
An Analysis of Approaches Taken in the ACM RecSys

Challenge 2018 for Automatic Music Playlist Continuation

HAMED ZAMANI, University of Massachusetts Amherst

MARKUS SCHEDL, Johannes Kepler University

PAUL LAMERE, Spotify

CHING-WEI CHEN, Spotify

The ACM Recommender Systems Challenge 2018 focused on the task of automatic music playlist continuation,

which is a form of the more general task of sequential recommendation. Given a playlist of arbitrary length

with some additional meta-data, the task was to recommend up to 500 tracks that fit the target characteristics

of the original playlist. For the RecSys Challenge, Spotify released a dataset of one million user-generated

playlists. Participants could compete in two tracks, i.e., main and creative tracks. Participants in the main

track were only allowed to use the provided training set, however, in the creative track, the use of external

public sources was permitted. In total, 113 teams submitted 1,228 runs to the main track; 33 teams submitted

239 runs to the creative track. The highest performing team in the main track achieved an R-precision of

0.2241, an NDCG of 0.3946, and an average number of recommended songs clicks of 1.784. In the creative

track, an R-precision of 0.2233, an NDCG of 0.3939, and a click rate of 1.785 was obtained by the best team.

This article provides an overview of the challenge, including motivation, task definition, dataset description,

and evaluation. We further report and analyze the results obtained by the top performing teams in each track

and explore the approaches taken by the winners. We finally summarize our key findings and list the open

avenues and possible future directions in the area of automatic playlist continuation.

Additional Key Words and Phrases: Recommender Systems; Automatic Playlist Continuation; Music Recom-

mendation Systems; Challenge; Benchmark; Evaluation

1 OVERVIEW

According to a study carried out in 2016 by the Music Business Association1 as part of their
Music Biz Consumer Insights program,2 playlists accounted for 31% of music listening time among
listeners in the United States, which is more than albums (22%), but less than single tracks (46%). In
a 2017 study conducted by Nielsen,3 it was found that 58% of users in the United States create their
own playlists, 32% share them with others. Other studies, conducted by MIDiA,4 show that 55%
of music streaming service subscribers create music playlists, using streaming services. Studies
like these suggest a growing importance of playlists as a mode of music consumption, which is

1https://musicbiz.org/news/playlists-overtake-albums-listenership-says-loop-study
2https://musicbiz.org/resources/tools/music-biz-consumer-insights/consumer-insights-portal
3http://nielsen.com/us/en/insights/reports/2017/music-360-2017-highlights.html
4https://midiaresearch.com/blog/announcing-midias-state-of-the-streaming-nation-2-report

Authors’ addresses: Hamed Zamani, University of Massachusetts Amherst, Amherst, USA, zamani@cs.umass.edu; Markus

Schedl, Johannes Kepler University, Linz, Austria, markus.schedl@jku.at; Paul Lamere, Spotify, New York, USA, paul@

spotify.com; Ching-Wei Chen, Spotify, New York, USA, cw@spotify.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2157-6904/2018/0-ART0 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

also reflected in the fact that the music streaming service Spotify currently hosts over 2 billion
playlists.5

In its most generic definition, a playlist is simply a sequence of tracks intended to be listened to
together. The task of automatic playlist generation (APG) then refers to the automated creation of
these sequences of tracks. In this context, the ordering of songs in a playlist is often highlighted as
a key characteristics of APG, which makes the task a highly complex endeavor. Some authors have
therefore proposed approaches based on Markov chains to model the transitions between songs in
playlists, e.g. [8, 33]. While these approaches have been shown to outperform approaches agnostic
of the song order in terms of log likelihood, recent research has found little evidence that the exact
order of songs actually matters to users [43], while the ensemble of songs in a playlist [44] and
direct song-to-song transitions [19] seems to matter.
Considered a variation of APG, the task of automatic playlist continuation (APC) consists of

adding one or more tracks to a playlist in a way that fits the same target characteristics of the
original playlist. This has benefits in both the listening and creation of playlists: users can enjoy
listening to continuous sessions beyond the end of a finite-length playlist, while also finding it easier
to create longer, more compelling playlists without a need to have extensive musical familiarity.

Schedl et al. [41] have recently identified the task of automatic music playlist continuation as one
of the grand challenges in music recommender systems research. A large part of the APC task is to
accurately infer the intended purpose of a given playlist. This is challenging not only because of
the broad range of these intended purposes (when they even exist), but also because of the diversity
in the underlying features or characteristics that might be needed to infer those purposes.
An extreme cold start scenario for this task is where a playlist is created with some meta-data

(e.g., the title of a playlist), but no song has been added to the playlist. This problem can be cast as
an ad-hoc information retrieval task, where the task is to rank songs in response to a user-provided
meta-data query.

Given the importance of playlists in improving the user experience within the context of music
streaming services, ACM Recommender Systems Challenge6 2018 [6] has focused on an automatic
music playlist continuation task.7 This paper provides an overview of the challenge, the results
achieved by over 100 participating teams as well as the winning and most innovative approaches,
and future directions and open avenues in this research area.

1.1 Task: Automatic Playlist Continuation

Asmentioned earlier, automatic playlist continuation is a useful feature for music streaming services
not only because it can extend listening session length, but also because it can increase engagement
of users on their platform by making it easier for users to create playlists that they can enjoy and
share. ACM Recommender Systems Challenge 2018 has focused on the task of automatic playlist
continuation (APC). This task consists of adding one or more tracks to a music playlist in a way
that fits the target characteristics of the original playlist [3, 42]. To formally define the task, let
M be the universe of tracks in the underlying music catalog. Given a playlist P created by a user
u, that contains k music tracks MP = {mP1,mP2, · · · ,mPk }, the task is to rank the music tracks
fromM −MP to be recommended to the user for completing the playlist. In addition, each playlist
includes some meta-data information, such as title. It should be noted that k can be equal to zero

5https://press.spotify.com/us/about
6ACM Recommender Systems Challenge, or RecSys Challenge in short, is an annual competition organized in conjunction

with the ACM Conference on Recommender Systems, since 2010. For more information, refer to [38] or visit http://

recsyschallenge.com/.
7http://2018.recsyschallenge.com

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

Table 1. Basic statistics of the Million Playlist Dataset.

Property Value

Number of playlists 1,000,000
Number of tracks 66,346,428
Number of unique tracks 2,262,292
Number of unique albums 734,684
Number of unique artists 295,860
Number of unique playlist titles 92,944
Number of unique normalized playlist titles 17,381
Average playlist length (tracks) 66.35

for some playlists, meaning that the user has created the playlist but no music track has yet been
added to the playlist.

