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Abstract

Multi-turn information-seeking conversa-

tion systems are an important and chal-

lenging research topic. Although some ad-

vanced neural matching models have been

proposed for this task, there are at least

two problems with them: the models are

generally not efficient for industrial appli-

cations, and they rely on a large amount

of labeled data, which may not be avail-

able. In this paper, we study transfer

learning for multi-turn information seek-

ing conversation systems. We propose an

efficient and effective multi-turn conversa-

tion model based on convolutional neural

networks. We further extend our model

to adapt the knowledge learned from a

resource-rich domain to further boost our

model performance. We have deployed

our model in an industrial bot 1 applica-

tion and observed a significant improve-

ment over the existing online model.

1 Introduction

With the popularity of E-commerce websites,

there are a growing number of user/customer ques-

tions seeking information regarding their shopping

items. To efficiently handle customer questions,

one recent approach is to build an information-

seeking conversation system. In the E-commerce

environment, the information-seeking conversa-

tion system can serve millions of customer ques-

tions per day. The majority of customer questions

(around 90%) are business-related or information-

seeking questions. In addition, most of the

information-seeking conversations are multi-turn

(75% of queries have more than one turn 2).

1anonymized link T.B.A.
2according to a statistic in a big E-commerce company

Recent research in this area has focused on con-

versation systems with deep learning and rein-

forcement learning (Shang et al., 2015; Yan et al.,

2016; Li et al., 2016a,b; Sordoni et al., 2015;

Wu et al., 2017). The recent proposed Sequen-

tial Matching Network (SMN) (Wu et al., 2017)

matches a response with each utterance in the con-

text at multiple levels of granularity to distill im-

portant matching information, leading to state-of-

the-art performance on two multi-turn conversa-

tion corpora. However, there are at least two prob-

lems with these methods: they may not be efficient

enough for industrial applications, and they rely

on a large amount of labeled data which may not

be available in reality.

To address the problem of efficiency, we made

three major modifications to SMN to boost the

efficiency of the model while preserving its ef-

fectiveness. First, we remove the RNN layers

of inputs from the model; Second, SMN uses

a Sentence Interaction based (SI-based) Pyramid

model (Pang et al., 2016) to model each utterance

and response pair. Observing that a Sentence En-

coding based (SE-based) model like BCNN (Yin

and Schütze, 2015) is complementary to the SI-

based model, we further extend the component to

incorporate a SE-based BCNN model, resulting in

a hybrid CNN (hCNN) (Yu et al., 2017); Third,

instead of using a RNN to model the output rep-

resentations, we consider a CNN model followed

by a fully-connected layer to further boost the ef-

ficiency of our model. As shown in our experi-

ments, our final model yields comparable results

but with better efficiency than SMN.

To address the second problem, we study trans-

fer learning (TL) (Pan and Yang, 2010) to help

domains with limited data. TL has been exten-

sively studied in the last decade. With the pop-

ularity of deep learning, many Neural Network

(NN) based methods are proposed (Yosinski et al.,



2014). A typical framework uses a shared NN

to learn shared features for both source and tar-

get domains (Mou et al., 2016; Yang et al., 2017).

Another approach is to use both a shared NN and

domain-specific NNs to derive shared and domain-

specific features (Liu et al., 2017). This is im-

proved by some studies (Ganin et al., 2016; Taig-

man et al., 2017; Chen et al., 2017; Liu et al.,

2017) that consider adversarial networks to learn

more robust shared features across domains. In-

spired by these studies, we extended our model

to efficiently adapt the knowledge learned from

a resource-rich domain to help our task. Our TL

model is based on (Liu et al., 2017), with enhanced

source and target specific domain discrimination

losses. To the best of our knowledge, our work

is the first to study transfer learning for context-

aware question matching in conversations.

Experiments on both benchmark and commer-

cial data sets show that our proposed model out-

performs several baselines including the state-of-

the-art SMN model. We have also deployed our

model in an industrial bot 3 and observed a signif-

icant improvement over the existing online model.

