywords or the controversial entities that did not exist
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in the training corpus. From our analysis, when a new controversy arises, CLM

is still able to catch that there is some controversial event because even the new

controversy tends to include keywords that are highly correlated to any controversial

event. For example, during the Facebook–Cambridge Analytica scandal, another

controversy arose when an internal memo by Facebook Vice President Andrew “Boz”

Bosworth that was criticized for justifying “bullying” and “terrorism” at the cost of

the company’s growth (Ryan Mac, 2019). When we analyze the tweets of the given

day using CLM built from Wikipedia’s top controversial articles, the model fails to

capture “Andrew Bosworth” as a controversial entity, while it still captures “leaked” or

“terrorism” as controversial keywords. For other new controversies, the similar pattern

occurs. We believe that CLM is still able to capture the new controversies that were

not included in the model, but without “understanding” the actual controversial topic.

However, for the same reason, CLM is susceptible to make false positive errors. The

model also inherently suffers from the fact that it is a global model that combines

all controversial topics. This can be allevated by building a domain-specific or a

query-specific, time-adaptive CLM, which we leave it as future work.

5.7 Conclusion

We challenge the three properties presented from the previous work and propose

a new model that complements them. Using insights from recent social science re-

search, we motivate and explore the first language modeling approach to detecting

controversy. We find that our new approach is statistically better than prior work,

while being simpler. We explore strongly controversy-indicative terms and found that

a language model of documents containing “controversy” keyword directly is as help-

ful for this problem as complicated Wikipedia-based controversy features and more

effective than existing lexicons. We finally compare the two models, kNN-WC and

CLM, which have a few complementary properties to each other. kNN-WC model
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has an advantage of being able to retrieve specific topics as a reference with the risk

that contention signals of many specific topics could be missing. Regarding that,

we have addressed a technique to alleviate this issue via smoothing. CLM is more

efficient to compute, and does not suffer from the sparse “contention” signals as they

examine the language of the document. While kNN-WC is tuned to capture the men-

tion of controversial topics in the document, CLM considers the balance between the

controversial and non-controversial language of the document.
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Table 5.10: ClueWeb document “clueweb09-en0005-61-08920” was correctly labeled
as controversial by kNN-WC while CLM labeled it as non-controversial. The above
table indicates the document text (after removing the html tags and the boilerplate)
whose controversial terms are annotated by CLM with color meaning: controversial
> somewhat controversial . The table on the bottom shows the top 20 retrieved
Wikipages by TileQuery method along with M and C score.

In 1986, government scientists wrote a letter to the British journal Lancet and
acknowledged that abortion is a cause of breast cancer ., They wrote, "Induced
abortion before first term pregnancy increases the risk of breast cancer.",(Lancet,
2/22/86, p. 436) As of 2006 , eight medical organizations recognize that abortion
raises a woman’s risks for breast cancer , independently of the risk of delaying the
birth of a first child (a secondary effect that all experts already acknowledge).

An additional medical organization , the Association of American Physicians an
Surgeons, issued a statement in 2003 calling on doctors to inform patients about
a " highly plausible" relationship between abortion and breast cancer., General
counsel for that medical group wrote an article for its journal warning doctors
that three women (two Americans, one Australian) successfully sued their abortion
providers for neglecting to disclose the risks of breast cancer and emotional harm,
although none of the women had developed the disease . Click here for more

Rank Wikipage Title M score C score

1 Abortion-breast_cancer_hypothesis 1789961 0.000
2 Risk_factors_for_breast_cancer 0 0.002
3 Breast_cancer 12529 0.012
4 Breast_cancer_awareness 0 0.001
5 Joel_Brind 0 0.001
6 Voice_for_Life 0 0.001
7 Crisis_pregnancy_center 0 0.030
8 Sharsheret_(organization) 0 0.000
9 Cancer 5469 0.020
10 Abortion 3743570 0.296
11 Susan_G._Komen_for_the_Cure 32 0.003
12 Breast_cancer_research_stamp 0 0.000
13 Alcohol_and_breast_cancer 0 0.000
14 Triple-negative_breast_cancer 0 0.000
15 Dressed_to_Kill_(book) 0 0.001
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Table 5.11: ClueWeb document “clueweb09-en0007-98-30872” was correctly labeled
as controversial by CLM while kNN-WC labeled it as non-controversial. The above
table indicates the document text (after removing the html tags and the boilerplate)
whose controversial terms are annotated by CLM with color meaning: controversial
> somewhat controversial . The table on the bottom shows the top 20 retrieved
Wikipages by TileQuery method along with M and C score.

... Mission statement free homeopathy educational materials.
This is an open homeopathy project for all by all. Let s make all aware of the wonders
of homeopathy . Do it yourself approach for healthy and holistic living .
Homeopathy restore health rapidly gently and permanently . Homeopathy medicines
are patent free inexpensive and harmless.

First aid situations or acute illnesses treat yourself by homeopathy
classical homeopathy approaches as well all unconventional approaches are equally
respected and welcome here please feel free to contribute and share your knowledge
and experience picture of this moment.
This site provides only educational materials all advices given here are only for
educational purpose.

Rank Retrieved Wikipage M Score C Score

1 Waldorf_education 196630 0.091

2
List_of_alternative_therapies_for_
developmental_and_learning_disabilities 0 0.000

3 Edward_hamilton_(homeopath) 0 0.000
4 Tadepalle,_krishna 0 0.001
5 Nelsons_(homeopathy) 0 0.001
6 Educational_research 0 0.001
7 Arthur_lutze 0 0.000
8 Faculty_of_homeopathy 0 0.001
9 The_forbidden_education 0 0.000
10 Efterskole 0 0.000
11 Gheorghe_jurj 0 0.000
12 Puget_sound_community_school 0 0.000
13 George_vithoulkas 0 0.004
14 Universidad_del_sagrado_corazon 0 0.000
15 Rajesh_shah 0 0.000
16 Glossary_of_alternative_medicine 0 0.001
17 Beykent_educational_institutions 0 0.004
18 Motiwala_education_and_welfare_trust 0 0.004
19 Educational_psychologist 0 0.002
20 Mel_wasserman 0 0.000
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CHAPTER 6

ESTIMATING TEMPORAL CONTROVERSY TRENDS

6.1 Introduction

6.1.1 The Dynamic Nature of Controversy

Naturally, the level of controversy changes as the topic evolves over time and the

discourse of the topic develops. People’s attention and interest in the matter change

over time as well, which naturally affect the amount of online discussions on the topic.

The topic could get more heated as it goes more “viral” or it can naturally die over

time simply because there is no further development or because people simply become

bored of it.

In a case study of controversial events, Cramer (2011) found that terms that de-

scribe the Busang case (Depalma, 1997) have shifted from “dispute” and “controversy”

to “saga” and ”scandal” over time. This demonstrates how the nature of a contro-

versy changes as it develops. This phenomenon is demonstrated by our study that

presented a plot of the daily level of controversy measured in Twitter in Figure 6.1

(Jang et al., 2017). It shows that some controversies are more ephemeral than others.

For example, “The Dress” controversy, the controversial photo that went viral when

people disagreed on its colors on Twitter, was no longer controversial on Twitter af-

ter only a few days as most people stopped caring. On the other hand, “2016 U.S.

Presidential Election” had a longer span of controversy, a longer-lasting effect than

“the Dress.”
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In retrospect, this issue was similarly observed in the kNN-WC algorithm (Chap-

ter 4), when the automated controversy scores such as M scores and C scores are

underrated for Wikipages that receive less attention and that have similar topics to

the page where the editors have disputed the issues. Existing approaches have been

more focused on analyzing the controversial signals that are currently available and

do not differentiate these cases to predict the true controversy level looking beyond

the observed conflicts.

Figure 6.2: “Time evolution of the controversy measure of the article about Michael
Jackson. A: Jackson is acquitted on all counts after five month trial. B: Jackson
makes his first public appearance since the trial to accept eight records from the
Guinness World Records in London, including Most Successful Entertainer of All
Time. C: Jackson issues Thriller 25. D: Jackson dies in Los Angeles.” Source:
http://wwm.phy.bme.hu/

6.1.3 Monotonicity of Controversy Scores in Wikipedia

Because time was not directly modeled in the existing approaches, they often

have a monotonic property over time. For example, M score (Yasseri et al., 2012),

one of the successful methods that estimates the level of controversy in Wikipedia

in proportion to the number of mutual reverts among credible editors, uses the edit

history accumulated over time. Hence, the longer the edit history is, the more likely

we are to have mutual reverts, and the more likely the M score is to get bigger. This
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is demonstrated in Figure 6.2 via a topic that was once highly controversial: Michael

Jackson. Figure 6.2 shows the evolution of the M score on “Michael Jackson”. The

graph shows that the controversy score has monotonically increased every time there

is a new controversial event added on to the article up until the point “D” where he

died. However, ever since then the controversy score still remains as high as D (or

higher) until later in 2012.

Some approaches are not monotonic as their scores are normalized by the number

of editors who contributed to the page, which increases over time. Dori-Hacohen

argued that P score (2017) can go up and down as time goes by, because they focus

on the ratio of editors who are in conflict compared to the entire editor population

on the topic. Their intuition is that over time if they have more editors who are

not involved with disputes, the controversy score will be decreased because a lower

ratio of people engage in the disputes. However, this requires more people to actively

engage in non-contentious activities to cancel out the level of controversy. If simply

no one cares to talk about the topic anymore, it still remains controversial over time.

