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ABSTRACT
We introduce Smart Shuffling, a cross-lingual embedding (CLE)
method that draws from statistical word alignment approaches
to leverage dictionaries, producing dense representations that are
significantly more effective for cross-language information retrieval
(CLIR) than prior CLE methods. This work is motivated by the
observation that although neural approaches are successful for
monolingual IR, they are less effective in the cross-lingual setting.
We hypothesize that neural CLIR fails because typical cross-lingual
embeddings “translate” query terms into related terms – i.e., terms
that appear in a similar context – in addition to or sometimes rather
than synonyms in the target language. Adding related terms to
a query (i.e., query expansion) can be valuable for retrieval, but
must be mitigated by also focusing on the starting query. We find
that prior neural CLIR models are unable to bridge the translation
gap, apparently producing queries that drift from the intent of the
source query.

We conduct extrinsic evaluations of a range of CLE methods
using CLIR performance, compare them to neural and statistical
machine translation systems trained on the same translation data,
and show a significant gap in effectiveness. Our experiments on
standard CLIR collections across four languages indicate that Smart
Shuffling fills the translation gap and provides significantly im-
proved semantic matching quality. Having such a representation
allows us to exploit deep neural (re-)ranking methods for the CLIR
task, leading to substantial improvement with up to 21% gain in
MAP, approaching human translation performance. Evaluations on
bilingual lexicon induction show a comparable improvement.
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1 INTRODUCTION
Cross-lingual information retrieval (CLIR) is the task of retrieving
documents in a language different from that of the query. The
recent success of neural network approaches for monolingual IR
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[33, 37, 42] suggests that neural techniques could readily be applied
in the CLIR context, too. However, although there are a very few
studies of neural approaches to CLIR, none of them targets or
evaluates the standard CLIR task such as CLEF collections [7]. This
study explores the complex cross-lingual issues to start developing
an understanding of challenges that someone designing a neural
CLIR system will need to address.

Existing CLIR systems are usually implemented as a two-step
process: (1) query translation followed by (2) monolingual IR (search
in the target language) [39]. Although an eventual end-to-end neu-
ral CLIR system is likely to intertwine the translation and relevance
(ranking) steps of CLIR, we keep them separated for this exploration.
That is, we use existing state-of-the-art neural and non-neural ap-
proaches for retrieval and focus our attention on the impact of
different translation approaches because of the fundamental impor-
tance of translation to those approaches [34, 58].

Most existingwork for (monolingual) neural IR relies onword2vec
or GloVe for text representation [14, 24, 37, 54]. More recently, the
use of pre-trained language models based on transformer neural
networks (e.g., BERT) for ad-hoc retrieval in English resulted in high
gain in the performance [33, 40, 53]. Building on that idea, Vulić
and Moens [51] proposed a cross-lingual word embedding (CLE)
construction method by randomly shuffling the parallel translation
corpora and using word2vec [35] on the outcome. This process
resulted in a single dense vector representation of words in both
languages, where the vector for a word in one language is close to
the vector for its translation. They used that CLE for query trans-
lation and also used semantic ranking based on cosine similarity.
Litschko et al. [31] used off-the-shelf pre-trained CLEs to combine
query translation and semantic space rankings and provided a fully
unsupervised framework.

Ruder et al. [45] surveys several other recent studies on pre-
trained cross-lingual representation learning, varying by learning
paradigm and translation data availability, and usually incorporated
in some downstream task other than CLIR. Some of these even
extend the contextualized language models for jointly learning to
encode many (over 100) languages into a shared CLE space (e.g.,
mBERT [52] and XLM [27]). We used a subset of these neural text
representation approaches as translation resources to perform CLIR
query translation. Surprisingly, in our initial experiments we found
that these approaches fail to match the performance of a statistical
machine translation (SMT) system for query translation.

We hypothesize that this failure is mostly due to the poor trans-
lation quality of CLEs. An ideal CLE for CLIR should encode the
meaning of a word in such a way that it is first close to its synonym
and then related words in a semantic space. However, we observe
that existing CLE methods often translate query terms into related
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terms – i.e., terms that appear in a similar context – instead of trans-
lating them into synonyms in the target language. Adding related
terms to a query (i.e., query expansion) can be valuable for retrieval,
but must be mitigated by simultaneously focusing on the starting
query. For example, the most similar English translation of a French
query term “automobile” is “industry” in the distributed represen-
tation trained using one of our baseline CLE methods. However, a
word alignment based machine translation method [41], trained on
the same data, correctly provides “car” as the English translation
term.

This tendency to find related rather than synonymous trans-
lations creates a performance failure that we call the translation
gap. It prevents a neural CLIR system from being as effective as
existing state-of-the-art non-neural CLIR systems. This is because
training deep neural (re-)ranking models with noisy and limited
amounts of data becomes more challenging when dealing with
non-English languages, particularly with resource-lean languages
[3, 32]. For example, in a bilingual scenario, the vocabulary size is
almost doubled and there is scarce publicly available training data
(e.g., bilingual query log or click data). We present an effective CLE
construction method, Smart Shuffling, which shows that effort to
bridge the translation gap results in substantial improvements in
effectiveness. We break down our study into the following concrete
research questions:
RQ1. How does search query translation performance vary across

SMT, NMT and existing CLE approaches when all these
models are trained using same parallel data?

RQ2. How does Smart Shuffling CLE compare to existing CLE
baselines as a query translator? Is there any qualitative and
quantitative translation gap among the query translations
provided by Smart Shuffling CLE, MT, and a state-of-the-art
CLE approach?

RQ3. If we can achieve an equivalent translation quality with
CLE compared to MT methods – i.e., filling the translation
gap – can we use it for neural (re-)ranking methods and get
improved retrieval performance?

RQ4. Do our improvements generalize to other tasks such as bilin-
gual lexicon induction (BLI) [19], which is a prominent CLE
evaluation task?