1.2 Competition: Main and Creative Tracks

ACM Recommender Systems Challenge 2018 invited participants to submit their solutions for the
APC task in two distinct tracks: main track and creative track. Participants in the main track were
only allowed to use the dataset provided by the challenge for training their models. In contrast,
participants in the creative track were required to use external resources, such as public datasets,
for solving the same task. The submitted solutions for both tracks were evaluated using the same
dataset, which will be explained in the following subsection.

1.3 Data: Million Playlist Dataset

For algorithm development and testing, we released a dataset of one million user-created playlists
from the Spotify platform, dubbed the Million Playlist Dataset (MPD). These playlists were created
during the period of January 2010 until November 2017. Statistics of the MPD are reported in
Table 1. The dataset includes, for each playlist, its title as well as the list of tracks (including album
and artist names), and some additional meta-data such as Spotify URIs and the playlist’s number
of followers. The playlist titles in the dataset were unmodified, however for reporting in Table 1,
playlist titles were lightly normalized by converting to lowercase, and removing spaces and common
non-alphanumeric symbols. A truncated sample playlist is shown in Figure 1.
A separate challenge dataset was used to validate the quality of the elaborated algorithms. It

consisted of a set of playlists from which a number of tracks had been withheld. The challenge set
was composed of 10,000 incomplete playlists and covered a total of 10 scenarios (1000 playlists for
each): (1) title only, no track, (2) title and the first 5 tracks, (3) the first 5 tracks, (4) title and the first
10 tracks, (5) the first 10 tracks, (6) title and the first 25 tracks, (7) title and 25 random tracks, (8)
title and the first 100 tracks, (9) title and 100 random tracks, and (10) title and the first track.

The task was then to predict the missing tracks in those playlists, and participating teams were
required to submit their predictions for those missing tracks (as a list of 500 ordered predictions).
The withheld tracks were used by the organizers as ground truth, i.e. to compute the performance
measures for each submission.

Note that the data provided by the challenge does not contain acoustic information or features.
However, participants in the creative track were able to use the Spotify API (or other sources) to
retrieve such information.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

Figure 1. A truncated sample playlist from MPD.

1 {

2 "name": "musical",

3 "collaborative": "false",

4 "pid": 5,

5 "modified_at": 1493424000,

6 "num_albums": 7,

7 "num_tracks": 12,

8 "num_followers": 1,

9 "num_edits": 2,

10 "duration_ms": 2657366,

11 "num_artists": 6,

12 "tracks": [

13 {

14 "pos": 0,

15 "artist_name": "Degiheugi",

16 "track_uri": "spotify:track:7vqa3sDmtEaVJ2gcvxtRID",

17 "artist_uri": "spotify:artist:3V2paBXEoZIAhfZRJmo2jL"

,

18 "track_name": "Finalement",

19 "album_uri": "spotify:album:2KrRMJ9z7Xjoz1Az4O6UML",

20 "duration_ms": 166264,

21 "album_name": "Dancing Chords and Fireflies"

22 },

23 {

24 "pos": 1,

25 "artist_name": "Degiheugi",

26 "track_uri": "spotify:track:23 EOmJivOZ88WJPUbIPjh6",

27 "artist_uri": "spotify:artist:3V2paBXEoZIAhfZRJmo2jL"

,

28 "track_name": "Betty",

29 "album_uri": "spotify:album:3lUSlvjUoHNA8IkNTqURqd",

30 "duration_ms": 235534,

31 "album_name": "Endless Smile"

32 },

33 {

34 "pos": 2,

35 "artist_name": "Degiheugi",

36 "track_uri": "spotify:track:1vaffTCJxkyqeJY7zF9a55",

37 "artist_uri": "spotify:artist:3V2paBXEoZIAhfZRJmo2jL"

,

38 "track_name": "Some Beat in My Head",

39 "album_uri": "spotify:album:2KrRMJ9z7Xjoz1Az4O6UML",

40 "duration_ms": 268050,

41 "album_name": "Dancing Chords and Fireflies"

42 }, ...

43],

44 }

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

1.4 Evaluation

To assess the quality of submissions, we computed three metrics and averaged them across all
playlists in the challenge dataset: R-precision, normalized discounted cumulative gain (NDCG),
and recommended songs clicks.

• R-precision measures the fraction of recommended relevant items among all known relevant
items (i.e., the number of withheld tracks) and is invariant of the order in which tracks are
retrieved. R-precision is calculated on both the track and the artist level, with artist matches
contributing a partial score (of 0.25) even if the predicted track is incorrect. LetGT andGA be the
set of unique track IDs and artist IDs in the ground truth, respectively. Let ST be the set of track
IDs in the top |GT | tracks recommended in the submitted playlist, and SA be the set of unique
artist IDs in the same set. Then:

R-precision =
|ST ∩GT | + 0.25 · |SA ∩GA |

|GT |

• NDCG [20] assesses the ranking quality of the recommended tracks and increases when relevant
tracks are placed higher in the recommendation list. This metric was originally proposed to
evaluate the effectiveness of information retrieval systems. Nowadays, it is also frequently used
for evaluating (music) recommender systems. Assuming that tracks for each playlist are sorted
according to their recommendation score in descending order, the discounted cumulative gain
(DCG) is then defined as follows:

DCG =

N
∑

i=1

ri

log2(i + 1)

where ri is the label (as found in the ground truth) for the item ranked at position i for the playlist,
and N is the length of the recommendation list (here, N = 500). DCG is normalized by IDCG ś
the DCG value for the best possible ranking obtained by ordering the tracks by true ratings in
descending order. NDCG is then calculated as:

NDCG =
DCG

IDCG

• Recommended songs clicks (or shortly just łclicks”) is a user-centric beyond-accuracymeasure
that relates to a Spotify feature called Recommended Songs. Given a playlist title and/or set
of tracks in a playlist, this feature recommends 10 tracks to add to the playlist. The list can be
refreshed to produce 10 more tracks. The recommended songs clicks metric is the number of
refreshes needed before the first relevant track is encountered. It is formalized as shown in the
following equation, where R is the list of recommended tracks andG is the ground truth, i.e., the
omitted tracks from the real playlist.

clicks =
⌊ argmini {Ri : Ri ∈ G} − 1

10

⌋

If there is no relevant track in R, a value of 51 is picked, which is 1 plus the maximum number of
clicks possible.

The higher the R-precision and NDCG, the better. However, lower recommended songs clicks
indicates better performance. To aggregate the individual scores for the three metrics, Borda rank
aggregation [11] is used, i.e. scores are converted to ranks, which are then summed up over the
three measures to obtain a single performance score.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

Table 2. Final results achieved by the top 10 teams in the main track. The highest R-prec and NDCG as well

as the lowest clicks are marked as bold.

