
Learning a Joint Search and Recommendation Model from
User-Item Interactions

Hamed Zamani∗
Center for Intelligent Information Retrieval

University of Massachusetts Amherst
Amherst, MA 01003
zamani@cs.umass.edu

W. Bruce Croft
Center for Intelligent Information Retrieval

University of Massachusetts Amherst
Amherst, MA 01003
croft@cs.umass.edu

ABSTRACT
Existing learning to rank models for information retrieval are
trained based on explicit or implicit query-document relevance
information. In this paper, we study the task of learning a retrieval
model based on user-item interactions. Our model has potential ap-
plications to the systems with rich user-item interaction data, such
as browsing and recommendation, in which having an accurate
search engine is desired. This includes media streaming services
and e-commerce websites among others. Inspired by the neural
approaches to collaborative filtering and the language modeling
approaches to information retrieval, our model is jointly optimized
to predict user-item interactions and reconstruct the item textual
descriptions. In more details, our model learns user and item repre-
sentations such that they can accurately predict future user-item
interactions, while generating an effective unigram language model
for each item. Our experiments on four diverse datasets in the
context of movie and product search and recommendation demon-
strate that our model substantially outperforms competitive re-
trieval baselines, in addition to providing comparable performance
to state-of-the-art hybrid recommendation models.

ACM Reference Format:
Hamed Zamani and W. Bruce Croft. 2020. Learning a Joint Search and
Recommendation Model from User-Item Interactions. In The Thirteenth
ACM International Conference on Web Search and Data Mining (WSDM ’20),
February 3–7, 2020, Houston, TX, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3336191.3371818

1 INTRODUCTION
Learning to rank models have been successfully employed for vari-
ous retrieval tasks, such as web search, personal search, and ques-
tion answering [25]. They are mostly trained with either explicit
query-document relevance signals, or implicit feedback collected
from the user interactions with the retrieval system. Existing learn-
ing to rank models heavily rely on query-document (or user-query-
document) interactions, such as clickthrough data. However, there
exist other types of user interactions with the system that can be

∗Hamed Zamani is currently affiliated with Microsoft.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00
https://doi.org/10.1145/3336191.3371818

potentially useful in developing retrieval models. For instance, in
many scenarios, users have countless interactions with the items
without using the search engine, e.g., browsing and clicking on
items, or interacting with the outputs of recommendation engine.

Although user-item interactions have been utilized for user mod-
eling in recommender systems [17, 38, 43] and search personaliza-
tion [28, 33, 47], learning a retrieval model from user-item interac-
tion data has not yet been explored. Belkin and Croft [4] pointed out
the similarities and unique challenges of information retrieval (IR)
and information filtering systems, since 1990s. They concluded that
their underlying goals are essentially equivalent, and thus they are
two sides of the same coin. This has inspired Zamani and Croft [52]
to develop a preliminary model for joint optimization of search and
recommendation models that learns from both user-item and query-
item interactions. This paper extends their work by learning a joint
search and recommendation model from user-item interactions.

Learning an accurate retrieval model from user-item interac-
tions (i.e., collaborative filtering data) has several real-world appli-
cations. For example, in media streaming services, such as Netflix
and Spotify, where rich user-item interaction data exists, building
an accurate search engine learned from such large-scale data is
desired.

In this paper, we propose a model that learns to predict user-
item interactions (collaborative filtering) and reconstruct the items’
description text based on their learned representations. In other
words, our model learns item representations that not only simulate
user behaviors to predict future user-item interactions, but can also
be mapped to a natural language space for further retrieval pur-
poses. The recommendation component of our model is based on
neural collaborative filtering [15]. The item reconstruction compo-
nent is developed based on relevance-based word embedding [51]
to estimate a language model for each item. We focus on the un-
igram language model that has been widely explored in the IR
literature [35, 56]. These models can easily be extended to ngram
models to capture important phrases [7].

In our experiments, we train our model using four datasets in
the context of movie and product search and recommendation,
including MovieLens 20M [13] and three diverse categories of Ama-
zon products [16, 29]. To evaluate the retrieval performance of
the model, we created a movie retrieval dataset with over 900 real
queries and manual relevance annotation for the movies included in
the MovieLens 20M dataset. For product retrieval, we followed the
evaluation methodology used in prior work [2, 48] using the Ama-
zon products data. Our experiments demonstrate that our model
substantially outperforms previous competitive retrieval baselines,

https://doi.org/10.1145/3336191.3371818
https://doi.org/10.1145/3336191.3371818

while performing on par with state-of-the-art hybrid recommenda-
tion models. Our work closes the gap between search and recom-
mendation models and allows further investigation of employing IR
technologies and recommendation data and the other way around.

In summary, the major contributions of this paper include:

(1) Introducing the notion of learning a retrieval model from user-
item interactions, and proposing a joint search and recommen-
dation model that is solely trained based on user-item interac-
tions and item descriptions.

(2) Discussing the connection between the proposed model and
matrix factorization.

(3) Developing manual relevance annotations for over 900 real
queries collected from Yahoo! Answers under the movies cat-
egory, in which the relevant items (i.e., correct answers) are
manually linked to the MovieLens 20M movie IDs. Our dataset
is publicly available for research purposes.

(4) Results showing that our model substantially outperforms the
retrieval baselines. The recommendation model also outper-
forms state-of-the-art collaborative filtering models and per-
forms on par with competitive hybrid recommendation models.
Our analysis reveals the reasons for the obtained improvements.

(5) Discussing potential applications of the developed model in
multiple important and active research areas.

2 RELATEDWORK
User-item interactions have been widely used to train and evaluate
recommendation algorithms. Developing effective recommender
systems mostly relies on accurate modeling of user preferences on
items based on the past interactions, which is called collaborative
filtering [17, 38, 43]. Matrix factorization models [19, 22] are the
most popular collaborative filtering approaches that learn low-
dimensional representations for users and items.

Recently, neural collaborative filtering methods have shown two
major advantages over conventional matrix factorization methods.
The first one is their flexibility in utilizing different types of in-
formation to improve recommendation [57]. For instance, Ai et
al. [2] utilized textual information provided by user reviews in a
neural recommendation model and showed significant improve-
ments. Their ability to produce explanations has also been studied
in [18]. The second advantage is their superior performance. The
winning approaches in recent competitions, such as ACM RecSys
Challenge 2018 [6], are mainly or partially based on neural network
models [55], which have been used earlier for recommendation
tasks in [42]. He et al. [15] recently proposed a simple neural collab-
orative filtering model. They showed that a part of their model is a
generalized version of matrix factorization models, which clearly
explains their superior performance. Because of these two advan-
tages, neural networks have been recently adapted for different
recommendation tasks, such as collaborative [10, 15] and content-
based filtering [3].