6.2 A Case Study of Time-window-based M Score

As the monotonicity of M score was due to the fact that we consider all the edit-

history that has accumulated to the date, a straightforward solution to this issue is

to consider only a given window of time to estimate the controversy for that time.

We downloaded a Wikipedia dump of 2018-06-01 to generate a M score trend over

the past 18 years since the existence of Wikipedia. We analyzed the top 100 most

controversial topics by the accumulated M score. It turns out that a time-window-

based M score has the opposite problem: while the monotonically-increasing M scores

that were computed from the all history tend to be overrated, this version of M score

seems to be largely underrated. The M score trend for most topics shows a burstineses
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where there are a few spikes in the trend line while having zero points most of the

time.

While the controversy trend line is known to be bursty both in Wikipedia and

social media, we learn that the burstiness comes from different reasons based on

the nature of their platform. As social media is a place where users can post any

opinion any time they want, the similar arguments and opinions can take place and

be reproduced over and over as much as users would like to speak out. Usually, on

social media we observe users’ opinions posted on the controversial topic as part of

the reactions to a certain event that happened during that time. Most events are

temporal, which create bursty trend lines as shown in Figure 6.1. On the other hand,

in Wikipedia, the dispute signals are not from personal reactions but rather from

arguments that occur as part of the collective effort towards generating unbiased

content on that topic. Due to this nature, most disputes of the topic usually occur

upon document creation, or controversy creation. Once the Wikipage is matured,

the article is maintained with fewer disputes, showing only a few or none for most

of the time unless a new controversial event occurs. Even then, the fundamental

discussion on the controversial topic has already been settled, the score in the later

year is rarely not even remotely close to the peak at an early year (refer to “Elvis

Presley” (top right) and “Falun Gong” (bottom left) in Figure 6.3).

We argue that in order to correctly estimate the controversy value at a given

time, we need to consider the signals observed within a window of time as well as

the overall history of the controversy. In this work, we assume that the dispute

signals we observe through online activities are only observed and biased samples of

all controversial disputes in the real world.
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Figure 6.3: The time-window-based M score with window of 1 year (blue line) and
its cumulative trend (red line). The top left (Abortion), the top right (Elvis Presley),
the bottom left (Falun Gong), the bottom right (2010 Fifa World Cup).

6.3 Estimating True Controversy

In order to estimate the true controversy score at time y (as in year) from the

observed disputes, we hypothesize that there are two factors that determine the true

controversy score: contention and public interest. In our previous work that is not

part of this thesis, we have shown that controversy should be modeled within a pop-

ulation and proposed a model of controversy should comprise at least two primary

dimensions, the level of contention and importance of the topic within a given popula-

tion (Jang et al., 2017). In the previous work, “importance” was conceptually defined

and estimated via the number of people who discuss the topic. Similarly, we define

the controversy of a topic at any time t to be modeled as two factors, contention and
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public interest. Because we are interested in a general-purpose controversy function,

we assume that the given population is a general, all encompassing population.

Finally, we model the probability of controversy with a given topic T and a given

time Y . Let C a binary random variable, which denote the presence of controversy.

Similarly, let Cont and I be binary random variables, which denote the presence of

contention and public interest of topic T . We model P (Cont|θ), where θ = {T, Y }

as the probability that topic T is controversial within the population Y . Our model

hypothesizes that the probability of controversy given T and Y is the joint probability

of two dimensions: contention (Cont) and public interest (I):

P (C|θ) = P (Cont, I|θ)

Here, P (Cont, I|θ) can be further decomposed as following:

P (Cont, I|θ) =
P (Cont, I, θ)

P (θ)
=

P (I|Cont, θ) · P (Cont|θ) · P (θ)

P (θ)

= P (I|Cont, θ) · P (Cont|θ)

(6.1)

To compute P (I|Cont, θ), the correlation between contention and public interest

has to be identified. While it is difficult to estimate the exact correlation in the real

world, we assume that contention and public interest are independent of each other,

consisting of orthogonal dimensions of controversy. We therefore let P (I|Cont, θ) =

P (I|θ).

P (C|T, y) = P (Cont|T, y) · P (I|T, y) ∝ Cy = cy · py (6.2)

where Cy is the score that indicates the level of true controversy at a given time y, cy

is the true level of contention, and py is the true level of public interest.
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We note that the existing controversy scores that are analyzed from dispute signals

are not the true controversy score Cy, but the observed controversy score Ĉy and clearly

distinguish the two scores: Cy 6= Ĉy.

In the following section, we introduce models to estimate the true controversy

score from the observed controversy score and the level of public interest.

6.4 Methods

6.4.1 Models for true contention from observed controversy

Ĉy = ĉy · p̂y (6.3)

where Ĉy is the observed controversy score of a given topic at time y, ĉy is the observed

level of contention, p̂y is the observed level of public interest. Wikipedia controversy

scores have an especially severe gap between the observed controversy level and the

true controversy level because once the dispute has been settled, the same dispute

are not likely to be duplicated. In the meantime, public interest, which is temporal

reactions to the topic, does not have such constraint. Hence, we assume that the

observed level of public interest is relatively reliable and set p̂y = py. So,

Ĉy = ĉy · py (6.4)

Max Contention - interest (MCI) Model: In this model, we assume that the

true latent contention at a given time is the same as the maximum level of observed

contention. This assumes that the topic that was once highly contentious remains

latently that contentious. This approach assumes that the topic always has a potential

to be as contentions as it has historically been while high interest on the topic could

activate the controversy with the latent contention.
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cy = max
i=1..y

ĉi = max
i=1..y

Ĉi
pi

(6.5)

The final true controversy by MCI is obtained by the following:

Cy =
Ĉj
pj
· py (6.6)

here j is a time when M score was at its maximum and defined as:

j = argmax
x∈{1..y}

Ĉx
px

Accumulated Contention - interest (ACI) Model: In this model, we assume

that the true contention is the same as the accumulated level of observed contention.

The difference between this model and accumulated M scores (Section 6.1.3) is that

in this model, only the level of contention is accumulated whereas the level of public

interest is also accumulated in the latter. Therefore, while accumulated M score has a

monotonically-increasing trend line, the trend from this model is not monotonically-

increasing as the level of public interest fluctuates. The true controversy is obtained

as follows:

cy =

y
∑

i=1

ĉi =

y
∑

i=1

Ĉi
pi

(6.7)

However, public interest may not perfectly align with the observed controversy

from Wikipedia because usually there is some delay before the controversy is observed

in Wikipedia. Such delay could particularly be detrimental in this method where the

true contention is computed point-wise on a daily basis and many points will have low

observed controversy scores, most of which are themselves unreliable. Hence, instead
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of using public interest on the same day, we use the average value of public interest

accumulated until that day as type of a smoothing.

py ≈ avg
i=1..y

pi (6.8)

The final true controversy by ACI is obtained by the following:

Cy =

y
∑

i=1

Ĉi
py
· py =

∑y

i=1 Ĉi
py

· py (6.9)

Window Contention - interest (WCI) Model: In this model, we assume

that the true latent contention constantly changes over time and can be estimated

from looking at a window of history of the observed contention.

cy = avg
i=y−w..y

ĉy = avg
i=y−w..y

Ĉi
pi

(6.10)

Cy = avg
i=y−w..y

Ĉi
pi
· py (6.11)

6.4.2 Obtaining Observed Controversy

For the observed controversy Ĉ, we use M score. M score takes into the number of

disputes that have occurred and has both contention and interest entangled in their

score while it considers the number of the editors and the minimum reputation score

of editors for each mutual revert. While the level of contention is proportional to the

number of mutual reverts, the level of public interest is proportional to the number

of editors.
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6.4.3 Obtaining Public Interest

To estimate the level of public interest on the topic, we resort to Google Trends

service1. Google Trends is a website that analyzes and shows the popularity of the

search queries in Google Search. The website allows a comparison of the search

volume of two or more queries over time. We adopt the trend line provided by Google

Trends as a reasonable estimation of public interest on the topic. Originally, Google

Trends only provides a relative trend line that is normalized by the maximum volume

point during the time period within a given topic, or the multiple topics of interest.

Hence, this does not give us absolute values that are comparable across multiple

topics (Figure 6.4). Therefore, to obtain the trend line values that are comparable

across all topics, we convert the trend lines into the same scale based on the fact that

comparisons of two trends are transitive. We turn this into a problem of generating

one connected graph with all nodes where each topic of interest corresponds to a node

and two nodes are connected if the comparison trend lines between the two topics is

obtained. Once all topics are connected via a comparison trend line, we convert the

trend lines of all topics into the points in the same comparable space.

6.5 Model Validation: A Case Study

We validate our time controversy models via a qualitative analysis. Evaluating

the controversy trend over the last 14 years is tricky. While the previous controversy

dataset relied on human judgment to identify whether a topic is controversial, it would

be difficult to find reliable annotators that can correctly recall the level of controversy

of the given topic for the past 14 years. Hence, we resort to examining various cases

to validate our model.