In the rest of this study, we investigate query translation systems,
and present an extrinsic evaluation of state-of-the-art CLE tech-
niques for CLIR. We compare them to an effective statistical ma-
chine translation system, trained on the same translation data, and
show a significant translation gap. Our experiments on CLEF, a
standard CLIR collections across four languages indicate that Smart
Shuffling CLE fills the translation gap for query translation and
provides significantly improved semantic matching quality. Having
such a representation, we exploit a deep neural re-ranking method
and show substantial improvement with up to 21% gain in MAP,
approaching human translation performance. Our BLI evaluations
also show significant improvements with up to 17% gain in MAP.

2 BACKGROUND AND RELATEDWORK
We briefly survey the existing translation models as well as neural
CLIR models. Note that for translation models one could trans-
late source into target language (or vice versa), or translate both

into a shared representation. Here with machine translation (MT)
models, we only consider the query translation given its low-cost
and flexibility [34, 46], and leave other variations (e.g., document
translation) as future work.

2.1 Query Translation Models
Several studies show that the translation task for CLIR is different
than that of MT [39]. In the retrieval context, looser translations
are generally acceptable to find relevant documents. This is mainly
because approaches for information retrieval are usually based on
the bag-of-words assumption and rely on query translation with
synonyms and expansion through adding related words. The most
vital criterion when considering query translation is the selection
of proper translation words [39]. For that reason, SMT systems,
particularly probabilistic word-level translation systems based on
word alignment techniques, are still the most widely used query
translation techniques.
• Statistical Machine Translation (SMT). One of the funda-
mental components of SMT is word alignment [41]. The align-
ments are usually phrase-based and constructed using various
heuristic or statistic alignment methods. The probability of a
source sentence, sF , given the target sentence, sE , is calculated
as: P(sF | sE ) =

∑
a P(s

F ,a | sE ), where a is a “hidden” alignment
from foreign language to target language and a word alignment
model can estimate P(sF ,a | sE ). For query translation, usually
only IBM model 1 is performed [39]. Zbib et al. [55] proposed a
neural model to better estimate word translation probabilities
for resource-lean CLIR settings compared to statistical alignment
methods by incorporation context and character-level encoding.

• Neural Machine Translation (NMT). Even though NMT sys-
tems have received increasing interest in recent years, there
appears to be limited study of the application of NMT for the
CLIR task. Sarwar et al. [47] proposed a relevance-based NMT
model using a multi-task learning architecture for the CLIR task.
Even though they found reasonable performance with NMT for
CLIR with their own implementation, we achieved better results
by training an NMT architecture from Fairseq [58] with the same
parallel corpus. Fairseq is a stable sequence to sequence learning
library from Facebook; we use the convolutional NMT architec-
ture [17] from that library. We attribute the performance gain to
the much larger number of training epochs and the stability of
Fairseq. However, we still found that NMT struggles to match
the performance of SMT.

• Dictionary-based Translation. A typical query translation ap-
proach is machine-readable bilingual dictionary. Query terms are
translated by a look up in the dictionary and taking some or all
of the translations in the target language. However, mostly due
to the vocabulary coverage problem corpus-based SMT models
are usually preferred [39].

2.2 Cross-Lingual Embedding (CLE)
Following a broad use of monolingual dense representation pre-
training methods for downstream tasks, extensive efforts have been
made toward developing cross-lingual representations to support
multi-linguality. Such representations are designed to learn vectors
in a shared space for two or more languages such that words with
similar meanings obtain similar vectors regardless of language [19].



Ruder et al. [45] presents a comprehensive typology of various CLE
models based on the data requirements and objective functions.
Here, we use CLEs in two ways: (1) query translation to the target
language, (2) obtaining shared representation for query and docu-
ments. CLE methods are generally more efficient in terms of time
and resource compared to MT models.

In terms of data requirements, there are three main types of meth-
ods [45]: (a) Projection-based: monolingual word embeddings are
trained independently and then a transformation matrix is learned;
(b) Pseudo-bilingual: a corpus of the mixture of source and target
words is constructed and then a monolingual method is applied to
learn the cross-lingual representations; and, (c) Joint: a bilingual
corpus is used for jointly minimizing the loss function for monolin-
gual and bilingual term pairs. Due to the number of CLE methods
in the literature, covering all of them here is almost impossible.
Following Glavas et al. [19]’s findings on the strong correlation of
CLIR performance with BLI task as well as our initial explorations,
we use the following four strong baselines as indicative reference
points on each type of methods described above.

• PRJ-UNSUP is an unsupervised projection-based approach based
on Conneau et al. [9]. After building monolingual representa-
tions, it uses a three-step procedure to train a rotation matrix,W .
First, it exploits a domain-adversarial learning setting to learn a
roughly aligned space usingW . Second, the Procrustes solution
[49] is applied to further refine the first step alignments. Third, A
process called cross-domain similarity local scaling is conducted
to expand the space where there is high density of points. This
method uses a self-learning procedure to iteratively augment the
lexicons, relaxing the initial dictionary requirement.

• PRJ-SUP is a supervised projection-based approach based on
Artetxe et al. [1]. Again, after building monolingual represen-
tations for source and target languages, an iterative solution
applied to get the alignments, similar to Conneau et al. [9], using
a word-level dictionary, such that frequent words are aligned in
the first step. Until convergence, the latest alignment is used to
improve the projection.

• PSD is a pseudo-bilingual corpora-based approach based on Levy
et al. [28]. In line with some earlier methods like BilBOWA [20],
[28] investigate the use of Dice statistical word aligner [41] for
CLE construction and report a significant improvement on sev-
eral benchmarks. PSD uses skip-gram with negative sampling
[36] to construct cross-lingual representations.