Rank Team R-prec NDCG clicks code

1 vl6 [46] 0.2241 0.3946 1.7839 https://github.com/layer6ai-labs/vl6_recsys2018
2 hello world! [48] 0.2234 0.3932 1.8952 https://github.com/hojinYang/spotify_recSys_challenge_2018
3 Avito [37] 0.2153 0.3846 1.7818 https://github.com/VasiliyRubtsov/recsys2018
4 Creamy Fireflies [1] 0.2202 0.3857 1.9335 https://github.com/tmscarla/spotify-recsys-challenge
4 MIPT_MSU 0.2167 0.3823 1.8754 https://github.com/zakharovas/RecSys2018
6 HAIR [50] 0.2163 0.3803 2.1815 https://github.com/LauraBowenHe/Recsys-Spotify-2018-challenge
7 KAENEN [32] 0.2091 0.3747 2.0540 https://github.com/rn5l/rsc18
7 BachPropagate [22] 0.2090 0.3740 1.8834 https://bachpropagate.weebly.com/
9 Definitive Turtles [24] 0.2086 0.3751 2.0781 https://github.com/proto-n/recsys-challenge-2018
10 IN3PD [13] 0.2078 0.3713 1.9517 https://github.com/guglielmof/recsys_spt2018MI

Table 3. Final results achieved by the top 10 teams in the creative track. The highest R-prec and NDCG as

well as the lowest clicks are marked as bold.

Rank Team R-prec NDCG clicks code

1 vl6 [46] 0.2234 0.3939 1.7845 https://github.com/layer6ai-labs/vl6_recsys2018
2 Creamy Fireflies [1] 0.2197 0.3846 1.9252 https://github.com/tmscarla/spotify-recsys-challenge
3 KAENEN [32] 0.2090 0.3746 2.0482 https://github.com/rn5l/rsc18
4 cocoplaya [14] 0.2022 0.3656 1.8377 https://github.com/andrebola/creative-recsys-cocoplaya
5 BachPropagate [22] 0.2024 0.3659 2.0029 https://bachpropagate.weebly.com/
6 Trailmix [49] 0.2059 0.3703 2.2589 https://github.com/xing-zhao/RecSys-Challenge-2018-Trailmix.git
7 teamrozik [23] 0.2054 0.3609 2.1636 https://github.com/mesutkaya/SpotifyRecSysChallenge2018
8 Freshwater Sea 0.1952 0.3504 2.1302 https://github.com/fyrelab/Spotify-RecSys
9 Team Radboud [45] 0.1982 0.3564 2.2934 https://github.com/TimovNiedek/recsys-random-walk
10 spotif.ai [25] 0.1924 0.3394 2.2665 https://github.com/eldrin/recsys18-spotify-spotif-ai
10 Avito [37] 0.1764 0.3337 1.8988 https://github.com/VasiliyRubtsov/recsys2018

• By increasing the number of given tracks, the standard deviation of the performances obtained
by the top 10 teams generally increases. In other words, most approaches perform closely when
a few tracks are given. However, when several tracks are given for each playlist (e.g., more than
or equal to 25 tracks), a substantial difference between the performance of different approaches
is observed.

• Even one track matters: comparing the results of the playlists from Type 1 and Type 10, we
observe a significant increase in the performance by adding only the first track of the playlist.
This might be also due to the fact that the proposed solutions could not handle the title desirably.

• In general, the team hello world! performed well when the first tracks of the playlists are given.
However, the teams vl6 and MIPT_MSU achieved the best results when the tracks are given in a
random order. The team Avito also achieved the highest performance multiple times for some of
the playlists that contain a few tracks.

• The performance of the models in the main track is slightly higher than that in the creative track.
The reason might be that adding external resources increases the complexity of the models and
given the amount of training data, the models could not take advantage of external resources,
effectively.

The approaches used by the top performing teams are briefly described in the next two sections.

4 TOP-PERFORMING APPROACHES: MAIN TRACK

In this section, we provide a brief analysis of the approaches taken by the top 10 teams in the main
track. We further explain the approaches used by the top 3 teams in more detail.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

Table 4. The performance of top 10 teams in the main track for different types of playlists in the challenge

set. The highest R-prec and NDCG as well as the lowest clicks are marked as bold.

Team
Type 1 Type 2 Type 3 Type 4 Type 5
title only title + first 5 tracks only first 5 tracks title + first 10 tracks only first 10 tracks

R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks

vl6 0.0978 0.2044 10.759 0.2032 0.3766 0.900 0.2089 0.3847 0.644 0.2098 0.3973 0.437 0.1955 0.3737 0.631
hello world! 0.0870 0.1925 11.400 0.2035 0.3791 0.908 0.2153 0.3939 0.646 0.2090 0.3928 0.465 0.1994 0.3788 0.571
Avito 0.0845 0.1881 10.423 0.2008 0.375 0.875 0.2103 0.3878 0.623 0.2104 0.3956 0.424 0.1970 0.3752 0.568

Creamy Fireflies 0.0949 0.1959 10.959 0.1979 0.3682 1.026 0.2123 0.3868 0.766 0.2034 0.3841 0.708 0.1968 0.3695 0.773
MIPT_MSU 0.0948 0.1994 10.797 0.1946 0.3648 1.013 0.2061 0.3821 0.695 0.1940 0.3793 0.635 0.1895 0.3624 0.700
HAIR 0.0829 0.1812 12.932 0.1956 0.3660 1.000 0.2037 0.3740 0.756 0.2002 0.3810 0.534 0.1929 0.3655 0.640
KAENEN 0.0953 0.2053 10.563 0.1945 0.3611 1.168 0.2049 0.3776 1.039 0.1969 0.3754 0.759 0.1897 0.3615 0.961
BachPropagate 0.0751 0.1814 10.426 0.1991 0.3694 1.038 0.2070 0.3813 0.783 0.2034 0.3842 0.597 0.1940 0.3661 0.749
Definitive Turtles 0.0960 0.2001 10.884 0.1935 0.3651 1.212 0.2049 0.3797 0.893 0.1951 0.3755 0.769 0.1887 0.3623 0.946
IN3PD 0.0963 0.2031 10.452 0.1935 0.3608 1.108 0.2076 0.3813 0.753 0.1981 0.3772 0.573 0.1899 0.3615 0.746