2 Model

Our model is designed to address the following

general problem. Given an input sequence of utter-

ances {u1, u2, . . . , un} and a candidate question r,

our task is to identify the matching degree between

the utterances and the question. When the num-

ber of utterances is one, our problem is identical

to paraphrase identification (PI) (Yin and Schütze,

2015) or natural language inference (NLI) (Bow-

man et al., 2015). Furthermore, we consider

a transfer learning setting to transfer knowledge

from a source domain to help a target domain.

2.1 Multi-Turn hCNN (MT-hCNN)

We present an overview of our model in Fig. 1. In

a nutshell, our model first obtains a representation

for each utterance and candidate question pair us-

ing hybrid CNN (hCNN), then concatenates all the

representations, and feeds them into a CNN and

fully-connected layer to obtain our final output.

hCNN. The hybrid CNN (hCNN) model (Yu

et al., 2017) is based on two models: a modified

SE-based BCNN model (Yin et al., 2016) and a

SI-based Pyramid model (Pang et al., 2016). The

former uses two separate CNN to encode the two

3anonymized link to the chatbot.
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Figure 1: Our proposed multi-turn hybrid CNN.

input sentences and then combines the resulting

sentence embeddings as follows:

h1 = CNN1(X1); h2 = CNN2(X2).

Hb = h1 ⊕ h2 ⊕ (h1 − h2)⊕ (h1 · h2).

where − and · refer to element-wise subtraction

and multiplication, and ⊕ refers to concatenation.

Furthermore, we add a SI-base Pyramid compo-

nent to the model, we first produce an interaction

matrix M ∈ R
m×m, where Mi,j denotes the dot-

product score between the ith word in X1 and the

jth word in X2. Next, we stack two 2-D convolu-

tional layers and two 2-D max-pooling layers on

it to obtain the hidden representation Hp. Finally,

we concatenate the hidden representations as out-

put for each input sentence pair: ZX1,X2
=

hCNN(X1, X2) = Hb ⊕Hp.

MT-hCNN. We now extend hCNN to handle

multi-turn conversations. Let {u1, u2, u3, . . . , un}
be the utterances, r is the candidate question.

hui,r = hCNN(ui, r). for i ∈ [1, n]

H = [hu1,r;hu2,r; · · · ;hun,r].

P = CNN3(H).

O = Fully-Connected(P )

Note that H is obtained by stacking all the h,

CNN3 is another CNN with a 2-D convolutional

layer and a 2-D max-pooling layer, the output of

CNN3 is feed into a fully-connected layer to ob-

tain the final representation O.



2.2 Transfer with Domain Discriminators

We further study transfer learning (TL) to learn

knowledge from a source-rich domain to help our

target domain, in order to reduce the dependency

on a large scale labeled training data. As similar

to (Liu et al., 2017), we use a shared MT-hCNN

and domain-specific MT-hCNNs to derive shared

features O
c and domain-specific features O

s and

O
t. The domain specific output layers are:

ŷk =

{

σ(Wsc
O

c +W
s
O

s + b
s), if k = s

σ(Wtc
O

c +W
t
O

t + b
t), if k = t

(1)

where W
sc, Wtc, Ws, and W

t are the weights

for shared-source, shared-target, source, and tar-

get domains respectively, while b
s and b

t are the

biases for source and target domains respectively.

Following (Liu et al., 2017), we use an adver-

sarial loss La to encourage the shared features

learned to be indiscriminate across two domains:

La =
1

n

n
∑

i=1

∑

d∈s,t

p(di = d|U, r) log p(di = d|U, r).

where di is the domain label and p(di|·) is the do-

main probability from a domain discriminator.

Differently, to encourage the specific feature

space to be discriminable between different do-

mains, we consider applying domain discrimina-

tion losses on the two specific feature spaces. We

further add two negative cross-entropy losses: Ls

for source and Lt for target domain:

Ls =−
1

ns

ns
∑

i=1

I
di=s log p(di = s|Us, rs).