1https://trends.google.com/trends
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Figure 6.4: A screenshot of Google Trends that shows a trend line comparison among
three queries, Pho, Ramen, and Soba. While the trend line shows the relative com-
parison among the queries, the absoulte value of each trend line is unknown.

6.5.1 Abortion

“Abortion” is a well-known controversial topic. In Wikipedia, the most disputes

have been occurred in 2005 and 2006 showing a high peak during those early years.

Since 2007, the level of controversy significantly dropped until 2012 when there is no

controversial signal anymore. This is one of the common pattern shown for many

long-term controversial topics. In the mean time, public interest started very high

in the early years and has also decreased over time with some fluctuation. Figure

6.5 shows the predicted true controversy trend line using AIC, MCI, and WIC, re-

spectively. While both ACI and MCI constantly predicted “Abortion” to be highly

controversial at all times, WCI predicted that the topic is no longer controversial after

2012 as the topic did not show any contention in the 5-year-window. As a long-time

ethical controversy, there is no clear evidence or reason that suggests that the level

of controversy has increased over the last 14 years as ACI suggests nor that it is no

longer controversial as WCI suggest in 2018. Hence, the trend by MCI reasonably
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suggests that “Abortion” is still highly controversial with small fluctuations along with

public interest.

6.5.2 Kim Jong-il

Kim Jong-il was the second Supreme Leader of North Korea, who served since

the death of his father Kim Il-Sung and until his own death in 2011. Kim Jong-il

had been involved with many controversial issues and accusations of human rights

violation such as mass starvation, executions, and forced labor (Wikipedia, 2019b).

This Wikipage was created in 2002, and started getting serious editors’ contribu-

tions from 2003. This topic’s M score also follows the same pattern as “Abortion”

where controversial disputes have occurred while this topic was actively being curated

in the early few years. The mutually-reverted edits suggest the controversy between

editors included whether he “ruled” or “led” the country and the discussion over Kim

Jong-il’s intention with regard to North Korea’s relation to South Korea. When he

died in 2011, public interest spiked.

Figure 6.8 shows the predicted controversy trend from MCI and WCI with a

window of 5 years. We omit the trend from ACI as it showed the same pattern as MCI

because the maximum contention was close to the accumulated level of contention.

While the accumulated M score suggests that Kim Jong-il is still controversial in

2018 as it would for any topic that was once controversial, and the window-based M

score suggests that Kim Jong-il is not controversial even in 2011 when he died, and

the trend from MCI suggests that Kim Jong-il is still somewhat controversial while a

gradually decreasing pattern after being particularly controversial in the year he died.

The trend from WCI shows that Kim Jong-il was controversial over the years while he

was alive, but no longer controversial since he died. Kim Jong-il is still a somewhat

controversial topic in 2018 as his policies and remarks are still being quoted when
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Figure 6.5: The trend of Abortion from AIC, MCI, and WCI with a window of 5
from the top. The blue trend line indicates the predicted controversy trend line with
AIC. The red bars indicate the M score in the given year. The grey line shows public
interest from Google Trends. 98



his son, “Kim Jong en”, who is another controversial topic himself is being discussed

(Denyer, 2018).

6.5.3 Taiwan

Taiwan was one of the top 50 controversial topics in Wikipedia by M scores.

While many controversial topics have a pattern of having high controversy scores in

the early years upon the document creation and not having further signs because the

topic has been saturated (e.g., Abortion and Kim Jong-il), this topic showed relatively

consistent level of controversy over the 14 years. The mutually-reverted edits such as

“Chinese people <-> Taiwanese people”, “Mainland China <-> Mainland China and

Taiwan”, suggest that the main controversy around this topic has been whether or

not to view Taiwan part of China.

6.5.4 Race and Intelligence

The link between race and intelligence is a highly controversial debate since at

least the invention of the intelligence test. The controversy includes whether and to

what extent genetic factors and environmental factors affect in the intelligence test

scores as well as the definitions of what “race” and “intelligence” are. The mutually-

reverted text mainly includes argument on the inclusion and deletion of uncredible

sources of the claims that could bias the readers’ judgment on the issue. In Wikipedia,

the topic was shown to be highly controversial for the first 5 years upon document

creation, and the observed controversy trend has waned since then. This is one of the

most common patterns that we see in M scores.

In this topic, the trend lines by ACI, MCI, and WCI, respectively suggest different

trends. ACI suggests that the true controversy consistently increases over time. MCI

suggests that the trend has been fluctuating while peaking together with the peaks of

public interest, while remaining at a consistent level of controversy over time. WCI

with window of 5 years suggests that the trend slowly decreases over time. This
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Figure 6.6: The trend of Kim Jong-il from MCI and WCI with a window of 5
from the top. The blue trend line indicates the predicted controversy trend line with
AIC. The red bars indicate the M score in the given year. The grey line shows public
interest from Google Trends.
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Figure 6.7: The trend of Taiwan from MCI and WCI with the window of 5 from the
top. The blue trend line indicates the predicted controversy trend line with AIC. The
red bars indicate the M score in the given year. The grey line shows public interest
from Google Trends.
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controversy seems to have remained controversial until recently. MCI and ACI both

suggest that the controversy peaked in the following four years: 2007, 2009, 2013, and

2017. We examine if there is a controversial event that can explain why this topic

was particularly controversial in each year.

• In 2007, James Watson, a Nobel-prize winning scientist stated in an interview

that research has suggested without any scientific evidence that for genetic

reasons Africans have lower intelligence than Europeans. He was forced to

retire from Cold Spring Harbor Laboratories after his statement.

• In 2009, Science’s Last Taboo was a British TV show about race and intel-

ligence broadcast on Channel 4 in 2009. This TV show caused controversy

from statements claiming that Africans are less intelligent than Caucasions and

East-Asians.

• In 2017, Rindermann et al., (2016) published a new study that attempted to

replicate the earlier findings of Snyderman & Rothman (1988) by surveying 71

psychology experts and claiming that education is the most important factor

of the intelligence score gaps among the races followed by genetics. This study

sparked several controversial discussion thread in Reddit (Reddit, 2018a,b,c).

6.6 Conclusion

In this chapter, we argue that the controversy scores that existing models generate

by analyzing dispute signals reflect the level of observed controversy and they do not

accurately reflect the true controversy score in real life. We distinguish the two

concepts and propose to estimate the true controversy scores that change over time

from the observed controversy scores. We propose a model that considers “contention”

and “public interest”. We first obtain the observed contention scores by separating
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the component of popularity from M scores. We then introduce three methods –

MCI, ACI, and WCI – that multiply the true contention with public interest. Each

method estimates true contention from observed contention differently by taking the

maximum contention, the accumulated contention, and the average contention in a

moving window. We validate our methods via a case study. We find that many

long-term controversial topics share a tendency that the observed controversy scores

are high upon the Wikipedia article creation until the topic becomes more mature

and that fewer edits are made. Due to this reason, while WCI is more adaptive and

suitable to predict the controversy trend more accurately for short-term controversial

topics, WCI seems to underrate the controversy scores as the moving window no longer

includes this early period for long-term controversial topics. ACI and MCI show

similar patterns for the topics that have few dominant peaks where the maximum

contention and the accumulated contention is almost the same. While MCI and ACI

generate a similarly fluctuating pattern, they differ in the pattern of the overall trend

over time. ACI generates trends that controversy increases over time often even with

a reduced amount of public interest in the later time; MCI generates a relatively

consistent trend. Without any evidence or reason to believe that the controversy

necessarily have increased in the topics examined, we find that MCI generates the

most reasonable trend that reflects the true controversy.
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Figure 6.9: The trend of Race and Intelligence from ACI, MCI and WCI with the
window of 5 from the top. The blue trend line indicates the predicted controversy
trend line with AIC. The red bars indicate the M score in the given year. The grey
line shows public interest from Google Trends.
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CHAPTER 7

EXPLAINING CONTROVERSY ON SOCIAL MEDIA

7.1 Introduction

Online controversies often emerge and evolve quickly due to the nature of social

media. These platforms force users to be concise and allow them to be casual, requir-

ing less effort to post something on Twitter than other sources, such as Wikipedia

or blogs. While existing techniques enable us to identify whether a topic is con-

troversial, understanding why it is controversial is still left as work for users. For

instance, consider a following scenario: A person discovers a new hashtag movement

#TakeaKnee1 on Twitter but does not know what it is about or why it is contro-

versial at all. How would she search for people’s opinions to better understand the

conflicting stances on this topic?

One straightforward approach to this problem would be for the user to search

the topic and manually scan the search results until she has read enough conflicting

tweets to understand the controversy. However, current search systems make this

navigation difficult due to the filter bubble effect (Ingram, 2016). For example, the

top posts are likely to be the ones that the user agrees with because her friends liked

the posts or because she or her friends follow the authors.

Another strategy for navigating Twitter is to identify a few key hashtags that

indicate stances and then search for posts that contain them. As people are forced

to write posts under the strict character limit, certain hashtags are utilized as self-

created labels for their opinions (e.g., #imwithher in support of Hillary Clinton

1This was prevalent during the US national anthem protests that began in 2017.
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or #MAGA in support of Donald Trump during the 2016 US presidential election).