Team
Type 6 Type 7 Type 8 Type 9 Type 10

title + first 25 tracks title + 25 random tracks title + first 100 tracks title + 100 random tracks title + first track
R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks

vl6 0.2488 0.4005 0.262 0.3718 0.5616 0.024 0.1888 0.3539 0.634 0.3656 0.5846 0.019 0.1510 0.3087 3.529

hello world! 0.2584 0.4138 0.144 0.3559 0.5417 0.021 0.2225 0.3956 0.319 0.3414 0.5538 0.033 0.1408 0.2901 4.445
Avito 0.2544 0.4082 0.162 0.3440 0.5340 0.022 0.2036 0.3728 0.438 0.3054 0.5162 0.081 0.1429 0.2927 4.202
Creamy Fireflies 0.2454 0.3921 0.260 0.3563 0.5384 0.037 0.2073 0.3691 0.507 0.3476 0.5611 0.035 0.1402 0.2916 4.264
MIPT_MSU 0.2251 0.3755 0.404 0.3717 0.5540 0.017 0.1689 0.3276 0.888 0.3739 0.5754 0.014 0.1489 0.3029 3.591
HAIR 0.2388 0.3847 0.257 0.3558 0.5363 0.047 0.1952 0.3528 0.615 0.3611 0.5741 0.039 0.1366 0.2870 4.995
KAENEN 0.2370 0.3817 0.426 0.3375 0.5240 0.060 0.1886 0.3466 1.011 0.3060 0.5235 0.049 0.1402 0.2906 4.504
BachPropagate 0.2405 0.3872 0.293 0.3364 0.5171 0.038 0.1919 0.3501 0.778 0.3005 0.5084 0.035 0.1418 0.2944 4.097
Definitive Turtles 0.2366 0.3830 0.424 0.3342 0.5195 0.077 0.1931 0.3532 0.877 0.3062 0.5208 0.056 0.1377 0.2917 4.643
IN3PD 0.2426 0.3882 0.296 0.3080 0.4813 0.069 0.1911 0.3504 0.597 0.3163 0.5241 0.046 0.1341 0.2850 4.877

Table 5. The performance of top 10 teams in the creative track for different types of playlists in the challenge

set. The highest R-prec and NDCG as well as the lowest clicks are marked as bold.

Team
Type 1 Type 2 Type 3 Type 4 Type 5
title only title + first 5 tracks only first 5 tracks title + first 10 tracks only first 10 tracks

R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks

vl6 0.0979 0.2044 10.746 0.2032 0.3773 0.889 0.2084 0.3840 0.652 0.2094 0.3978 0.439 0.1949 0.3733 0.647
Creamy Fireflies 0.0946 0.1961 10.899 0.1978 0.3682 1.033 0.2095 0.3840 0.742 0.2019 0.3800 0.661 0.1919 0.3650 0.900
KAENEN 0.0953 0.2053 10.563 0.1943 0.3617 1.172 0.2056 0.3776 1.046 0.1968 0.3754 0.752 0.1899 0.3616 0.958
cocoplaya 0.0724 0.1786 10.060 0.1877 0.3559 1.047 0.1962 0.3629 0.815 0.1954 0.3763 0.532 0.1824 0.3526 0.656
BachPropagate 0.0720 0.1794 10.662 0.1929 0.3607 1.173 0.2033 0.3761 0.956 0.1942 0.3747 0.672 0.1886 0.3599 0.943
Trailmix 0.0815 0.1817 12.638 0.1894 0.3585 1.124 0.2058 0.3798 0.889 0.1965 0.3776 0.749 0.1875 0.3608 0.957
teamrozik 0.0955 0.1959 11.363 0.1827 0.3405 1.522 0.1986 0.3592 0.868 0.1923 0.3604 0.730 0.1843 0.3482 0.873
Freshwater Sea 0.0885 0.1870 11.367 0.1837 0.3448 1.271 0.1985 0.3659 0.924 0.1800 0.3481 0.719 0.1761 0.3364 1.012
Team Radboud 0.0883 0.1951 12.853 0.1858 0.3455 1.340 0.1982 0.3658 0.903 0.1899 0.3627 0.683 0.1818 0.3469 0.786
spotif.ai 0.0720 0.1750 10.157 0.1674 0.3101 1.740 0.1778 0.3254 0.982 0.1742 0.3328 0.935 0.1679 0.3197 0.958
Avito 0.0800 0.1831 9.934 0.1634 0.3289 1.124 0.1672 0.3328 0.842 0.1772 0.3529 0.530 0.1616 0.3276 0.614

Team
Type 6 Type 7 Type 8 Type 9 Type 10

title + first 25 tracks title + 25 random tracks title + first 100 tracks title + 100 random tracks title + first track
R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks

vl6 0.2485 0.4006 0.265 0.3710 0.5603 0.023 0.1869 0.3523 0.636 0.3638 0.5825 0.021 0.1497 0.3065 3.527

Creamy Fireflies 0.2454 0.3921 0.261 0.3534 0.5341 0.028 0.2081 0.3688 0.476 0.3517 0.5645 0.034 0.1427 0.2926 4.218
KAENEN 0.2373 0.3815 0.417 0.3372 0.5240 0.058 0.1886 0.3465 0.993 0.3060 0.5229 0.048 0.1392 0.2896 4.475
cocoplaya 0.2418 0.3886 0.154 0.3254 0.5090 0.034 0.1884 0.3439 0.619 0.2992 0.5069 0.065 0.1331 0.2812 4.395
BachPropagate 0.2354 0.3812 0.368 0.3189 0.5001 0.040 0.1885 0.3435 1.085 0.2897 0.4935 0.055 0.1402 0.2897 4.075
Trailmix 0.2407 0.3905 0.309 0.3352 0.5151 0.046 0.1863 0.3492 0.854 0.3049 0.5086 0.034 0.1313 0.2815 4.989
teamrozik 0.2380 0.3774 0.210 0.3340 0.5024 0.024 0.1862 0.3394 0.715 0.3113 0.5047 0.041 0.1316 0.2808 5.290
Freshwater Sea 0.2268 0.3635 0.196 0.2984 0.4663 0.061 0.1859 0.3373 0.730 0.2845 0.4753 0.085 0.1296 0.2796 4.937
Team Radboud 0.2267 0.3652 0.337 0.3130 0.4877 0.080 0.1759 0.3225 0.874 0.2865 0.4881 0.069 0.1358 0.2841 5.009
spotif.ai 0.2098 0.3363 0.427 0.3397 0.5156 0.024 0.1627 0.3044 0.919 0.3344 0.5416 0.024 0.1186 0.2334 6.499
Avito 0.2171 0.3580 0.239 0.2786 0.4432 0.110 0.1735 0.3287 0.617 0.2366 0.4296 0.195 0.1083 0.2524 4.783

High-level characteristics of the winning approaches are presented in Table 6. As shown in the
table, several teams took advantage of a two-stage architecture for the playlist continuation task.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

In such an architecture, the first stage model retrieves a small set of tracks (compared to the total
number of tracks in the dataset), while the second stage focuses on re-scoring or re-ranking the
output of the first stage model with the goal of accuracy improvement. Therefore, a high-recall
model is desired for the first stage, however, a high-precision model is preferred for the second
stage. The reason for making this decision is mainly related to efficiency. However, the two-stage
architecture can also improve the APC performance. Among the top 10 teams in the main track, vl6
[46], Avito [37], HAIR [50], BachPropagate [22], and IN3PD [13] took advantage of a multi-stage
architecture. Multi-stage models have been extensively explored for improving efficiency and
effectiveness in various retrieval and recommendation settings [7, 10, 28, 30, 47].