Lt =−
1

nt

nt
∑

i=1

I
di=t log p(di = t|Ut, rt).

where I
di=d is an indicator function set to 1 when

the statement (di = d) holds, or 0 otherwise.

Finally, we obtain a combined loss as follows:

L =
∑

k∈s,t

−
1

nk

nk
∑

j=1

1

2
(ykj − ŷkj )

2 +
λ1

2
La

+
λ2

2
Ls +

λ3

2
Lt +

λ4

2
||Θ||2F .

where Θ denotes model parameters.

3 Experiments

We evaluate the efficiency and effectiveness of our

base model, the transferability of the model, and

the online evaluation in an industrial chatbot.

Datasets: We collect the chat logs between cus-

tomers and a chatbot from “2017-10-01" to “2017-

10-20" in an E-commerce company. The chatbot

indexes all the questions in our QA database using

Lucene, and call back the 15 most similar ques-

tions for each query using the TF-IDF model. We

then ask a business analyst to annotate the can-

didate questions as positive or negative. In all,

we have annotated 63,000 context-response pairs.

This dataset (EData) is used as our Target data.

Furthermore, we build our Source data as fol-

lows. In the chatbot, if the confidence score of

answering a given user query is low, we prompt

top three related questions for users to choose. We

collected the user click logs, where we treat the

clicked question as positive and the others as neg-

ative. We collected 510,000 query-question pairs

from the click logs in total as the source. For the

source and target datasets, we use 80% for train-

ing, 10% for validation, and 10% for testing.

Compared Methods: We compared our multi-

turn model (MT-hCNN) with two CNN based

models ARC-I and ARC-II (Hu et al., 2014), and

several advanced neural matching models: MV-

LSTM (Wan et al., 2016), Pyramid (Pang et al.,

2016) Duet (Mitra et al., 2017), SMN (Wu et al.,

2017)4, and a degenerated version of our model

that removes CNN3 from our MT-hCNN model

(MT-hCNN-d). All the methods in this paper

are implemented with TensorFlow and are trained

with NVIDIA Tesla K40M GPUs.

Settings: We use the same parameter settings of

hCNN in (Yu et al., 2017). For the CNN3 in our

model, we set window size of convolution layer as

2, ReLU as the activation function, and the stride

of max-pooling layer as 2. The hidden node size of

the Fully-Connected layer is set as 128. AdaGrad

is used to train our model with an initial learning

rate of 0.08. We use MAP, Recall@5, Recall@2,

and Recall@1 as evaluation metrics. We set λ1 =
λ2 = λ3 = 0.05, and λ4 = 0.005.

3.1 Comparison on Base Models

The comparisons on base models are shown in Ta-

ble 1. First, the RNN based methods like MV-

LSTM and SMN have clear advantages over the

two CNN-based approaches like ARC-I and ARC-

II, and are better or comparable with the state-of-

the-art CNN-based models like Pyramid and Duet;

4The results are based on the TensorFlow code from au-
thors, and without using of any over sampling of negative
training data.



Table 1: Comparison of base models on Ubuntu Dialog Corpus (UDC) and an E-commerce data (EData).

Data UDC EData

Methods MAP R@5 R@2 R@1 Time MAP R@5 R@2 R@1 Time

ARC-I 0.2810 0.4887 0.1840 0.0873 16 0.7314 0.6383 0.3733 0.2171 23
ARC-II 0.5451 0.8197 0.5349 0.3498 17 0.7306 0.6595 0.3671 0.2236 24
Pyramid 0.6418 0.8324 0.6298 0.4986 17 0.8389 0.7604 0.4778 0.3114 27
Duet 0.5692 0.8272 0.5592 0.4756 20 0.7651 0.6870 0.4088 0.2433 30

