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ABSTRACT
With the rise of neural models across the field of information re-
trieval, numerous publications have incrementally pushed the en-
velope of performance for a multitude of IR tasks. However, these
networks often sample data in random order, are initialized ran-
domly, and their success is determined by a single evaluation score.
This is exacerbated by neural models achieving incremental im-
provements from previous neural baselines, leading to multiple
near state of the art models that are difficult to reproduce and
quickly become deprecated. As neural methods are starting to be
incorporated into low resource and noisy collections that further
exacerbate this issue, we propose evaluating neural models both
over multiple random seeds and a set of hyperparameters within ϵ
distance of the chosen configuration for a given metric.
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1 INTRODUCTION
As neural methods have become some of the most effective mod-
els for learning representations where traditional hand crafted
features have failed to perform [6, 8, 10], there has been a large
increase in publications using these approaches. This has allowed
the field to move from handcrafting features to handcrafting larger
architectures that can learn relevance with millions of parameters.
While this approach has made significant strides in the field of
IR, reproducible results have become a significant concern within
the community [5]. Often, these state of the art results cannot be
replicated due to a small issue such as batch size, data preprocess-
ing, random seed, or other hyperparameters of the model. While
Choromanska et al. [3] have demonstrated that local minimas are
sufficiently close to the global minimum, this is not calibrated with
local minimas being a sufficient in evaluation space such as mean
precision or recall [2]; a model that achieves a similar loss value is
therefore not calibrated to a similar ranking score.
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Thus, we propose addressing this issue by introducing a new
evaluation method for neural retrieval. Rather than pointwise com-
parisons of single scores, models would be reported with a proba-
bility density function over random seeds. This would allow future
work to not only compare the mean performance score, but to
examine the sensitivity of new architectures or training methods.

2 VOLATILITY OF NEURAL MODELS

Table 1: Sensitivity over two retrieval models across CQA
and WikiQA collections using MAP as evaluation metric
over multiple random seeds

Method CQA WikiQA

LSTM .665 ± .004 .592 ± .021
Multitask LSTM .615 ± .009 .572 ± .060

As Dür et al. [5] have demonstrated, state of the art neural mod-
els are extremely susceptible to small changes in hyperparameters,
initialization and even random seeds. As IR neural models are often
trained and evaluated over a limited number of training queries,
this variance is not uncommon. To exemplify this, we conduct a
small experiment over multiple random seeds by evaluating a con-
ventional short text retrieval architecture [4, 13] compared with
the same model with an additional multitask component to predict
part of speech information [7]. This experiment was conducted
over two collections. CQA which is the combination of nfl6 [4]
and Yahoo’s manner collection commonly referred to as L4 [11].
This combined collection has close to 200,000 individual queries.
The other is WikiQA [16], which consists of approximately 2000
training queries.
As seen in Table 1, the large amount of data available within the
CQA collection to evaluate these two methods results in a relatively
stable performance across random seeds. However, moving to a
lower resource collections results in a much higher variance across
initialization. Of particular interest is that Multitask LSTM could
be portrayed as the superior model under a certain set of random
initial conditions.

As recent work has started using reinforcement learning to han-
dle noisy approaches [14], the importance of fully documenting a
proposed model’s performance becomes an even greater issue. The
REINFORCE algorithm [15], used in [14] is known to have excep-
tionally high variance in the gradient estimates, which translates
to high variance in the performance metrics. To demonstrate the
importance of using distributed evaluations, we implement a RL
approach that has been shown empirically to be more stable than
the one used in IRGAN [9, 12, 14]. However, even with these new
algorithms, the stochastic optimization process has high variance
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and has led to issues with reproducibility [1]. Any IR model using
reinforcement learning needs to be evaluated over many trials to
accurately convey the results. As seen in Figure!1, we show the sen-
sitivity of two state-of-the-art reinforcement learning algorithms
NAC-s [12] and PPO [9] on a common benchmark task, pendulum.
The performance is measure as the average sum of reward the RL
agent sees over its lifetime. We plot the inverse CDF of agents
performance after running 125 thousand different settings of the
hyper-parameters as random seeds.

Figure 1: Full performance distribution of NACs and PPO on
the pendulum swing and balance task

3 DISTRIBUTED EVALUATIONS
To circumvent the outlined issues in the previous section, we pro-
pose a two fold evaluation approach to neural models. First, final
evaluation scores should be conducted over multiple random seeds.
This creates a distribution of scores, and provides an illustration
of the sensitivity of the proposed model to noise. Second, a subse-
quent set of scores would be evaluated over a small ϵ-ball of the
top hyperparameters of the best performing model. The impact of
small changes in the hyperparameter space reveals the robustness
of the model over the small perturbations to architecture choices.

Using these two approaches, it now becomes viable to create a
smoothed distribution of scores from a model and evaluate a novel
architecture with the additional information. Using KL-divergence,
KL(P ∥Q) =

∫ ∞

−∞
p(x) log p(x )

q(x )dx , one can not only examine point
statistics such as mean and variance, but also how similar each
model’s sensitivity to randomness and hyperparameters.

4 CONCLUSION
In this paper, we address the issue of under reporting the perfor-
mance of models that are highly susceptible to noise both in the
training data, but also within the model itself. While the proposed
distributed evaluation requires greater computation than taking
the result of a single run, hyperparameter tuning within a small

convex hull is common practice when fine tuning a model for a
collection. Thus one need only include these results in the final
paper and not incur additional overhead.
With the recent push to release code for the public, setting a stan-
dard of distributed results would bring the field one step closer to
allowing these methods to be reproducible.
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