However, because the use of hashtags (even the ones that have seemingly contain

obvious stances) are known to be noisy (Mohammad et al., 2016b), the user must

still carefully read through each tweet. More importantly, she has to go through a

large number of noisy tweets that are not useful to understand the controversy while

using her own judgment to identify their stance (if they even have one). This process

requires substantial effort, critical reasoning, and phenomenal patience. It is clear

that users could benefit from automating this process.

We propose a technique that generates a stance-aware summary by selecting the

top tweets that best explains a given controversy.

7.2 Related Work

As having at least conflicting two stances is a major characteristics that defines

controversy (Jang et al., 2017), we generate a stance summarization on social media

to explain why the given topic is controversial (Chatper 7). We survey the related

work in this area.

7.2.1 Stance Detection on Twitter

Stance classification on Twitter has two main tasks: (1) classifying the text’s

stance (against, favor, or neutral) given a topic, and (2) classifying the twitter users’

stances. The former task drew attention when 2016-SemEval Task 6 released a dataset

of tweets with stance annotations (Mohammad et al., 2016b). The results of various

approaches were shared after the competition (Mohammad et al., 2016c), and later

more successful approaches were proposed including one that uses a bi-directional

conditional LSTM for classifying the stance and opinion target on Twitter (Augenstein

et al., 2016). For the latter type of task, Johnson and Goldwasser developed a method

to classify stances of politicians on Twitter using relational representation (Johnson
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and Goldwasser, 2016). While stance detection is closely related to our problem, our

goal is not to accurately classify the stances of all tweets. Our problem is also more

robust to misclassification errors of stances as we take the tweets with highest stance

confidence as part of the summary.

7.2.2 Twitter Summarization

There has been much work on summarizing Twitter postings through most of them

focuses on summarizing events (Sharifi et al., 2010; Duan et al., 2012; Chakrabarti

and Punera, 2011; Inouye and Kalita, 2011; Yulianti et al., 2016). Inouye et al.

2011 compare multiple summarization algorithms for Tweet data, and their extensive

experiments suggest that the SumBasic algorithm (Nenkova and Vanderwende, 2005)

produced the best F1-result in human evaluation. SumBasic is a summarization

algorithm that uses the term frequency exclusively to create summaries. As a simple

system based on word frequency in the document set, SumBasic outperformed any

other complex system at the time. SumBasic computes the best k posts from the

input documents that contain a lot of high frequency terms. We choose SumBasic as

our baseline method.

Some work has focused on generating contrastive summaries from opinionated text

(Paul et al., 2010; Guo et al., 2015). Particularly, Guo et al. studied tweet data to

find a controversy summary. They find a pair of contrastive opinions by integrating

manually-curated expert opinions and clustering the pairs to generate a summary.

However, their model needs curated expert opinions, which requires constant human

effort to maintain as the topic evolves.
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Table 7.1: An example of good (top) and bad (bottom) summary tweets on “Abortion”
posted on Nov 4, 2016. The good summaries are selected from our method. Examples
of stance hashtags are marked in bold.

• We know it’s not okay that for 40 yrs politicians have denied a woman

coverage of abortion just because she’s poor #BoldTheVote #BeBoldEndHyde

• Read the whole story about #HarvardSoccer before forming idiotic tweets.

Don’t support #RapeCulture by calling it #LockerroomTalk

• Hillary Clinton voted no to banning late-term abortions,

even though over 80% of Americans support the ban. #VoteProlife

• lmaoaoao b**** i would did the abortion myself right there lmaoaoao
• before I formed you in the womb I knew you jer 1:5#prolife
#Defundpp [URL] #UnbornLivesMatter
• Abortions: the new fall trend in religious circles [URL]
• Could you imagine crying over ur uni stopping anti abortion protests,
if you’re so pro life then go and f***ing get one?

7.3 Approach

7.3.1 What Makes a Good Summary Tweet?

In order to design a ranking model that ranks the tweets by how likely a tweet

is to be part of a good summary, we first need to discuss the definition of a “good

summmary” for controversy.

One of the primary aspects for the definition of controversy has been “contention”.

This suggests that in order to understand controversy, one needs to understand what

causes disputes or conflicts between the two parties. Based on that, we define a good

controversy summary as a description that effectively captures the representative

arguments of two communities that take conflicting stances with each other. To

obtain an intution on the characteristics of a good summary, we manually examined

many examples on Twitter on controversial topics.

Table 7.1 presents example tweets that we annotated as a “good” summary and

a “bad” summary on the topic of “Abortion”. A good summary tweet is usually self-

explanatory; it often contains a phrase that summarizes the event or the situation

as well as the author’s opinion on it. For example, “We know it’s not okay

[Indicating a stance] that for 40 years politicians have
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denied a woman coverage of abortion [summarizing a situation]

just just because she’s poor [Indicating a stance]”.

The author stances are also expressed via certain hashtags that clearly indicate

one stance. For example, #BeBoldEndHyde refers to a campaign initiated by an

organization “All Above All”2 to support the termination of the Hyde Amendment,

which is a legislative provision that blocked federal funds for abortion services except

for a few limited cases and indicates the stance of “pro-choice”. #Defundpp is a pro-

life stance hashtag supporting several Republican politicans’ attempts to defund the

organization Planned Parenthood, which has been the largest provider of abortions

in the U.S. (Cassata, 2011).

On the other hand, the bad summary tweets are usually not self-explanatory, not

well-written, and likely to contain vulgar, informal language. While stances are clear

in some of them, the author does not clearly nor logically explain why he/she supports

the given stance. Some of them are even off topic.

Based on these observations, we derive three primary components that character-

ize a good controversy summary tweet as follows:

• Stance-indicative (S): A good tweet strongly indicates its stance and is often

followed by some particular stance hashtags that are widely used by users from

the same stance community. While both good and bad tweets frequently include

stance hashtags, the presence of stance hashtags is a positive reinforcement signal

if the the quality of tweet is decent.

• Articulate (A): A good tweet is clear, persuasive, and logical. It also written

with proper language.

2https://allaboveall.org/
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• Topically-relevant (T): A good tweet is relevant and self-explanatory in the

context of a particular topic.

7.3.2 Ranking Model

For any controversial topic T , we assume that there are always two stances that

are in conflict with each other. We denote these stances as SA and SB. Let Γ be a

summary of a given topic T . We let Γ = [ΓA, ΓB] that denotes the summary of SA

and SB, respectively. We define a model that computes whether a tweet τ is likely to

be in the set ΓA:

P (ΓA|τ) = f(PS(SA|τ), PA(τ), PT (τ |T )) (7.1)

where PS(SA|τ) computes how likely a tweet indicates SA, PA(τ) computes how ar-

ticulate the tweet is, and PT (τ |T ) computes how relevant the tweet is for the topic.

In the next sections, we discuss how to estimate the first two scores. For the

topic relevance score, we use the straightforward probability that the tweet sentence

was generated from the language model of the given topic, normalized by the tweet

length.

7.4 Estimating Stance-indication

7.4.1 Utility of Hashtags for Stance Detection

In order to generate a stance-aware summary, we first have to identify the stances

in each tweet. For stance detection in Tweets, we investigate the utility of “stance

hashtags”. In Twitter, hashtags are a community-driven convention for adding addi-

tional context and metadata to tweets. Given the environment where users are forced

to be economical with words due to its 140 character limit, hashtags are often useful,

effective, and smart in way that they condense the users’ opinion stance or sentiments

towards a topic. We observe a certain type of hashtags that are specifically used to

express one’s opinion on certain issues, which we refer as stance hashtags.
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Table 7.2: Stance Detection test results.

Method Abortion Feminism Cliamte Change Atheism Hillary clinton Macro F1

ngram (basseline) 0.6106 0.5800 0.4208 0.6394 0.5718 0.5646
hashtag1 0.4580 0.4254 0.2929 0.5455 0.4602 0.4364
hashtag3 0.4409 0.4394 0.3242 0.4875 0.4332 0.4250
hashtag5 0.4522 0.4563 0.3172 0.5165 0.4602 0.4405
hashtag7 0.4007 0.4487 0.3422 0.5468 0.4545 0.4386
hashtag9 0.4304 0.4598 0.3223 0.4944 0.4790 0.4372
hashtag11 0.4406 0.4772 0.3556 0.4813 0.4850 0.4479
hashtag13 0.3911 0.4484 0.3422 0.5115 0.4368 0.4260
hashtag15 0.3965 0.4795 0.4319 0.5832 0.4724 0.4727
hashtag17 0.4069 0.4717 0.4208 0.5123 0.4610 0.4545
hashtag19 0.4228 0.4571 0.3256 0.5618 0.4664 0.4467
ngram + hashtag1 0.6166 0.5825 0.4208 0.6419 0.5718 0.5667
ngram + hashtag3 0.6057 0.5729 0.4186 0.6554 0.5814 0.5668
ngram + hashtag5 0.6252 0.5776 0.4170 0.6542 0.5832 0.5714
ngram + hashtag7 0.6242 0.5879 0.4180 0.6542 0.5753 0.5719
ngram + hashtag9 0.6122 0.5888 0.4219 0.6530 0.5986 0.5749
ngram + hashtag11 0.6186 0.5756 0.4225 0.6665 0.6098 0.5786
ngram + hashtag13 0.5950 0.5756 0.4235 0.6489 0.6112 0.5708
ngram + hashtag15 0.5960 0.5658 0.4134 0.6499 0.6194 0.5689
ngram + hashtag17 0.6150 0.5846 0.4186 0.6494 0.6269 0.5789
ngram + hashtag19 0.6132 0.5785 0.4173 0.6458 0.6027 0.5715

In SemEval 2016, they released an annotated Twitter dataset with three stances –

“favor”, “against”, and “neutral” – for a given controversial topic for a stance detection

task (Mohammad et al., 2016a). In the process of curating this dataset, the organizers

explained that they manually curated hashtags to find the candidate tweets in order

to annotate a balanced number of tweets from each stance as possible. Several teams

that participated in the task reported that they used the manually-curated stance

hashtags for their tasks as well.