In addition, matrix factorization, as a dominant approach in collaborative filtering (CF), was also
employed by several top performing teams, including vl6 [46], Avito [46], KAENEN [32], and IN3PD
[13]. These models mostly create an incomplete playlist-track matrix and use matrix factorization
to learn a low-dimensional dense representation for each playlist and track. They learn similar
representations for the tracks that often occur together in user-created playlists. Therefore, the
tracks from a single artist (band), an album, or a music genre may be assigned close representations.
The matrix factorization algorithms used by the top teams include weighted regularized matrix
factorization (WRMF) [18], LightFM with a weighted approximate-rank pairwise (WARP) loss [27],
and Bayesian personalized ranking (BPR) [35]. Interestingly, some teams, including HAIR [50] and
Definitive Turtles [24], were able to achieve promising results using simple neighborhood-based
collaborative filtering methods.
Moreover, due to the high capacity of neural networks to learn task-specific representations, a

number of top performing teams used neural network models to produce accurate predictions for
the APC task. These neural approaches include: (1) simple feed-forward networks for predicting
tracks given each playlist (e.g., a word2vec-style model [34]) or for neural collaborative filtering [16],
(2) convolutional models for playlist embedding or extracting useful information from playlist titles,
(3) recurrent neural networks and in particular long short-term memory networks for modeling
the sequence of tracks in the playlists, and (4) autoencoders for learning playlist representations.

Most top-performing teams that used a two-stage architecture built their second stage based on
(mostly pairwise) learning to rank models. These models were designed to re-rank a small number
of tracks given a set of features produced by different models, including the first-stage model, as
well as several heuristic hand-crafted features. The tree-based models, such as XGBoost [9], GBDT
[15], and LambdaMART [4], were the popular learning to rank algorithms among the top teams in
the challenge.
It is notable that some top performing teams used information retrieval techniques mainly

developed for the ad-hoc retrieval task. For instance, inverse document frequency (IDF) weighting
[21], TF-IDF weighting [39], BM25 weighting [36], and relevance model [29] (a pseudo-relevance
feedback model) were respectively employed by teams Definitive Turtles [24], KAENEN [32],
Creamy Fireflies [1], and BachPropagate [22].

An important challenge in the APC task is dealing with cold-start playlists, i.e., the playlists with
only title (no track). Some teams tried to deal with such special cases differently by trying to learn
a relationship between the playlist titles and its tracks. Among which, neural networks and matrix
factorization models are notable that predict the tracks in a playlist, given its title.
In the following, we detail the approaches taken by the top three teams in the main track:
vl6 team: The vl6 team used a two-stage architecture, where the first one is based on Weighted

Regularized Matrix Factorization (WRMF) [18], and the second one is implemented using XGBoost
[9], a gradient boosting learning to rank model. In addition to the output of the WRMF model, few
models were used to produce features for the XGBoost model. These models include a convolutional
neural network for playlist embedding, user-user and item-item neighborhood-based collaborative

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

Table 6. Characteristics of top-performing approaches in the main track. Two stage, MF, NN, and LTR denote

two-stage cascaded architecture, matrix factorization, neural networks, and learning to rank, respectively.

rank team two stage MF NN LTR

1 vl6 ✓ ✓ ✓ ✓

2 hello world! ✗ ✗ ✓ ✗

3 Avito ✓ ✓ ✗ ✓

4 Creamy Fireflies ✗ ✗ ✗ ✗

6 HAIR ✓ ✗ ✓ ✓

7 KAENEN ✗ ✓ ✗ ✗

7 BachPropagate ✓ ✗ ✓ ✓

9 Definitive Turtles ✗ ✗ ✗ ✗

10 IN3PD ✓ ✓ ✗ ✗

filtering models, and a set of hand-crafted features. Note that the cold-start instances (those that
only consists of a title with no track) were handled separately. For such cases, the vl6 team used a
matrix factorization on top of the playlist titles. For a detailed description of the approach used by
the vl6 team, refer to [46].
hello world! team: The team hello world! linearly combined the results produced by two

different models: an autoencoder model and a convolutional neural network. The autoencoder
model tries to reconstruct track lists and artist lists for each playlist. To model both marginal and
joint information across playlist and contents, the model was trained using a łhide-and-seek” idea.
In other words, either the track list or the artist list was randomly deactivated in the input of the
autoencoder. To use the title of playlist, especially for the cold-start situations, a character-level
convolutional neural network (charCNN) was used to learn a representation from the playlist’s title.
This can be viewed as a classification model: predicting the tracks in each playlist given its title. In
the linear combination, the output of the charCNN was weighted higher for shorter playlists. For a
detailed description of the approach used by the team hello world!, we refer the reader to [48].
Avito team: Similar to the first team, the team Avito also used a two-stage architecture. The

first stage is based on a matrix factorization model with the weighted approximate-rank pairwise
(WARP) loss, implemented in LightFM [27]. Two separate models were trained, one based on
playlist-track information and the other one based on the playlist titles. The union of the outputs
of these two models were re-ranked by the second stage model, which is a XGBoost learning to
rank model [9]. In addition to the LightFM features, some additional feature engineering was done
to boost the performance. For a detailed description of the approach used by the Avito team, refer
to [37].

5 TOP-PERFORMING APPROACHES: CREATIVE TRACK

In this section, we provide a brief analysis of the approaches taken by the top 10 teams in the
creative track, in which teams were allowed to use external resources.11 We further explain the
approaches followed by the top 3 teams in more detail.
A first observation when reviewing the algorithms of the top performers in the creative track

reveals that most of the teams only slightly altered their algorithms for the main track, e.g., by
adding to their pipeline a final audio content-based re-ranking approach [32] or by extending their
content-based filtering approaches by enriching the provided meta-data with audio information [1].

11When teams started to submit the same approaches to the creative and main tracks (due to the lower popularity of the

creative one), we required submissions to the creative track to exploit external data.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

Most of what was said above for the main track therefore also holds for the approaches taken in
the creative track, in particular the superior performance of two-stage architectures, use of neural
networks, and special handling of cold-start situations.
Interestingly, except for one team (spotif.ai), all top 10 teams participating in the creative track

also participated in the main track (see Table 3). However, their ranks most often differed between
the main and creative tracks: vl6 (ranked 1st in main track), Creamy Fireflies (4th in main), KAENEN
(7th in main), cocoplaya (11th in main), BachPropagate (7th in main), Trailmix (13th in main),
teamrozik (63rd inmain), Freshwater Sea (19th inmain), TeamRadboud (21st inmain), and Avito (3rd
in main). The spotif.ai team, which solely participated in the creative track, employed a recurrent
neural network architecture (long short-term memory [17]) that was particularly designed to
cope with sequential data, in addition to a weighted regularized matrix factorization (WRMF)
approach [18].