Hybrid recommendation algorithms use side information (e.g.,
item description, user-generated tags and reviews, etc.) alongside
user-item interaction data to improve the performance of collabo-
rative filtering models, especially for cold-start users. They mostly
use side information as the input of their system, which is different
from the way that we use item description in our model. The goal in

hybrid recommendation is improving the recommendation perfor-
mance, while our goal is to learn natural language representations
for items for retrieval purposes. We use a word embedding compo-
nent in our model. Word embedding has been previously applied
to different recommendation algorithms. For instance, Zagheli et
al. [36] proposed a semantic-aware user modeling algorithm for
text recommendation that uses pre-trained word embedding mod-
els. In contrast to previous work, we use relevance-based word
embedding [51] to learn a unigram language model for each item
using the user-item interaction data.

User-item interaction has been used for user modeling with the
goal of search result personalization. For example, browsing history
can be seen as an example of user-item interaction in the context of
web search. Both short- and long-term click and browsing history
has been used for search personalization [28, 47]. Noll and Meinel
[33] used social bookmarking for modeling user profiles for search
personalization.

Recently, Zamani and Croft [52] proposed to model search and
recommendation models as a joint optimization problem. They
presented a set of preliminary results which show that search and
recommendationmodels can both benefit from the data collected for
each system. Unlike their work, we do not use any query-document
relevance information for training the retrieval model. In fact, our
model is also a framework for joint modeling of search and recom-
mendation, where only user-item interaction data (i.e., recommen-
dation data) is available.

3 METHODOLOGY
In this section, we formalize the problem definition and introduce
the proposed joint search and recommendation framework (JSR).
We further discuss the employed method for speeding up the train-
ing procedure. We additionally provide a matrix factorization inter-
pretation of the model in order to find the connection between JSR
and the recommender systems literature. We finally discuss item
retrieval using the proposed model.

3.1 Problem Statement
Let U = {u1,u2, · · · ,um } and I = {i1, i2, · · · , in } denote a set of
m users and n items, respectively. Let D = {yui : u ∈ U , i ∈ I } be
a set of user-item interaction data, where yui represents the label
corresponding to the interaction that the user u had with the item
i . Labels can be either numeric (e.g., star rating) or binary (e.g.,
like/dislike). Instead of explicit feedback, yui can also be captured
from user interactions with the recommender system as implicit
feedback. Although implicit feedback can also be numeric (e.g.,
interaction count or time), binary labels are more common, such
as clicking on a link, watching a movie, or listening to a music.
Therefore, in this paper, we assume that labels are binary and were
collected from implicit feedback, which is the most realistic setting
in many applications [10, 15, 37]. Our framework can be easily
extended to numeric labels as well.

In addition to user-item interactions, we assume that there is an
additional set IT = {t1, t2, · · · , tn } containing a textual description
for each item in I . These descriptions are often easy to collect, for
example, from item descriptions, meta-data, or user-generated tags
and reviews. Textual item description has been previously used for
content-based and hybrid recommendation [5].

user
embedding
lookup

item
embedding
lookup

multiply dense
network

recommendation
objective

softmax

maximum
likelihood
estimation

item reconstruction
objective

.

estimated unigram distribution

relevance-based
word embedding

Figure 1: A high-level overview of the JSR framework that consists of three major components ϕU, ϕI, and ψ . JSR is trained
using two objective functions: a recommendation objective and an item text reconstruction objective.

GivenD and IT , the goal is to develop a joint search-recommendation
model. In more detail, the learned model should be able to (1) pre-
dict the future user-item interactions (i.e., recommendation) and
(2) retrieve relevant items given a natural language query.

3.2 The JSR Framework
A natural implementation for joint modeling of search and recom-
mendation is to optimize retrieval and recommendation objectives,
simultaneously (similar to [52]). However, this is not possible with-
out query-item relevance information. Therefore, JSR consists of
the following two objectives: a recommendation objective and an
item reconstruction objective. The high-level overview of JSR is
depicted in Figure 1.

3.2.1 Recommendation. Our recommendation component is
based on collaborative filtering which relies on user-item interac-
tions. Collaborative filtering has shown to be effective in many
recommendation scenarios. JSR estimates a recommendation score
for each user-item pair as follows:

ŷui = ψ (ϕU (u),ϕI (i)) (1)

where ŷui is themodel’s prediction. The componentϕU (ϕI) learns a
k-dimensional latent representation for each user (item). As demon-
strated in Figure 1, we implement the recommendation component
ψ by feeding the Hadamard product of the user and item representa-
tions to a fully-connected feed-forward neural network (called the
dense network) with few hidden layers. Note that the Hadamard
product is the element-wise multiplication of two matrices. We
use ReLU as the activation function in the hidden layers and em-
ploy dropout in all hidden layers to avoid overfitting. The output
activation in the dense network is a sigmoid function. The num-
ber of hidden layers, their sizes, and the dropout probability are
hyper-parameters of the model.

We formulate the recommendation objective using a pointwise
loss function. Following He et al. [15], we use a binary cross-
entropy loss function that has shown effective performance in neu-
ral collaborative filtering for implicit data. As described in [15], the
reason is that some popular loss functions in collaborative filtering,
such as mean squared error, assume that the data is drawn from a
Gaussian distribution, which does not hold in many settings [41].
In addition to the effectiveness of binary cross-entropy, it is a prob-
abilistic loss derived from the log-likelihood maximization and can
be easily combined with our second probabilistic objective. This
loss function has been also used for training neural retrieval models
in previous work [8, 20, 54].

Formally, let us first define b as a mini-batch of training data
sampled from the training set D (see Section 3.1) expanded with η
random negative samples per user-item interaction. η is a hyper-
parameter. The loss function for a mini-batch b is defined as:

Lbce = −
1
|b |

∑
(u,i)∈b

yui log ŷui + (1 − yui) log(1 − ŷui) (2)

We have also tried pairwise cross-entropy loss, however, no
significant improvement has been observed in our experiments.
Therefore, we have decided to keep the simpler pointwise model.