Hence, we first investigate the utility of hashtags for stance detection. We hy-

pothesize that since certain hashtags serve as user-annotated labels for their stances,

relevant hashtags for the tweet will be important signals for stance detection. Hash-

tags can be viewed as incomplete user annotations in terms of recall. We aim to add

the missing relevant hashtags for stance detection.

To find the missing relevant hashtags for the tweets, we train tweet2vec, a charac-

ter composition model that finds vector space representation of the tweets by learning

non-local dependencies in character sequences (Dhingra et al., 2016). Tweet2vec pre-
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dicts the hashtags for the given tweets via the learned vector representations. Once

we predict the hashtags that the given tweet is likely to be associated with, we use the

hashtags as additional or alternative features for stance detection task on Twitter.

In the SemEval 2016 Stance Detection task, while various methods have been

submitted, none of the methods outperformed the n-gram baseline that is trained

bv SVM classifier. We also train the same SVM classifier to predict the stances of

the tweets using only the predicted hashtags and ngrams of the text as well as the

predicted hashtags.

Table 7.2 shows the F1 score for each topic and the macro F1 as reported in the

competition. Using only hashtags did not outperform the baseline of using ngrams

except for one set up in Climate Change, which increased the F1 score by 1% points.

When hashtags are used with ngrams, the results were mostly improved. The topic

that had the most gain was “Hillary Clinton”. In the best case when 17 hashtags were

added to the tweet, the F1 score of the stance detection is improved by 5% points.

The next topic that had the most gain was “Abortion”, which was improve by 1.5%

points. In other topics, the gain was about 1% or less. The topics that show a more

active stance hashtag usage seemed to benefit more from by the added hashtags as

stance context. Both “Abortion” and “Hillary Clinton” are topics that show a high use

of stance hashtags because the controversy is related to action-provoking campaigns,

such as the one that argues to defund Planned Parenthood (#defundpp) or the one

that supports voting for Hillary Clinton (#IamWithHer) or Donald Trump (#MAGA)

during the 2016 Presidential Election.

While we have verified that adding relevant hashtags to the tweets provides useful

information that helps towards stance detection to some extent, we learned that stance

hashtags are particularly helpful keywords for stance detection. Regarding this, the

organizers of SemEval 2016 stance detection task stated “A tweet that has a seemingly

favorable hashtag may in fact oppose the target; and this is not uncommon. Similarly
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PS(SA|τ) =
∑

h∈H

P (h|τ) · PS(SA|h) · P (h)

where H indicates the set of all hashtags and h is a given hashtag. n Then the

score boils down to estimating P (h|τ), a probability that the tweet includes a given

hashtag h, and PS(SA|h), a score that indicates how likely it is that h represents SA.

As SA and SB are mutually exclusive, we penalize ambiguous tweets that are likely to

contain stance hashtags of the opposing side by subtracting the score for the opposite

stance as follows:

PS(SA|τ) =
∑

h∈HA

[

P (h|τ) · PS(SA|h)
]

−
∑

h∈HB

[

P (h|τ) · PS(SB|h)
]

whereHA andHB are the set of stance hashtags that represent SA and SB respectively.

7.4.3 Identifying Stance Hashtags (HA,HB)

To obtain a set of stance hashtags, we first identify two communities, CA and

CB, each of which represents two conflicting stances, SA and SB. As introduced

by Garimella et al., we construct a user retweet (RT) graph and partition it into

two groups (Garimella et al., 2016). We use a simple method that produces only

two communities so as not to deal with the extra step of classifying several identified

communities to two stances. We leave identifying multiple communities and clustering

them into one of the stances of interests to generate the summaries from for the future

work.

Once we identify CA and CB, we assume that tweets that are written by users

from CA and CB are likely to indicate SA and SB respectively. From the two sets

of tweets, we compute the information gain (Yang and Pedersen, 1997) that each

hashtag gets for the information of the community class when they are present in the

tweets: if we know nothing about the tweet but the hashtag presence, which hashtag
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best indicates its stance community? Finally, we define HA, the set of stance hashtag

of SA, as follows.

HA = {h ∈ H|h ∈ TopN (IG,H) ∧ freqA(h) > freqB(h)}

where IG is a function that returns the information gain value for the two stance

classes for a given hashtag, freqA is the frequency of h in the tweets published from

CA, and TopN(IG,H) returns the N items that have the highest scores from a given

function IG among the items in the given set H. In our experiments, we set n = 30,

which covers a sufficiently high number of tweets in the community given that the

distribution of hashtag frequency follows the power law (Pérez-Melián et al., 2017).

We then let PS(SA|h) be the normalized score of IG(h) for all hashtags in the set HA.

7.4.4 Estimating P (h|τ) via Latent Hashtags

If we think of hashtags as user-generated annotations, hashtags are incomplete

annotations. It means that a lack of a certain hashtag does not necessarily mean

that it is not a relevant label. To better utilize hashtags as more accurate signals,

we make hashtags more complete annotations by estimating P (h|τ) for all hashtags,

the probability that tweet τ generates a hashtag h. Therefore, we adopt a character

composition model, Tweet2Vec, which finds a vector space representation of tweets

to predict user-annotated hashtags (Dhingra et al., 2016).

By finding the embeddings of tweets and hashtags, we estimate P (h|τ) for hashtags

that were not explicitly used in the given tweet. The model computes the hashtag

posterior probability for a given tweet for all hashtags in their softmax layer in order

to find the top hashtag predictions. We use this probability as P (h|τ) for hashtags

that were not explicitly used in the given tweet.
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Table 7.3: The features used to train a regression model for predicting the level of
tweet artriculation.

Feature Description

Tweet POS Tags (Owoputi et al., 2013) The ratio of Tweet POS tags
OOV words 3 The ratio of words that are not in the dictionary
Offensive Words 4 The ratio of offensive/profane words
POS Tags N-grams N-grams of Tweet POS Tag sequence
Stop words The ratio of stop words
Tweet length The number of characters in a tweet
Avg. word length The avg. number of characters in tweet words

7.5 Estimating the articulate level

We build a regression model that predicts how well the tweet is written and

generate an annotated set of 150 articulate and 150 non-articulate tweets on arbitrary

topics. The annotation criteria between the two classes is whether the given tweet is

logical, the grammar is sound, and it is written with proper language.

Similarly, Duan et al. propose a classifier to evaluate the content quality of tweets

(Duan et al., 2012). In addition to their features, we include a large set of POS tags

that are Twitter-specific provided by TweeboParser (Owoputi et al., 2013), N-grams

of the POS tags sequence to capture the structural flow of the good sentences, and

the ratio of offensive words to penalize usage of inappropriate language, as shown in

Table 7.3. This model is generalizable since the features are not content-specific. We

trained a logistic regression model and obtained 89.9% classification accuracy using

5-fold cross validation.

7.6 Summary Selection

We propose two algorithms that aggregate the three probability scores to generate

the final k summary tweets, which we set as 10 in our experiments. To produce a

final summary to equally cover two stances, both algorithms select k/2 tweets from

each stance.
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SumSAT ranks the tweets by setting the aggregation function f (in Eq. 7.1) to

be the harmonic mean of the three scores described earlier. HashtagSumSAT, on

the other hand, while using the same aggregation function, first identifies the top k/2

stance hashtags for each stance and selects the top tweet for each hashtag. While we

use the harmonic mean as f , any aggregator can be plugged in. The difference of the

two algorithms come from whether it globally ranks the tweets or ranks the tweets

per each hashtag.

7.7 Evaluation

We evaluate our methods by running them on real data and conducting user

studies to capture the utility of our algorithms.

7.7.1 Experiment Setup

We consider five controversial topics including two short-term, event-based con-

troversies (2016 US Presidential Election and 2017 US National Anthem Protests

which we refer to as #TakeAKnee), and three long-term ethics-related controversies

(Abortion, Feminism, and Climate Change).

Our goal is to generate a summary that can explain why the topic is controversial.

For each topic, we generate a pair of summaries and ask 10 participants on Amazon

Mechanical Turk which summary better explains the controversy in a double-blind

fashion. A pair of summaries were compared twice by two participants. The partic-

ipants could also say that the quality of the two summaries is the same. To observe

whether a subset of tweets whose author’s stance is identified from the community

generates a better quality summary, we experiment with two cases for each algorithm:

(1) using all tweets as summary candidates or (2) using only tweets whose author be-

longs to one of two stance communities we identified. We distinguish the second case
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by adding ‘C’ (for the community) to the method name. We also generate summaries

including the following baseline methods:

• Random: A random set of k tweets from a unique set of tweets.