Remarkably, almost all teams participating in the creative track used the Spotify API12 as external
data source and downloaded the provided audio content features. A notable exception was team
cocoplaya [14], who retrieved 30-second-snippets of each track from Spotify and computed their
own audio-based features, in particular the output of a probabilistic genre classifier for each of
13 genres [2]. Others included external information when filtering playlist titles using stopword
lists or pre-defined lists of music-related terms (e.g., playlist, songs, music) [49]. Still others used
pre-trained word embedding models, such as the CBOW model from word2vec [34], to create track
embeddings [22].
In the following, we detail the approaches taken by the top three teams in the creative track:
vl6 team: The vl6 team also ranked first in the creative track. Their approach taken here largely

resembles the one taken in the main track (see Section 4). The only difference is that the feature
set used in the second stage of their approach (feature selection using an XGBoost model) was
extended by content-based music descriptors of tracks. These descriptors were acquired through
the Spotify Audio API and comprise acousticness, danceability, energy, instrumentalness, key,
liveness, loudness, mode, speechiness, tempo, time signature, and valence. However, no substantial
and consistent improvement was achieved by adding these features (compare Tables 2 and 3). For a
detailed description of the approach used by the vl6 team, refer to [46].
Creamy Fireflies team: This team used an ensemble of known techniques, which they intelli-

gently combined in an informed way to select and tune the individual techniques depending on the
underlying playlist characteristics (from only title to 100 tracks). Five base approaches were used:
(1) popularity-based recommendation, (2) track- and (3) playlist-based collaborative filtering (on the
playlist-track matrix), as well as (4) track- and (5) playlist-based content-based filtering; (4) using
artist and album identifiers as features; (5) additional features derived from playlist titles. More
precisely, playlist features were created by applying techniques from information retrieval and
natural language processing to clean and enrich the playlist titles (e.g., tokenization, normalization,
and stemming). In a tuning step, the authors then sought optimal parameters for each combination
of algorithm and playlist category (cf. Section 1.3). Their base ensemble approach subsequently
weighted the five algorithms for each playlist category and other playlist characteristics (e.g., length
and track positions). The final score was computed as the weighted sum of the scores given by
each algorithm and playlist category. The authors also investigated another ensemble model, based
on a proposed measure of artist heterogeneity. Clustering the playlists according to this measure
and performing a cluster-based filtering slightly improved NDCG and R-precision. Eventually,
several boosts depending on the playlist category were investigated. For instance, assuming that

12https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

the last tracks in a (long) seed playlist are the most important ones with respect to the continuation,
candidate tracks more similar to those last ones in the seed playlist were given higher weight.
In the creative track, team Creamy Fireflies additionally used the Spotify API to acquire the

following features for each track: acousticness, danceability, energy, instrumentalness, liveness,
loudness, speechiness, tempo, valence, and popularity. They extended their content-based filtering
and collaborative filtering models described above to include track-level similarity. To this end, a
sparse representation of track clusters was used, in which clusters were generated by grouping
tracks into four equally sized clusters based on the values of each audio feature. For a detailed
description of the approach used by the Creamy Fireflies team, refer to [1].
KAENEN team: Also the KAENEN team proved that it is possible to achieve remarkable results

without using very complex approaches. They combined nearest-neighborhood techniques with
common matrix factorization algorithms, which were adapted to the application domain. More
precisely, they adapted an item-based CF approach, treating playlists as users and computing
cosine similarity between item vectors (binary, over all playlists). To alleviate the popularity bias
that affects such co-occurrence-based similarities, inverse document frequency (IDF) weighting is
applied to each candidate track, i.e., tracks that appear in many playlists are downweighted. As
second approach, the team proposed a playlist-based nearest neighbor method, which uses the
same framework as the item-based CF approach, but this time computing similarities over binary
playlist vectors instead of track vectors. Each candidate track t is then ranked with respect to the
similarity to the most similar playlists in which t occur, again considering the IDF weighting. As
third approach, the team adapted a standard matrix factorization technique using alternating least
squares (ALS) optimization. To compute the ranking of a candidate track t with respect to a seed
playlist p, the latent factors of all tracks in p are IDF-weighted and the dot product of the arithmetic
mean of this set of latent factors (constituted of all tracks in p) and the latent factors of t is used
as final score. To address the cold-start scenario (only playlist title given), the team used a simple
string matching technique applied on tokenized and stemmed playlist titles to identify the most
similar playlists to p. In addition, they used a matrix factorization approach (with ALS optimization)
treating unique playlist names as users and occurrences of tracks in the corresponding playlists as
łratings”. The latent factors were then used to identify the playlists most similar to p. The individual
approaches described above were subsequently combined into a hybrid recommender system, using
switching and weighting hybridization schemes [5]. In cold-start cases where the string matching
approaches did not produce enough results (i.e., 500 tracks), the missing ones were filled with the
most popular tracks of the MPD.

For the creative track, like the other top performers, the team KAENEN retrieved audio features
using the Spotify API. They then used a re-ranking strategy as follows. If the mean standard
deviation of the audio features of the seed playlist p’s tracks fell below a threshold (low content
diversity), the original score of a candidate track t with respect to p was re-weighted by cosine
similarity between t ’s content features and the mean of the content features of all tracks in p. For a
detailed description of the approach used by the KAENEN team, refer to [32].

6 SUMMARY OF KEY FINDINGS

In this section, we briefly summarize our key findings from the challenge and the submitted
solutions. In summary, most approaches ensemble the results obtained by several well-known
methods, including matrix factorization models, neighborhood-based collaborative filtering models,
basic information retrieval techniques, and learning to rank models. The results show that the
models work best when a sufficient number of tracks per playlist is provided and they are randomly
selected from the playlist (as opposed to the sequential order from the beginning of the playlist).
The submitted solutions could not effectively use playlist titles for APC. This might be due to the

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

sparseness of the titles as well as the scale of the training data. In addition, none of the submitted
solutions tried to infer the user intents from the playlist titles. The results also demonstrate that
the performance of different models are close to each other when few tracks per playlist are given.
However, when the number of tracks increases, a more diverse set of results is observed.

In the creative track, most teams exclusively used the descriptors from the Spotify API, and only
few of them tried to extract their own features from the audio. It is worth noting that surprisingly,
there is no significant gap between the results in the main and creative tracks. Indeed, the results
for the creative track are marginally worse than those obtained for the main track. This might
be due to the fact the inclusion of side information makes the problem more complex and the
submitted solutions could not successfully generalize the information obtained from the exploited
external resources.

7 FUTURE DIRECTIONS AND OPEN AVENUES

Even though the RecSys Challenge 2018 has stimulated a wealth of ideas and creative solutions, we
contemplate several directions for additional research that might be worth pursuing.