• JNT is a joint training approach based on Duong et al. [15]. In
line with some earlier approaches like Vulić and Moens [51]’s
BWESG, using the contextual bag of words (CBOW) [35, 36] em-
bedding construction and similar to Gouws and Søgaard [21] for
translation replacement in the correct context, Duong et al. [15]
use a bilingual dictionary to exploit the context in one language
to predict the translation of the pivot word in the other language.
Using an expectation-maximization (EM) algorithm for selecting
the correct translation from the dictionary, each pivot word is
replaced with a translation on-the-fly during CBOW training.
The algorithm is forced to predict the word and its translation
from a monolingual context.

We use these CLEmethods in a bilingual scenario that is typically
observed in machine translation. We use parallel corpus to train MT

models as well as our baseline CLEs. We observe that training our
baseline CLEs with parallel corpus results in improved CLIR perfor-
mance when compared to their pre-trained versions trained using
Wikipedia-based comparable corpora. In addition to these CLEs and
because of the recent success of transformer-based contextualized
dense representations [13] for monolingual IR [33, 40, 53], we also
examine the representation quality of an extended model, XLM
[27], that jointly learns to encode over 100 languages into a shared
space. XLM extends the Masked Language Model (MLM) training
objective of BERT for multilingual scenarios and uses a Translation
Language Model (TLM) objective for sentence-level parallel data.
XLM-R [8] improves upon XLM by incorporating more training
data and languages, particularly low-resource languages. In our
CLIR experiments, we observe that XLM-R does not provide much
of performance gain. Here, we only use XLM’s pre-trained models.

2.3 Existing Neural CLIR Models
There appear to be few studies of neural CLIR (re-)ranking methods.
Most of the existing work is focused on representation construction.
The global methods rely on external translation resources and are
pre-trained for retrieval. Vulić and Moens [51]’s unified monolin-
gual and cross-lingual framework is probably one of the earliest
global representation construction methods. They proposed an un-
supervised semantic ranking method based on cosine similarity.
Litschko et al. [31] extended the framework and used off-the-shelf
pre-trained CLEs to combine query translation and semantic space
rankings. For local representation learning, Dadashkarimi et al.
[10, 11] used pseudo-relevant documents for CLIR.

Li and Cheng [29] employed an adversarial framework to learn
relevance-based dense representations. Even though Google Trans-
late is used for query log translations, the retrieval performance is
lower compared to the MT. Sasaki et al. [48] constructed synthetic
cross-lingual retrieval data based onWikipedia comparable corpora,
and proposed a shallow learning-to-rank method. Zhao et al. [57]
leverages the sentence-aligned parallel data as a weak supervision
signal for training neural CLIR models for low-resource languages.
However, none of these target the standard CLIR tasks with deep
architectures.

3 SMART SHUFFLING CLE
We introduce Smart Shuffling, a CLE method that interleaves to-
kens from sentences in two different languages that are translations
of each other. Inspired by statistical word alignment approaches
[20, 41], it uses a dictionary to guide this re-ordering process – in
contrast to other approaches that interleave (shuffle) the sentences
randomly – so that words are placed near their translation’s con-
text. After the data has been shuffled this way, a monolingual word
embedding approach can be applied to generate the CLE. We train
Smart Shuffling CLE using bilingual parallel text and dictionary
data1. As mentioned above, we hypothesize (and our experiments
show) that neural CLIR fails because typical cross-lingual embed-
dings “translate” query terms into related terms in addition to or
sometimes rather than synonyms in the target language. A similar

1With the development of open source dictionaries (e.g., Panlex and Wiktionary)
word-level parallel data is available for almost every language pair.



phenomenon has been shown for monolingual neural IR as the gap
between query and document words [38].

The underlying algorithm for CLE construction is based on the
monolingual embedding methods, i.e., CBOW and Skip-Gram [35].
CBOW predicts a pivot word from its context over a window of
size ws centered around the pivot, while Skip-Gram predicts the
context for a given pivot. Our Smart Shuffling is in line with Duong
et al. [15] and Gouws and Søgaard [21] CLE methods. All these
exploit CBOW as the embedding learning method and replace each
word in the source or target language with its translations during
the training. As a result, for a pivot word in the target language the
context is only from the source language, i.e., monolingual context.

Smart Shuffling provides bilingual context for a given pivot word,
containing the relatedmonolingual words, the translation of context
words, and the translation of the pivot word. With Smart Shuffling,
contrary to similar methods, we can lower the context window
sizews and enforce the joint training with a tighter bilingual con-
text. Our departure point is a recent experimental study on the
importance ofws for high quality word embedding construction in
monolingual text [23]. More specifically, Lison and Kutuzov [30] in-
vestigate window sizes ofws = {1, 2, 5, 10}, along with some other
factors and show that for different tasksws can affect the quality
of the learned representations. Comparing these results with the
analysis of Vulić and Moens [51] on the window size reveals an
important point: randomly shuffling the raw text of two languages
multiple times flattens the contextual information across languages
and eliminates the natural ordering of terms. This possibly explains
Vulić and Moens [51]’s sensitivity analysis showing indifferent
results withws = {10, 20, · · · , 100}.