3.2.2 Item Text Reconstruction. The goal of item reconstruc-
tion is to make sure that the learned user and item representations
can be mapped into a natural language space, and thus can be used
for item retrieval. To this end, we use the textual descriptions of
items (i.e., the set IT ; see Section 3.1 for more information). In more
detail, we maximize the probability of generating the textual de-
scription of each item from the learned item representations. In this
paper, we focus on unigram language model representation which
has been shown to be effective in information retrieval [35]. In more
detail, let E ∈ R |V |×k denote a word embedding matrix with the
same dimensionality as the user and item embeddings (k), where
V is the vocabulary set. E is a pre-trained relevance-based word

embedding matrix [51]. Relevance-based word embedding models
are based on the bag-of-words assumption and represent each word
in a k-dimensional space to capture relevance information. The
model is trained based on weak supervision and does not require
any label data (see [8, 53] for more details). In fact, relevance-based
word embedding models use the relevance models [24] as a weak
supervision signal. We use relevance-based word embedding, since
the goal of the model is to learn representations that are suitable
for further retrieval purposes. For more information on relevance-
based embedding, we refer the reader to [51]. Multiplication of each
item embedding vector ®i ∈ I to the transpose of the embedding
matrix E results in a |V |-dimensional representation for item i .
Therefore, our model estimates a unigram language model for item
i as follows:

θi = softmax(I[i].ET) (3)
The aim is to maximize the likelihood of generating the item

description text. This is equivalent to minimizing the following
cross-entropy for the mini-batch b:

Lmlr = −
1
|b |

∑
(u,i)∈b

∑
w ∈ti

count(w, ti)
|ti |

logp(w |θi) (4)

where ti ∈ IT is a textual description for item i .

3.2.3 Optimization. We train themodel using a gradient descent-
based optimizer. The parameters that should be learned include the
user embedding matrixU, the item embedding matrix I, and the
parameters of the dense network for recommendation. Note that
the embedding matrix E is pre-trained and fixed. We use Adam op-
timizer in our experiments to minimize the following loss function:

L = Lbce + αLmlr (5)
where α is a hyper-parameter controlling the weight of the item
reconstruction loss.

3.3 Training Efficiency in JSR
Due to the large number of terms in a vocabulary (e.g., 500k), the
unigram languagemodel estimated by JSR is computationally expen-
sive, because of the summation in the denominator of the softmax
operator. Since this summation should be computed for every single
item in the mini-batch at each training step, it substantially slows
down the training process. To address this issue, we approximate
the softmax operator using hierarchical softmax, which has been
introduced by Morin and Bengio [32] for neural language modeling
and successfully employed by Mikolov et al. [30] for word repre-
sentation learning. This approximation uses a binary tree structure
to represent vocabulary terms. Each leaf corresponds to a unique
vocabulary term and there exists a unique path from the root of the
tree to each leaf. This path is used for estimating the probability
of the vocabulary term representing by the leaf. Since the height
of the tree is O(log(|V |)), the complexity of softmax calculation
goes down from O(|V |) to O(log(|V |)). This results in a substantial
improvement in computational complexity. We refer the reader
to [31, 32] for the details of hierarchical softmax approximation.

3.4 Matrix Factorization Interpretation
Matrix factorization is the dominant approach in collaborative fil-
tering. In this subsection, we briefly discuss how JSR can be inter-
preted as a matrix factorization model. For simplicity, assume that
the dense network in our model (see Figure 1) is simply a linear

regression model whose weights are set to 1. Therefore, feeding
the Hadamard product of two vectors to this network is equivalent
to their inner product. In this case, JSR can be modeled as:

U∗,I∗ = arg min
U,I

L1(A,UIT) + λL2(T ,IE
T) (6)

where A ∈ Rm×n denotes the user-item interaction matrix, con-
taining the training data. Each row j of the matrix T ∈ Rn×|V | is a
unigram language model for the item j, estimated using maximum
likelihood estimation. L1 is a recommendation loss that minimizes
the user-item interaction reconstruction error, while L2 is an item
description reconstruction loss that minimizes the distance between
the learned item representations and textual descriptions of the
items. L2 can also be seen as a regularizer that prevents the col-
laborative filtering model from overfitting. Item embedding has
been previously used by Liang et al. [27] and by Train et al. [46] to
regularize collaborative filtering, however, their models are based
on item-item co-occurrences, which is different from ours.

Due to the non-linear operations in the dense network, JSR is
the generalized version of this matrix factorization interpretation.

3.5 Item Retrieval using JSR
Once the model is trained, we compute the language model θi (see
Equation (3)) for all items. To improve the retrieval efficiency, we
take the top N vocabulary terms with the highest probability for
each item (calledWtop(i)) and normalize the language model as
follows:

p(w |θ̂i) =


p(w |θi)∑

w′∈Wtop(i) p(w
′ |θi)

ifw ∈Wtop(i)

0 otherwise
(7)

We construct an inverted index from each wordw in the vocab-
ulary to a list of items as follows:

w →

{
(i,p(w |θ̂i)) : ∀i ∈ I such thatw ∈Wtop(i)

}
(8)

To compute the retrieval score for a natural language query q
at the test time, we use a KL-divergence retrieval model [23] with
Jelinek-Mercer smoothing:

retrieval score(q, i) =
∑
w ∈q

p(w |θq) log
[
λp(w |θ̂i) + (1 − λ)p(w |C)

]
(9)

where λ ∈ [0, 1] is the smoothing parameter and p(w |C) denotes
the probability of term in the collection, and can be computed as:

p(w |C) =
1
Z

∑
i ∈I

p(w |θ̂i) (10)

where Z is a normalization factor. We develop two retrieval models
based on different implementation of the query language model
(θq). Similar to [35], the JSR-QL is our first retrieval model in which
p(w |θq) is computed using maximum likelihood estimation (i.e.,
p(w |θq) =

count(w,q)
|q |). The second retrieval model, called JSR-RM,

is a pseudo-relevance feedback algorithm based on the Lavrenko
and Croft’s relevance models [24]. In other words, we first retrieve
documents using JSR-QL and then compute the relevance language
model (i.e., RM3) and finally retrieve documents based on the re-
estimated query language model. Refer to [1, 24] for the detailed
implementation of RM3.