Integration of additional content and context feature: Given that solutions in the creative track
did not outperform those in the main track, the question arises whether the right or good external
data sources have been exploited by the algorithms submitted to the creative track. Almost all
submissions relied on content features provided by the Spotify API, omitting the time-consuming
task of computing other (maybe better) content descriptors from audio (snippets) of the tracks.
Also additional contextual information about tracks, albums, or artists, e.g., Wikipedia articles or
album reviews, could be integrated in the future.

Explicit inference of intent or purpose: In cases where a playlist title is given, sophisticated
natural language processing techniques (NLP) could be applied, trying to uncover the listener’s
intent or purpose of the playlist. However, identifying such user intents to listen to music, the most
important of which are arousal andmood regulation, achieving self-awareness, and expressing social
relatedness [40], is challenging. Therefore, NLP techniques will likely have to be complemented by
insights gained from gratification [31] and other psychological theories.

Modeling and transferring sequence-specific characteristics: We also see great potential for future
approaches that analyze and model certain sequence-specific characteristics of user-generated
playlists, formalize them, and integrate them into the sequential recommendation process. Similarly
to the artist heterogeneity measure proposed by team Creamy Fireflies [1], aspects of overall
playlist coherence (e.g., in terms of genre, style, or acoustic descriptors), coherence of direct song-
to-song transitions, or item diversity measures could be computed from user-generated playlists
and considered as (weak) constraint in the process of APC, i.e., the seed playlist should be continued
in a way that maintains the same level of coherence, diversity, etc.

Evaluation in terms of perceived recommendation quality: In addition to the mostly accuracy-
related performance measures used to gauge performance of submissions, user-centric measures
of perceived recommendation quality should be adopted in the future, in order to obtain a truly
user-centric perspective of recommendation quality. Such measures of perceived recommendation
quality can be assessed through questionnaires in online evaluation settings. Existing questionnaires
such as [12, 26] should be extended to the sequence-aware music domain and may eventually
include aspects of perceived accuracy, diversity, coherence, satisfaction, novelty, serendipity, and
level of personalization.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

8 ACKNOWLEDGEMENTS

We would like to thank everyone at Spotify who was involved in the RecSys Challenge, including
Ben Carterette, Christophe Charbuillet, Cedric de Boom, Jean Garcia-Gathright, James Kirk, James
McInerney, Vidhya Murali, Hugh Rawlinson, Sravana Reddy, Marc Romejin, Romain Yon, and Yu
Zhao. Furthermore, we greatly appreciate the help provided by previous organizers of the RecSys
Challenge, in particular by Yashar Deldjoo, Mehdi Elahi, and Alan Said.

This work was supported in part by the Center for Intelligent Information Retrieval. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect those of the sponsor.

REFERENCES

[1] S. Antenucci, S. Boglio, E. Chioso, E. Dervishaj, S. Kang, T. Scarlatti, and M. F. Dacrema. Artist-driven layering and

user’s behaviour impact on recommendations in a playlist continuation scenario. In Proceedings of the 2018 ACM

Recommender Systems Challenge, RecSysChallenge ’18, Vancouver, BC, Canada, 2018.

[2] D. Bogdanov, A. Porter, P. Herrera, and X. Serra. Cross-collection Evaluation for Music Classification Tasks. In

Proceedings of the 17th International Society for Music Information Retrieval Conference (ISMIR 2016), 2016.

[3] G. Bonnin and D. Jannach. Automated generation of music playlists: Survey and experiments. ACM Computing Surveys

(CSUR), 47(2):26, 2015.

[4] C. J. Burges. From ranknet to lambdarank to lambdamart: An overview. Technical report, June 2010.

[5] R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction,

12(4):331ś370, Nov 2002.

[6] C.-W. Chen, P. Lamere, M. Schedl, and H. Zamani. Recsys challenge 2018: Automatic music playlist continuation. In

Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18, Vancouver, BC, Canada, 2018.

[7] R.-C. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. Efficient cost-aware cascade ranking in multi-stage retrieval.

In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’17, pages 445ś454, New York, NY, USA, 2017. ACM.

[8] S. Chen, J. L. Moore, D. Turnbull, and T. Joachims. Playlist prediction via metric embedding. In Proceedings of the 18th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, pages 714ś722, New York,

NY, USA, 2012. ACM.

[9] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 785ś794, New York, NY, USA, 2016. ACM.

[10] V. Dang, M. Bendersky, and W. B. Croft. Two-stage learning to rank for information retrieval. In P. Serdyukov,

P. Braslavski, S. O. Kuznetsov, J. Kamps, S. Rüger, E. Agichtein, I. Segalovich, and E. Yilmaz, editors, Advances in

Information Retrieval, pages 423ś434, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[11] J.-C. de Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences, 1781.

[12] M. D. Ekstrand, F. M. Harper, M. C. Willemsen, and J. A. Konstan. User perception of differences in recommender

algorithms. In Proceedings of the 8th ACM Conference on Recommender Systems, RecSys ’14, pages 161ś168, New York,

NY, USA, 2014. ACM.

[13] G. Faggioli, M. Polato, and F. Aiolli. Efficient similarity based methods for the playlist continuation task. In Proceedings

of the 2018 ACM Recommender Systems Challenge, RecSysChallenge ’18, Vancouver, BC, Canada, 2018.

[14] A. Ferraro, D. Bogdanov, J. Yoon, K. Kim, and X. Serra. Automatic playlist continuation using a hybrid recommender

system combining features from text and audio. In Proceedings of the 2018 ACM Recommender Systems Challenge,

RecSysChallenge ’18, Vancouver, BC, Canada, 2018.

[15] J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5):1189ś1232,

2001.

[16] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In Proceedings of the 26th

International Conference on World Wide Web, WWW ’17, pages 173ś182, Republic and Canton of Geneva, Switzerland,

2017. International World Wide Web Conferences Steering Committee.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735ś1780, 1997.

[18] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In Proceedings of the Eighth

IEEE International Conference on Data Mining, ICDM ’08, pages 263ś272, 2008.

[19] G. B. Iman Kamehkhosh, Dietmar Jannach. How Automated Recommendations Affect the Playlist Creation Behavior

of Users. In Joint Proceedings of the 23rd ACM Conference on Intelligent User Interfaces (ACM IUI 2018) Workshops:

Intelligent Music Interfaces for Listening and Creation (MILC), Tokyo, Japan, March 2018.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

[20] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):422ś446,

Oct. 2002.

[21] K. S. Jones. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation,

28:11ś21, 1972.