To explain Smart shuffling we start by formally describing our
parallel data. Let the source language, F , and the target language,
E, be the pair of languages (e.g., French and English). We have
sentence-level parallel data as P = {(sF1 , s

E
1 ), (s

F
2 , s

E
2 ), · · · , (s

F
m, s

E
m )}

withm pairs of sentences in the source and target languages, and a
bilingual dictionary as w̄i = D(wi ), providing translations of term
wi in the other language. For the k th sentence pair, let ℓFk = |sFk |

and ℓEk = |sEk | be the number of words in the source and target
sentences, respectively. Let sFk =< f1, f2, · · · , fℓFk

> and sEk =<

e1, e2, · · · , eℓEk
> be the sequence within the source and target

sentences, respectively.
The alignment, A ∈ Rℓ

F
k ×ℓ

E
k , is defined as a Cartesian product of

the word positions [41]. We consider four possible scenarios for the
words fi ∈ sFk and ej ∈ sEk , in ordered priority. Typically, this align-
ment representation is restricted to assign one target word for each
source word. The cell (i, j) ∈ A has two scores normalized row-wise
and column-wise (i.e., forward and backward normalized scores):
the row-wise normalized scores of ith row shows the probability of
assigning the ith word in the source language sentence to jth word
in the target sentence, i.e., t(fi |ej )—similarly for t(ej | fi ). We pro-
vide the following heuristic approach to compute a deterministic
association or alignment of terms:

(I) IF (fi , ej ) ∈ D THEN Fill (i, j) ∈ A with (1, 1),
(II) IF fi = ej THEN Fill (i, j) ∈ A with (1, 1),
(III) IF (fi , .) or (., ej ) ∈ D but (fi , ej ) < D THEN Get the set of

translations of fi as f̄i = D(fi ). Using the character 3-grams

Algorithm 1 Smart Shuffling CLE

Input: sFk : source sentence, s
E
k : target sentence, Ak : alignment,

SI : #shuffled sentences, D: Dictionary
1: for dir ∈ {fw, bw} do
2: for idx ∈ ranдe(SI ) do
3: trans =sample_alignment(Ak ,dir )
4: shuff_sent = smart(sFk , s

E
k , trans)

5: construct_emb(shuff_sent, D) // See Eq. 1
6: end for
7: end for

of each token of f̄i and ej , we calculate the translation prob-

ability as t(ej | fi ) =
|ngram(ej ) ∩ ngram( f̄i )|

|ngram( f̄i )|
for forward

translation—similar for backward with ēj = D(ej ),
(IV) ELSE Give equal probabilities for the remaining words from

sFk and sEk .
For example, for calculating the character 3-gram similarity score,

assume ej = ‘exchange’ and f̄i is D(‘transfert’)= {‘changement’}.

ngram(ej ) = { exc, xch, cha, han, ang, nge }

ngram( f̄i ) = { cha, han, ang, nge, gem, ement, men, ent }

⇒ t(ej | fi ) =
4
9

Our presented heuristic is a simple yet effective technique that
relies on existing dictionary and character 3-gram similarity score,
given its effectiveness for sub-word identification across languages
[18, 50]. We leave analyzing the other possible variations of the
alignment techniques as future work. We believe that using a dic-
tionary to eliminate some otherwise possible shufflings helps to
better align terms that are not covered in the dictionary.

Algorithm 1 presents the pseudo-code of Smart Shuffling CLE.
In order to respect the ordering of both languages, which might
be completely different, we consider both forward and backward
directions (line 1). sample_alignment() samples a possible trans-
lation for a given source word, fi , based on the alignment trans-
lation probability t(ej | fi ), and construct a one-to-one relation be-
tween source and target words (line 3). Based on the direction,
smart() provides an insertion of source words into target sentence
(or vice versa). In this step, we randomly insert the translation
before or after the source term, and obtain a bilingual sentence
sk =< e2, f1, f2, e1, · · · , eℓEk

, · · · , fℓFk
> (line 4). The shuffled sen-

tence is then provided to the embedding construction method (line
5). Similar to the Duong et al. [15]’s modification of the original
CBOW, we use the following objective function for construct_emb().∑
i ∈sk

(α logσ (u⊺wi hi )+(1−α) logσ (u⊺w̄i
hi )+

∑
w j ∈NS ()

logσ (−u⊺w j hi ))

(1)
wherewi is a token at position i of sk , hi is the context vector aver-
aging vectors of bilingual words in the range ofws of the pivot word,
and NS() provides negative samples from the combined vocabulary.
As discussed before, providing a bilingual context containing syn-
onyms of the pivot word and limiting the access to other context
words forces the model to predict synonyms rather than related



terms. The dictionary replacement procedure is borrowed from
Duong et al. [15] and we use the default α = 0.5. We repeat the
process SI times (line 2). In our experiments, we set SI = 10.

Example. For a French text, “point transfert ambulancier” and
its corresponding English translation, “ambulance exchange point”,

Table 1: The alignment matrix, Aexample
English

Fr
en
ch

ambulance exchange point
point (0, 0) (0, 0) (1, 1)
transfert (0, 0) (1, 1) (0, 0)
ambulancier (1, 1) (0, 0) (0, 0)

Using Aexample , the following is the output of the Smart Shuf-
fling with SI = 3. The English terms are underlined. 1-3 are based
on the ordering of French sentence (forward direction) and 4-6 are
based on English sentence (backward direction).

(1) point point transfert exchange ambulancier ambulance
(2) point point transfert exchange ambulancier ambulance
(3) point point exchange transfert ambulance ambulancier
(4) ambulance ambulancier transfert exchange point point
(5) ambulance ambulancier exchange transfert point point
(6) ambulancier ambulance exchange transfert point point

4 EXPERIMENTAL EVALUATION
We investigate four language pairs in our experiments: French to
English as Fre-Eng, Italian to English as Ita-Eng, Finnish to English
as Fin-Eng, and German to English as Deu-Eng. The first language
is the language of the query and the second is the language of the
collection. We selected these languages based on the number of
available query sets and language families.2

Text Pre-processing. In order to have consistent pieces of text
across different resources, characters are normalized by mapping
diacritic characters to the corresponding unmarked characters and
lower-casing. We remove non-alphabetic, non-printable, and punc-
tuation characters from each word. The NLTK library [2] is used for
tokenization and stop-word removal. No stemming is performed.
For XLM, we use each model’s BPE codes and vocabulary.