• MostRT: The top k most-retweeted tweets in a given day

• SumBasic (Nenkova and Vanderwende, 2005): A general summarization

technique. We preprocess the tweets to exclude Twitter-specific stop words. Sum-

Basic algorithm runs as the following:

– Step 1: for each word w in the input corpus, assign a unigram distribution

probability P (w) = TF (w)
|N |

where TF (w) is the term frequency of w in the

corpus and N is the number of words in the corpus.

– Step 2: for each sentence S in the corpus, assign the probability by the average

of P (w) for all terms w in S.

– Step 3: pick the highest sentence by the assigned score and add it to the final

summary set.

– Step 4: For each term in the sentence selected from Step 3, reduce the term

probability with Pnew(w) = P (w) · P (w).

– Step 5: go to Step 2 and repeat until k sentences are chosen.

7.7.2 Results and Discussion

The evaluation shows that our methods were consistently more effective than other

baselines across all five topics as shown in Figure 7.2). Overall, SumSAT generated

the summaries that were preferred the most (68%) followed by HashtagSumSAT-C

(61%). We report the results by the five topics in Figure 7.3.

Controversy summarization as a new task: Overall, both Sumbasic (8%)

and Sumbasic-C (42%) generated worse summaries than the naive baselines such as
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content most of the times. This finding aligns with the findings of the previous study

on detecting controversy on Twitter (Garimella et al., 2016).

Utility of stance hashtags: While SumSAT was an overall winner, Hashtag-

SumSAT outperformed SumSAT for two topics: US Election and #TakeAKnee. We

observe a tendency in the event-based controversies like those topics to show more

active usage of stance hashtags as there were specific actions people try to promote

via stance hashtags. In such type of controversies, stance hashtags were particularly

effective to generate a summary around.

7.8 Conclusion

We introduce and tackle a new task of generating a stance-aware summary to

explain controversy on social media. Our goal is to provide a tool that helps people

navigate controversy effectively. We propose a ranking model that considers three

factors that suggest a tweet be part of a good summary derived from our qualitative

observations. We assume that a good summary tweet is clear, articulate, and relevant

to the topic. Our algorithm characterizes two conflicting stances by identifying two

communities from a retweet graph and retrieving the tweets published by them. We

define and identify “stance hashtags” that are distinctively used to indicate their

opinions in each community and propose a probability model that computes how a

tweet is likely to indicate the stance of the community based on the probability that

the tweet is likely to generate those hashtags. Our evaluation demonstrates that users

prefer the summaries from our methods over the ones from other reasonable baselines.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, we studied probabilistic models to identify and explain controversy.

In the realm of controversy detection, we argue that the models can be categorized

in two types: topic controversy models and document controversy models. Topic

controversy models take a topic (i.e., a concept) as a query and output the level

of controversy of that topic, whereas document controversy models take a document

(i.e., an object) and output the level of controversy for that given document. The two

types of model differ in their goal and challenges. Most existing work falls into topic

controversy models and implicitly defines controversy as the level of “disputes”. Hence,

existing work focuses on capturing “disputes” among people within a specific medium,

such as Wikipedia and social media. At a high-level, the underlying assumption

shared among the existing work is that if people who discuss the given topic display

conflicts in some way, the topic is controversial. We argue that many existing topic

controversy models fall into a category of a population-based topic controversy model,

which defines a metric to measure the level of conflict among a group of people that

participate in the discussion of the topic. On the other hand, document controversy

models have been less studied, particularly from a theoretical modeling perspective.

The first part of this thesis investigates the document controversy models.

In Chapter 3, we first developed a probabilistic framework for the controversy

detection problem and recast the state-of-the-art algorithm (Dori-Hacohen and Allan,

2015) from that probabilistic perspective. We propose a view that the algorithm is

an implementation of an underlying model named kNN-WC. We suggest that kNN-
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WC has three properties: (1) P1: kNN-WC has a population-based topic controversy

model as a sub-component to estimate the probability of controversy (2) P2: kNN-WC

does not directly model non-controversiality (3) P3: the text of a query document does

not directly affect the probability of controversiality. The model also suggests that

a successful implementation of kNN-WC model would satisfy accurate estimation of

two probability components: the probability that a given Wikipedia topic is relevant

to the document and the probability that a Wikipedia topic is controversial.

In Chapter 4, we revisited the state-of-the-art algorithm to examine if the algo-

rithm effectively implements the underlying kNN-WC model. We identified two issues

with how the probabilities are being estimated in the algorithm. First, while the al-

gorithm generates a single TF10 query from the document to retrieve topics, because

documents almost always contain multiple sub-topics, the generated query contains

an unknown mixture of different sub-topics and often does not cover all sub-topics

properly. Second, while topic controversy models in Wikipedia such as (M score and

C score) are used to estimate the probability that a Wikipedia topic is controversial,

those scores suffer from sparsity where many specific controversial topics are consid-

ered to be non-controversial. Henec, we propose two modifications in the algorithm’s

framework. The proposed modifications include improving Wikipedia topic retrieval

using a text-segmentation based query generation method named tilequery and

smoothing controversy scores among topically-related Wikipages for less attended

but controversial topics. Our modifications improve the controversy detection classi-

fication by 14% more effective in AUC in accuracy.

In Chapter 5, we revisited the three properties, P1, P2 and P3, and hypothesized

that those properties might be hindering the model’s performance. To test an al-

ternative model that has complementary properties, we propose counter properties

P1′, P2′, and P3′, each of which corresponds to the original property. We finally

proposed a new document controversy model, Controversy Language Model (CLM).
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CLM satisfies the three counter properties by using alternative “language” signals

that are obtained from several controversy-indicative signals. By using the language

signals, we overcome the sparsity issue that a population-based topic controversy

model brought, by transferring the “dispute” signals to “language” that occurred with

the disputes (P1′). CLM considers how the probability of controversiality dominates

the probability of non-controversiality (P2′). Finally, CLM considers the query doc-

ument’s text directly to estimate the probability that the document is controversial

(P3′).

We extensively evaluated the efficacy of CLM by gathering controversial docu-

ments from various sources from Wikipedia, news articles, and general Web docu-

ments that are retrieved from the controversy-indicative keywords, and the contro-

versy lexicon from previous work. We demonstrated that strongly indicative terms

are as helpful for this problem as complicated Wikipedia-based controversy features

and more effective than existing lexicons. Our comparative analysis suggests that

while kNN-WC is slightly more prone to make false negative errors, CLM is more

prone to make false positive errors.

In Chapter 6, we turn to a Wikipedia controversy topic model and point out that

existing models do not take time into consideration for estimating the probability of

controversy. While the existing models are effective at interpreting existing conflict

signals into the level of controversy, they are not designed to be adaptive to time. The

existing work has used the accumulated edit history as the evidence, some controversy

scores such as M score tend to be monotonically increasing over time as more conflicts

are included as input. In order to identify controversy that changes over time flexibly,

we are in need of a topic controversy model that considers a given time as an input

as well as a topic.

As the first straightforward but plausible baseline, we compute a time-window-

based M score. Instead of considering accumulated edit history until the query time,
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which is the way that has been used in the prior work, we split the edit history and

consider only a window of a year to compute M score just for the year. Through a case

study, we show that these scores are extremely sparse and most controversial topics

follow the same pattern where they only have a few peaks and otherwise appear to

be non-controversial. The bigger issue is that once a controversial topic receives a lot

of conflicts upon the article creation (if the topic was already controversial before)

or the controversy creation, the topic reaches a point to be “matured” or “saturated”

that the sign of controversy no longer newly appears. This causes many controversial

topics to have low controversy scores in the later years while they are still highly

controversial.

Therefore, we distinguish the concept between the observed controversy and the

true controversy and argue that the controversy scores that existing topic controversy

models estimate are the observed ones and do not always accurately reflect the reality

for these reasons. We introduce three models to estimate the true controversy score

trend from by interpolating the observed controversy trend and the public interests

on the topic. The proposed three models – MCI, ACI, and WCI – compute the true

controversy by multiplying the true contention and the true public interests. The

three models differ by its way of estimating the true contention. MCI assumes that

the true contention is the same as the maximum observed contention until now, ACI

as the accumulated level of observed contention, and WCI as the average level of

observed contention in the given window of time. We validate our model through

a case study and conclude that MCI generates the most reasonable trend especially

for long-term controversies while WCI is more adaptive and suitable to predict the

controversy trend more accurately for short-term controversial topics.

Finally, in Chapter 7, we pose a new problem of explaining controversy on social

media by generating a summary of two conflicting stances by ranking the tweets how

likely that a tweet is a representative summary of each stance. We first characterize
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three aspects that a good summary tweet should satisfy: a tweet is likely to be

part of a good controversy if it (1) indicates a clear stance (2) is articulate and (3)

is relevant to the controversial topic of interests. To estimate the probability that

a tweet has a clear stance, we first investigate the utility of hashtags in a stance

detection task and conclude that enriching the tweet text with k predicted hashtags

from tweet embedding improves the accuracy of stance detection task. This suggests

that predicted hashtags can be useful features for stance estimation. We use Twitter’s

retweet network property to first find user stance communities, and extract the stance

hashtags that are distinctively used in each community. We finally show that tweets

that have semantically close text to the top stance hashtags that best describe the

stance community while being articulate and relevant to the topic are more likely

to be an effective summary. Our human evaluation shows that our summaries are

preferred over other baseline summaries.