Table 1: Statistics of the data used in our experiments.

Data # users # items # interactions min interactions sparsity # queries (retrieval)
MovieLens 20M 138,493 27,278 20,000,263 20 per user 99.471% 919
Amazon - Electronics 192,403 63,001 1,689,188 5 per user 99.986% 989
Amazon - Kindle Store 68,223 61,934 989,618 5 per user 99.977% 4603
Amazon - Cell Phones & Accessories 27,879 10,429 194,439 5 per user 99.933% 165

3.6 Summary
The model optimizes two objectives simultaneously, one user-item
interaction (recommendation) objective and one item text recon-
struction objective. This allows the model to transfer knowledge
from user-item interactions to the item representations. We use
unigram language model for representing items and estimate it us-
ing a hierarchical softmax function which has shown to be highly
efficient. The language model is obtained from the learned item
representation multiplied by a relevance-based word embedding
matrix which results in item language models that are suitable for
retrieval purposes. Our matrix factorization interpretation of the
framework shows that item text reconstruction can be seen as a
regularization for the recommendation model.

4 EXPERIMENTS
In this section, we evaluate the proposed framework using a wide
range of datasets.

4.1 Training
4.1.1 Training Data. We study the performance of our model

on multiple public datasets. We use MovieLens 20M [13] which is
the largest version of the MovieLens datasets to date and contains
over 20 million total interactions with the minimum interaction of
20 per user.1 MovieLens 20M is a standard dataset for evaluating
collaborative filtering models in the context of movie recommenda-
tion. We also use three diverse product categories in the context of
e-commerce.We adopt the five-core Amazon review dataset [14, 29],
that covers user-item interactions (review, rating, helpfulness votes,
etc) on 24 product categories from May 1996 to July 2014.2 We have
selected three product categories with different size and sparsity to
observe the performance of the model on different conditions. They
include Electronics, Kindle Store, and Cell Phones & Accessories.
The largest category contains over 1.5 million interactions, while
the number of interactions in the smallest category does not reach
200 thousands. The minimum number of interactions per user in
these categories is 5. Similar to previous work [10, 15], we binarized
the labels in all datasets by representing each user-item interaction
with label 1 as an implicit feedback. Table 1 reports the statistics of
the datasets.

To construct the set IT (see Section 3.1), we concatenated the
tags that users have provided for each movie in the MovieLens
20M dataset. For the Amazon datasets, we selected the most helpful
review of each item (according to their helpfulness scores provided
by users) as its textual description. If there was no review with
positive helpfulness score, we randomly selected one of the reviews.
We cleaned up the data by removing non-alphabetic characters and
stopwords from item descriptions.

1MovieLens 20M can be found at https://grouplens.org/datasets/movielens/20m/.
2The Amazon review dataset can be found at http://jmcauley.ucsd.edu/data/amazon/.

Following previous work [15, 26, 37], we adopt a leave-one-out
evaluation methodology for evaluation. For each user, we held-out
the latest interaction as the test recommendation data and utilized
the remaining data for training.

4.1.2 Parameter Setting. We implemented our model using
TensorFlow.3 In all experiments, the network parameters were op-
timized using the Adam optimizer. For hyper-parameter optimiza-
tion, we selected the latest interaction of each user in the training
set as a validation set. We performed grid search and chose the
hyper-parameters based on the loss values obtained on the vali-
dation set. After the hyper-parameter selection process, we train
the model with the chosen hyper-parameter values on the orig-
inal training set. The learning rate was selected from {1 × 10−5,
5 × 10−4, 1 × 10−4, 5 × 10−4, 1 × 10−3}. The batch size was selected
from {32, 64, 128, 256, 512}. The dropout keep probability was se-
lected from {0.7, 0.8, 0.9, 1.0}. The dimensionality of word, user,
and item embedding vectors were set to 50 and the word embed-
ding matrix was initialized by a relevance-based word embedding
model, called relevance likelihood maximization (RLM) [51]. The
embedding vectors were trained using the ClueWeb collection as
described in [51]. We set the number of negative samples per inter-
action (i.e., parameter η) to 4. The number of hidden layers in the
dense network and their output sizes were selected from {1, 2, 3}
and {10, 20, 50, 100}, respectively.

4.2 Evaluating the Retrieval Results
4.2.1 Evaluation Data. This experiment is challenging, since,

to the best of our knowledge, there is no public dataset containing
both user-item interactions and query-item relevance information
on the same item set. Therefore, we created a dataset for evaluating
the model trained on the MovieLens 20M dataset, and used an
automatic evaluation methodology employed by [2, 48, 52] for
evaluating the models trained on the Amazon datasets.
Movie retrieval dataset: We adopt the known-item search data
created by Hagen et al. [12]. The data contains difficult real-world
information needs collected from Yahoo! Answers. From this data,
we only selected the information needs with the category “Movies”.
The relevance judgments contain a single relevant document per
information need. The relevant documents were selected from the
ClueWeb collection. By manual annotation, we linked each relevant
document in the dataset to the corresponding movie ID in the
MovieLens 20M dataset. We finally filtered out the queries whose
answers were not found in MovieLens 20M. This results in 919
queries, written by real users in the Yahoo! Answers website, each
has exactly one relevant movie from the MovieLens 20M dataset.
We refer the reader to [12] for some sample queries. To foster
research in this area, we havemade ourmanual annotations publicly
available.4

3https://www.tensorflow.org/
4The dataset is available at http://ciir.cs.umass.edu/downloads/movie-search-ml20/.

https://grouplens.org/datasets/movielens/20m/
http://jmcauley.ucsd.edu/data/amazon/
https://www.tensorflow.org/
http://ciir.cs.umass.edu/downloads/movie-search-ml20/

Table 2: Retrieval performance of JSR and the baselines. The highest value per column is marked in bold, and the superscript
* denotes statistically significant improvements compared to all the baselines.