Translation Resources.We use two resources: (i)Word-level.
We use the Panlex lexicon. Its data acquisition strategy emphasizes
high-quality lexical and broad language coverage [25]. (ii) Sen-
tence-level. We use the Europarl v7 sentence-aligned corpus [26].
The number of parallel text along with vocabulary size for each
language pair are given in Table 2.

Translation Models Training. For SMT, we use the GIZA++
toolkit [41]. Two versions of parallel data are fed to the model: first,
only Europarl data, second, a concatenation of Panlex and Europarl
data. For NMT, we use a popular convolutional architecture [17]
from Fairseq [43] sequence to sequence learning library. The archi-
tecture consists of 512 hidden units for both encoders and decoders.
Nesterov’s accelerated gradient method with a momentum value of
0.99 and gradient clipping value of 0.1 was used along with a learn-
ing rate of 0.25. All models were trained using single-gpu approach
with mini-batch size of 64 and a dropout value of 0.2. For CLE
models, we use the authors’ implementations. For projection-based

2English and German are in the Germanic language family, Italian and French are in
the Romance language family, and Finnish is in the Uralic language family.

Table 2: Statistics of Translation Resources

Lang. Pair Resource #Pairs |VF | |VE |

Fre-Eng Panlex 656,297 234,623 247,309
Europarl 1,995,528 141,338 105,182

Ita-Eng Panlex 373,655 177,362 165,467
Europarl 1,894,217 146,036 77,441

Fin-Eng Panlex 427,506 208,077 134,488
Europarl 1,905,683 637,902 75,851

Deu-Eng Panlex 646,925 338,188 240,880
Europarl 1,901,027 318,715 76,309

CLE approaches, we first train monolingual embeddings using Fast-
Text library’s skip-gram model. All the parameters are their default
values in the provided toolkit unless otherwise stated. The CLE
embedding size is set to 300 for all of our experiments. The con-
text window size is set using 2-fold cross-validation, with values
{1, 2, 4, 10, 25, 50}.

Query Set and Text Collection.We performed experiments on
the Cross-Language Evaluation Forum (CLEF) 2000-2003 campaign
for bilingual ad-hoc retrieval tracks [4–7]. We aggregate all four
years’ track topics and query relevance judgments in order to have a
higher number of queries. The text collection for our four language
pairs is the Los Angeles Times (LAT94) comprising over 113k news
articles.3 We only use the text field of the LAT94 corpus for indexing.
Queries are selected from C001 −C200 topic set for each language.
Queries without any relevant document are excluded, resulting in
151 queries for each language. We use a concatenation of title and
description fields of the topic sets as our queries4.

Evaluation. For evaluating retrieval effectiveness, we report
Mean Average Precision (MAP) of the top 1000 ranked documents,
and precision of the top 10 retrieved documents (P@10). Statistically
significant differences of MAP and P@10 values are determined
using the two-tailed paired t-test with p_value < 0.05 (i.e. 95%
confidence level).

4.1 Term-Matching Retrieval
Let the query, qF ∈ QF , be in source language F , with constituent
terms {qF1 , · · · ,q

F
|qF |

}, and the document, dE ∈ DE , in target lan-

guage E, with constituent terms {dE1 , · · · ,d
E
|dE |

}. The query is trans-
lated term-by-term and then the retrieval is conducted. For SMT,
GIZA++ provides a translation table with the probability of transla-
tion. For CLE, we use cosine similarity to find translations of each
query term with their translation score. Using either of these trans-
lation methods, for a given query term we obtain a sorted list of top-
T translations with the corresponding score –T = 1 is set by default.
Formally, for the ith query term,qFi =< · · · , (qE

(i , j), t(q
E
(i , j) |q

F
i )), · · · >,

where (1 ≤ j ≤ T ) and t(·|·) is the translation probability from F
to E. For out-of-vocabulary (OOV) terms in queries, we set qFi =<
(qF

(i), 1.0) > to allow exact matching. From this point on, any

3In the 2003 track an additional text collection was added to the evaluations, the
Glasgow Herald corpus. For consistency in the evaluations, we filter out this collection
with its relevance judgments.
4Preliminary experiments show that in terms of the translation quality comparisons,
short queries are equally disadvantaged across different languages and retrieval models.



Table 3: Query Translation Performance using Term-Matching Ranking. Note that the first three rows are reported as refer-
ences. For each column the highest value is marked with bold text. Significance tests with respect to SMT (marked with ▷) are
marked with ⋄, ▲ , and ▽ for no difference, improvement, and degradation, respectively.

Fre-Eng Ita-Eng Fin-Eng Deu-Eng

Trans. Model Trans. Resource MAP P@10 MAP P@10 MAP P@10 MAP P@10

Human Translation CLEF Topics 0.3703 0.3503 0.3703 0.3503 0.3703 0.3503 0.3703 0.3503
Google Translation Commercial MT 0.3237 0.3291 0.3244 0.3205 0.3195 0.3119 0.3271 0.3238
No Translation — 0.1346 0.1464 0.1054 0.1007 0.0577 0.0603 0.1309 0.1199

NMT Europarl 0.2932 0.3007 0.3091 0.3060 0.2571 0.2748 0.2944 0.2840
SMT Europarl 0.3208 0.3152 0.3142 0.3126 0.2694 0.2689 0.3044 0.2874
Dictionary Panlex 0.2069 0.2040 0.2282 0.2351 0.1254 0.1371 0.2075 0.2139
▷ SMT Europarl + Panlex 0.3312 0.3232 0.3140 0.3146 0.2852 0.2834 0.2908 0.2894