MV-LSTM 0.6918 0.8982 0.7005 0.5457 1632 0.7734 0.7017 0.4105 0.2480 2495
SMN 0.7327 0.9273 0.7523 0.5948 64 0.8145 0.7271 0.4680 0.2881 91

MT-hCNN-d 0.7027 0.8992 0.7512 0.5838 20 0.8401 0.7712 0.4788 0.3238 31
MT-hCNN 0.7323 0.9172 0.7525 0.5978 24 0.8418 0.7810 0.4796 0.3241 36

Second, our MT-hCNN outperforms MT-hCNN-

d, which shows the benefits of adding a convo-

lutional layer to the output representations of all

the utterances; Third, we find SMN does not per-

form well in EData compared to UDC. One po-

tential reason is that UDC has significantly larger

data size than EData (1000k vs. 51k), which can

help to train a complex model like SMN; Last but

not least, our proposed MT-hCNN shows the best

results in terms of all the metrics in EData, and the

best results in terms of R@2 and R@1 in UDC,

which shows the effectiveness of MT-hCNN.

We further evaluate the inference time 5 of these

models. As shown in Table 1, MT-hCNN has

comparable or better results when compared with

SMN (the state-of-the-art multi-turn conversation

model), but is much more efficient than SMN

(∼60% time reduction). MT-hCNN also has sim-

ilar efficiency with CNN-based methods but with

better performance. As a result, our MT-hCNN

module is able to support a peak QPS 6 of 40 on a

cluster of 2 service instances, where each instance

reserves 2 cores and 4G memory on an Intel Xeon

E5-2430 machine. This shows the model is appli-

cable to industrial bots. In all, our proposed MT-

hCNN is shown to be both efficient and effective

for question matching in multi-turn conversations.

3.2 Transferablity of our model

To evaluate the effectiveness of our transfer learn-

ing setting, we compare our full model with three

baselines: Src-only that uses only source data,

Tgt-only that uses only target data, and TL-S that

uses both source and target data with the adversar-

ial training as in (Liu et al., 2017).

As in Table 2, Src-only performs worse than

Tgt-only. This shows the source and target do-

mains are related but different. Despite the domain

shift, TL-S is able to leverage knowledge from the

5the time of scoring a query and N candidate questions,
where N is 10 in UDC, and 15 in EData.

6Queries Per Second

source domain and boost performance; Last, our

model shows better performance than TL-S, this

shows the helpfulness of adding domain discrimi-

nators on both source and target domains.

Table 2: Transferablity of our model.

Data E-commerce data (EData)

Methods MAP R@5 R@2 R@1

Src-only 0.7012 0.7123 0.4343 0.2846
Tgt-only 0.8418 0.7810 0.4796 0.3241
TL-S 0.8521 0.8022 0.4812 0.3255
Ours 0.8523 0.8125 0.4881 0.3291

3.3 Online Evaluations

We deployed our model online in an E-commerce

chatbot. For each query, the chatbot uses the TF-

IDF model in Lucene to return a set of candidates,

then uses our model to rerank all the candidates

and returns the top. We set the candidate size

as 15 and context length as 3. To accelerate the

computation, we bundle the 15 candidates into a

mini-batch to feed into our model. We compare

our method with the online model - a degenerated

version of our model that only uses the current

query to retrieve candidate, i.e. context length is

1. We have run 3-day A/B testing on the Click-

Through-Rate (CTR) of the models. As shown in

Table 3, our method consistently outperforms the

online model, yielding 5% ∼ 10% improvement.

Table 3: Comparison with the online model.

CTR Day1 Day2 Day3

Online Model 0.214 0.194 0.221
Our Model 0.266 0.291 0.288

4 Conclusion

In this paper, we proposed a conversation model

based on Multi-Turn hybrid CNN (MT-hCNN).

We extended our model to adapt knowledge

learned from a resource-rich domain. Extensive

experiments and an online deployment in an E-

commerce chatbot showed the efficiency, effec-

tiveness, and transferablity of our proposed model.
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