MovieLens 20M Amazon - Electronics Amazon - Kindle Store Amazon - Cell Phones
Model MRR nDCG@10 MAP nDCG@10 MAP nDCG@10 MAP nDCG@10

QL 0.033 0.036 0.372 0.421 0.181 0.210 0.236 0.267
BM25 0.030 0.032 0.351 0.408 0.185 0.219 0.244 0.275
RM3 0.035 0.036 0.386 0.443 0.193 0.219 0.256 0.286
ERM 0.058 0.063 0.400 0.458 0.213 0.235 0.284 0.312
PRP+ 0.094 0.112 0.431 0.511 0.251 0.297 0.328 0.370
PRP+ & ERM 0.102 0.137 0.457 0.560 0.306 0.366 0.347 0.381
JSR-QL 0.121* 0.163* 0.511* 0.608* 0.348* 0.396* 0.366* 0.408*
JSR-RM 0.133* 0.169* 0.518* 0.614* 0.362* 0.407* 0.381* 0.425*

Product retrieval dataset: The Amazon product data does not
contain search queries, thus cannot be directly used for evaluating
retrieval models. As Rowley [40] investigated, directed product
search queries contain either a producer’s name, a brand, or a set of
terms describing the product category. Following this observation,
Van Gysel et al. [48] proposed to automatically generate queries
based on the product categories. To be concise, for each item in a
category c , a queryq is generated based on the terms in the category
hierarchy of c . Then, all the items within that category are marked
as relevant for the query q. The detailed description of the query
generation process can be found in [2]. Although the queries in this
data were automatically constructed, since the query generation
process has been done based on observations from real user queries,
it has become a standard approach for evaluating product search,
and has been used by the research community [2, 11, 48, 52].

4.2.2 EvaluationMetrics. In themovie retrieval dataset, there
is only one relevant item per query. This characteristic makes some
of the common IR evaluation metrics unsuitable. For this dataset,
we use mean reciprocal rank (MRR) and normalized discounted
cumulative gain (nDCG) [21] of the top 10 items (nDCG@10). How-
ever, in the Amazon datasets, there exist multiple relevant items per
query. In such cases, mean average precision (MAP) and nDCG@10
are used as evaluation metrics.

Statistically significant differences of performances were com-
puted using the two-tailed paired t-test with Bonferroni correction
at a 99% confidence level.

4.2.3 Experimental Setup. The hyper-parameters of all the
retrieval baselines as well as the proposed model were selected
using two-fold cross-validation over queries. In hyper-parameter
optimization, the regularization parameter α and the smoothing
parameter λ were selected from (0, 1).

4.2.4 Results and Discussion. We compare the retrieval per-
formance of the proposed method to the following baselines:
Query Likelihood (QL) [35]: This is a language model-based re-
trieval model that uses the Dirichlet prior method [56] for document
language model smoothing.
BM25 [39]: This is a simple yet effective probabilistic retrieval
model derived from a 2-Poisson distribution approximation for
document modeling.
RelevanceModel (RM3) [24]: This is an effective pseudo-relevance
feedback model based on the language modeling framework that
uses the top retrieved documents for query expansion.
Embedding-based Relevance Model (ERM) [50]: This is a state-
of-the-art pseudo-relevance feedback method that takes advantage

of pre-trained word embedding vectors. Similar to JSR, ERM also
uses the relevance-based word embedding [51] which has shown
superior performance to models like word2vec [30] and GloVe [34].

Since the authors are not aware of any retrieval baseline that use
user-item interactions, we adapt the probabilistic relevance prop-
agation (PRP) of Shakery and Zhai [44]. PRP uses hyperlinks in
the Web for retrieval score estimation and language model smooth-
ing [45]. Based on the user-item interaction matrix, we constructed
a graph of users and items and applied the PRP algorithm. This
model utilizes user-item interaction information in retrieval.We call
the model PRP+. We also enhance this model by using embedding-
based relevance model (ERM) [50] as for pseudo-relevance feedback
(called PRF+ & ERM).

Each baseline has a number of hyper-parameters, such as smooth-
ing parameter (µ), the number of feedback terms, the feedback co-
efficient, etc. As mentioned earlier, we tune the hyper-parameters
using two-fold cross-validation over the retrieval queries. In all the
baselines, we used the same textual descriptions used in training
our model (see Section 4.1 for more information). To have a fair eval-
uation, we do not consider supervised retrieval models, including
the joint model of Zamani and Croft [52], in our baselines, because
our model does not also use any query-document relevance signal.

The retrieval performance of the methods are presented in Ta-
ble 2. The results indicate the difficulty of themovie retrieval dataset
compared to the others. This is due to the nature of the queries
and item descriptions; queries are long and descriptive, while item
descriptions are short. RM3 does not perform much better the QL,
due to the length of documents and the low performance of the
first stage retrieval model (i.e., QL). Comparing the results obtained
by the JSR and PRP+ models against the other baselines demon-
strates the importance of user-item interaction for retrieval tasks.
According to the table, both JSR models outperform competitive
well-tuned retrieval baselines. The improvements are statistically
significant in all cases. Moreover, JSR-RM achieves the best retrieval
results. The highest performance is achieved on the Amazon - Elec-
tronics dataset, which is the largest product dataset, in terms of the
number of user-item interactions.

4.3 Evaluating the Recommendation Results
4.3.1 Evaluation Data. We evaluate the recommendation per-

formance based on a leave-one-out strategy. In more detail, the last
interaction of each user was chosen as a test data. We further fol-
lowed the common strategy of taking 100 random negative sample
items per user, as been widely used in the literature [10, 15, 22].

Table 3: Recommendation performance of JSR and the baselines. The highest value per column is marked in bold, and the
superscript * denotes statistically significant improvements compared to all the collaborative filtering baselines (i.e., ItemPop-
ularity, BPR, eALS, and NCF).

MovieLens 20M Amazon - Electronics Amazon - Kindle Store Amazon - Cell Phones
Model nDCG HR nDCG HR nDCG HR nDCG HR

ItemPopularity 0.5226 0.8196 0.3227 0.5044 0.1875 0.3340 0.2214 0.3766
BPR 0.6086 0.8633 0.4820 0.7639 0.3881 0.5845 0.3692 0.5038
eALS 0.6171 0.8820 0.4906 0.7834 0.3863 0.5809 0.3746 0.5152
NCF 0.6247 0.9050 0.4841 0.7624 0.3910 0.5999 0.3775 0.5203
CDL 0.6321 0.9183 0.5081 0.8021 0.4310 0.6570 0.4112 0.5898
CF-aSDAE 0.6319 0.9177 0.5109 0.8073 0.4285 0.6503 0.4183 0.6022
JSR 0.6345* 0.9210* 0.5125* 0.8100* 0.4335* 0.6627* 0.4176* 0.6085*

4.3.2 Evaluation Metrics. To evaluate the recommendation
performance, we use normalized discounted cumulative gain (nDCG)
[21] and hit ratio (HR). The cut-off for these metrics is set to 10. HR
measures whether the test item is present on the top 10 list. Note
that since there is only one relevant item per user in the leave-one-
out strategy, HR is equivalent to recall. On the other hand, nDCG is
a ranking metric accounting for the position of the hit by assigning
higher scores to hits at top ranks. Although nDCG is often used for
evaluating items with graded relevance labels, we use this metric
to have our results comparable with previous work [10, 15]. We
calculated both metrics for each test user and reported the average
score. Similar to the retrieval experiments, statistically significant
differences of performances were computed using the two-tailed
paired t-test with Bonferroni correction at a 99% confidence level.