PRJ-UNSUP Europarl 0.2866▽ 0.2669▽ 0.2905▽ 0.2934▽ 0.2073▽ 0.2146▽ 0.2673▽ 0.2616▽
PRJ-SUP Europarl + Panlex 0.2825▽ 0.2709▽ 0.2919▽ 0.2987▽ 0.1995▽ 0.2007▽ 0.2531▽ 0.2563▽
PSD Europarl 0.2434▽ 0.2709▽ 0.2802▽ 0.2940▽ 0.1668▽ 0.1609▽ 0.1947▽ 0.2146▽
JNT Europarl + Panlex 0.2803▽ 0.2748▽ 0.2917▽ 0.2987▽ 0.2404▽ 0.2371▽ 0.2608▽ 0.2457▽

Smart Shuf. Europarl + Panlex 0.3276⋄ 0.3162⋄ 0.3109⋄ 0.3033▽ 0.2799⋄ 0.2728▽ 0.2914⋄ 0.2795⋄
Smart Shuf. with SMT Europarl + Panlex 0.3482▲ 0.3238⋄ 0.3253▲ 0.3159⋄ 0.2975▲ 0.2901⋄ 0.3072▲ 0.2894⋄

monolingual ranking method (e.g., probabilistic or language model-
ing) can be applied [39, 51] to calculate score(qF ,dE ). We use the
Galago’s implementation5 of Okapi BM25 [44] with default param-
eters. For the translated query we exploit the Galago’s weighted
#combine operator. We call this ranking as term-matching retrieval
for distinguishing with two other neural (re-)ranking models we
use in our study, named as semantic-matching and deep-matching.

4.2 Experimental Results
Table 3 presents our experimental results for term-matching re-
trieval across different language pairs and translation models. In
order to provide indicative reference points, human translation
(English queries), Google Translation (a commercial MT system),
and no translation (treating the non-English language as if it were
English) experiments are also reported. It comes as a surprise to
us to see that NMT and commercial translation systems fall short
in performance. While these state-of-the-art machine translation
systems have been trained for translating sentences, they might
struggle to translate bag-of-keywords queries, which do not usually
possess a grammatical structure.

Aswe can see for the SMTmodel, providing Panlex data improves
the retrieval performance for French and Finnish queries in terms
of MAP and P@10. For Italian and German queries, even though
the MAP values are slightly lower, P@10 values are improved. We
interpret these as generally better translation and compare CLE
methods with this SMT baseline (marked with ▷). We also included
Panlex only query translation performance, in which we take all
the translations with equal probabilities for query construction—
resulted in a very low retrieval performance.

Considering existing CLE methods trained on the same trans-
lation resources (in the third section of the table) we can clearly
see a translation gap when compared to the SMT model—a statis-
tically significant drop in the retrieval performance for existing

5https://www.lemurproject.org/galago.php

state-of-the-art CLE methods. This translation gap is more severe
for Finnish and German. This supports our hypothesis on the trans-
lation gap and answers RQ1. We can also partially answer RQ2. As
we can see, in terms of MAP there is no difference between SMT
and Smart Shuffling CLE. However, we see a slight degradation in
MAP for all pairs and a significant degradation in P@10 for Italian
and Finnish queries.

In order to compare the translated queries between Smart Shuf-
fling CLE and MT systems, and for answering the last part of RQ2,
we combined the translated query from both models with equal
weights. We report results with this combined query in the last row
of Table 3. Comparing this combination with both SMT and Smart
Shuffling CLE individual retrieval performance shows a statistically
significant improvement in MAP values with the combined query.
Given the difference in the nature of these two translation mod-
els and considering that there is no significant difference in P@10
values, we hypothesize this might be because CLE provides more
related and relevant terms whereas SMT provides more synonyms.

5 DEEP-MATCHING RE-RANKING MODEL
In this section, in order to show the intertwined impact of trans-
lation and relevance for CLIR, and provide an answer for RQ3,
we present a deep neural re-ranker based on the Deep Relevance
Matching Model (DRMM) [22]. DRMM is a relevance-matching
method employing a joint deep architecture at the query term level,
proposed for monolingual ad-hoc retrieval task. We specifically
selected DRMM for our experiments since it is highly sensitive
to the quality of the pre-trained embeddings, given its static use
of the provided representation for re-ranking without updating
it. In addition, it has a considerably simpler network architecture
compared to the other existing methods and is well-suited for data-
scarcity situations. However, nothing prevents the use of any other
monolingual neural model with the provided extension on the loss
function.



Table 4: Deep-Matching Re-ranking Results. Significance tests for Smart Shuffling with respect to other CLEs are conducted
with Bonferroni correction (⋄ Insignificant, ▲ Improvement, and ▽ Degradation).

Fre-Eng Ita-Eng Fin-Eng Deu-Eng

CLE Model MAP P@10 MAP P@10 MAP P@10 MAP P@10

PRJ-UNSUP 0.3148 0.2227 0.3069 0.2245 0.2150 0.1801 0.2453 0.2099
PRJ-SUP 0.3017 0.2203 0.3009 0.2258 0.2066 0.1755 0.2500 0.2106
PSD 0.2395 0.1971 0.2183 0.1748 0.1236 0.1252 0.1533 0.1437
JNT 0.3212 0.2334 0.3175 0.2477 0.1939 0.1616 0.2494 0.1828

Smart Shuffling 0.3635▲ 0.2612▲ 0.3707▲ 0.2735▲ 0.2531▲ 0.2106▲ 0.3020▲ 0.2358▲

Table 5: Qualitative Analysis of CLEs. Queries are C071, C106, and C148, respectively—only the title field is presented. For each
query translation method, the bold term(s) are the translations that are not synonyms of the original query term.