8.1 A Theoretical Unifying Perspective on Controversy

While the computational definition of controversy is still an open question in

cognitive science, we have attempted to identify the major aspects that contribute to

controversy. We previously argued that controversy should be defined and measured

with respect to a given population (Jang et al., 2017). In our opinion, we believe that

there exists at least five aspects that make up controversy among a given population,

namely: contention, popularity, importance, endurance, and conviction. We discuss

each aspect, how to capture it, and what existing work has captured.

8.1.1 Contention

Contention generally measures how much dispute the topic has generated among

the population, and is probably the most straightforward aspect that make up contro-

versy. Dori-Hacohen (2017) defined it as the ratio of group sizes that hold a conflicting
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stance to each other in a way that the level of contention is maximized when the pop-

ulation has split to two equal-sized groups of conflicting stances. Existing work in

Wikipedia had slightly different measures to measure the level of disputes among the

Wikipedia editors such as the number of terms that have been added and deleted by

the editors (Vuong et al., 2008) or the cumulative weighted mutual reverts (Yasseri

et al., 2012).

8.1.2 Popularity

Popularity measures how popular the topic is among the given population. When

people’s interest on the matter is high, things are likely to be easily controversial.

Especially in a population-based model, popularity is one of the fundamental aspects

that can generate a controversy to begin with. If a topic has no popularity such that

no one cares to have an opinion, it would hardly be controversial. We suggest that

the popularity can be generally measured by the number of people who show interest

in the topic, such as the number of editors who contribute to a Wikipedia article

on the given topic, the size of search query volume, or the number of news articles

published on the topic.

8.1.3 Importance

Importance signifies how much impact the topic brings to the population in the real

world. While importance is a crucial dimension that separates frivolous controversial

topics that are highly contentious but do not have any impact in real world such as the

well-known “The Dress” or “Yanni vs Laurel controversy” from high-stake controversial

topics such as “Brexit” or “2016 US Presidential Election”.

While importance itself is difficult to computationally define, in our previous work,

we attempted to narrow it down as the number of people that are “affected” by the

topic, hence mention the topic in social media (Jang et al., 2017). We denote this

sub-population of affected people as ΩA from a given population Ω. There could
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Table 8.1: The number of people who discussed the topic in Wikipedia and Twitter
(H2)

The Dress Brexit U.S. Election Abortion Toilet paper orientation

# of Wikipedia editors 473 885 2,846 3,152 377
# of Twitter users 286,900 604,100 10,100,000 NA NA

be various ways to estimate |ΩA| depending on how we interpret the meaning of

“affected”. For example, we suggest three different hypothesis:

• H1: People who hold a stance on the topic is affected

• H2: People who discuss the topic is affected

• H3: People who are aware of the topic is affected

Estimating H3 from News Articles: News reporters are interested in pub-

lishing stories that are of interest to the readers. The stories that are worth being

published are most likely to be the ones that at least indirectly affect the readers. For

example, a local newspaper in Amherst would publish a story that a 30-year-old local

Korean restaurant is finally being closed. This story is only of interest to and affects

some population in Amherst, and would be less likely to be published by other larger

news companies. Therefore, the number of estimated readers of a news article on the

topic can be used to approximate |ΩA|. Let NT = {n1, n2, ...nk} be k relevant news

article published on T . Let V iew(n) be the number of estimated viewers of the news,

such as the number of subscribers of the newspaper or the number of users who click

on the news.

|ΩA| =
k

∑

i

V iew(ni) (8.1)

With lack of access to the information of the V iew counts, it is practically difficult

to compute the value in Eq. 8.1. Instead, we experiment with a simplified assumption

where V iew(n) is always equally k for any n. Although this assumption assumes the
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Table 8.2: The number of articles published retrieved by Google News

The Dress Brexit U.S. Election Abortion Toilet paper orientation

# of articles returned 1,880 23,500,000 235,000,000 482,000 5,290

same number of k viewers for a local news article and a CNN-featured article, but it

relies on the smoothing effect from the number of similar articles published on T if

it is originally published by a large newspaper company. Table 1 shows the number

of articles returned by Google News on each topic as a preliminary evidence that the

number of articles published on more important topics such as “Brexit” and “U.S.

Election” are significantly higher than less important topics such as “the Dress” and

“Toilet paper orientation” discussion. Here, the topic name itself was used as a query

to count the articles published.

However, there are caveats in this definition. The number of views could be

affected by the level of popularity. Click-baits headlines constantly strive to increase

click views for the news articles. Such factors should be carefully considered not

to overuse the measure. Another potential direction to measure importance is to

identify the domain of the controversy and have an estimated importance score for

each domain. For example, we can assume that any “entertainment” controversy is

likely to be less important than any “political” controversy.

8.1.4 Conviction

Conviction looks at how strongly people proclaim their stance. This dimension

is motivated that controversy is more heated when people with different stances are

more polarized, and each person advocates their stance with stronger voice. This

aspect is on how strongly they advocate their own community or attack the other

community. We suggest that this can be measured a few different ways as follows:

• Sentiment in language A stronger sentiment in the language could signal

that users are more convicted with their opinions.
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• The number of vocal users The number of vocal users who enthusiastically

advocate a given stance could be a measure the the conviction in the discussion

of the topic. This could be measured by the number of users who use a language

with strong sentiment or frequently express their opinions.

• Network property Several studies have shown that a controversial topic is

likely to generate a divisive community structure on its retweet graph (Conover

et al., 2011; Garimella et al., 2016; Fraisier et al., 2017). We could hypothesize

that the more exclusively users retweet within their own stance community, the

more convicted users are.

• Polarized usage of language When the topic is controversial, tweet users are

likely to form hashtags that encourage certain movements or agenda, such as

#shoutoutyourabortion or #imwithher. Having such hashtags formed

and heavily used in the topic signals that the topic is controversial.

8.1.5 Endurance

Another dimension to consider is “endurance”. Cramer previously analyzed the

lifespan of controversy cycle: The event first emerges, and it later evolves to a scan-

dal, and to a saga, until it finally stabilizes and is considered to be resolved. Some

controversies such as whether abortion should be legalized or climate change is a

real concern are long-lived. However, many newly-emerging controversies that are

more event-bound have ephemerality, which is an important feature to be captured.

Whether the topic has ephemeral pattern in terms of people’s attention, and the

duration of the controversy signifies the level of the topic controversy.

8.1.6 Summary

We have proposed five aspects for that a topic controversy model would consider.

Existing work has captured one or two aspects among them. For example, most
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via credible editors’ activities such as mutual reverts. On the other hand, in social

media such as Twitter, people tend to express their opinion rather than by expressing

disagreements but by expressing agreements via endorsing other people’s opinions

(e.g., “retweet” and “like”). The state-of-the-art topic controversy model in social

media attempts to capture how the community of one stance is segregated against

the other community of the opposite stance. However, despite the characteristics

of the different platform that triggers different ways of user involvement, conflicts

and segregation could be capturing different aspects of the controversy. For example,

while “disputes” can signal how likely the topic is to contain disputable facts and

opinions, the degree of “segregation” of the community can signal how strongly people

are convinced with their views on the topic with conflicting stances. A unified topic

controversy model could be proposed to capture multiple aspects of controversy.

Both the kNN-WC model and CLM utilize Wikipedia topics and their controversy

scores. Especially, the kNN-WC model retrieves Wikipedia topics and aggregate the

controversy scores of them. However, currently we do not know which sub-topic or

portion is particularly controversial of a given topic because the edit history on that

page is analyzed as a whole. This makes the controversy detection often too coarse.

When a document discusses a certain aspect of a controversial topic that is non-

controversial, the document is still highly likely to be classified controversial because

our current models do not differentiate that. For example, while ‘abortion’ is itself a

controversial topic, its controversial aspects include political debate and ethical views.

Perhaps a document that only discusses the medical procedures or statistical facts

may not be controversial, but kNN-WC model would not distinguish the two cases.

Therefore, one avenue for addressing this issue is to define and build aspects, or sub-

topics of a controversy topic. Identifying specific aspects of the controversy would

enable controversy detection at a greater granularity, which will also contribute to

generating a useful explanation.
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In Chapter 6, we proposed methods to predict the controversy score trend over

time. While the methods were validated via a case study, a quantitative evaluation

could be designed and conducted to allow us to validate the methods and draw more

general conclusions. One task we propose is to perform an extrinsic evaluation in

conjunction with CLM by building a time-sensitive CLM drawn from the topics that

are controversial in a given year. However, building a dataset that contains the time

and controversy judgments would be a tricky problem as annotating the level of

controversy retroactively would not be easy.