4.3.3 Results and Discussion. We compare the effectiveness
of JSR to the following collaborative filtering and hybrid baselines:

• ItemPopularity: This simple baseline computes the popularity of
each item based on the number of interactions on the item in the
training set. This is a non-personalized method to benchmark
the recommendation performance.

• Bayesian Personalized Ranking (BPR) [37]: This is a competitive
matrix factorization method, adapted for learning from implicit
feedback. BPR takes advantage of a pairwise ranking loss.

• Element-wise Alternating Least Squares (eALS) [16]: This method
is an effective factorization method for item recommendation
with implicit feedback. This baseline takes all unobserved items
as negative instances and weights them based on their popularity.
It outperforms weighted matrix factorization (WMF) [19] that
uses a uniform weighting for negative instances.

• Neural Collaborative Filtering (NCF) [15]: This neural network
baseline is a combination of a generalized matrix factorization
and a fully-connected network that uses a cross-entropy loss
function for collaborative filtering with implicit feedback.

• Collaborative Deep Learning (CDL) [49]: This neural network
hybrid recommendation model jointly performs deep represen-
tation learning for the content information and collaborative
filtering for the user-item interactions.

• Collaborative Filtering with Additional Stacked Denoising Au-
toencoders (CF-aSDAE) [9]: This hybrid recommendation model
uses stacked denoising autoencoders to jointly model deep users
and items’ latent factors from side information and collaborative
filtering from the interaction matrix.

Table 4: The top 10 words selected by JSR for four sample
movies. The words are sorted in descending order in terms
of their weights. The table should be viewed in color.

The Lord of the Batman Returns Gandhi The Mask
Rings (1978) (1992) (1982) (1994)

fantasy batman documentary cartoon
magic character film parody
movies superhero directed movie
wizard horror prize black5
animation thriller award comic
potter starring supporting comedy
cartoon fantasy films film
fiction movie movie monster
classic joker fiction thriller
novel comedy drama shows

Each baseline has a number of hyper-parameters, such as learn-
ing rate and the number of latent factors. We tune all of these hyper-
parameters using the same procedure as the proposed method using
the same validation data (see Section 4.1.2).

Table 3 reports the recommendation performance achieved by
JSR and the baselines. According to the table, BPR, eALS, and NCF
are all competitive collaborative filtering baselines, and there is
no clear winner among them. NCF outperforms the other base-
lines in three datasets (MovieLens 20M, Amazon-Kindle Store, and
Amazon-Cell Phones), while eALS shows superior performance
among the baselines in the Amazon-Electronics data. This might
be due to the sparsity of the collections, i.e., Amazon-Electronics is
the sparsest dataset (see Table 1). The eALS baseline takes negative
samples based on the popularity of items, while the others use a
uniform sampling method. The results also show that JSR signifi-
cantly outperforms all the collaborative filtering baselines in all the
datasets. Our model also shows a comparable performance (and in
most cases slightly better) performance to the hybrid recommenda-
tion baselines. This indicates that although JSR only uses the item
descriptions for regularization, it effectively takes advantage of side
information.

4.4 Additional Analysis
In this section, we provide additional empirical analysis to have
a better understanding the model’s performance. We first do a
case study by looking at the top terms chosen by the model for

5The Mask is considered as a “black comedy”.

Table 5: Corpora used for training the embedding vectors.

ID corpus # tokens

GloVe - Wiki Wikipedia 2014 & Gigawords 5 6b
GloVe - 840b Web crawl 840b
GloVe - ClueWeb Web crawl 70b

a few items. We further investigate the impact of different word
embedding vectors on the model’s performance.

4.4.1 Analyzing the Learned Representations. To provide
a deeper analysis on the quality of the learned representation, we
report the top 10 terms with the highest weight in the learned
representations for four sample movies (for the model trained on
the MovieLens 20M data) in Table 4. In the table, we classify each
word into one of the following categories:
• Green: related to the movie genre
• Gray: related to the movie content (e.g., characters and scenes)
• Blue: related to other movies similar to the movie
• Yellow: miscellaneous features (e.g., awards, etc.)
• Red: not directly related to the movie
• White: general terms (e.g., movie and film)

There are some common words that appear in most movie repre-
sentations, such as “movie”, “film”, “films”. In fact, due to the nature
of the MovieLens 20M dataset, these terms are considered as gen-
eral terms. There exist more than one green cell in each column of
the table, which indicates that JSR pays attention to the genre of the
movies. The movie Gandhi has won eight Academy Awards and in-
terestingly, JSR gives high weights to the words such as “prize” and
“award” (yellow cells). This might be due to the fact that many users
who watched Gandhi were interested in award-winning movies.
Surprisingly, we observe the term “potter” among the top 10 terms
for the movie The Lord of the Rings. This is most likely selected be-
cause many users who watched The Lord of the Rings also watched
the Harry Potter movies. In addition, there are some terms that
we do not have direct explanations for. For example, it is not clear
why the term “comedy” is selected for the movie Batman Returns.
They might be due to the user interactions with other movies. They
might also be due to the model’s errors. The dark comedy aspect of
this movie could be also the reason.

4.4.2 Investigating the Impact of Word Embedding Vec-
tors. As mentioned multiple times in the paper, our model uses
relevance-based word embedding. In this section, we investigate
the performance of the model when using general-purpose word
embedding vectors, such as GloVe [34]. Table 6 shows the results for
the model with various word embedding matrices. For the sake of
space, in this experiments, we report the result for all the Amazon
datasets together. The description of the training corpora is pre-
sented in Table 5. According to the results, relevance-based word
embedding (RLM) leads to significantly better retrieval results. The
reason is that the objective in such models were specifically de-
signed for information retrieval purposes. Note that none of these
word embedding models require label data for training.