French Query English Trans. (Human) Query Translation with T = 1
Smart Shuffling JNT SMT

Légumes, fruits et cancer Vegetables, Fruit and Cancer vegetables fruit cancer fruit fruit cancer vegetables fruit cancer
L’industrie automobile
en Europe

European car industry industry car europe industry industry europe industry car europe

Dommages à la couche
d’ozone

Damages in Ozone Layer damage layer ozone ravages ozone ozone damage layer ozone

Deep-Matching. Using CLE as the pre-trained representation,
for each possible pair of terms from the query, qF , and document,
dE , local interactions are constructed. Then, a fixed-length match-
ing histogram is used for transforming the variable-length local
interactions of query terms. A feed-forward matching network is
used to learn hierarchical matching patterns. Note that for each
query term a matching score is calculated and the overall match-
ing score is aggregated using a term gating network for weighted
aggregation. Given (qF ,d

+
E ,d

−
E ), with d

+
E denoting a relevant docu-

ment and d−E denoting a non-relevant document, the loss function
is defined as below (hinge loss as a pairwise ranking loss).

L(qF ,d
+
E ,d

−
E ;Θ) = max(0, 1 − s(qF ,d

+
E ) + s(qF ,d

−
E ))

s(qF ,dE ) denotes the aggregated score, and Θ denotes the parame-
ters that our deep network learns using the Adadelta [56] optimizer.
Guo et al. [22] provide further details on each of these steps. For
OOV terms in queries, the model allows exact matching in the
document terms.

Hyper-parameters. For the network configuration we tune the
hyper-parameters using the parameters both in the original paper
and the ones tuned for the MatchZoo implementation[16]. We
find that the default parameters in the MatchZoo library perform
better. Therefore, in all of our experiments, we use a four layer
architecture; (i) A histogram input layer with 60 nodes, (ii) Two
hidden layers in the feed forward matching network with 20 and
1 nodes, respectively, (iii) A term gating output layer with 1 node.
We also set the batch-size to 100, and use early stopping strategy
on 400 epochs for training the model.

Experimental Details. Given the limited number of queries in
each language, we use the supervised learning paradigm similar
to DRMM experiments [22] through a 5-fold cross-validation. For
each fold, the training, validation, and test data are 60%, 20%, and
20% of the query set, respectively. The reported evaluation values
are averaged across 5 folds. For the initial retrieval, we use our

Term-Matching ranking model with SMT translation to obtain the
top 1000 documents for each language pair. We select this initial
retrieval system to provide the same set of relevant and non-relevant
documents when the model is training using different CLEs.

Experimental Results. Table 4 presents our experimental re-
sults for Deep-Matching re-ranking model across different language
pairs and translation models. Comparing the Smart Shuffling re-
sults with the existing CLE methods, we see 13%, 17%, 18%, and
21% relative improvements in terms of MAP for French, Italian,
Finnish, and German queries, respectively, compared to the high-
est MAP value from the existing CLE models. Further, comparing
deep-matching CLIR results with Table 3 shows that for French
and Italian queries human translation retrieval performance are
approached, in terms of MAP. However, we still see a low precision
when compared to term-matching results. We hypothesize that this
might be due to the fundamental differences in the ranking models.
Another interesting observation is the comparison of retrieval per-
formance across languages. As we can see for Finnish and German
query languages the retrieval performance is still lower compared
to Table 3, i.e. no improvement. We think this might be due to our
heuristic alignment method and the fundamental differences in
those languages compared to English. However, this conclusion
needs further investigations and we leave it for future work.

6 DISCUSSION AND FURTHER ANALYSIS
Here we further analyze Smart Shuffling to provide insight on the
proposed method and discuss its limitations.

6.1 A Qualitative Analysis
Table 5 presents a qualitative comparison of three example French
query translations using Smart Shuffling, JNT, and SMT. For these
three queries our CLE provides the same translation as the SMT
method. Moreover, both the translation approaches provide very
close approximation to the human translations. However, JNT does
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Figure 1: Effect of query expansion with more than one translation.

Table 6: Semantic-Matching Ranking Results. Significance tests for Smart Shuffling with respect to other CLEs are conducted
with Bonferroni correction (⋄ Insignificant, ▲ Improvement, and ▽ Degradation).

Fre-Eng Ita-Eng Fin-Eng Deu-Eng

CLE Model MAP P@10 MAP P@10 MAP P@10 MAP P@10

PRJ-UNSUP 0.2156 0.2124 0.1781 0.1888 0.1366 0.1464 0.1485 0.1623
PRJ-SUP 0.2208 0.2178 0.1754 0.1881 0.1390 0.1431 0.1558 0.1623
PSD 0.1059 0.1067 0.1388 0.1656 0.0799 0.0980 0.0857 0.1113
JNT 0.2307 0.2211 0.2024 0.2080 0.1416 0.1404 0.1696 0.1775

XLM (MLM_100) 0.1648 0.1795 0.1292 0.1550 0.1205 0.1384 0.1043 0.1172
XLM (MLM_17) 0.0673 0.0636 0.0902 0.0993 — — 0.0887 0.1026
XLM (MLM_TLM_15) 0.0004 0.0000 — — — — 0.0006 0.0000

Smart Shuffling 0.2559▲ 0.2424▲ 0.2575▲ 0.2517▲ 0.1970▲ 0.2073▲ 0.2307▲ 0.2332▲

not provide accurate translations as it is focused toward related
words. For the last query in Table 5 JNT provide “ravages” as the
translation of the first french query term and our approach provides
“damages” which is the same as the human provided translation. We
note that “ravages” is not an unreasonable translation - it is just not
the exact one. The same scenario is happening for the other two ex-
ample queries. We have marked the possibly inaccurate translations
generated using JNT with bold text. This analysis shows that the
translation errors are propagated in the neural re-ranking model
for the other CLE methods preventing the neural IR approach from
providing an improved ranked list.