[22] S. Kallumadi, B. Mitra, and T. Iofciu. A line in the sand: Recommendation or ad-hoc retrieval? In Proceedings of the

2018 ACM Recommender Systems Challenge, RecSysChallenge ’18, Vancouver, BC, Canada, 2018.

[23] M. Kaya and D. Bridge. Automatic playlist continuation using subprofile-aware diversification. In Proceedings of the

2018 ACM Recommender Systems Challenge, RecSysChallenge ’18, Vancouver, BC, Canada, 2018.

[24] D. M. Kelen, D. Berecz, F. BÃľres, and A. A. BenczÃžr. Efficient k-nn for playlist continuation. In Proceedings of the

2018 ACM Recommender Systems Challenge, RecSysChallenge ’18, Vancouver, BC, Canada, 2018.
[25] J. Kim, M. Won, C. C. Liem, and A. Hanjalic. Towards seed-free music playlist generation: Enhancing collaborative fil-

tering with playlist title information. In Proceedings of the 2018 ACM Recommender Systems Challenge, RecSysChallenge
’18, Vancouver, BC, Canada, 2018.

[26] B. P. Knijnenburg,M. C.Willemsen, Z. Gantner, H. Soncu, and C. Newell. Explaining the user experience of recommender
systems. User Modeling and User-Adapted Interaction, 22(4-5):441ś504, 2012.

[27] M. Kula. Metadata embeddings for user and item cold-start recommendations. In Proceedings of the 2nd Workshop on

New Trends on Content-Based Recommender Systems co-located with 9th ACM Conference on Recommender Systems,
pages 14ś21, 2015.

[28] A. S. Lampropoulos, P. S. Lampropoulou, and G. A. Tsihrintzis. A cascade-hybrid music recommender system for
mobile services based on musical genre classification and personality diagnosis. Multimedia Tools and Applications,
59(1):241ś258, Jul 2012.

[29] V. Lavrenko and W. B. Croft. Relevance based language models. In Proceedings of the 24th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’01, pages 120ś127, New York, NY, USA,
2001. ACM.

[30] L. Li, D. Wang, T. Li, D. Knox, and B. Padmanabhan. Scene: A scalable two-stage personalized news recommendation
system. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR ’11, pages 125ś134, New York, NY, USA, 2011. ACM.
[31] A. J. Lonsdale and A. C. North. Why do we listen to music? a uses and gratifications analysis. British Journal of

Psychology, 102:108ś134, 2011.
[32] M. Ludewig, I. Kamehkhosh, N. Landia, and D. Jannach. Effective nearest-neighbor music recommendations. In

Proceedings of the 2018 ACM Recommender Systems Challenge, RecSysChallenge ’18, Vancouver, BC, Canada, 2018.
[33] B. McFee and G. Lanckriet. The Natural Language of Playlists. In Proceedings of the 12th International Society for Music

Information Retrieval Conference (ISMIR 2011), Miami, FL, USA, October 2011.
[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their

compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages 3111ś3119. Curran Associates, Inc., 2013.

[35] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit
feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages 452ś461,
Arlington, Virginia, United States, 2009. AUAI Press.

[36] S. E. Robertson and S. Walker. Some simple effective approximations to the 2-poisson model for probabilistic weighted
retrieval. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’94, pages 232ś241, New York, NY, USA, 1994. Springer-Verlag New York, Inc.
[37] V. Rubtsov, M. Kamenshikov, I. Valyaev, V. Leksin, and D. I. Ignatov. A hybrid two-stage recommender system for

automatic playlist continuation. In Proceedings of the 2018 ACM Recommender Systems Challenge, RecSysChallenge ’18,
Vancouver, BC, Canada, 2018.

[38] A. Said. A short history of the recsys challenge. 37:102ś104, 12 2016.
[39] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information Processing &Management,

24(5):513 ś 523, 1988.
[40] T. Schäfer, P. Sedlmeier, C. Städtler, and D. Huron. The Psychological Functions of Music Listening. Frontiers in

psychology, 4, 2013.
[41] M. Schedl, H. Zamani, C.-W. Chen, Y. Deldjoo, and M. Elahi. Current challenges and visions in music recommender

systems research. International Journal of Multimedia Information Retrieval, 7(2):95ś116, Jun 2018.
[42] M. Schedl, H. Zamani, C.-W. Chen, Y. Deldjoo, and M. Elahi. Current challenges and visions in music recommender

systems research. International Journal of Multimedia Information Retrieval, 7(2):95ś116, Jun 2018.
[43] N. Tintarev, C. Lofi, and C. C. Liem. Sequences of diverse song recommendations: An exploratory study in a commercial

system. In Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, UMAP ’17, pages
391ś392, New York, NY, USA, 2017. ACM.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

[44] A. Vall, M. Quadrana, M. Schedl, G. Widmer, and P. Cremonesi. The Importance of Song Context in Music Playlists. In

Proceedings of the Poster Track of the 11th ACM Conference on Recommender Systems (RecSys), Como, Italy, 2017.

[45] T. van Niedek and A. de Vried. Random walk with restart for automatic playlist continuation and query-specific

adaptations. In Proceedings of the 2018 ACM Recommender Systems Challenge, RecSysChallenge ’18, Vancouver, BC,

Canada, 2018.

[46] M. Volkovs, H. Rai, Z. Cheng, G. Wu, Y. Lu, and S. Sanner. Two-stage model for automatic playlist continuation at scale.

In Proceedings of the 2018 ACM Recommender Systems Challenge, RecSysChallenge ’18, Vancouver, BC, Canada, 2018.

[47] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked retrieval. In Proceedings of the 34th

International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’11, pages 105ś114,

New York, NY, USA, 2011. ACM.

[48] H. Yang, Y. Jeong, M. Choi, and J. Lee. Mmcf: Multimodal collaborative filtering for automatic playlist continuation. In

Proceedings of the 2018 ACM Recommender Systems Challenge, RecSysChallenge ’18, Vancouver, BC, Canada, 2018.

[49] X. Zhao, Q. Song, J. Caverlee, and X. Hu. Trailmix: An ensemble recommender system for playlist curation and

continuation. In Proceedings of the 2018 ACM Recommender Systems Challenge, RecSysChallenge ’18, Vancouver, BC,

Canada, 2018.

[50] L. Zhu, B. He, M. Ji, C. Ju, and Y. Chen. Automatic music playlist continuation via neighbor-based collaborative

filtering and discriminative reweighting/reranking. In Proceedings of the 2018 ACM Recommender Systems Challenge,

RecSysChallenge ’18, Vancouver, BC, Canada, 2018.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

	Abstract
	1 Overview
	1.1 Task: Automatic Playlist Continuation
	1.2 Competition: Main and Creative Tracks
	1.3 Data: Million Playlist Dataset
	1.4 Evaluation

	2 Participation
	3 Results
	4 Top-performing approaches: Main Track
	5 Top-performing Approaches: Creative Track
	6 Summary of Key Findings
	7 Future Directions and Open Avenues
	8 Acknowledgements
	References