5 POTENTIAL APPLICATIONS
In this section, we review a number of potential applications in
which the proposed framework can be potentially useful.
Interpretability: Interpretation in machine learning helps re-
searchers and engineers identify what has been learned by the

Table 6: Retrieval performance of JSR with different word
embedding initialization. The highest value per column is
marked in bold, and the superscript * denotes statistically
significant improvements compared to all the baselines.

MovieLens 20M Amazon - All
Embedding MRR nDCG MAP nDCG

GloVe - Wiki 0.088 0.103 0.342 0.386
GloVe - 820b 0.104 0.124 0.358 0.415
GloVe - ClueWeb 0.096 0.116 0.351 0.408
RLM 0.133* 0.169* 0.389* 0.443*

model, what biases have affected the model, and how to improve
the performance. It is especially desired in collaborative filtering
models, since they heavily rely on latent features. Since our model
learns representations that can be mapped to a unigram language
model, it can be potentially used for improving the interpretability
of filtering models.
Transparency and Explainability: Users also prefer to receive
an explanation for recommendations [58]. In addition, explainability
improves the transparency of the system. Learning user and item
representations that can be mapped to a natural language space
could potentially ease the process of explaining recommendations.
User Profiling: Table 4 shows that JSR learns interpretable repre-
sentations for items. Therefore, it can also be used for user profiling;
representing the user’s interests with natural language. The system
can also allow the user to manually modify the learned natural
language representation for improving the recommendation.
Universal RepresentationAcrossDomain andModality: Nat-
ural language is a universal representation; meaning that each
movie, music, image, book, etc. can be represented using natural
language. Mapping multi-domain item representations to a natu-
ral language space would potentially close the gap between these
domains and modalities.
ConversationalRecommendation: Natural language is themost
convenient interaction for human. In conversational recommender
systems, users describe their interests in order to receive accurate
recommendations. Learning natural language representations for
items could be of potential use in conversational recommendation.

6 CONCLUSIONS AND FUTUREWORK
This paper introduced the notion of learning a retrieval model from
user-item interaction data. This has multiple potential applications
in real-world scenarios, such as developing an accurate retrieval
model for a system that has already collected rich user-item inter-
action data. This includes media streaming services, such as Netflix
and Spotify, and e-commerce websites. We presented a model that
predicts user-item interactions (similar to collaborative filtering
models) and reconstructs the item description text using multi-task
learning. The proposed model is based on neural networks and
relevance-based word embeddings and does not require any query-
item relevance information for training. Our experiments on four
diverse datasets demonstrated that our model substantially outper-
forms competitive baselines in terms of retrieval performance. In
addition, the recommendation performance of the model is signifi-
cantly higher than that of the state-of-the-art collaborative filtering
models and is comparable with the hybrid recommendation models.

Our analysis demonstrated that the learned representations took
advantage of the collaborative data for item representation.

In addition to exploring potential applications mentioned in
Section 5, we intend to study the joint search and recommendation
model, where limited retrieval training data (query-item relevance
information) is available. In the future, we will also study joint
search and recommendation models in an online setting.
Acknowledgements. This work was supported in part by the Center for Intelligent
Information Retrieval and in part by NSF IIS-1715095. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect those of the sponsor. The authors would like to thank
Qingyao Ai, Mohammad Aliannejadi, Helia Hashemi, and Youngwoo Kim for their
invaluable feedback.

REFERENCES
[1] Nasreen Abdul-jaleel, James Allan, W. Bruce Croft, Fernando Diaz, Leah Larkey,

Xiaoyan Li, Donald Metzler, Mark D. Smucker, Trevor Strohman, Howard Turtle,
and Courtney Wade. 2004. UMass at TREC 2004: Novelty and HARD. In TREC.

[2] Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W. Bruce Croft. 2017.
Learning a Hierarchical Embedding Model for Personalized Product Search. In
SIGIR ’17. 645–654.

[3] Trapit Bansal, Mrinal Das, and Chiranjib Bhattacharyya. 2015. Content Driven
User Profiling for Comment-Worthy Recommendations of News and Blog Articles.
In RecSys ’15. 195–202.

[4] Nicholas J. Belkin andW. Bruce Croft. 1992. Information Filtering and Information
Retrieval: Two Sides of the Same Coin? Commun. ACM 35, 12 (Dec. 1992), 29–38.

[5] Robin Burke. 2002. Hybrid Recommender Systems: Survey and Experiments.
User Modeling and User-Adapted Interaction 12, 4 (Nov. 2002), 331–370.

[6] Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. 2018. Recsys
Challenge 2018: Automatic Music Playlist Continuation. In RecSys ’18. 527–528.

[7] Bruce Croft, Donald Metzler, and Trevor Strohman. 2009. Search Engines: Infor-
mation Retrieval in Practice (1st ed.). Addison-Wesley Publishing Company.

[8] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In SIGIR ’17. 65–74.

[9] Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, and Fangxi Zhang.
2017. A Hybrid Collaborative Filtering Model with Deep Structure for Recom-
mender Systems. In AAAI ’17. 1309–1315.

[10] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for
Recommendation Systems. In SIGIR ’18. 515–524.

[11] Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Yinglong Wang, Jun Ma, and Mo-
han Kankanhalli. 2019. Attentive Long Short-Term Preference Modeling for
Personalized Product Search. ACM Trans. Inf. Syst. 37, 2 (2019), 19:1–19:27.

[12] Matthias Hagen, Daniel Wägner, and Benno Stein. 2015. A Corpus of Realistic
Known-Item Topics with Associated Web Pages in the ClueWeb09. In ECIR ’15.
741–754.

[13] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4 (2015), 19:1–19:19.

[14] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Visual
Evolution of Fashion Trends with One-Class Collaborative Filtering. InWWW
’16. 507–517.

[15] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW ’17. 173–182.

[16] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
Matrix Factorization for Online Recommendation with Implicit Feedback. In
SIGIR ’16. 549–558.

[17] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. 1995. Recommending
and Evaluating Choices in a Virtual Community of Use. In CHI ’95. 194–201.