6.2 Incorporating More Translation Terms
Given the special characteristics of the translation task for CLIR,
providing more translation terms for each query term is usually
helpful for the retrieval performance [39]. This is a mixture of
translation and expansion for a query withT > 1 terms. To analyse
the effect, we use the top T translations with T ∈ {1, 2, 4, 7, 10} as
the translated query. Figure 1 shows that in almost all language
pairs, when 2 or more translations are available, CLEs do not yet
outperform SMT query translation. For French and Italian queries,
we see that the gap is narrower compared to other two languages.
This might be due to the language similarities with the English
language as the target language. Among CLE methods, we can
see that Smart Shuffling outperforms every baseline. Interestingly,
projection-based CLE methods perform poorly when more transla-
tions are extracted.

6.3 Semantic-Matching Ranking Model
In order to further show the importance of the CLE quality, we
conduct a semantic ranking similar to Litschko et al. [31]’s BWE-
AGG method. Using CLE’s dense vector representations, the vec-
tor of queries and documents are derived using simple aggrega-
tion of their constituent terms. The query representation is sim-
ply the summation of query term vectors, i.e. ®qF =

∑ |qF |
i=1 ®qFi .

For the document representation, it has been shown that inverse
document frequency (IDF) weighted summation operator outper-
forms unweighted summation [31]. The document representation
is ®dE =

∑ |dE |
j=1 id f (dEj ) ·

®dEj . For OOV terms, we ignore the term.
For XLM model, after some investigation of different query and
document vector aggregation methods (for example using ’[CLS]’
or individual token-wise representations) we decided to use indi-
vidual tokens representations, as it provided higher ranking results.
We employ dot-product similarity scoring for ranking documents,
i.e. score(qF ,dE ). We call this ranking Semantic-Matching.

Table 6 presents our experimental results for Semantic-Matching
across different language pairs and CLE models. We can see a statis-
tically significant improvement in terms of MAP and P@10 values
for all four language pairs. Comparing with JNT method, we can
see 11%, 27%, 39%, and 36% relative improvements, in terms of MAP,
for Fre-Eng, Ita-Eng, Fin-Eng, and Deu-Eng language pairs, respec-
tively. The increase in retrieval performance is comparably higher
for Finnish and German languages. This might be due to language
structure differences between each of these languages with English.
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Figure 2: Sensitivity analysis on embedding construction context window size for different shuffling techniques.

Table 7: BLI Performance Results (MAP). Significance tests
for Smart Shuffling with respect to other CLE methods are
conducted with Bonferroni correction.

CLE Model Fre-Eng Ita-Eng Fin-Eng Deu-Eng

PRJ-UNSUP 0.0051 0.5189 0.1882 0.4018
PRJ-SUP 0.4268 0.5538 0.3446 0.4549
PSD 0.6126 0.5958 0.3122 0.5356
JNT 0.5111 0.6774 0.4718 0.6463

Smart Shuffling 0.7197▲ 0.7363▲ 0.5121▲ 0.6852▲

Moreover, XLM results show that such pre-trained models with
many languages are not providing high gain for CLIR and needs
further investigations for fine-tuning or training. Our interesting
observation is that, with TLM fine-tuning, which requires parallel
sentence-level data, the ranking performance dropped significantly.

6.4 Smart vs. Random Shuffling
As discussed in Section 3, we analyze the impact of shuffling on
the quality of embeddings. Using our method, we analyze three
different shuffling methods for all four language pairs. Figure 2
shows the retrieval performance, in terms of MAP. For each of
these, embeddings are constructed with different window sizes,
{1, 2, 4, 10, 25, 50}. Note that multiple random shuffling matches
with Vulić and Moens [51]’s method. We also randomly shuffle
only once for demonstration purposes. For larger window sizes, all
the shuffling methods are almost indistinguishable, but comparing
the multiple random shuffling with single random shuffling shows
that shuffling multiple times brings every possible pair of terms
close to each other—i.e., context flattening. However, with Smart
Shuffling, we find a peak point for window size ranging from 4 to
10. When the window size is large any shuffling can provide the
context needed.

6.5 BLI Evaluation
We also evaluate Smart Shuffling using the Bilingual Lexicon In-
duction (BLI) task that is mainly designed for the CLE quality as-
sessments. The task is to rank target language translations for a
given set of source language terms. We use the test sets provided by
Glavas et al. [19] for our language pairs, each containing 2K words,
and report our results in terms of MAP in Table 7. Smart Shuffling
provides significant improvements for the BLI task. Comparing our

results with the performance reported by Glavas et al. [19], Smart
Shuffling is achieving state-of-the-art results on the provided data.
For instance, the best reported BLI performance for Deu-Eng on
their test data is 0.58, which Smart Shuffling improves on by 18%.
We also note that some part of this high BLI performance, when
compared to the reported results in Glavas et al. [19], might be
due to sentence-level data quality that we use – our JNT baseline
provides 0.64 for the same language pair trained on Europarl data.

7 CONCLUSION
In this study, we paved the way toward an end-to-end neural CLIR
model. First, we showed a translation gap between existing state-
of-the-art CLE methods when compared to an effective MT model,
trained on the same data. We proposed Smart Shuffling, a special
embedding construction method that improved the retrieval per-
formance significantly when compared to other CLE methods used
with unsupervised ranking methods. Finally, employing a deep
relevance-based re-ranking method and training in a supervised
paradigm, we showed convincingly that the type of distributed
representations of the query and document terms impacts neural
CLIR performance and that better CLE approaches – e.g., Smart
Shuffling as shown in Table 3 and Table 6 – result in substantially
stronger results (Table 4). We also showed that Smart Shuffling’s
improvements generalize well to a second task (BLI).

Two major and fundamental steps are needed as future work
to gain a better understanding toward neural CLIR. The first is to
re-design the monolingual neural IR systems to model a joint loss
in terms of translation and relevance. The second is to extract more
translation resources that can be used as synthetic queries with
translations for training the neural models in a weak supervision
paradigm [12]. We are particularly interested in extending our
findings with Smart Shuffling into transformer-based pre-trained
models and providing CLIR extension of recent success in fine-
tuning BERT for monolingual IR [13, 53].
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