Lastly, the problem of explaining controversy is still at its early stage and we hope

that our work in Chapter 7 brings more attention to this problem in the future. This

problem can be extended in many ways. The current method is limited in that it

utilizes hashtags to estimate the stance of a tweet. Because not all controversial topics

have developed stance hashtags, the method is less effective if the given topic does

not have prominent stance hashtags. As the controversial topic dynamically changes

and gets updated, an effective method for a temporal summary from social media can

be investigated.
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APPENDIX

A LIST OF TOP 250 WIKIPEDIA ARTICLES THAT ARE

USED FOR CLM

Table A.1: A sample long table.

Rank Wikipedia Title
1 Antinomian Controversy
2 Teach the Controversy
3 Controversy (law)
4 Scientific controversy

5
Recent history of the District of Columbia
Fire and Emergency Medical Services Department

6 Lordship salvation controversy
7 Chicago & Northwestern R. Co. v. Crane
8 Shubhodaya Controversy
9 Vaccine controversies
10 Socinian controversy
11 Nature fakers controversy

12
List of American television episodes
with LGBT themes, 1990– 1997

13 Free Grace theology
14 Hillary: The Movie
15 Lars Vilks Muhammad drawings controversy
16 Controversy
17 Investiture Controversy
18 Darwinism, Design and Public Education
19 Rape and pregnancy controversies in United States elections, 2012
20 American Presbyterianism
21 Concerns and controversies at the 2008 Summer Olympics
22 Discovery Institute
23 Intelligent design movement
24 Goguryeo controversies
25 Christmas controversy
26 Amazon.com controversies

Continued on next page
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Table A.1 – continued from previous page
Rank Wikipedia Title

27
Controversy over the use of Manchester Cathedral in Resistance:
Fall of Man

28 Telecoms Package
29 John Wilson (minister)
30 Ian Meckiff
31 Luis de Molina

32
Opinions on the Jyllands–
Muhammad cartoons controversy

33 Al Qa’qaa high explosives timeline
34 Joseph Desha
35 List of Australian sports controversies
36 Arian controversy
37 American Idol controversies
38 Controversy and Other Essays in Journalism
39 Vestments controversy
40 Transfermium Wars
41 Osiandrian controversy
42 The Cartoons that Shook the World
43 Intelligent design and science
44 David Levine (medical administrator)
45 List of chemical elements naming controversies
46 Scouting controversy and conflict
47 Dungeons & Dragons controversies
48 Simon Fraser University 1997 harassment controversy
49 Singur Tata Nano controversy

50
International reactions to the Jyllands–
Muhammad cartoons controversy

51 Sexuality (Prince song)
52 Archpriest Controversy
53 Boom Shaka
54 Riverside Park Management
55 Vea
56 Ako Controversy
57 UBS tax evasion controversy
58 California textbook controversy over Hindu history
59 Possibilism (geography)
60 Chief Illiniwek
61 Illinois High School Association
62 Japanese history textbook controversies
63 Cooks Source infringement controversy
64 The Wikipedia Revolution
65 Limited appearance

Continued on next page
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Table A.1 – continued from previous page
Rank Wikipedia Title

66 Betty Granger
67 Wildlife Protection Act of 2010
68 Inul Daratista
69 Cambridge capital controversy
70 Bye Bye (TV series)
71 Bangorian Controversy
72 Academic freedom at Brigham Young University
73 Institute for Canadian Values ad controversy
74 Fundamentalist – Modernist Controversy
75 Paul Aussaresses
76 Old Court – New Court controversy
77 Kathryn Lindskoog
78 Hindmarsh Island bridge controversy
79 Timeline of plesiosaur research
80 John O’Donoghue expenses controversy
81 Hockey stick controversy
82 The Panda’s Thumb (blog)
83 Bosom Friends affair
84 Julius Micrander
85 Influence of Sesame Street
86 Hawaii State District Courts
87 Campe (poem)
88 The Great Controversy (book)
89 Abbey Mills Mosque
90 Half Pint Brawlers
91 Murray Deaker
92 DADVSI
93 History of the hamburger
94 The Nightingale casting controversy
95 Cannibal film
96 Vierordt’s law
97 Dismissal of U.S. attorneys controversy
98 Ellen G. White
99 Macaca (term)
100 Climatic Research Unit email controversy
101 Evangelical Lutherans in Mission
102 Capitol Loop
103 Baya al Ward
104 Brown Dog affair
105 James of Brescia
106 Brian Alters
107 Steven Courtney

Continued on next page
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Table A.1 – continued from previous page
Rank Wikipedia Title

108 Ferenc GyurcsÃąny plagiarism controversy
109 Inger Louise Valle
110 Antarctica cooling controversy
111 Thomas Cornell (settler)
112 Meletius of Lycopolis
113 Gerald Graff
114 Anglo Irish Bank hidden loans controversy
115 Second Test, 2007âĂŞ08 BorderâĂŞGavaskar Trophy
116 Donald Gordon (Canadian businessman)
117 Sheldon v. Sill
118 Zsolt SemjÃľn academic misconduct controversy
119 W. A. C. Bennett Dam
120 Marcela AcuÃśa
121 Edward Einhorn
122 Molecular assembler
123 Sweden in the Eurovision Song Contest 2006
124 Employee stock option
125 Controversies surrounding Yasukuni Shrine
126 Joachim Westphal (of Hamburg)
127 Valentin Ernst LÃűscher
128 John Cotton (minister)
129 Wayne Laugesen
130 Jyllands– Posten Muhammad cartoons controversy
131 41st Academy Awards
132 John C. Browne
133 Erhardt v. Boaro, (113 U.S. 527)
134 The Holy Virgin Mary
135 Derek Freeman
136 War of the Theatres
137 Fuda Cancer Hospital–Guangzhou
138 Kikuyu controversy
139 Rotvoll controversy
140 Controversy of Nanzhao
141 Controversy Tour
142 Alta controversy
143 Pichilemu political controversies
144 Texas Instruments signing key controversy
145 Apple and Adobe Flash controversy
146 National Football League controversies
147 DelisleâĂŞRichler controversy
148 Controversies of the United States Senate election in Virginia, 2006
149 DelisleâĂŞRichler controversy

Continued on next page
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Table A.1 – continued from previous page
Rank Wikipedia Title
150 Frank C. Hibben
151 List of controversial album art
152 Manufactured controversy
153 Thomas William Marshall
154 Summer reading program
155 Sarawak Tribune
156 Becket controversy
157 Controversy (song)
158 Easter controversy
159 2012 Karnataka video clip controversy
160 Calvin Butler Hulbert
161 Exxon Mobil Corp. v. Allapattah Services, Inc.
162 Alan Bean (activist)
163 Immunization Alliance
164 Sectarian violence In Pakistan (1988)
165 Amir Taheri
166 DePauw University Delta Zeta discrimination controversy
167 List of Internal Revenue Service political profiling controversies
168 Tax controversy
169 Chester’s guide to: The controversy
170 Samuel Fancourt
171 Heather Bresch M.B.A. controversy
172 Vestment
173 Pinot noir passing– off controversy
174 Wikipediocracy
175 Three– Chapter Controversy
176 Jan Esper
177 History of the EastâĂŞWest Schism
178 History of Eastern Orthodox Christian theology
179 Stem cell controversy
180 Trijicon biblical verses controversy
181 Hassi Messaoud mob attacks against women
182 Old SideâĂŞNew Side Controversy
183 George W. Bush military service controversy
184 Rod Blagojevich controversies
185 Tantri controversy
186 Olympic Games scandals and controversies
187 Contents of the United States diplomatic cables leak (Indonesia)
188 Florida Circuit Courts
189 High School Stories
190 James D. Bales
191 Renaissance Unity Interfaith Spiritual Fellowship

Continued on next page
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Table A.1 – continued from previous page
Rank Wikipedia Title
192 MVDDS dispute
193 Ahmed Akkari
194 Pat Buchanan presidential campaign, 2000
195 Definitions of abortion
196 Elisha Gray and Alexander Bell telephone controversy
197 Matt Sanchez
198 Kunicon
199 Gola River
200 Paradise Hotel (Hyderabad)
201 Controversies surrounding Silvio Berlusconi
202 Coma White
203 Scientology and psychiatry
204 HGH controversies
205 He Liked to Feel It
206 Mapping controversies
207 Beginning of pregnancy controversy
208 Asmachta (Talmudical hermeneutics)
209 2004 NCAA Division I–football season
210 Truth in Science
211 Let’s Work
212 2013 Senate of the Philippines funds controversy
213 Sault Ste. Marie language resolution
214 Richard Deth
215 Local Church controversies
216 Controversy and criticism of The Voice of the Philippines
217 1960 English cricket season
218 Political views of Paul Robeson
219 J. Krishna Palemar
220 Kathavatthu
221 Manitoba Public Schools Act
222 Game Rating Board
223 Brigitte BarÃĺges
224 Mohamed El Naschie
225 Brigitte BarÃĺges
226 Federal Vision
227 1921 NFL Championship controversy
228 Nkandla (homestead)
229 Controversies in autism
230 Tata Tapes controversy
231 Lipid hypothesis
232 Gilles Bourdouleix
233 Jytte Klausen

Continued on next page
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Table A.1 – continued from previous page
Rank Wikipedia Title
234 Pasquill (the Cavaliero)
235 Stephen Patrington
236 Hull Council election, 1998
237 Godless (novel)
238 Per Edgar Kokkvold
239 Joe Horn shooting controversy
240 Language of adoption
241 Karmapa
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