[18] Liang Hu, Songlei Jian, Longbing Cao, and Qingkui Chen. 2018. Interpretable
Recommendation via Attraction Modeling: Learning Multilevel Attractiveness
over Multimodal Movie Contents. In IJCAI ’18. 3400–3406.

[19] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In ICDM ’08. 263–272.

[20] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search Using
Clickthrough Data. In CIKM ’13. 2333–2338.

[21] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-based Evaluation
of IR Techniques. ACM Trans. Inf. Syst. 20, 4 (Oct. 2002), 422–446.

[22] Yehuda Koren. 2008. Factorization Meets the Neighborhood: A Multifaceted
Collaborative Filtering Model. In KDD ’08. 426–434.

[23] John Lafferty and Chengxiang Zhai. 2001. Document Language Models, Query
Models, and Risk Minimization for Information Retrieval. In SIGIR ’01. 111–119.

[24] Victor Lavrenko and W. Bruce Croft. 2001. Relevance Based Language Models.
In SIGIR’01. 120–127.

[25] Hang Li. 2011. Learning to Rank for Information Retrieval and Natural Language
Processing. Morgan & Claypool Publishers.

[26] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep Collaborative Filtering via
Marginalized Denoising Auto-encoder. In CIKM ’15. 811–820.

[27] Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M. Blei. 2016. Factor-
ization Meets the Item Embedding: Regularizing Matrix Factorization with Item
Co-occurrence. In RecSys ’16. 59–66.

[28] Nicolaas Matthijs and Filip Radlinski. 2011. Personalizing Web Search Using
Long Term Browsing History. In WSDM ’11. 25–34.

[29] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-Based Recommendations on Styles and Substitutes. In SIGIR ’15.
43–52.

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In NeurIPS ’13. 3111–3119.

[31] Andriy Mnih and Geoffrey E Hinton. 2009. A Scalable Hierarchical Distributed
Language Model. In NeurIPS ’09. 1081–1088.

[32] Frederic Morin and Yoshua Bengio. 2005. Hierarchical Probabilistic Neural
Network Language Model. In AISTATS ’05. 246–252.

[33] Michael G. Noll and Christoph Meinel. 2007. Web Search Personalization Via
Social Bookmarking and Tagging. In ISWC ’07. 367–380.

[34] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:
Global Vectors for Word Representation. In EMNLP ’14. 1532–1543.

[35] Jay M. Ponte and W. Bruce Croft. 1998. A Language Modeling Approach to
Information Retrieval. In SIGIR’98. 275–281.

[36] Hossein Rahmatizadeh Zagheli, Hamed Zamani, and Azadeh Shakery. 2017. A
Semantic-Aware Profile Updating Model for Text Recommendation. In RecSys
’17. 316–320.

[37] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI ’09.
452–461.

[38] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. 1994. GroupLens: An Open Architecture for Collaborative Filtering of
Netnews. In CSCW ’94. 175–186.

[39] S. E. Robertson, E. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford.
1994. Okapi at TREC-3. In TREC.

[40] Jennifer Rowley. 2000. Product Search in e-Shopping: A Review and Research
Propositions. Journal of Consumer Marketing 17, 1 (2000), 20–35.

[41] Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic Matrix Factorization.
In NeurIPS ’07. 1257–1264.

[42] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted
Boltzmann Machines for Collaborative Filtering. In ICML ’07. 791–798.

[43] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
Collaborative Filtering Recommendation Algorithms. In WWW ’01. 285–295.

[44] Azadeh Shakery and ChengXiang Zhai. 2006. A Probabilistic Relevance Propaga-
tion Model for Hypertext Retrieval. In CIKM ’06. 550–558.

[45] Azadeh Shakery and Chengxiang Zhai. 2008. Smoothing Document Language
Models with Probabilistic Term Count Propagation. Inf. Retr. 11, 2 (2008), 139–
164.

[46] Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee. 2018. Regularizing
Matrix Factorization with User and Item Embeddings for Recommendation. In
CIKM ’18. 687–696.

[47] Yury Ustinovskiy and Pavel Serdyukov. 2013. Personalization of Web-search
Using Short-term Browsing Context. In CIKM ’13. 1979–1988.

[48] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2016. Learning
Latent Vector Spaces for Product Search. In CIKM ’16. 165–174.

[49] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning
for Recommender Systems. In KDD ’15. 1235–1244.

[50] Hamed Zamani and W. Bruce Croft. 2016. Embedding-based Query Language
Models. In ICTIR ’16. 147–156.

[51] Hamed Zamani and W. Bruce Croft. 2017. Relevance-based Word Embedding. In
SIGIR ’17. 505–514.

[52] Hamed Zamani and W. Bruce Croft. 2018. Joint Modeling and Optimization of
Search and Recommendation. In DESIRES ’18. 36–41.

[53] Hamed Zamani and W. Bruce Croft. 2018. On the Theory of Weak Supervision
for Information Retrieval. In ICTIR ’18. 147–154.

[54] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-Miller, and Jaap
Kamps. 2018. From Neural Re-Ranking to Neural Ranking: Learning a Sparse
Representation for Inverted Indexing. In CIKM ’18. 497–506.

[55] Hamed Zamani, Markus Schedl, Paul Lamere, and Ching-Wei Chen. 2019. An
Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic
Music Playlist Continuation. ACM Trans. Intell. Syst. Technol. 10, 5 (2019).

[56] Chengxiang Zhai and John Lafferty. 2004. A Study of Smoothing Methods for
Language Models Applied to Information Retrieval. ACM Trans. Inf. Syst. 22, 2
(2004), 179–214.

[57] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W. Bruce Croft. 2017. Joint Repre-
sentation Learning for Top-N Recommendation with Heterogeneous Information
Sources. In CIKM ’17. 1449–1458.

[58] Yongfeng Zhang and Xu Chen. 2018. Explainable Recommendation: A Survey
and New Perspectives. CoRR abs/1804.11192 (2018).

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Statement
	3.2 The JSR Framework
	3.3 Training Efficiency in JSR
	3.4 Matrix Factorization Interpretation
	3.5 Item Retrieval using JSR
	3.6 Summary

	4 Experiments
	4.1 Training
	4.2 Evaluating the Retrieval Results
	4.3 Evaluating the Recommendation Results
	4.4 Additional Analysis

	5 Potential Applications
	6 Conclusions and Future Work
	References

